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In this work we present a theoretical study of the magnetic properties of the CoCu2O3 compound.
The magnetic effective exchange interactions and zeroth-field splitting were computed using ab-initio
methods, then the magnetic order and transition temperature were determined using classical Monte-
Carlo simulations. We showed that, unlike other members of the ACu2O3 family, the presence of
an additional magnetic atom, associated with a large folding of the puckered layers in the (~a, ~b)
directions, induces a magnetic pattern based on coupled 3-leg ladders, quite different from the 2-leg
structural ladders. The propagation vector has been found to be ~q = (0, 1

2
, 1
2
). It is associated

to a doubly-degenerated ground state suggesting a doubling of the unit cell. The large Co2+-ion
anisotropy was shown to be of crucial importance in the high transition temperature observed in
this compound.

I. INTRODUCTION

Following the discovery of high temperature supercon-
ductivity in BaxLa5−xCu5O5(3−y) by Müller and Bed-
norz [1], cuprates have attracted a lot of attention over
the last decades. Apart from superconductivity, a large
number of compounds of the cuprate family have been
studied for their low-dimensional quantum magnetism.
Indeed, the S = 1/2 character of the Cu2+ ion, and
the directionality of the associated 3d magnetic orbital,
are responsible for a tendency to form one- or two-
dimensional magnetic systems with quantum character.
For example, the A = Sr member of the ACu2O3 family,
a two-leg ladder compound has been extensively studied
in the recent decades [2–8] for its one-dimensional prop-
erties.

Very few cuprates exhibit a three-dimensional mag-
netic ordering at a reasonable temperature (i.e. close
to room temperature or higher). Among them, one can
however cite the CuO oxide, that exhibits an antiferro-
magnetic long-range ordering below 220K [9, 10]. An-
other example is the A = Mg, Ca, and Co members
of the ACu2O3 family that exhibit a high temperature
three-dimensional (3D) character, and that, in contrast
to CuO, have been little studied. Interestingly, the
MgCu2O3 compound presents a 3D spin-ordering at 95K
[11], and the mixed Ca1−xCoxCu2O3 compounds show
ordering temperatures that range from 27K for pure Ca
(x = 0) [12] to 215K for pure Co (x = 1) [13].

The room temperature crystal structure of this fam-
ily is orthorhombic (Pmmn or Cmmm). The copper
atoms are located at the center of CuO4 corner-sharing
square-plaquettes, arranged in two-leg ladders along the
~b direction (see Fig. 1a). In each unit cell there are two
symmetry-related ladders along the ~a direction (repre-
sented in blue and green). These two-leg copper ladders
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are zig-zag coupled, and form planar (Sr compound) or
puckered (Mg, Ca, Co) layers in the (~a,~b) directions (see
Fig 1b). These layers are connected along the ~c direc-
tion, by AO6 octahedra (A=Mg, Ca, Co), or AO8 cubes
(A=Sr), sharing corners with the CuO4 plaquettes from
adjacent copper-ladder layers (see Fig. 1b).

At this point one should note that the Sr compound
also differs from the Mg, Ca, Co ones by its magnetic
properties. Indeed, while the latter ones present a 3D
magnetic order below its Néel temperature, the Sr com-
pound remains essentially 1D [3]. It thus seems that the
puckering of the (~a,~b) layers plays a major role in the
dimensionality of the magnetic ordering.

In this article we will study the magnetic properties
of the CoCu2O3 compound, the member of the ACu2O3

family with the highest 3D ordering temperature. After
the evaluation of the effective exchange interactions us-
ing ab-initio calculations, we will compute the associated
magnetic order by classical Monte-Carlo methods.

This paper is organized as follows. Section II details
the computational methods. Section III is devoted to the
calculations of the exchange interactions and single ion
anisotropy. In Section IV we discuss the magnetic order
at zero and finite temperature. Finally, we conclude in
Section V.

II. COMPUTATIONAL DETAILS

A. Ab-initio calculations

As the magnetic interactions are intrinsically
exchange-correlation effects, we will use a multiref-
erence configuration interaction method to compute
them, namely the Selected Active Space plus single
excitation (SAS+S) method [15]. Indeed, this method
insures that the following effects are treated explicitly
i) the correlation effect within the 3d magnetic orbitals,
ii) the ligand-to-metal charge transfers mediating the
magnetic interactions, and iii) the screening effects on all
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Figure 1. Schematic representation of the crystal structure
of CoCu2O3. a) along the ~c and b) ~b axes. The Cu atoms
form two-leg ladders along the ~b direction and there are two
symmetry-related ladders along the ~a direction. The Cu
atoms were represented either in blue or in green to more
easily visualize the two equivalent structural ladders. The Co
atoms are in light gray, and the O in red. Atomic structures
were drawn with VESTA [14].

the previous configurations (as configuration-dependent
hole-particle excitations and their coupling).

