
HAL Id: hal-03886300
https://hal.science/hal-03886300v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAN: Stochastic Average Newton Algorithm for
Minimizing Finite Sums

Rui Yuan, Robert M. Gower, Jiabin Chen, Guillaume Garrigos

To cite this version:
Rui Yuan, Robert M. Gower, Jiabin Chen, Guillaume Garrigos. SAN: Stochastic Average Newton
Algorithm for Minimizing Finite Sums. 25th International Conference on Artificial Intelligence and
Statistics, 2022, Valencia, Spain. �hal-03886300�

https://hal.science/hal-03886300v1
https://hal.archives-ouvertes.fr

SAN: Stochastic Average Newton Algorithm for Minimizing Finite
Sums

Jiabin Chen1,5 Rui Yuan2,5 Guillaume Garrigos3 Robert M. Gower4

Abstract

We present a principled approach for design-
ing stochastic Newton methods for solving
finite sum optimization problems. Our ap-
proach has two steps. First, we re-write the
stationarity conditions as a system of nonlin-
ear equations that associates each data point
to a new row. Second, we apply a Subsam-
pled Newton Raphson method to solve this
system of nonlinear equations. Using our ap-
proach, we develop a new Stochastic Average
Newton (SAN) method, which is incremental
by design, in that it requires only a single
data point per iteration. It is also cheap to
implement when solving regularized general-
ized linear models, with a cost per iteration
of the order of the number of the parame-
ters. We show through numerical experiments
that SAN requires no knowledge about the
problem, neither parameter tuning, while re-
maining competitive as compared to classical
variance reduced gradient methods (e.g. SAG
and SVRG), incremental Newton and quasi-
Newton methods (e.g. SNM, IQN).

1 Introduction

Consider the problem of minimizing a sum of terms

w∗ ∈ argmin
w∈Rd

1

n

n∑
i=1

fi(w)
def
= f(w), (1)

1Baidu Inc., École Polytechnique. 2Meta AI. LTCI,
Télécom Paris, Institut Polytechnique de Paris. 3Université
de Paris and Sorbonne Université, CNRS, Laboratoire de
Probabilités, Statistique et Modélisation. 4CCM, Flatiron
Institute. LTCI, Télécom Paris, Institut Polytechnique de
Paris. 5Equal contribution.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

where fi is a convex twice differentiable loss over a
given i-th data point. When the number of data points
n and features d are large, first order methods such
as SGD (Stochastic Gradient Descent), SAG (Schmidt
et al., 2017), SVRG (Johnson and Zhang, 2013) and
ADAM (Kingma and Ba, 2015) are the methods of
choice for solving (1) because of their low cost per
iteration. The issue with first order methods is that
they can require extensive parameter tuning and their
convergence depends heavily on the condition number
of the data. Consequently, to make a first order method
work well requires careful tweaking and tuning from an
expert, and a careful choice of the model itself. Indeed,
neural networks have evolved in such a way that allows
for SGD to converge, such as the introduction of batch
norm (Ioffe and Szegedy, 2015) and the push for more
over-parametrized networks which greatly speed-up
the convergence of SGD (Ma et al., 2018; Vaswani
et al., 2019; Gower et al., 2021). Thus the reliance on
first order methods ultimately restricts the choice and
development of alternative models.

There is now a concerted effort to develop efficient
stochastic second order methods that can exploit the
sum of terms structured in (1). The hope for second
order methods for solving (1) is that they require less
parameter tuning and converge for wider variety of
models and datasets. In particular, here we set out to
develop stochastic second order methods that achieve
the following objective.

Objective 1. Develop a second order method for
solving (1) that is incremental, efficient, scales well
with the dimension d, and that requires no knowledge
from the problem, neither parameter tuning.

Most stochastic second order methods are not incre-
mental, and thus fall short of our first criteria. This
is due to the fact that most of these methods are
only guaranteed to work in a large mini-batch size
regime, and not with a single sample. For instance,
the subsampled Newton methods (Roosta-Khorasani
and Mahoney, 2019; Bollapragada et al., 2018; Liu and
Roosta, 2021; Erdogdu and Montanari, 2015; Kohler
and Lucchi, 2017) require potentially large mini-batch

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

sizes in order to guarantee that the subsampled New-
ton direction closely matches the full Newton direction
in high probability. Stochastic quasi-Newton meth-
ods (Byrd et al., 2011; Mokhtari and Ribeiro, 2015;
Moritz et al., 2016; Gower et al., 2016) SDNA (Qu et al.,
2016), and the Newton sketch (Pilanci and Wainwright,
2017) and Lissa (Agarwal et al., 2017), suffer from the
same drawback: the need for large mini-batches or full
gradient evaluation to work, which makes them all not
incremental.

The two existing methods that we are aware of that
are truly incremental are IQN (Incremental Quasi-
Newton) (Mokhtari et al., 2018; Gao and Ribeiro, 2020)
and SNM (Stochastic Newton Method) (Kovalev et al.,
2019; Rodomanov and Kropotov, 2016). Both methods
also enjoy a fast local convergence rate. Their only
drawback is their computational and memory costs per
iteration are at least O(d2) (see Table 1 and Section C.4
for more details). This is prohibitive in a setting where
the number of parameters for the model is large. Our
goal is to develop a method that is not only incremental,
but also has a cost per iteration of O(d), as is the case
for first-order methods like SGD.

In this paper we develop two new Newton methods
for solving (2) that effectively make use of second
order information, are incremental, and are governed
by a single global convergence theory. Our starting
point for developing these methods is to re-write the
stationarity conditions

1

n

n∑
i=1

∇fi(w) = 0. (2)

At this point, we could apply Newton’s method for
solving nonlinear equations, otherwise known as the
Newton Raphson method. However, this approach
would ultimately require a full pass over the data at
each iteration.

To avoid taking full passes over the data, we re-write (2)
by introducing n auxiliary variables αi ∈ Rd and solv-
ing instead the nonlinear system given by

1

n

n∑
i=1

αi = 0, (3)

αi = ∇fi(w), ∀i ∈ {1, . . . , n}. (4)

Clearly (3–4) have the same solutions in w. The ad-
vantage of (3–4) is that each gradient lies on a separate
row. Consequently, applying a subsampled Newton
Raphson method, that is sampling a row and then
applying Newton Raphson, to (3–4) will result in an
incremental method. We refer to (3–4) as the function
splitting formulation, since it splits the gradient across
different rows.

To solve (3–4) efficiently, we propose SAN (Stochas-
tic Average Newton) in Section 2.1. SAN is a sub-
sampled Newton Raphson method that is based on a
new variable metric extension of SNR (Sketch Newton
Raphson Method) (Yuan et al., 2021) that we present
in Section 4, which is itself a nonlinear extension of
the Sketch-and-Project method for solving linear sys-
tems (Gower and Richtárik, 2015a). By using a different
subsampling of the rows (3–4), we also derive SANA
in Section 2.2, which is a variant of SAN that uses
unbiased estimates of the gradient.

Note that the idea of applying a subsampled Newton
method to a well-chosen system of optimality con-
ditions is not new. Indeed, it was recently shown
in (Yuan et al., 2021) that the SNM method (Kovalev
et al., 2019) can be seen as the application of a
subsampled Newton method to the equations

1

n

n∑
i=1

∇fi(αi) = 0,

w = αi, for i = 1, . . . , n, (5)

which clearly are equivalent to (2). Consequently, the
two methods SAN and SNM are both subsampled New-
ton Raphson methods applied to either a function or a
variable splitting formulation of (2).

The contributions of our paper are the following:

• We propose combining the function splitting reformu-
lation (3–4) with a subsampled Newton Raphson as
a tool for designing stochastic Newton methods, all
of which are variance reducing in the sense that they
are incremental and they converge with a constant
step size.

• We introduce SAN (Stochastic Average Newton
method) by using this tool, which is incremental
and parameter-free, in that, SAN works well with
a step size γ = 1 independently of the underlying
dataset or the objective function.

• By specializing to GLMs (Generalized Linear Mod-
els), we develop an efficient implementation of SAN
that has the same cost per iteration as the first-
order methods. We perform extensive numerical
experiments and show that SAN is competitive as
compared to SAG and SVRG.

• To provide a convergence theory of our methods, we
extend the class of Sketched Newton Raphson (Yuan
et al., 2021) methods to allow for a variable metric
that includes SAN as a special case.

In Section 2, we show how to derive the SAN and
SANA methods. We then present two different exper-
imental settings comparing SAN to variance reduced
gradients methods in Section 3. In Section 4, we study
SAN/SANA as instantiations of a new variable metric

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Sketch Newton Raphson method and present a conver-
gence theory for this class of method.

The following will be assumed throughout the paper.

Assumption 1.1. For all i ∈ {1, . . . , n}, the func-
tion fi : Rd −→ R is of class C2 and verifies
∇2fi(w) � 0 for every w ∈ Rd.

2 Function splitting methods

The advantage of the function splitting formulation
given by (3) and (4) is that there is a separate row for
each data point. We will now take advantage of this,
and develop new incremental Newton methods based
on subsampling the rows of (3–4).

The reformulation given in (3–4) is a large system of
nonlinear equations. For brevity, let p := (n+ 1)d and
x =

[
w ;α1 ; · · · ;αn

]
∈ Rp be the stacking1 of the w

and αi variables. Thus solving (3–4) is equivalent to
solve F (x) = 0, where

F : Rp → Rp (6)

x 7→
[

1
n

∑
αi;∇f1(w)− α1; · · · ;∇fn(w)− αn

]
.

Solving nonlinear equations has long been one of the
core problems in numerical analysis, with variants of
the Newton Raphson method (Ortega and Rheinboldt,
2000) being one of the core techniques. From a given it-
erate xk ∈ Rp, the Newton Raphson method computes
the next iterate xk+1 by linearizing F around xk and
solving the Newton system

∇F (xk)>(xk+1 − xk) = −F (xk). (7)

Here ∇F (x) ∈ Rp×p denotes the Jacobian matrix of F
at x, and it is assumed that (7) has a solution. The
least norm solution of the Newton system is given by

xk+1 = xk −∇F (xk)>†F (xk), (8)

where † denotes the Moore-Penrose pseudoinverse.

This update can also be written as a projection step:

xk+1 = argmin ‖x− xk‖2

s.t. ∇F (xk)>(x− xk) = −F (xk). (9)

In our setting, (8) is prohibitively expensive because it
requires access to all of the data at each step and the
solution of a large (n + 1)d × (n + 1)d linear system.
To bring down the cost of each iteration, and to have a
resulting incremental method, at each iteration we will

1In this paper vectors are columns by default, and given
x1, . . . , xn ∈ Rq we note [x1; . . . ;xn] ∈ Rqn the (column)
vector stacking the xi’s on top of each other.

subsample the rows of the Newton system before taking
a projection step. Next, we present two methods based
on subsampling. Later on Section 4, we generalize this
subsampling approach to make use of sketches of the
system.

2.1 SAN: the Stochastic Average Newton
method

The SAN method is a subsampled Newton Raphson
method that alternates between sampling equation (3)
or sampling one of the equations in (4). After sampling,
we then apply a step of Newton Raphson to the sampled
equation.

