Sparse Multiple Kernel Learning: Support Identification via Mirror Stratifiability - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Sparse Multiple Kernel Learning: Support Identification via Mirror Stratifiability

Lorenzo Rosasco
  • Fonction : Auteur
Silvia Villa
  • Fonction : Auteur

Résumé

In statistical machine learning, kernel methods allow to consider infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done by solving an optimization problem depending on a data fit term and a suitable regularizer. In this paper we consider feature maps which are the concatenation of a fixed, possibly large, set of simpler feature maps. The penalty is a sparsity inducing one, promoting solutions depending only on a small subset of the features. The group lasso problem is a special case of this more general setting. We show that one of the most popular optimization algorithms to solve the regularized objective function, the forward-backward splitting method, allows to perform feature selection in a stable manner. In particular, we prove that the set of relevant features is identified by the algorithm after a finite number of iterations if a suitable qualification condition holds. Our analysis rely on the notions of stratification and mirror stratifiability.
Fichier principal
Vignette du fichier
1803.00783.pdf (329.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03886322 , version 1 (06-12-2022)

Identifiants

Citer

Guillaume Garrigos, Lorenzo Rosasco, Silvia Villa. Sparse Multiple Kernel Learning: Support Identification via Mirror Stratifiability. 2018 26th European Signal Processing Conference (EUSIPCO), Sep 2018, Rome, Italy. pp.1077-1081, ⟨10.23919/EUSIPCO.2018.8553267⟩. ⟨hal-03886322⟩
19 Consultations
11 Téléchargements

Altmetric

Partager

More