As such configuration interaction methods require the
diagonalization of large matrices, they can only be used
on formally finite-size systems. We thus designed, for
each magnetic integral, suitable fragments embedded in
a set of renormalized charges [16] and Total Ions Pseu-
dopotentials (TIPS) [17], in order to reproduce the effects
of the rest of the crystal on the quantum fragment. The
TIPS reproduce the exclusion effects due to the electrons
of the first layers surrounding the fragment, and the set
of charges is chosen in order to reproduce the Madelung
potential seen by the fragment with an error smaller than
0.1meV. The quantum fragments were chosen in order to
include the magnetic atoms associated with the desired
interaction, their first coordination shell, and any addi-
tional bridging ligands.

The fragment orbitals were optimized within a Com-
plete Active Space Self Consistent Field [18] (CASSCF)
calculation on the 3d electrons of the magnetic atoms, us-
ing the MOLCAS package [19]. We used a valence basis
set of 3ζ +P quality, associated to relativistic core pseu-
dopotentials of the Stuttgart group [20]. The SAS+S
calculations were then done using the RelaxSE code [21].
The latter provides the fragment low-energy excitations,
from which the effective exchange integrals can be de-
duced.

The anisotropy calculations were performed using the
same method on a single ion embedded cluster, for the
spin-orbit-free description, and the RASSI/ANISO [22]
modules of MOLCAS for the spin-orbit part. More de-
tails are available in the supplementary material [23]

The crystal structure used in all calculations is the
room temperature X-Ray given in Ref. 24.

B. Monte-Carlo calculations

The Monte Carlo (MC) simulations were performed
on the model magnetic Hamiltonian derived from our
ab-initio effective exchange interactions and single ion
anisotropies. We computed both the order parameters
and the magnetic transition temperatures. For this pur-
pose we used the standard Metropolis algorithm [25]
on a classical approximation of the spin Hamiltonian.
The calculations were performed using supercells up to
10×20×20 (24000 magnetic atoms). The thermodynami-
cal averages were performed with 4000 Monte Carlo steps
per atom. More details are available in the supplemen-
tary material [23]

III. RESULTS OF THE AB-INITIO
CALCULATIONS

A. Magnetic integrals

The formal charge analysis of CoCu2O3 yields Cu2+

and Co2+, corresponding respectively to 3d9 and 3d7
electronic configurations. The corresponding magnetic
moments are SCu = 1

2 and SCo = 3
2 , because the Co

ion is in a high-spin configuration (as expected for such
an ions and by continuity from the partially substituted
compounds, Mg1−xCoxCu2O3 for x =(0.05, 0.10, 0.15,
0.50) [26], and confirmed by our calculations).

The magnetic exchange interactions were obtained
from the ab-initio calculations, by mapping the computed
magnetic spectra onto the energy spectra of a Heisenberg
Hamiltonian on the same fragments.

Ĥ = −
∑
<i,j>

Jij Ŝi · Ŝj (1)

where Ŝi and Ŝj are the quantum spin operators associ-
ated to sites i and j respectively. The Jij are the effec-
tive exchange interactions, positive and negative values
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corresponds respectively to ferromagnetic (FM) and an-
tiferromagnetic (AFM) interactions.

On Figure 1b one sees that the cobalt octahedra are
located between two layers of copper ladders. However,
magnetically they belong to only one of them. Indeed,
the CuO4 plaquettes define the orientation of the mag-
netic dx2−y2 orbitals expected on the Cu2+ ions. Looking
at Fig. 1 one can see that the CuO4 plaquettes of only
one of the layers point toward the Co2+ ion. As a result
the Co2+ ions should be considered as belonging to the
connecting layer of copper ladders (see Fig. 1b).

There are seven independent Cu-Cu interactions in
CoCu2O3, named JuuX (in orange on Fig. 2). Three
of them are intra-ladder interactions : Juu2 is the ladder-
rung interaction, Juu5 the ladder-leg interaction and Juu7
the second neighbor intra-ladder interaction. Juu1 is the
in-plane inter-ladder interaction. The last three are Cu-
Cu interactions between the puckered planes, Juu3, Juu4
and Juu6.