To detail the SAN method, let π ∈ (0, 1) be a fixed
probability, and let xk = [wk;αk1 ; . . . ;αkn] ∈ Rp be a
given k-th iterate. With probability π the SAN method
samples equation (3) and focuses on finding a solution
to this equation. Since (3) is a linear equation, it
is equal to its own Newton equation. Furthermore,
this linear equation (3) has n variables and only one
equation, thus it has infinite solutions. We choose a
single one of these infinite solution by using a projection
step

αk+1
1 , . . . , αk+1

n = argmin
α1,...,αn∈Rd

∑n
i=1

∥∥αi − αki ∥∥2

s.t. 1
n

∑n
i=1 αi = 0. (10)

The solution to this projection is given in line 4 in
Algorithm 1 when γ = 1. We have added the step size
γ ∈ (0, 1] to act as relaxation.

Alternatively, with probability (1−π) the SAN method
then samples the j-th equation in (4) uniformly among
the n equations. To get the Newton system of
∇fj(w) = αj , we linearize around wk ∈ Rd and
αkj ∈ Rd and set the linearization to zero giving

∇fj(wk) +∇2fj(w
k)(w − wk) = αj .

This linear equation has 2d unknowns, and thus also
has infinite solutions. Again, we use a projection step
to pick a unique solution as follows

αk+1
j , wk+1 = argmin

αj ,w∈Rd

∥∥αj − αkj∥∥2
+
∥∥w − wk∥∥2

∇2fj(wk)

s.t. ∇fj(wk) +∇2fj(w
k)(w − wk) = αj .

(11)

Here we have introduced a projection under a norm

‖w‖∇2fj(wk)
def
=

〈
∇2fj(w

k)w,w
〉

which is based on

the Hessian matrix ∇2fj(w
k). Performing a projection

step with respect to the metric induced by the Hessian
is often used in Newton type methods such as inte-
rior point methods (Renegar, 2001) and quasi-Newton

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

methods (Goldfarb, 1970). Moreover, we observed that
this choice of metric resulted in a much faster algo-
rithm (see Section C.5 for experiments that highlight
this). The closed form solution to the above is given
in lines 8-10 in Algorithm 1 when γ = 1 (see Lemma
A.2 for the details).

We gather all these updates in Algorithm 1 and call
the resulting method the Stochastic Average Newton
method, or SAN for short.

Algorithm 1: SAN: Stochastic Average Newton

Input: {fi}ni=1, step size γ ∈ (0, 1], probability
π ∈ (0, 1), max iteration T

1 Initialize α0
1, · · · , α0

n, w
0 ∈ Rd

2 for k = 1, . . . , T do
3 With probability π update:

4 αk+1
i = αki −

γ

n

n∑
j=1

αkj , ∀i ∈ {1, · · · , n}

5 Otherwise with probability (1− π):
6 Sample uniformly j ∈ {1, · · · , n}
7 Hk = Id +∇2fj(w

k)

8 dk = −H−1
k

(
∇fj(wk)− αkj

)
9 wk+1 = wk + γdk

10 αk+1
j = αkj − γdk

Output: Last iterate wT+1

The SAN method is incremental, since it can be ap-
plied with as little as one data point per iteration. SAN
can also be implemented in such a way that the cost
per iteration is O(d) in expectation. Indeed, the av-
eraging step on line 4 contributes with a π × O(nd)
cost to the total cost in expectation, since all of the
vectors αi ∈ Rd for i = 1, . . . , n, are updated. But
as we found through expensive testing in Section C.3,
SAN converges quickly if π is of the order of O(1/n),
reducing the cost in expectation to O(d). Further, the
average of the αi’s can be efficiently implemented by
maintaining and updating a variable αk = 1

n

∑n
j=1 α

k
j .

The main cost for SAN is in solving the linear system
(Id +∇2fj(w

k))d = αkj −∇fj(wk). Solving this system

with a direct solver would cost O(d3). Alternatively,
the solution can be approximated using an iterative
Krylov method for which each iteration costs O(d) by
using backpropagation (Freund et al., 1992; Christian-
son, 1992) to compute Hessian-vector products. For
regularized generalized linear models (GLMs), the total
cost of this matrix inversion is only O(d) operations,
as we show next.

Generalized Linear Models. Regularized GLMs
are models for which we have

fi(w) = φi(a
>
i w) + λR(w), (12)

where φi : R→ R is a loss function associated with the
i-th data point ai ∈ Rd, λ > 0 is a regularization param-
eter and R is a regularizer that is twice differentiable
and separable, i.e. R(w) =

∑d
i=1Ri(wi) with Ri : R→

R. The inversion on line 8 of Algorithm 1 can be effi-
ciently computed using the Woodbury identity because
the Hessian ∇2fj(w) = φ′′j (a>j w)(aja

>
j) + λ∇2R(w) is

a rank-one perturbation of a diagonal matrix, which
costs O(d) to invert (see Lemma B.2 for an explicit
formula).

Remark 2.1 (SAN vs. SNM for GLMs). SAN can
be implemented efficiently for all GLMs with separa-
ble regularizers. This is not the case for SNM (Ko-
valev et al., 2019), which can only be implemented
efficiently when the regularizer is the L2 norm. For
other separable regularizers, the cost per iteration for
SNM is to O(d3) instead of O(d2). See Section C.4
in the supp. material for details.

2.2 SANA: alternative with simultaneous
projections

Here we present SANA, an alternative version of the
SAN method. Instead of alternating between projecting
onto linearizations of (3) and (4), the SANA method
projects onto the intersection of (3) and the lineariza-
tion of a subsampled equation (4). In other words, the
next iterate xk+1 = [wk+1;αk+1

1 ; . . . ;αk+1
n] is defined

as the unique solution of

argmin
w,α1,...,αn∈Rd

n∑
i=1

∥∥αi − αki ∥∥2
+
∥∥w − wk∥∥2

∇2fj(wk)
,

s.t. ∇fj(wk) +∇2fj(w
k)(w − wk) = αj ,

1
n

∑n
i=1 αi = 0. (13)

The closed form solution of (13) corresponds to lines 4–
8 in Algorithm 2 when the relaxation parameter is
γ = 1 (see Lemma A.4 for a proof).

Algorithm 2: SANA

Input: {fi}ni=1, step size γ ∈ (0, 1], max iteration
T

1 Initialize w0, α0
1, · · · , α0

n ∈ Rd s.t.
∑n
i=1 α

0
i = 0

2 for k = 1, . . . , T do
3 Sample uniformly j ∈ {1, . . . , n}
4 Hk = (1− 1

n)Id +∇2fj(w
k)

5 dk = −H−1
k (∇fj(wk)− αkj)

6 wk+1 = wk + γdk

7 αk+1
j = αkj − γ(1− 1

n)dk

8 αk+1
i = αki + γ

nd
k, for i 6= j

Output: Last iterate wT+1

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Computing one step of this method requires access to
only one function fj (through its gradient and Hes-
sian evaluated at wk). In terms of computational
cost, each step requires inverting the d × d matrix
(1− 1

n)Id +∇2fj(w
k). As with SAN, this cost reduces

to O(d) in the context of generalized linear models. See
Algorithm 4 in the appendix for the resulting imple-
mentation for GLMs. Yet even in the case of GLMs,
the SANA method costs O(nd) per iteration because
it updates all the αi vectors at every iteration. Thus
the SANA method has complexity which is O(n) times
larger than SAN in expectation.

Both SAN and SANA can be interpreted as a stochastic
relaxed Newton method that uses estimates of the
gradient. Indeed, computing dk in Algorithms 1 and 2
requires solving a relaxed Newton system(

δId +∇2fj(w
k)
)
dk = αkj −∇fj(wk), (14)

where δ = 1 and δ = 1 − 1
n , respectively. The right

hand side of this Newton system is a biased estimate
of the gradient for SAN and an unbiased estimate for
SANA. To see this, for simplicity, let γ = 1. Taking
expectation conditioned on time k over the right-hand
side of (14) gives

E
[
αkj −∇fj(wk)

]
=

1

n

n∑
i=1

αki −∇f(wk).

For SANA, because the averaging constraint is always
enforced in (13), we have that 1

n

∑n
i=1 α

k
i = 0, thus the

right hand side of (14) is always an unbiased estimate
of the negative gradient. As for SAN, the averaging
constraint is only enforced every so often with the
update on line 4 in Algorithm 1. Thus for SAN, the
right hand is a biased estimate of the negative gradient
until the averaging constraint is enforced. In this sense,
SAN and SANA are analogous to SAG (Schmidt et al.,
2017) and SAGA (Defazio et al., 2014). We found in
practice that this biased estimate of the gradient did
not hurt the empirical performance of SAN, and thus
we focus on experiments on SAN in Section 3.

3 Experiments for SAN applied for
GLMs

Here we compare SAN in Algorithm 1 against two
variance reduced gradient methods SAG (Schmidt et al.,
2017) and SVRG (Johnson and Zhang, 2013) for solving
regularized GLMs (12), where φi(t) = log (1 + e−yit)
is the logistic loss, yi ∈ {−1, 1} is the i-th target value,
and R is the regularizer.

We use eight datasets in our experiments taken from
LibSVM (Chang and Lin, 2011),2 with disparate prop-

2All datasets can be found downloaded on https://

erties (see details of the datasets in Table 2). We fixed
an initial random seed, evaluated each method 10 times,
and stopped when the gradient norm was below 10−6

or a maximum of 50 effective passes over data had been
reached. In all of our experiments, we plot effective
data passes3 vs gradient norm, and plot the central
tendency as a solid line and all other executions as a
shaded region. Plots with function sub-optimality are
also provided in Figure 3 Section C.2, and show much
the same relative rankings amongst the methods as the
gradient norm plots.

For all methods, we used the default step size. For
instance, for SAG and SVRG we use the step size 1

Lmax

where Lmax is the largest smoothness constant of fi, for
i = 1, . . . , n. This step size is significantly larger than
what has been proven to work for SAG and SVRG.4

Yet despite this, it is the default setting in sklearn’s
logistic regression solver (Pedregosa et al., 2011), and
we also found that it worked well in practice. The other
hyperparameter of SVRG is the inner loop size which
is set to n throughout our experiments. As for SAN,
we set the probability π = 1

n+1 and step size γ = 1.

More details of the experiments are in Section C.1. 5

Logistic regression with L2 regularization. We
consider L2-regularized logistic regression, i.e. the
regularizer is R(w) = λ

2 ‖w‖
2

with λ = 1/n. From
Figure 1, SAN outperforms SAG and SVRG in all eight
datasets, except for mushrooms, ijcnn1 and covtype,
where SAN remains competitive with SAG or SVRG.
Note as well that for reaching an approximate solution
at early stage, SAN outperforms SAG and SVRG in all
datasets, except for covtype. Furthermore, SAN often
has a smaller variance compared to SAG and SVRG
based on eye-balling the shaded error bars in Figure 1
which was produced by multiple executions.