There are five Co-Cu interactions, named JouX (in ma-
genta on Fig. 2). The intra-layer ones are Jou2, where
the Co atom is between two rungs of a ladder, and Jou4,
where the Co atom interacts with the next ladder nearest
copper. The inter-layers interactions are denoted Jou1,
Jou3 and Jou5 (see Fig. 2.b).

Finally, there are two Co-Co interactions (in red in
Fig. 2), Joo1 along the ~c axis and Joo2 along the ~b axis.

Figure 2. Definition of magnetic interactions in CoCu2O3,
seen along the a) ~c and b) ~b directions. The Co atoms
are in light gray, the Cu in blue and green and the O are
masked. The Cu-Cu interactions are in orange, the Co-Cu
in magenta, and the Co-Co interactions in red. Dash lines
represent the puckered layers and yellow boxes are a guide
to identify structural ladders. Atomic structures were drawn
with VESTA [14].

d[Å] Jij −Jij
~Si.~Sj Nature

Cu-Cu intra layers
Juu5 3.980 -123.43 -30.86 Leg structural ladders
Juu1 2.829 27.85 6.96 Inter structural ladders
Juu2 3.118 9.75 2.44 Rung structural ladders
Juu7 5.056 0.09 0.02 Next-nearest-neighbor

structural ladder

Cu-Cu inter layers
Juu3 3.198 -0.42 -0.10
Juu4 3.213 -0.65 -0.16
Juu6 4.466 1.94 0.49

Cu-Co interactions
Jou4 4.157 -26.97 -20.23 Intralayer
Jou1 2.931 5.67 4.25 Intralayer
Jou3 3.182 2.81 2.10 Interlayer
Jou2 3.055 1.23 0.92 Interlayer
Jou5 4.839 0.23 0.17 Interlayer

Co-Co interactions
Joo2 3.980 -4.22 -9.50 Leg-type

Joo1 3.198 -1.05 -2.36 Interlayer type

Table I. Effective exchange interactions (in meV) obtained
from ab-initio calculations, associated Heisenberg energy and
metal-metal distances (in Å). Negative values correspond to
AFM interactions and positive to FM ones.

The computed exchange interactions are presented in
Table I. We can immediately see that the largest mag-
netic interaction is the AFM exchange along the ladders
legs (Juu5 = -123.43 meV). When one looks at the ladder
rungs (Juu2) however, the interaction does correspond
neither to the largest J nor to the largest contributions to
the classical magnetic energy, −J ~Si · ~Sj . Indeed, the next
largest magnetic energy contribution is due to the Cu-
Co AFM interactions (Jou4) ; the interaction along the
structural-ladder rungs being much smaller. The third
energetic contribution comes from the Co-Co intra-layer
interactions, namely Joo2. As a result one should differ-
entiate the magnetic ladders, based on Juu5 and Joo2 for
the legs, Jou4 for the rungs, from the structural ones. In-
deed, these interactions draw a magnetic-interaction pat-
tern of three-leg Cu-Co-Cu ladders (see Fig. 3), obtained
by the exchange of the legs of neighboring structural lad-
ders (yellow on Fig. 2). Finally, the next contribution to
the magnetic energy comes from the ferromagnetic (FM)
Cu-Cu inter-ladder (structural or magnetic) zig-zag in-
teractions (Juu1).

Comparing CoCu2O3 to SrCu2O3 and to the other
members of the family, they all have in common large
AFM ladder leg interactions. The main differences are
related to the ladder rungs and more specifically to the
bending of the Cu-O-Cu angle in the structural-ladder
rungs. Indeed, this angle is close to 180◦ in the SrCu2O3

and results in an AFM interaction of −150meV [27] (of
the same order of magnitude as the ladder leg one) re-
sponsible for the one-dimensional character of the com-
pound, and the correspondence between the structural
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Figure 3. Schematic representation of the magnetic interac-
tion pattern in CoCu2O3. This pattern is obtained from the
structural pattern (Fig. 2a) by the exchange of the legs of
neighboring ladders, as pictured by the red arrows. The main
interactions are added for easy comparison. The dash black
line represent the magnetic puckered layers including the Co
atoms, the dash gray line show the rungs of the structural
ladders and blue or green boxes show the magnetic ladders.

and magnetic two-leg ladders. On the contrary the
CaCu2O3 system presents a large bending of the Cu-O-
Cu angle, namely of 123◦ [28] in the structural-ladder
rungs. It results in a strongly reduced magnetic interac-
tion (nevertheless still AFM (-11.5meV) [27]) leading to
a quasi-1D magnetic structure of coupled chains. In the
present system the Cu-O-Cu angle is again reduced com-
pared to the CaCu2O3 (105◦ [24]) and much closer to
90◦, yielding an enhanced reduction of the AFM term,
and resulting in a FM interaction of Juu2 = 9.7meV.
This result is in agreement with the ferromagnetic order-
ing, experimentally observed (along the rungs) by neu-
tron diffraction on the MgCu2O3 compound [29], where
the angle is also 105◦ [30]

To better understand the importance of the Cu-O-Cu
angle bending, one should remember that the effective
magnetic exchanges are the result of three terms [31] :

• a direct exchange term between the magnetic atoms
(Jd), this term is always FM and depends exponen-
tially on the metal-metal distance,

• a through-space (also named kinetic or Anderson’s
superexchange) super-exchange term (Jss), issued
from electron transfers between the two magnetic
atoms, this term is AFM and decreases exponen-
tially with the metal-metal distance, it is thus very
small in systems where the metal-metal bond is
bridged by a ligand,

• finally the through-bridge super-exchange term
(Jsb), issued from electron transfers between the
bridging ligand and the magnetic atoms, this term
is AFM and depends exponentially on the metal
ligand distance and as the square of the cosine of
the metal-ligand-metal angle (θ) ; it is the largest
term in AFM bridged systems.

In a first approximation, the effective magnetic ex-
change can thus be assumed to be

J = Jd(dCu-Cu)︸ ︷︷ ︸
FM, scales as

e−αd

+ Jsb(RCu-O, θCu-O-Cu)︸ ︷︷ ︸
AFM, scales as
e−βR cos2θ

(2)

The bending of the Cu-O-Cu angle thus increases the
FM term Jd, as it is associated with a reduction of the
Cu-Cu distance. Simultaneously it strongly reduces the
AFM through-bridge super-exchange term when going
from 180◦, where the latter is maximum, to 90◦ where
it cancels out. One thus sees that the Cu-O-Cu angle
is a crucial parameter for the magnetic properties of the
ACu2O3 family.

Let us now focus on the magnetic character of the A-
site in our compound. Structurally the CoCu2O3 and
MgCu2O3 are very similar. However, the magnetic char-
acter of the Co2+ ion transforms the coupled chain mag-
netic pattern found in the Mg compound, into a cou-
pled three-leg ladder system in CoCu2O3(see Fig. 3). Let
us remember that the second largest magnetic energy is
brought by the copper-cobalt Jou4 interaction and the
next one by the Co-Co ladder legs (Joo2).

Analyzing the interactions in the puckered layers a bit
closer one sees that there are two frustrating magnetic
interactions, namely the Juu1 FM interactions between
the ladders, and the FM Jou1 interactions between the
Co atoms and the Cu atoms of the neighboring magnetic
ladders (see Fig. 3). Both interactions bring frustration
with the AFM interaction along the ladder legs.

Finally, the interactions between the magnetic puck-
ered layers are conveyed by the FM Jou3 and AFM Joo1.
As can be seen in Table I the remaining interactions can
be considered negligible.

B. Anisotropy

As the Cu2+ ion is in a S = 1/2 quantum spin state,
the anisotropy of the compound is due to the Co2+ ion.
We thus computed the cobalt easy axes and zeroth-field
splitting tensor on embedded CoO6 fragments.

The zeroth-field splitting tensor is derived from the
eigenstates and energies of the many-body, ab-initio, elec-
tronic plus spin-orbit Hamiltonian on the CoO6 embed-
ded fragment, using the pseudo-spin method of L. Ungur
and L. F. Chiboratu [22].

We found that in our system the main anisotropy axes
are along the crystallographic directions,~b is the easy axis
and ~c the hard one. They are associated with a strong
anisotropy. Indeed, the zeroth-field splitting tensor can
be written as

ĤZFS = D
[(

~̂S ·
~b

b

)2

−
S(S + 1)

3

]
+ E

[(
~̂S ·

~c

c

)2

−
(
~̂S ·

~a

a

)2]
(3)

with D = −10.60meV and E = 2.10meV. These val-
ues are comparable to some of the strongest magnetic
exchange interactions. As a consequence one can expect
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the anisotropy to play a major role in the magnetic or-
dering.