Logistic regression with pseudo-Huber regu-
larization. We also tested logistic regression with
pseudo-Huber regularizer. The pseudo-Huber reg-
ularizer is defined as R(w) = λ

∑d
i=1Ri(wi) with

Ri(wi) = δ2

(√
1 +

(
wi
δ

)2 − 1

)
and is used to pro-

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
Some of the datasets can be found originally in (Moham-
mad et al., 2012; Chang and Lin, 2001; Blackard and
Dean, 1999; Wang et al.; Lewis et al., 2004; Dua and
Graff, 2017).

3By effective data passes we mean the number of data access
divided by n.

4SAG has been proven to converge with a step size of
1/16Lmax (Schmidt et al., 2017) and SVRG provably
converges with a step size of 1/10Lmax and loop size of
m = 10Lmax/µ where µ is the strong convexity parameter
f(w) (Johnson and Zhang, 2013).

5The code is available on https://github.com/
nathansiae/Stochastic-Average-Newton.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/nathansiae/Stochastic-Average-Newton
https://github.com/nathansiae/Stochastic-Average-Newton

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

0 10 20 30 40 50

Effective Passes

10−8

10−6

10−4

10−2

‖∇
f
‖ 2

phishing

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−6

10−4

10−2

100

‖∇
f
‖ 2

mushrooms

SAG

SAN

SVRG

0 10 20 30 40

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

ijcnn1

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−6

10−4

10−2

100

‖∇
f
‖ 2

covtype

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−8

10−6

10−4

10−2

100

‖∇
f
‖ 2

webspam

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−7

10−5

10−3

10−1

‖∇
f
‖ 2

epsilon

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−7

10−5

10−3

10−1

‖∇
f
‖ 2

rcv1

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

real-sim

SAG

SAN

SVRG

Figure 1: Logistic regression with L2 regularization.

0 10 20 30 40 50

Effective Passes

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

phishing

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

mushrooms

SAG

SAN

SVRG

0 10 20 30 40

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

ijcnn1

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−6

10−4

10−2

100

‖∇
f
‖ 2

covtype

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

webspam

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−7

10−5

10−3

10−1

‖∇
f
‖ 2

epsilon

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

rcv1

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

real-sim

SAG

SAN

SVRG

Figure 2: Logistic regression with pseudo-Huber regularization.

mote the sparsity of the solution (Fountoulakis and
Gondzio, 2016). We set δ = 1 and λ = 1/n. See
Section C.1 for more properties and interpretations of
the pseudo-Huber regularizer. From Figure 2, SAN
is competitive with SAG and SVRG. Changing the
regularizer from an L2 to pseudo-Huber has resulted
in a slower convergence for all methods, except on the
datasets ijcnn1 and covtype. SVRG is notably slower
when using the pseudo-Huber regularizer, while SAG
is the least affected, and SAN is in between. Besides,
SAN again outperforms SAG and SVRG in all datasets,
except for covtype, for reaching an approximate solu-
tion at early stage and has a smaller variance compared
to SAG and SVRG.

Overall, these tests confirm that SAN is efficient for a
wide variety of datasets and problems. SAN is efficient
in terms of effective passes and cost per iteration. It
benefits from both using second order information yet
still has the same cost O(d) as the stochastic first order
methods. SNM and IQN, the only other methods that

fit our stated objective, have a O(d2) cost per itera-
tion for L2-regularized GLMs. SNM costs even more
for other regularizers and IQN has a O(nd2) memory
cost. In Section C.4, we present experiments comparing
SAN/SANA to the SNM and IQN algorithms.

Another advantage of SAN is that it requires no prior
knowledge of the datasets nor tuning of the hyperpa-
rameters. To show this, we did a grid search over π
and the step size γ of SAN, see Tables 3 and 4 in Sec-
tion C.3, where we found that SAN performs equally
well for a wide range of values of π and γ. Thus for
simplicity we set π = 1

n+1 and γ = 1 in the experiments.
In contrast, SAG and SVRG require the computation
of Lmax and the performance is highly affected by the
step size (see Table 5 and 6 in Section C.3).

However, the downside of SAN is that it stores nd
scalars much like SAG/SAGA (Defazio et al., 2014).
See Table 1 the comparison among different algorithms.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Table 1: Average cost of one iteration of various stochastic methods applied to GLMs.

memory memory access data access computational cost

SAN O(nd) O(d) O(1) O(d)
∗

SANA O(nd) O(nd) O(1) O(nd)
SAG O(nd) O(d) O(1) O(d)
SVRG O(d) O(d) O(1) O(d)
SNM O(n+ d2) O(d2) O(1) O(d2)∗∗

IQN O(nd2) O(d2) O(1) O(d2)
∗For SAN this O(d) computational cost is derived when π = O(1/n).

∗∗For SNM this O(d2) computational cost only holds for a L2 regularizer.

4 Sketched Newton Raphson with a
variable metric

Though our main focus is in solving the function split-
ting reformulation (3) and (4), we find that our forth-
coming theory holds for a large class of variable metric
Sketched Newton Raphson methods (Yuan et al., 2021),
of which SAN/SANA are special cases. All proofs are
given in Section E.

In designing each method, we first reformulated our
original problem (1) as a system of nonlinear equations
F (x) = 0 for a given choice of a smooth map F :
Rp −→ Rm and where p,m ∈ N are appropriately
chosen dimensions, e.g., (6) for SAN/SANA. We then
proposed using a subsampled Newton-Raphson method
for solving these nonlinear equations. Here we extend
this subsampling to make use of any randomized sketch
of the system. That is, consider a random sketching
matrix Sk ∈ Rm×τ sampled from some distribution,
where τ ∈ N is significantly smaller than p or m. We
use this sketching matrix to compress the rows of the
Newton system (7) at each iteration by left multiplying
as follows

S>k F (xk) + S>k∇F (xk)>(x− xk) = 0. (15)

The resulting system has τ rows and is under-
determined. To pick a solution, we use the projection

xk+1 = arg min
x∈Rp

∥∥x− xk∥∥2
(16)

s.t. S>k F (xk) + S>k∇F (xk)>(x− xk) = 0.

The method in (16) is known as the SNR (Sketched
Newton Raphson) method (Yuan et al., 2021). The
SNR method affords a lot of flexibility by choosing
different distributions for the sketching matrices. Yet
it is not flexible enough to include SAN/SANA, since
these require projections under a variable metric. To
allow for projections under norms other than the L2
norm, we introduce a random positive-definite metric
matrix Wk ∈ Rp×p that defines the norm under which
we project. Introducing as well a damping parameter

γ > 0, as we did for SAN and SANA, we obtain the
following method

x̄k+1 = argmin ‖x− xk‖2Wk

s.t. S>k∇F (xk)>(x− xk) = −S>k F (xk),

xk+1 = (1− γ)xk + γx̄k+1. (17)

We call this method the Sketched Newton Raphson with
Variable Metric (SNRVM for short). The closed form
expression6 for the iterates (17) is given by

xk+1 = xk − γW−1
k ∇F (xk)Sk (18)

·
(
S>k∇F (xk)>W−1

k ∇F (xk)Sk
)†

S>k F (xk).

SAN/SANA are both instances of the SNRVM method
by choosing Sk as a subsampling matrix and Wk de-
pending on the stochastic Hessian matrices. In Sec-
tion D we provide a detailed derivation of SAN/SANA
as an instance of the SNRVM method.

We assume that at each iteration, the random matri-
ces (Sk,Wk) are sampled according to a proper finite
distribution Dxk defined in the following.

Assumption 4.1 (Proper finite distribution). For
every x ∈ Rp, there exists r ∈ N, probabilities
π1, . . . , πr > 0 with

∑r
i=1 πi = 1, and matrices

{Si(x),Wi(x)}ri=1 s.t. for i = 1, . . . , r, we have

P(S,W)∼Dx [(S,W) = (Si(x),Wi(x))] = πi.

The addition of a variable metric to SNR has proven
to be very challenging in terms of establishing a con-
vergence theory. The current convergence theory and
proofs techniques for SNR in Yuan et al. (2021) all
fail with the addition of a variable metric. This is
not so surprising, considering the historic difficulty in
developing theory for variable metric methods such as
the quasi-Newton methods. Despite the immense prac-
tical success of quasi-Newton methods, a meaningful
non-asymptotic convergence rate has eluded the opti-
mization community for 70 years, with the first results

6See Lemma D.1 in the supp. material for a proof.

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

having only just appeared this year (Rodomanov and
Nesterov, 2021a,b,c; Jin and Mokhtari, 2021).

We start by introducing a technical assumption which
guarantees that (17) is well defined, which is always
true for SAN and SANA.

Assumption 4.2. For every x ∈ Rp, the matrices
∇F (x)>∇F (x) and EDx [SS>] are invertible, and ev-
ery matrix W ∼ Dx is symmetric positive definite.

Proposition 4.3. Assumptions 4.1 and 4.2 are veri-
fied for SAN and SANA, under Assumption 1.1.

Let us now introduce the surrogate function

f̂k(x)
def
=

1

2
‖F (x)‖2(∇F (xk)>W−1

k ∇F (xk))† , (19)

where Wk ∼ Dxk . This function is closely related
to the SNRVM algorithm. Indeed, it is possible to
show that xk+1 is obtained by minimizing a quadratic
approximation of f̂k along a random subspace (see
Lemma E.2). More precisely, xk+1 is the solution of

argmin
x∈Rp

f̂k(xk) + 〈∇f̂k(xk), x− xk〉+
1

2γ

∥∥x− xk∥∥2

Wk

s.t. x ∈ xk + Im
(
W−1

k ∇F (xk)Sk
)

Our forthcoming Theorem 4.5 shows that f̂k(xk) con-
verges linearly to zero in expectation. To achieve this,
we need to make an assumption that controls the evo-
lution of f̂k along the iterations.

Assumption 4.4. There exists L > 0 such
that, for every k ∈ N and every x ∈ Rp:
f̂k+1(x) ≤ f̂k(xk) + 〈∇f̂k(xk), x− xk〉+ L

2

∥∥x− xk∥∥2

Wk
.

We now state our core convergence result, which we
prove in Section E.4 in the Appendix.

Theorem 4.5. Let Assumptions 4.1, 4.2 and 4.4
hold, and let γ = 1/L. Let (S,W) ∼ Dx and let

H(x)
def
= E

[
S
(
S>∇F (x)>W−1∇F (x)S

)†
S>
]
,

ρ(x)
def
= min

i=1,...,r
λ+

min

(
MiH(x)M>

i

)
,

where Mi
def
= Wi(x

k)−
1
2∇F (x). Assume that there

exists ρ > 0 such that inf
k∈N

ρ(xk) ≥ ρ almost surely.

It follows that

E
[
f̂k(xk)

]
≤ (1− ργ)

k E
[
f̂0(x0)

]
a.s.

When the metric is constant along iterations and F (x)
is a linear function, or equivalently our original prob-
lem (1) is a quadratic, then the SNRVM method (18)

is known as the sketch-and-project method (Gower
and Richtárik, 2015a). In Section E.5, we show that
Theorem 4.5 when specialized to this case allows us to
recover the well known convergence rates for solving
linear systems using sketch-and-project.