IV. MAGNETIC PROPERTIES

A. Magnetic order at T = 0 K

As previously seen, the three exchange interactions
with the strongest energy contributions, namely Juu5,
Jou4 and Joo2, form 3-leg ladders along the ~b direction
that do not correspond to the structural ones (see Fig. 3).
These three AFM interactions, (Juu5, Jou4 and Joo2)
do not bring any frustration resulting in antiferromag-
netically ordered three-leg ladders. Moreover, the large
anisotropy of the Co ions aligns the spins along the~b axis.

The next non-frustrated contribution to the magnetic
energy comes from the FM interaction Juu2, which con-
nects second neighbor magnetic ladders, forming two
independent magnetic puckered planes in the (~a-~b) di-
rections. These two independent subsystems are pic-
tured in blue and green on Fig 3. One should note
that the two subsystems are related by the 2y1 or i sym-
metry operations. The different planes are then con-
nected by the AFM Joo1 and FM Jou3 interactions, lead-
ing to two magnetically-independent, 3D, non-frustrated
sub-systems. Both sub-systems are associated with a
~q = (0, 12 ,

1
2 ) propagation vector. The two subsystems

are coupled by the remaining non-negligible exchange in-
teractions (see Table I), namely the FM Juu1 and Jou1.
These two interactions are frustrated and thus do not
contribute to the magnetic energy in the proposed T = 0
magnetic order (see Fig. 4).

At this point the question is whether the above 2-fold
degenerate magnetic ordering (pictured in Fig 4) is the
ground state. It is easy to show that these two magnetic
orders correspond to minima of the classical magnetic
energy : nil gradient and positive Hessian.

Let us note, that both the CaCu2O3 [12] and
the MgCu2O3 [29] compounds also exhibit degenerate
ground states, however with different sub-systems and
magnetic orders.

Doubly-degenerate ground states are very rare in real
compounds, as any perturbation, coupling the two states,
lifts the degeneracy. In CoCu2O3 such a coupling does
not exist in the present crystallographic space group and
unit cell. One can however see that to couple the two
ground states and reduce the magnetic frustration, one
should double the crystallographic cell along the ~b di-
rection. Indeed, such a symmetry reduction could allow
lowering of the frustration brought by the inter magnetic-
ladders interactions, Juu1 and Jou1. Let us remember
that spin-1/2 chains could exhibit spin-Peierls transitions
and that the dominant magnetic interaction in CoCu2O3

is, by far, the AFM exchange along the Cu ladder leg.
One can thus expect that such an effect is also at play
in CoCu2O3 producing the dimerization that doubles the

Figure 4. Schematic representation of the magnetic structure
of CoCu2O3. (a) Order on the puckered magnetic layers. (b)
Order in the structural arrangement. The Co atoms are in
light gray and the Cu in blue or green according to the mag-
netic sub-system they belong to. The latter are outlined by
blue and green boxes. Atomic structures were drawn with
VESTA [14].

unit cell and lowers the energy.
Comparing the magnetic orders of CoCu2O3 with

CaCu2O3 and MgCu2O3, one sees that in addition to dif-
ferent magnetic ladders, as discussed in the previous sec-
tion, these compounds also exhibit different propagation
vectors. Indeed, the CaCu2O3 is dominated by an incom-
mensurate order ~q = (0.429, 12 ,

1
2 ) [28] and MgCu2O3 by

the commensurate ~q = ( 12 ,
1
2 , 0) [29] propagation vector.

This is due to the non magnetic character of the Ca and
Mg ions that probably induces a weakly AFM interaction
between the ladders, mediated by these closed-shell ions.

B. Magnetic properties at finite temperature

To study the thermodynamic properties at finite tem-
perature, we performed classical Monte-Carlo (MC) sim-
ulations. We computed both the specific heat, Cp, and
the long-range order parameter, LRO, characteristic of
the ~q = (0, 12 ,

1
2 ) magnetic order identified in the previous

section. The calculation was done using the Heisenberg
Hamiltonian defined from the exchange interactions given
in Table I, complemented with the zeroth-field splitting
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tensor of the Co ions, as provided in Section III.

Figure 5. Results of Monte-Carlo simulations.with (a) LRO
and (b) Specific heat versus temperature. The two curves rep-
resent our MC results with (orange) and without (blue) the
Co2+ zeroth-field splitting contribution to the model Hamil-
tonian.

Figures 5a) and b) display respectively LRO and Cp

as a function of temperature. When the Heisenberg and
zero-field splitting terms are considered, one can see that
both quantities (in orange in both panels) exhibit a clear
transition at TN ' 190K confirming the magnetic order
proposed in the previous section. The magnetic frus-
tration brought by the inter magnetic-ladders effective
exchanges does not bring any noticeable canting of the
spins in the MC results. All spins remain aligned along
the ~b direction. When decreasing the temperature we
obtain a MC average energy of about -259.8mev/cell, in
good agreement with the theoretical ground-state classi-
cal magnetic energy

Ecell = (2Joo2 + 2Joo1) S
2
Co + 2D

[
S2
Co −

SCo(SCo + 1)

3

]
+ (4Jou4 − 4Jou3 + 4Jou5) SCuSCo

+ (4Juu5 − 2Juu2 + 4Juu6 + 4Juu3 + 4Juu7) S
2
Cu

= −260.2 meV/cell (4)

As suggested in the previous section the frustrating
interactions Juu1, Jou1, (as well as Jou2 and Juu4) do not
contribute to the energy. The very small interactions,
neglected in our previous analysis, namely Juu6, Jou5 and
Juu7, have positive contributions to energy, i.e. these
interactions are frustrated but their effect is negligible.

Let us note that, despite the quantum character of the
spin-1/2 Cu ions, the obtained transition temperature is

close enough to the TN = 215K value observed in mag-
netic susceptibility and specific heat measurements [13].
In fact the Co anisotropy plays a major role, its inclusion
in the model Hamiltonian breaks the rotational symme-
try, transforming CoCu2O3 in an Ising-like magnetic sys-
tem. Indeed, in MC simulations where only the exchange
interactions are taken into account (see blue curves in
Figure 5), long range magnetic order is obtained by the
3D character of the Heisenberg Hamiltonian provided by
the inter-plane interactions Juu3, Jou3 and Joo1. As the
leading interactions of the system are quasi-2D, the sym-
metry breaking of the rotational invariant Hamiltonian is
numerically more difficult to achieve, and the transition
appears less clear in Fig. 5 but definitively takes place
at lower temperature (TN ≈ 150 K). Nevertheless, the
magnetic order remains identical, apart from the general
spin orientation.

V. CONCLUSION

In this paper we theoretically determined the mag-
netic order and transition temperature of the CoCu2O3

ladder compound. We first computed the effective mag-
netic interactions and anisotropy parameters using an ab-
initio multi-reference configuration interactions method
(SAS+S [15, 21]). With these parameters, we con-
structed a model Hamiltonian that has been used to de-
termine the magnetic order at T = 0K and at finite tem-
perature.

Compared to other members of the ACu2O3 family the
CoCu2O3 compound is characterized by puckered layers
with a large folding angle, and by a supplementary mag-
netic ion (Co2+). These two aspects have strong conse-
quences on the magnetic properties of the system. In-
deed, our results allow us to predict that the magnetic
ladders strongly differ from those of the other members of
the family. First, not only they are not identical to the
structural ladders, but they exhibit three and not two
legs. Second, these magnetic ladders are strongly con-
nected, both in the layers and between the layers, result-
ing in a two-fold degenerated ground state. Finally, there
is the strong Co2+ easy axis along the ~b direction, that
not only reduces the otherwise infinite degeneracy, to a
two-fold one, but also explains the strong increase (com-
pared to the other members of the family) of the temper-
ature at which the long-range magnetic order sets in. It
would be nice if our predicted magnetic order could be
experimentally verified, for instance by neutrons diffrac-
tion.

We would like to conclude on the magnetic frustra-
tion responsible for the degenerated ground state. This
degeneracy is due to the existence of two 3D subsystems
only coupled by frustrated interactions. One thus expects
that a structural distortion should occur to lower this
frustration and couple the two subsystems. Our analy-
sis yields that the expected distortion should be a dou-
bling of the unit cell along the ~b direction. Indeed, not
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only such a symmetry breaking would lower the magnetic
frustration, but it would also allow the Cu chains (lad-
der legs) to display a spin-Peierls transition as expected
in spin-1/2 chains. Such a transition is reasonably ex-
pected at, or close to, the magnetic ordering temperature,
however no structural transition has been seen in X-Ray
diffraction in the 115-300K range, as stated in Ref. 13.
One should however remember that the energy associ-
ated with the magnetic frustration (issued from Juu1 and
Jou1) is small compared to the other energy scales in the
system. As a result the atomic displacements associated
with the symmetry breaking can be expected to remain
weak, and thus difficult to see with diffraction techniques

(as was learned over the last years by the study of mul-
tiferroic systems). Most probably only lattice dynamic
studies will be able to clarify this point.
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