The existence of a lower bound ρ > 0 in Theorem 4.5
can be guaranteed, provided that we can uniformly
control the matrices S,W and ∇F (x). Let us make
this more precise:

Assumption 4.6. Assumption 4.2 holds, and m = p.
We assume that there exists a set Ω ⊂ Rp and con-
stants µW , LW , µ̄S , LS , µ∇F , L∇F in (0,+∞) such
that, for all x ∈ Ω, for all (S,W) ∼ Dx,

spec(W) ⊂ [µW , LW], σ(∇F (x)) ⊂ [µ∇F , L∇F]

‖SS>‖ ≤ LS , µ̄S ≤ λmin
(
E
[
SS>

])
.

where spec(M) (resp. σ(M)) denote the set of eigen-
values (resp. singular values) of a square matrix M .

This assumption not only allows us to explicit the rates,
but also to obtain rates in terms of F (xk) itself, instead

of the surrogate f̂k(xk).

Theorem 4.7. Let Assumptions 4.1, 4.4, and 4.6
hold, and let γ = 1/L. Let {xk}k∈N be generated
by the SNRVM algorithm, and suppose that xk ∈ Ω
almost surely. Then for all k ∈ N we have that

1

2
E
[
‖F (xk)‖2

]
≤ C(1− γρ)k almost surely,

with ρ =
µ2
∇F
L2
∇F

µW
LW

µ̄S
LS

, and C = E
[
f̂0(x0)

]
L2
∇F
µW

.

Assumption 4.6 can be ensured for SAN and SANA
under reasonable assumptions, like the regularity of the
functions fi, or the boundedness of the sequence of iter-
ates, which we observe in practice. We summarize this
in the next Theorem, which is our main convergence
result for SAN and SANA.

Theorem 4.8. Let Assumptions 1.1 and 4.4 hold.
Let {xk}k∈N be a sequence generated by SAN with
π = 1/(n+ 1), or by SANA, with γ = 1/L. Suppose
that one of the following statements is true:

a) there exists 0 < µf ≤ Lf such that every function
fi is µf -strongly convex and has a Lf -Lipschitz
continuous gradient;

b) {xk}k∈N is bounded almost surely.

Then there exists C, ρ > 0 such that:

E
[
‖F (xk)‖2

]
≤ C(1− γρ)k a.s.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

If a) holds, we can take ρ =
min{1,µ3

f}
14n3(2+L2

f)2 max{1,L3
f}

,

and C = 6nE
[
f̂0(x0)

]
max{1,L2

f}(2+L2
f)

min{1,µf} .

The resulting linear rate of convergence ρ in Theo-
rem 4.8 depends on n and converges to 1 as n goes to
infinity. This is not surprising, since it is also the case
for variance reduced methods such as SAGA Defazio
et al. (2014) and SVRG Johnson and Zhang (2013).
We also note that our theoretical rate has a much
worse dependence in µf , Lf and n than the rates of
SVRG and SAGA, because of the presence of expo-
nents greater than 1. This might suggest that our
analysis is not tight: indeed we observed empirically
that SAN performs as well as SVRG and SAGA, even
in a regime where n is large and the problem is severely
ill-conditioned (see Table 2 for more details).

5 Conclusion

We introduced the use of a subsampled Newton Raph-
son method applied to a specific function splitting
problem as a tool for designing new incremental New-
ton methods. We showcase this by developing SAN,
an average Newton method that is empirically highly
competitive as compared to variance reduced gradi-
ent methods, and does not require parameter tuning.
Further venues of investigation include:

• Improving our theoretical analysis, to obtain rates
that better matches the ones of usual variance re-
duced methods, motivated by our numerical experi-
ments.

• Leveraging SNRVM’s structure to design a more effi-
cient variant of SAN including mini-batching. This
should be simple thanks to our function splitting
point of view, as we would simply sample many rows
at once in (5).

• Exploring different sketching techniques together
with original and alternative splitting point of views
to design methods that have yet to be discovered.

References

Mark Schmidt, Nicolas Le Roux, and Francis Bach.
Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1):83–112,
Mar 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Sys-
tems 26, pages 315–323. Curran Associates, Inc.,
2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In 3rd International

Conference on Learning Representations, ICLR 2015,
2015.

Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd
International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The
power of interpolation: Understanding the effective-
ness of SGD in modern over-parametrized learning.
In ICML, volume 80 of JMLR Workshop and Con-
ference Proceedings, pages 3331–3340, 2018.

Sharan Vaswani, Francis Bach, and Mark W. Schmidt.
Fast and faster convergence of SGD for over-
parameterized models and an accelerated perceptron.
In AISTATS 2019, pages 1195–1204, 2019.

Robert M. Gower, Othmane Sebbouh, and Nicolas
Loizou. Sgd for structured nonconvex functions:
Learning rates, minibatching and interpolation. In
Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130,
pages 1315–1323. PMLR, 2021.

Farbod Roosta-Khorasani and Michael W. Mahoney.
Sub-sampled newton methods. Math. Program., 174
(1-2):293–326, 2019.

Raghu Bollapragada, Richard H Byrd, and Jorge No-
cedal. Exact and inexact subsampled Newton meth-
ods for optimization. IMA Journal of Numerical
Analysis, 39(2):545–578, 04 2018.

Yang Liu and Fred Roosta. Convergence of newton-mr
under inexact hessian information. SIAM J. Optim.,
31(1):59–90, 2021.

Murat A. Erdogdu and Andrea Montanari. Conver-
gence rates of sub-sampled Newton methods. In
Advances in Neural Information Processing Systems
28, pages 3052–3060. Curran Associates, Inc., 2015.

Jonas Moritz Kohler and Aurélien Lucchi. Sub-sampled
cubic regularization for non-convex optimization. In
Proceedings of the 34th International Conference
on Machine Learning, volume 70, pages 1895–1904,
2017.

Richard H Byrd, Gillian M Chin, Will Neveitt, and
Jorge Nocedal. On the use of stochastic Hessian
information in optimization methods for machine
learning. SIAM Journal on Optimization, 21(3):977–
995, 2011.

Aryan Mokhtari and Alejandro Ribeiro. Global conver-
gence of online limited memory BFGS. The Journal
of Machine Learning Research, 16:3151–3181, 2015.

Philipp Moritz, Robert Nishihara, and Michael I. Jor-
dan. A linearly-convergent stochastic L-BFGS al-

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

gorithm. In International Conference on Artificial
Intelligence and Statistics, volume 51, pages 249–258,
2016.

Robert M. Gower, Donald Goldfarb, and Peter
Richtárik. Stochastic block BFGS: Squeezing more
curvature out of data. Proceedings of the 33rd Inter-
national Conference on Machine Learning, 2016.

Zheng Qu, Peter Richtárik, Martin Takáč, and Olivier
Fercoq. SDNA: Stochastic dual Newton ascent for
empirical risk minimization. In Proceedings of the
33rd International Conference on Machine Learning,
2016.

Mert Pilanci and Martin J. Wainwright. Newton
sketch: A near linear-time optimization algorithm
with linear-quadratic convergence. SIAM Journal on
Optimization, 27(1):205–245, 2017.

Naman Agarwal, Brian Bullins, and Elad Hazan.
Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning
Research, 18(116):1–40, 2017.

Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro.
Iqn: An incremental quasi-newton method with
local superlinear convergence rate. SIAM Jour-
nal on Optimization, 28(2):1670–1698, 2018. doi:
10.1137/17M1122943.

Zhangyang Gao and Alejandro Ribeiro. Incremental
greedy bfgs: An incremental quasi-newton method
with explicit superlinear rate. 2020.

Dmitry Kovalev, Konstantin Mishchenko, and Peter
Richtarik. Stochastic Newton and cubic Newton
methods with simple local linear-quadratic rates.
arxiv:1912.01597, 2019.

Anton Rodomanov and Dmitry Kropotov. A
superlinearly-convergent proximal newton-type
method for the optimization of finite sums. In
Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 2597–2605.
PMLR, 20–22 Jun 2016.

Rui Yuan, Alessandro Lazaric, and Robert M. Gower.
Sketched newton-raphson, 2021.

Robert Mansel Gower and Peter Richtárik. Random-
ized iterative methods for linear systems. SIAM
Journal on Matrix Analysis and Applications, 36(4):
1660–1690, 2015a.

J M Ortega and W C Rheinboldt. Iterative Solution
of Nonlinear Equations in Several Variables. Society
for Industrial and Applied Mathematics, 2000.

James Renegar. A mathematical view of interior-point
methods in convex optimization. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA,
USA, 2001. ISBN 0-89871-502-4.

Donald Goldfarb. A family of variable-metric meth-
ods derived by variational means. Mathematics of
Computation, 24(109):23–26, 1970.

Roland W. Freund, Gene H. Golub, and Noel M. Nachti-
gal. Iterative solution of linear systems. 1992. doi:
10.1017/S0962492900002245.

Bruce Christianson. Automatic Hessians by reverse
accumulation. IMA Journal of Numerical Analysis,
12(2):135–150, 1992.

Aaron Defazio, Francis Bach, and Simon Lacoste-julien.
Saga: A fast incremental gradient method with sup-
port for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems
27, pages 1646–1654. 2014.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A
library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:
27:1–27:27, 2011.

Rami Mohammad, Fadi Thabtah, and T. Mccluskey.
An assessment of features related to phishing web-
sites using an automated technique. In 2012 In-
ternational Conference for Internet Technology and
Secured Transactions (ICITST 2012), pages 492–497.
IEEE, 01 2012. ISBN 978-1-4673-5325-0.

Chih-Chung Chang and Chih-Jen Lin. Ijcnn 2001 chal-
lenge: generalization ability and text decoding. In
IJCNN’01. International Joint Conference on Neural
Networks. Proceedings (Cat. No.01CH37222), vol-
ume 2, pages 1031–1036 vol.2, 2001. doi: 10.1109/
IJCNN.2001.939502.

Jock Blackard and Denis Dean. Comparative accuracies
of artificial neural networks and discriminant analysis
in predicting forest cover types from cartographic
variables. Computers and Electronics in Agriculture,
24:131–151, 1999.

De Wang, Danesh Irani, and Calton Pu. Evolutionary
study of web spam: Webb spam corpus 2011 versus
webb spam corpus 2006. In Proc. of 8th IEEE In-
ternational Conference on Collaborative Computing:
Networking, Applications and Worksharing (Collab-
orateCom 2012), October 2012 .

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research, 5
(Apr):361–397, 2004.

Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Journal of Machine Learning Research, 12:2825–2830,
2011.

Kimon Fountoulakis and Jacek Gondzio. A second-
order method for strongly convex l1 -regularization
problems. Math. Program., 156(1-2):189–219, 2016.

Anton Rodomanov and Yurii Nesterov. Greedy quasi-
newton methods with explicit superlinear conver-
gence. SIAM Journal on Optimization, 31(1):785–
811, 2021a. doi: 10.1137/20M1320651.

Anton Rodomanov and Yurii E. Nesterov. New results
on superlinear convergence of classical quasi-newton
methods. J. Optim. Theory Appl., 188(3):744–769,
2021b. doi: 10.1007/s10957-020-01805-8.

Anton Rodomanov and Yurii Nesterov. Rates of super-
linear convergence for classical quasi-newton meth-
ods. Mathematical Programming, Feb 2021c. ISSN
1436-4646. doi: 10.1007/s10107-021-01622-5.

Qiujiang Jin and Aryan Mokhtari. Non-asymptotic
superlinear convergence of standard quasi-newton
methods, 2021.

Adi Ben-Israel and A. Charnes. Contributions to the
theory of generalized inverses. Journal of the Society
for Industrial and Applied Mathematics, 11(3):667–
699, 1963.

R. Penrose. A generalized inverse for matrices. Mathe-
matical Proceedings of the Cambridge Philosophical
Society, 51(3):406–413, 1955. ISSN 1469-8064, 0305-
0041. doi: 10.1017/S0305004100030401.

Robert Gower, Dmitry Koralev, Felix Lieder, and Peter
Richtarik. Rsn: Randomized subspace newton. In
Advances in Neural Information Processing Systems
32, pages 614–623. Curran Associates, Inc., 2019.

Robert M. Gower and Peter Richtárik. Stochastic dual
ascent for solving linear systems. arXiv:1512.06890,
2015b.

D. Leventhal and A. S. Lewis. Randomized methods
for linear constraints: Convergence rates and condi-
tioning. Mathematics of Operations Research, 35(3):
641–654, 2010.

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Appendix

Table of Contents

A A closed form expression for SAN and SANA 12

B Implementations for regularized GLMs 17

C Experimental details in Section 3 and additional experiments 21

D SAN and SANA viewed as a sketched Newton Raphson method with variable metric 26

E Proofs for the results in Section 4, including Theorems 4.5 and 4.8 29

The Appendix is organized as follows: In Section A, we carefully derive the closed form updates of SAN and
SANA presented in Algorithm 1 and 2. In Section B, we specialize SAN and SANA for the case of regularized
generalized linear models and provide more detailed and efficient pseudo-codes for such case. In Sections C, we
give further details on the numerical experiments and provide additional experiments for SANA to compare with
SNM. In Section D and E, we provide the proofs for the claims and results in Section 4.

A A closed form expression for SAN and SANA

In this section, we show that the updates of the SAN method given in Algorithm 1 are equivalent to the implicit
formulation in (10)-(11). We then derive the closed form updates of the SANA method in Section A.2. Finally
in Section A.3, we provide a useful lemma. It provides an alternatively way to directly deduce the closed form
updates (10) and (11) of SAN.

A.1 Closed form expression for SAN

We start with the following technical lemma.

Lemma A.1. Let j ∈ {1, . . . , n}. Let ŵ ∈ Rd, and α̂1, . . . , α̂n ∈ Rd. Let cj ∈ Rd, and Hj ∈ Rd×d be a
symmetric positive definite matrix. The optimization problem

min
w,α1,...,αn∈Rd

1
2

n∑
i=1

‖αi − α̂i‖2 + 1
2 ‖w − ŵ‖

2
Hj

subject to Hj(w − ŵ)− αj = cj ,

has a unique solution (w,α1, . . . , αn) given by

w = ŵ + (Id + Hj)
−1(cj + α̂j),

αj = α̂j − (Id + Hj)
−1(cj + α̂j),

αi = α̂i for i 6= j.

Proof. Denoting x = (w,α1, . . . , αn), let us define

Φ(x)
def
=

1

2

n∑
i=1

‖αi − α̂i‖2 +
1

2
‖w − ŵ‖2Hj

, and Ψj(x)
def
= Hj(w − ŵ)− αj − cj . (20)

The fact that Hj is positive definite implies that Φ is strongly convex. Moreover Ψj is affine, so we deduce that
this problem has a unique solution. Moreover, this solution, let us call it x = (w,α1, . . . , αn), is characterized as

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

the unique vector in R(n+1)d satisfying the following KKT conditions:

(∃βj ∈ Rd) such that

{
∇Φ(x) +∇Ψj(x)βj = 0,

Ψj(x) = 0.
(21)

The derivatives in the above KKT conditions are given by

∇Φ(x) =


Hj(w − ŵ)
α1 − α̂1

...
αn − α̂n

 and ∇Ψj(x) =



Hj

0d
...
Id
...

0d

 ← j + 1
(22)

Using the expression for these derivatives, we can rewrite the KKT conditions (21) as

(∃βj ∈ Rd) such that


Hj(w − ŵ) + Hjβj = 0,

αj − α̂j − βj = 0,

αi − α̂i + 0 = 0, for all i 6= j

Hj(w − ŵ)− αj − cj = 0.

(23)

We immediately see that αi = α̂i for i 6= j. Combining the second and fourth equations in (23), we obtain

βj = αj − α̂j = Hj(w − ŵ)− cj − α̂j .

Multiplying this new equality by Hj allows us to rewrite the first equation in (23) as:

Hj(w − ŵ) + Hjβj = 0⇔ Hj(w − ŵ) + H2
j (w − ŵ) = Hj(cj + α̂j).

Using the fact that Hj is invertible, the latter is equivalent to write:

w = ŵ + (Id + Hj)
−1

(cj + α̂j).

Moreover, since Hj(Id + Hj)
−1 = Id − (Id + Hj)

−1, we can also turn the fourth equation in (23) into

αj = Hj(w − ŵ)− cj =
(
Id − (Id + Hj)

−1
)

(cj + α̂j)− cj = α̂j − (Id + Hj)
−1(cj + α̂j).

This proves the claim.

Lemma A.2. Let π ∈ [0, 1] and γ ∈ (0, 1] a step size. Algorithm 1 (SAN) is equivalent to the following
algorithm:
With probability π, update according to x̄k+1 = argmin ‖w − wk‖2 +

n∑
i=1

‖αi − αki ‖2 subject to 1
n

n∑
i=1

αi = 0,

xk+1 = (1− γ)xk + γx̄k+1,
(24)

Otherwise with probability (1− π), sample j ∼ {1, . . . , n} uniformly and update according to
x̄k+1 = argmin ‖w − wk‖2∇2fj(wk) +

n∑
i=1

‖αi − αki ‖2

subject to ∇2fj(w
k)(w − wk)− αj = −∇fj(wk),

xk+1 = (1− γ)xk + γx̄k+1.

(25)

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Proof. Suppose that we are in the case (which holds with probability π) given by (24). In the projection step, we
see that w is not present in the constraint, which implies that w̄k+1 = wk, and therefore wk+1 = wk. On the
other hand, (ᾱ1, . . . , ᾱn) is the projection of (α1, . . . , αn) onto a simple linear constraint, and can be computed in
closed form as

(∀i ∈ {1, . . . , n}) ᾱk+1
i = αki −

1

n

n∑
i=1

αki .

Consequently

(∀i ∈ {1, . . . , n}) αk+1
i = (1− γ)αki + γ

(
αki −

1

n

n∑
i=1

αki

)
= αki −

γ

n

n∑
i=1

αki ,

which gives us exactly the step 4 in Algorithm 1.

Let now j be in {1, . . . , n} sampled uniformly, and suppose that we are in the case given by (25). Using Lemma
A.1 we can compute an explicit form for x̄k+1 given by

w̄k+1 = wk +
(
Id +∇2fj(w

k)
)−1

(αkj −∇fj(wk)),

ᾱk+1
j = αkj −

(
Id +∇2fj(w

k)
)−1

(αkj −∇fj(wk)),

ᾱk+1
i = α̂ki for all i 6= j.

Consequently, after applying the relaxation step we have

wk+1 = wk + γ
(
Id +∇2fj(w

k)
)−1

(αkj −∇fj(wk)),

αk+1
j = αkj − γ

(
Id +∇2fj(w

k)
)−1

(αkj −∇fj(wk)),

ᾱk+1
i = α̂ki for all i 6= j.

which is exactly the steps 8-10 in Algorithm 1.

A.2 Closed form expression for SANA

Lemma A.3. Let j ∈ {1, . . . , n}. Let cj ∈ Rd, ŵ ∈ Rd, and let α̂1, . . . , α̂n ∈ Rd be such that
∑n
i=1 α̂i = 0. Let

Hj ∈ Rd×d be a positive definite matrix. Then the optimization problem

min
w,α1,...,αn∈Rd

1

2

n∑
i=1

‖αi − α̂i‖2 +
1

2
‖w − ŵ‖2Hj

,

subject to Hj(w − ŵ)− αj = cj ,
n∑
i=1

αi = 0, (26)

has a unique solution (w,α1, . . . , αn) given by

d =

(
n− 1

n
Id + Hj

)−1

(cj + α̂j),

w = ŵ + d,

αj = α̂j −
n− 1

n
d,

αi = α̂i +
1

n
d, for i 6= j.

Proof. Noting x = (w,α1, . . . , αn), let us define Φ(x) and Ψj(x) as in (20), together with

Ψ0(x)
def
=

n∑
i=1

αi.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

The fact that Hj is positive definite implies that we are minimizing a strongly convex function over a set of
affine equations. We deduce that this problem has a unique solution. Moreover, this solution, let us call it
x = (w,α1, . . . , αn), is characterized as the unique vector in R(n+1)d satisfying the following KKT conditions:

(∃β0, βj ∈ Rd) such that


∇Φ(x) +∇Ψ0(x)β0 +∇Ψj(x)βj = 0,

Ψ0(x) = 0,

Ψj(x) = 0.

Here, we can compute ∇Φ(x) and ∇Ψj(x) as in (22), together with

∇Ψ0(x) =


0d
Id
...
Id

 .
Therefore, we can rewrite the KKT conditions as

(∃β0, βj ∈ Rd) such that



Hj(w − ŵ) + 0 + Hjβj = 0,

αj − α̂j + β0 − βj = 0,

αi − α̂i + β0 + 0 = 0, for all i 6= j∑n
i=1 αi = 0

Hj(w − ŵ)− αj − cj = 0.

(27)

The last equation in (27) can be rewritten as

αj = Hj(w − ŵ)− cj . (28)

Summing the equations involving αi for i 6= j, and using the fact that
n∑
i=1

αi =
n∑
i=1

α̂i = 0, together with (28), we

can deduce that

0 =
∑
i 6=j

(αi − α̂i + β0) = −αj + α̂j + (n− 1)β0 = −Hj(w − ŵ) + cj + α̂j + (n− 1)β0.

In other words, we obtain that

β0 =
1

n− 1
(Hj(w − ŵ)− (cj + α̂j)) . (29)

Injecting the above expression into the second equation of (27), and using again (28), gives

βj = Hj(w − ŵ)− cj − α̂j +
1

n− 1
(Hj(w − ŵ)− (cj + α̂j))

=
n

n− 1
(Hj(w − ŵ)− (cj + α̂j))

Combining this expression of βj with the first equation in (27) leads to

0 = Hj(w − ŵ) +
n

n− 1
Hj (Hj(w − ŵ)− (cj + α̂j))

= Hj

((
Id +

n

n− 1
Hj

)
(w − ŵ)− n

n− 1
(cj + α̂j)

)
Using the fact that Hj is positive definite, we obtain that:

w = ŵ +
n

n− 1

(
Id +

n

n− 1
Hj

)−1

(cj + α̂j)

= ŵ +

(
n− 1

n
Id + Hj

)−1

(cj + α̂j),

= ŵ + d,

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

where d is defined as
(
n−1
n Id + Hj

)−1
(cj + α̂j).

Going back now to (28) we can write

αj = Hjd− cj = Hj

(
n− 1

n
Id + Hj

)−1

(cj + α̂j)− cj

=

(
Id −

n− 1

n

(
n− 1

n
Id + Hj

)−1
)

(cj + α̂j)− cj

= α̂j −
n− 1

n

(
n− 1

n
Id + Hj

)−1

(cj + α̂j)

= α̂j −
n− 1

n
d.

It remains to compute αi, for i 6= j. Start with the first equation of (27) and see that w − ŵ + βj = 0. This
implies that βj = −d. We can therefore use the second equation of (27) to write that

β0 = βj − (αj − α̂j) = −d+
n− 1

n
d = − 1

n
d.

We can finally call the third equation of (27) and write that αi = α̂i − β0 = α̂i + 1
nd.

Lemma A.4. Let γ ∈ (0, 1] be a step size. Algorithm 2 (SANA) is equivalent to the following algorithm:
update the iterates according to

x̄k+1 = argmin ‖w − wk‖2∇2fj(wk) +
n∑
i=1

‖αi − αki ‖2

subject to

 1
n

n∑
i=1

αi = 0,

∇2fj(w
k)(w − wk)− αj = −∇fj(wk),

xk+1 = (1− γ)xk + γx̄k+1.

(30)

Proof. Consider the iterates defined by (30). Using Lemma A.3, we can compute an explicit form for x̄k+1:

dk =

(
n− 1

n
Id +∇2fj(w

k)

)−1

(αkj −∇fj(wk)),

w̄k+1 = wk + dk,

ᾱk+1
j = αkj −

n− 1

n
dk,

ᾱk+1
i = αki +

1

n
dk, for i 6= j.

After applying the relaxation step xk+1 = (1− γ)xk + γx̄k+1, we obtain exactly the steps 5-8 in Algorithm 2.

A.3 Generic projection onto linear systems

Here we provide a useful lemma that can directly deduce the closed form updates of (10) and (11) of SAN. It will
also be used later in the appendix.

Lemma A.5. Let A ∈ Rn×d, S ∈ Rn×τ , b ∈ Im (A), and H be a symmetric positive definite matrix. The
optimization problem

x∗ = arg min
x∈Rd

1

2
‖x‖2H ,

subject to S>Ax = S>b,

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

has a unique solution, called the weighted sketch-and-project optimal solution:

x∗ = H−1A>S(S>AH−1A>S)†S>b. (31)

Proof. First, note that this problem is strongly convex because H is supposed to be positive definite, and therefore

admits a unique solution x∗ ∈ Rd. Second, since H is invertible, we can do the change of variables y
def
= H1/2x.

This allows us to write that x∗ = (H)
−1/2

y∗ where y∗ is the unique solution of

arg min
y∈Rd

1

2
‖y‖2 ,

subject to S>AH−1/2y = S>b.

The unique solution to the above problem is the minimal-norm solution of the linear system S>A (H)
−1/2

y = S>b,
which can be simply expressed by using the pseudo-inverse (Ben-Israel and Charnes, 1963, Definition 1) :

y∗ =
(
S>AH−1/2

)†
S>b.

Using the relation M† = M>(MM>)† (Penrose, 1955, Lemma 1 & Eq. 10), we obtain

y∗ = (H)
−1/2

A>S(S>AH−1A>S)†S>b.

Multiplying this equality by H−1/2 gives us the desired expression for x∗.

This lemma is useful. Later it will be applied in Lemma D.1 and consequently provide the explicit updates of (10)
and (11) of SAN in Section D.2. Thus this is a different way to obtain the closed form updates of SAN, compared
to Section A.1.

B Implementations for regularized GLMs

B.1 Definition and examples

Here we specify our algorithms for the case of regularized generalized linear models. Throughout this section,
we assume that our finite sum minimization problem (1) is a GLM (generalized linear model) defined as
follows.

Assumption B.1 (Regularized GLM). Our problem (1) writes as

min
w∈Rd

1

n

∑
i=1

fi(w)
def
= φi(〈ai, w〉) +R(w), (32)

where {ai}ni=1 ⊂ Rd are data points, {φi}ni=1 are twice differentiable real convex loss functions with φ′′i (t) > 0,

and R is a separable regularizer with R(w) =
d∑
j=1

Rj(wj) where Rj is a twice differentiable real convex function

with R′′j (t) > 0, for all t ∈ R.

Some classic examples of GLMs include ridge regression where φi(t) = 1
2 (t− yi)2 and Rj(t) = λ

2 t
2 where λ > 0

is a regularization parameter. L2-regularized logistic regression, the example on which we perform most of our
experiments, is also a GLM with

φi(t) = ln
(
1 + e−yit

)
and Rj(t) =

λ

2
t2. (33)

We also consider other forms of separable regularizers such as the pseudo-huber regularizer where Rj(t) =

λδ2

(√
1 +

(
t
δ

)2 − 1

)
where δ is a parameter.

In the next section, we will show that for GLMs, our methods can be efficiently implemented. But first we need
the following preliminary results.

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Lemma B.2 (Simple computations with Regularized GLMs). For GLMs (Assumption B.1) we have for all
j ∈ {1, . . . , n}, all w ∈ Rd and every µ ≥ 0 that

(1)
∇R(w) = [R′1(w1) . . . R′d(wd)]

>,
∇2R(w) = Diag (R′′1 (w1), . . . , R′′d(wd)) .

(2)
∇fj(w) = ∇R(w) + φ′j(〈aj , w〉)aj ,
∇2fj(w) = ∇2R(w) + φ′′j (〈aj , w〉)aja>j .

(3) With âj :=
(
µId +∇2R(wk)

)−1
aj , we have

(
µId +∇2fj(w)

)−1
=
(
µId +∇2R(wk)

)−1 −
φ′′j (〈aj , w〉)

1 + φ′′j (〈aj , w〉)〈âj , aj〉
âj â
>
j .

(4) If R(w) = λ
2 ‖w‖2, with λ > 0, then

(
µId +∇2fj(w)

)−1
=

1

µ+ λ

(
Id −

φ′′j (〈aj , w〉)
µ+ λ+ φ′′j (〈aj , w〉)‖aj‖2

aja
>
j

)
.

Proof. (1) and (2) are trivial. For (3), let Φ := φ′′j (〈aj , w〉), which is nonnegative because of the Assumption
B.1. Consider now the Sherman–Morrison formula:

(M + uu>)−1 = M−1 − 1

1 + 〈M−1u, u〉 (M
−1u)(M−1u)>.

This allows us to write, for D = (µId +∇2R(w))−1 and M = Φ−1(µId +∇2R(w)), that

(
µId +∇2fj(w)

)−1
=

(
µId +∇2R(w) + Φaja

>
j

)−1
= Φ−1

(
M + aja

>
j

)−1

= Φ−1

(
M−1 − 1

1 + 〈M−1aj , aj〉
(M−1aj)(M

−1aj)
>
)

= D− Φ

1 + Φ〈Daj , aj〉
(Daj)(Daj)

>.

(4) is a direct consequence of the fact that D =
(
µId +∇2R(wk)

)−1
= 1

µ+λId.

B.2 SAN with GLMs

Here we give the detailed derivation of our implementation of SAN for GLMs, see Algorithm 3. Upon examination,
we can see that every step of Algorithm 3 has a cost of O(d), except on line 4. As explained in Section 2.1, the
averaging cost on line 4 costs O(d) in which π is of the order of O(1/n). The only step that we have left an
implicit computation is on lines 9 and 10 which require inverting (Id +∇2R(wk)). But this to comes at a cost of
O(d) since in our Assumption B.1 the regularizer is separable, and thus the Hessian is a diagonal matrix whose

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

inversion also costs O(d).

Algorithm 3: SAN for regularized GLMs

Input: Data {ai}ni=1, loss functions {φi}ni=1, regularizer R, π ∈ (0, 1), step size γ ∈ (0, 1], max iteration T
1 Initialize α0

1, · · · , α0
n, w

0 ∈ Rd and α0 = 1
n

∑n
i=1 α

0
i .

2 for k = 0, . . . , T − 1 do
3 With probability π update:

4 αk+1
i = αki − γαk, for all i ∈ {1, · · · , n}

5 wk+1 = wk

6 Otherwise with probability (1− π):
7 Sample j ∈ {1, . . . , n} uniformly

8 gk = ∇R(wk) + φ′j(〈aj , wk〉)aj − αkj
9 âj = (Id +∇2R(wk))−1aj

10 dk =
φ′′j (〈aj ,wk〉)〈âj ,gk〉

1+φ′′j (〈aj ,wk〉)〈âj ,aj〉 âj −
(
Id +∇2R(wk)

)−1
gk

11 wk+1 = wk + γdk

12 αk+1
j = αkj − γdk

13 αk+1
i = αki for i 6= j

14 αk+1 = αk − γ
nd

k

Output: Last iterate wT

Next we formalize the costs of Algorithm 3 in the following remark. By computational cost, we refer to the total
number of floating point operations, that is the number of scalar multiplications and additions.

Remark B.3. The average costs of SAN (Algorithm 3) per iteration under Assumption B.1 are:

• Memory storage of O(nd) scalars.
• Memory access of O(πnd+ (1− π)d) which is O(d) when π ' 1/n.
• Data access of O(1) .
• Computational cost of O(πdn+ (1− π)d) which is O(d) when π ' 1/n.

In calculating the average computational cost per iteration, we used that in expectation the updates on lines 4–5
occur with probability π, while the updates on lines 7–14 occur with probability (1− π).

Lemma B.4. The SAN Algorithm 1 applied to Regularized GLMs (in the sense of Assumption B.1) is Algorithm
3.

Proof. Let k ∈ {0, . . . , T − 1}. With probability π from Algorithm 1 we have

αk+1
i = αki −

γ

n

n∑
j=1

αkj , for all i ∈ {1, · · · , n}.

This can be rewritten as αk+1
i = αki − γᾱk, which is the update on line 4 in Algorithm 3.

With probability (1− π) from Algorithm 1 we have

dk = −
(
Id +∇2fj(w

k)
)−1 (∇fj(wk)− αkj

)
,

wk+1 = wk + γdk,

αk+1
j = αkj − γdk.

Using Lemma B.2, we see that

gk := ∇fj(wk)− αkj = ∇R(wk) + φ′j(〈aj , wk〉)aj − αkj .
Still using Lemma B.2, and introducing the notation âj = (Id +∇2R(wk))−1aj , we see that(

Id +∇2fj(w
k)
)−1

=
(
Id +∇2R(wk)

)−1 −
φ′′j (〈aj , wk〉)

1 + φ′′j (〈aj , wk〉)〈âj , aj〉
âj â
>
j .

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Therefore,

dk =
φ′′j (〈aj , wk〉)〈âj , gk〉

1 + φ′′j (〈aj , wk〉)〈âj , aj〉
âj −

(
Id +∇2R(wk)

)−1
gk,

which concludes the proof.

Finally, when the regularizer is the L2 norm, then we can implement SAN even more efficiently as follows.

Example B.5 (Ridge regularization). If R(w) = λ
2 ‖w‖2 with λ > 0, then the stochastic Newton direction dk

can be computed explicitly (see also Lemma B.2):

dk =
φ′′j (rk)

1 + λ
·
〈aj , αkj 〉 − φ′j(rk) ‖aj‖2 − λrk

1 + λ+ φ′′j (rk) ‖aj‖2
aj −

1

1 + λ

(
λwk + φ′j(r

k)aj − αkj
)
,

where rk = 〈aj , wk〉.

B.3 SANA with GLMs

In Algorithm 4 we give the specialized implementation of SANA (Algorithm 2) for GLMs.

Algorithm 4: SANA for regularized GLMs

Input: Data {ai}ni=1, loss functions {φi}ni=1, regularizer R, step size γ ∈ (0, 1], max iteration T
1 Initialize α0

1, · · · , α0
n, w

0 ∈ Rd, with
∑n
i=1 α

0
i = 0;

2 Pre-compute µ = n−1
n ;

3 for k = 0, . . . , T − 1 do
4 Sample j ∈ {1, . . . , n} uniformly;

5 gk = ∇R(wk) + φ′j(〈aj , wk〉)aj − αkj
6 âj = (µId +∇2R(wk))−1aj

7 dk =
φ′′j (〈aj ,wk〉)〈âj ,gk〉

1+φ′′j (〈aj ,wk〉)〈âj ,aj〉 âj −
(
µId +∇2R(wk)

)−1
gk

8 wk+1 = wk + γdk

9 αk+1
j = αkj + γµdk

10 αk+1
i = αki − γ

nd
k, for i 6= j

Output: Last iterate wT

Next we formalize the costs of Algorithm 4 in the following remark.

Remark B.6. The costs of SANA (Algorithm 4) per iteration under Assumption B.1 are:

• Memory storage of O(nd) scalars.
• Memory access of O(nd).
• Data access of O(1) .
• Computational cost of O(nd).

Lemma B.7. The SANA Algorithm 2 applied to Regularized GLMs (in the sense of Assumption B.1) is
Algorithm 4.

Proof. Let k ∈ {0, . . . , T − 1}, and µ := 1− n−1. Let j be sampled over {1, . . . , n} uniformly. From Algorithm 2
we have

gk = ∇fj(wk)− αkj ,
dk = −

(
µId +∇2fj(w

k)
)−1

gk,

wk+1 = wk + γdk,

αk+1
j = αkj − γµdk,
αk+1
i = αki + γ

nd
k, for i 6= j.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Using Lemma B.2, we see that

gk = ∇R(wk) + φ′j(〈aj , wk〉)aj − αkj .

Still using Lemma B.2, and introducing the notation âj = (µId +∇2R(wk))−1aj , we have that

(
µId +∇2fj(w

k)
)−1

=
(
µId +∇2R(wk)

)−1 −
φ′′j (〈aj , wk〉)

1 + φ′′j (〈aj , wk〉)〈âj , aj〉
âj â
>
j .

Therefore,

dk =
φ′′j (〈aj , wk〉)〈âj , gk〉

1 + φ′′j (〈aj , wk〉)〈âj , aj〉
âj −

(
µId +∇2R(wk)

)−1
gk,

which concludes the proof.

C Experimental details in Section 3 and additional experiments

We present the details of the experiments in Section 3, in order to guide readers to reproduce the exact same
results in Figure 1 and Figure 2. We also explain some grid search results about sensitivity of hyperparameters in
Section C.3, showing in particular that SAN does not require parameter tuning. Then we provide additional
experiments for SANA and SNM in Section C.4 which are not included in our main paper. These experimental
results support that SANA introduced in Section 2.2 is also a reasonable method. Finally, we provide experiments
to compare SAN and SAN without variable metric in Section C.5 to illustrate the importance of such variable
metric.

C.1 Experimental details in Section 3

All experiments in Section 3 were run in Python 3.7.7 on a laptop with an Intel Core i9-9980HK CPU and 32
Gigabyte of DDR4 RAM running OSX 11.3.1.

All datasets were taken directly from LibSVM (Chang and Lin, 2011) on https://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/ and the scaled versions were used if provided. All datasets were preprocessed
by adding an intercept, i.e. a constant feature one. For the datasets whose binary labels are not in {−1, 1}, e.g.,
phishing, mushrooms and covtype, we assigned −1 to the smallest labels and +1 to those largest ones. All
learnable parameters were initialized by zeros, e.g., w0 = 0 ∈ Rd and α0

i = 0 ∈ Rd for i = 1, · · · , n for SAN.

Table 2 provides the details of the datasets we used in Section 3, including the condition number and Lmax. For a
given dataset, let A = [a1 · · · an] ∈ Rd×n be the data matrix, the condition number in Table 2 is computed by

condition number of the dataset
def
=

√
λmax (AA>)

λ+
min (AA>)

,

where λmax and λ+
min are the largest and smallest non-zero eigenvalue operators respectively. Lmax is defined as

Lmax = maxi=1,...,n Li, where Li = 1
4 ‖ai‖

2
+ λ is the smoothness constant of the regularized logistic regression

fi. Notice that the step size’s choice for SAG and SVRG is of the order of O(1/Lmax).

From Table 2, note that we have datasets that are middle scale (top row of Figure 1) and large scale (bottom
row of Figure 1), well conditioned (ijcnn1) and ill conditioned (webspam and rcv1), sparse (rcv1 and real-sim)
and dense (epsilon), under-parametrized (phishing, mushrooms, ijcnn1, covtype, webspam, epsilon and
real-sim) and over-parametrized (rcv1).

Pseudo-Huber function. Recall the definition of the pseudo-Huber function used as the regularizer in our
experiments in Figure 2: R(w) =

∑d
i=1Ri(wi) with

Ri(wi) = δ2

(√
1 +

(wi
δ

)2

− 1

)
.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Table 2: Details of the binary data sets used in the logistic regression experiments

dataset dimension (d) samples (n) Lmax sparsity condition number

phishing 68 + 1 11055 0.5001 0.5588 4.1065× 1018

mushrooms 112 + 1 8124 5.5001 0.8125 1.3095× 1019

ijcnn1 22 + 1 49990 1.2342 0.4091 25.6587
covtype 54 + 1 581012 2.154 0.7788 9.6926× 1017

webspam 254 + 1 350000 0.5 0.6648 6.9973× 10255

epsilon 2000 + 1 400000 0.5 0.0 3.2110× 1010

rcv1 47236 + 1 20242 0.5 0.9984 5.3915× 1025

real-sim 20958 + 1 72309 0.5 0.9976 1.3987× 1020

When wi is large, Ri(wi)→ δ|wi| for all i = 1, · · · , n, i.e. R(w) approximates L1 loss with a factor δ; when wi is
closed to zero, Ri(wi)→ 1

2w
2
i for all i = 1, · · · , n, i.e. R(w) approximates L2 loss. This function can be served as

a regularizer to promote the sparsity of the solution (Fountoulakis and Gondzio, 2016).

Besides, the pseudo-Huber is C∞. The gradient of the pseudo-Huber is given by

∇R(w) =

 w1√
1 +

(
w1

δ

)2 · · · wd√
1 +

(
wd
δ

)2
> ∈ Rd

and the Hessian is given by

∇2R(w) = Diag

((
1 +

(w1

δ

)2
)−3/2

, · · · ,
(

1 +
(wd
δ

)2
)−3/2

)
≤ Id.

Thus the pseudo-Huber is 1-smooth which is the same as L2 regularizer. Consequently, Lmax for the pseudo-Huber
regularized logistic regression is the same as the L2-regularized one.

C.2 Function sub-optimality plots

The performance of an algorithm for solving a convex problem is usually done by measuring one of the following
quantities: the solution gap ‖wk−w∗‖ where w∗ is the solution of the problem, the optimization gap f(wk)− inf f ,
and the stationarity gap ‖∇f(wk)‖. In this paper we choose to measure and compare performance of algorithms
in terms of ‖∇f(wk)‖. The main reason for this is that the solution gap ‖wk − w∗‖ and the optimization gap
f(wk)− inf f both require to compute the solution of the problem to a high precision. While this is possible to
do for small problems, it quickly becomes intractable for large problems (see Figure 3 for covtype), which we
want to address in this paper (see Table 2 for more bigger datasets than covtype). The flat curves appeared in
Figure 3 after certain effective passes, especially for covtype dataset, are due to the imprecise computation of
inf f from the solver scipy.optimize.fmin_l_bfgs_b. Indeed, the curves in Figure 3 are in logarithmic scale.

When f(wk)− ̂inf f < 0 with ̂inf f the tentative solution of the problem computed by the solver, it means that

the solution ̂inf f is imprecise, i.e. the solver performs worse than the tested algorithms. In this case, Figure 3

plots
∣∣∣f(wk)− ̂inf f

∣∣∣ = ̂inf f − f(wk) > 0 where the curves remain flat in logarithmic scale.

We argue that the quantity ‖∇f(wk)‖2 is a fair and good proxy for the more classical optimization gap f(wk)−inf f .
Our argument for this is twofold. First, we observe empirically on small problems (for which we can compute
inf f with precision) that the curves for ‖∇f(wk)‖2 and f(wk)− inf f behave the same (see Figure 3). Second,
we verify theoretically that ‖∇f(wk)‖2 and f(wk)− inf f are of the same order. Indeed, Assumption 1.1 implies
that f is strongly convex on every compact. In particular, it verifies on every compact a Lojasiewicz inequality:

(∀R > 0)(∃µ > 0)(∀w ∈ B(0, R)) f(w)− inf f ≤ 1

2µ
‖∇f(w)‖2.

Moreover, f is convex, so if we assume that f has a L-Lipschitz gradient, we obtain the following inequality:

(∀w ∈ Rd)
1

2L
‖∇f(w)‖2 ≤ f(w)− inf f.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

0 10 20 30 40 50

Effective Passes

10−9

10−7

10−5

10−3

10−1

f
−
f
∗

phishing

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−10

10−8

10−6

10−4

10−2

100

f
−
f
∗

mushrooms

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

10−9

10−7

10−5

10−3

10−1

f
−
f
∗

ijcnn1

SAG

SAN

SVRG

0 10 20 30 40 50

Effective Passes

6× 10−1

7× 10−1

f
−
f
∗

covtype

SAG

SAN

SVRG

Figure 3: Function sub-optimality of logistic regression with L2 regularization.

Table 3: covtype dataset: grid search of π and γ for SAN

π
γ

0.7 0.8 0.9 1.0 1.1 1.2 1.3

1/2n 27 25 23 21 21 22 24
1/n 26 26 25 22 22 23 24
10/n 28 24 24 23 23 22 22
100/n 28 26 23 23 22 23 24
1000/n 28 26 27 27 25 24 26

Note that this assumption is verified for the functions considered in our experiments (see Section C.1).

C.3 Effect of hyperparameters

As we discussed in Section 3, SAN involves neither prior knowledge of the datasets (e.g., Lmax), nor the
hyperparameter tuning, while both SAG (Schmidt et al., 2017) and SVRG (Johnson and Zhang, 2013) do. To
support this conclusion, under different hyperparameters setting, we measure the performance of the given
algorithm by monitoring the number of effective passes over the data required to reach below a threshold (e.g.,
10−4 in our case) of ‖∇f‖. We repeat this procedure 5 times and report the average results.

Grid search for SAN. SAN has two hyperparameters: the probability π doing the averaging step in Algorithm 1
and the step size γ. We searched π in a wide range, π ∈ { 1

2n ,
1
n ,

10
n ,

100
n , 1000

n }; as for γ, through our extensive
experiments, we observed that SAN works consistently well when γ is around one as we expected for second order
methods, thus we tried γ ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
Table 3 and 4 show the grid search results on datasets covtype and ijcnn1. We see that the average effective
data passes required to reach the threshold is stable. It means that SAN is not sensitive to these hyperparameters.
This advantage allows us to use π = 1

n+1 and γ = 1.0 as default choice in our experiments shown in Section 3.

Grid search for SAG and SVRG. Additionally we evaluated the effect of step size γ which is a crucial
hyperparameter for first order methods. Let fi be Li-smooth for all i ∈ {1, . . . , n} and Lmax = maxi∈{1,...,n} Li.
As γ = 1

Lmax
is thought as the rule of thumb choice in practice (Pedregosa et al., 2011) for SAG and SVRG, we

Table 4: ijcnn1 dataset: grid search of π and γ for SAN

π
γ

0.7 0.8 0.9 1.0 1.1 1.2 1.3

1/2n 13 13 14 12 11 12 13
1/n 14 13 12 12 12 12 13
10/n 13 13 12 12 12 12 13
100/n 13 11 12 13 11 12 14
1000/n 16 13 13 13 14 14 14

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

searched over the values given by

γ ∈
{

1

10Lmax
,

1

5Lmax
,

1

3Lmax
,

1

2Lmax
,

1

Lmax
,

2

Lmax
,

5

Lmax

}
on different datasets.

Table 5: Grid search of the step size γ for SVRG on four datasets

Datasets
γ 1

10Lmax

1
5Lmax

1
3Lmax

1
2Lmax

1
Lmax

2
Lmax

5
Lmax

covtype 44 24 18 14 20 × ×
ijcnn1 22 12 10 10 15 25 ×
phishing 14 11 10 14 18 44 ×
mushrooms × × 44 36 28 20 46

Table 6: Grid search of the step size γ for SAG on four datasets

Datasets
γ 1

10Lmax

1
5Lmax

1
3Lmax

1
2Lmax

1
Lmax

2
Lmax

5
Lmax

covtype 21 19 23 24 40 × ×
ijcnn1 14 16 17 17 22 34 ×
phishing 14 17 21 21 30 48 ×
mushrooms × 47 32 24 18 25 ×

From our observations to Table 5 and 6 ,7 we can draw the conclusions that compared to SAN, there is no universal
step size choice for SAG and SVRG which gives a consistent good performance on different datasets. This point
is one of our original motivations to develop a second order method that requires neither prior knowledge from
datasets nor the hyperparameter tuning.

C.4 Additional experiments for SANA, SNM and IQN applied for L2 logistic regression

We present some additional results of SANA, SNM (Kovalev et al., 2019) and IQN (Mokhtari et al., 2018)
compared to SAN on L2 logistic regression scenario.

First, we show the results on middle size datasets, phishing and mushrooms in Figure 4. On the one hand, in
terms of effective passes of data, SANA has a similar performance as SAN despite the fact that SANA is unbiased
and SAN is a biased estimate. Both methods are less efficient than SNM and IQN. Notice that the initialization
process of SNM is expensive, as it requires a computation of the full Newton system. Such process is not counted
into the effective passes. On the other hand, in terms of computational time, we observe that SAN does as well
as IQN and SNM: SAN’s cheap iteration cost compensates for its slower convergence rate. On the other hand,
we observe for SANA that it is not competitive with respect to the other methods in terms of time taken. This
is coherent in a regime where d� n since SANA has a computation cost of O(nd) per iteration (see Table 1),
while the cost for SAN and SNM, IQN is respectively O(d) and O(d2), However, it shows that SANA is still a
meaningful incremental second order method that satisfies our objective statement. This supports our general
approach to design algorithms via function splitting.

In our second set of experiments, we compare those algorithms on large scale datasets. As shown in Figure 5, we
tested two datasets webspam and epsilon. As we discuss below, both SNM and IQN are limited in this case,
while SAN is able to efficiently solve the problem. IQN is disqualified in this large scale setting, because its
memory cost of O(nd2) is prohibitive and makes it impossible to run on a laptop. This cost comes from the fact
that IQN maintains and updates n approximations of the hessians ∇2fi(w

k), each of size d2, and these matrices
are not low-rank even for a GLM, preventing from using GLM implementation tricks (as it is the case for SNM,
see Remark C.1 below). We also did not run SANA, since we already know that it performs similarly to SAN in

7The symbol × in these tables means that the algorithm can not reach below the threshold 10−4 after 50 data passes.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

0 5 10 15 20 25

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

phishing

IQN

SAN

SANA

SNM

0 10 20 30 40

Effective Passes

10−6

10−4

10−2

100

‖∇
f
‖ 2

mushrooms

IQN

SAN

SANA

SNM

0 20 40 60 80 100 120 140

time (s)

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

phishing

IQN

SAN

SANA

SNM

0 50 100 150 200

time (s)

10−6

10−5

10−4

10−3

10−2

10−1

100

‖∇
f
‖ 2

mushrooms

IQN

SAN

SANA

SNM

Figure 4: L2-regularized logistic regression for SAN, SANA, SNM and IQN on middle size datasets. Top row is
evaluated in terms of effective data passes and bottom row is evaluated in terms of computational time.

terms of effective passes, but suffers from a cost per iteration scaling with n, which is too large here. It is possible
to run SNM, but it is not efficient in terms of computational time due to its expensive cost per iteration. For the
dataset epsilon, just after one pass over the data, the running time of SNM exceeded our maximum allowed
time while at the same time SAN has run 25 data passes and reached a solution with a 10−6 precision.

0 5 10 15 20 25

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

webspam

SAN

SNM

0 5 10 15 20 25

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

epsilon

SAN

SNM

0 500 1000 1500 2000

time (s)

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

webspam

SAN

SNM

0 2000 4000 6000 8000

time (s)

10−6

10−5

10−4

10−3

10−2

‖∇
f
‖ 2

epsilon

SAN

SNM

Figure 5: L2-regularized logistic regression for SAN and SNM on large size datasets. Top row is evaluated in
terms of effective data passes and bottom row is evaluated in terms of computational time.

Furthermore, note that we are running experiments in a setting which is favorable to SNM. Indeed, its cost per
iteration O(d2) is only valid when using L2 regularization. If we were to consider another separable regularizer,

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

its cost per iteration would be O(d3), making SNM infeasible for large dimensional problems. The next remark
details those considerations about the complexity of SNM.

Remark C.1 (On the cost of SNM). The updates of SNM can be written in closed form as

wk+1 =

(
1

n

n∑
i=1

∇2fi(α
k
i)

)−1(
1

n

n∑
i=1

∇2fi(α
k
i)αki −∇fi(αki)

)
, αk+1

j = wk+1, αk+1
i = αki for i 6= j, (34)

where w,αi ∈ Rd for i = 1, · · · , n are variables defined in (5) using a variable splitting trick. The main cost of

SNM is to update the following inverse matrix
(

1
n

∑n
i=1∇2fi(α

k
i)
)−1

after updating a single αj .

For L2-regularized GLMs, by using the Sherman-Morrison formula, the above term can be implemented
efficiently in O(d2) (See Algorithm 3 in Kovalev et al. (2019)), exploiting rank one updates of the matrix.

For other separable regularizers, such a formula is no longer available, as the perturbation becomes rank d due
to the diagonal Hessian of the regularizer derived by Lemma B.2 (1). The inversion of the matrix, therefore
costs O(d3) over all. Note that the memory cost is also impacted in this case: for general separable regularizers
the memory cost will be O(nd+ d2), instead of O(n+ d2) as can be seen in Table 1 for L2-regularized GLMs.

C.5 SAN vs SAN without the variable metric

One of the main design features of SAN is that at every iteration we project our iterates onto an affine space
with respect to a metric induced by the Hessian of one sampled function. One could ask whether this is worth it,
given that it makes the theoretical analysis much more difficult. Let us consider again the problem introduced
in (11) where the Hessian induced norm has been replaced by the L2 norm as following:

αk+1
j , wk+1 = arg min

αj∈Rd,w∈Rd
∥∥αj − αkj∥∥2

+
∥∥w − wk∥∥2

(35)

subject to ∇fj(wk) +∇2fj(w
k)(w − wk) = αj .

Using Lemma A.5, we can compute the closed form update of (35) (the details are left to readers):

αk+1
j = αkj −

(
I + (∇2fj(w

k))2
)−1 (

αkj −∇fj(wk)
)
, (36)

wk+1 = wk −∇2fj(w
k)
(
αk+1
j − αkj

)
. (37)

We call this algorithm SAN-id8 for short. However, we observe from Figure 6 that SAN-id only performs well at
the early stage and stops converging to the optimum after the first few passes over the data. This motivated us
to develop the version with the variable metric as introduced in the main text.

0 10 20 30 40 50

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

phishing

SAN

SAN-id

0 10 20 30 40 50

Effective Passes

10−6

10−4

10−2

100

‖∇
f
‖ 2

mushrooms

SAN

SAN-id

0 10 20 30 40 50

Effective Passes

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

ijcnn1

SAN

SAN-id

0 10 20 30 40 50

Effective Passes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

‖∇
f
‖ 2

covtype

SAN

SAN-id

Figure 6: L2-regularized logistic regression for SAN and SAN without the variable metric.

D SAN and SANA viewed as a sketched Newton Raphson method with variable
metric

Here we provide a more detailed, step by step, introduction of the SAN and SANA methods. We also detail how
SAN and SANA are particular instances of the Variable Metric Sketched Newton Raphson method introduced in
the Section 4.
8because this algorithm fits also in our SNRVM framework with Wk ≡ I in (18).

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

D.1 A sketched Newton Raphson point of view

Here we clarify how the SAN and SANA methods are special cases of the sketched Newton Raphson method with
a variable metric detailed in Section 4.

Let x =
[
w ;α1 ; · · · ;αn

]
∈ R(n+1)d and F : R(n+1)d → R(n+1)d defined as

F (x)
def
=
[

1
n

∑
αi ;∇f1(w)− α1 ; · · · ;∇fn(w)− αn

]
. (38)

Therefore w∗ ∈ Rd is a minimizer of (1) if and only if there exists x∗ = [w∗;α∗1; . . . ;α∗n] ∈ R(n+1)d such that
F (x∗) = 0. The Jacobian ∇F (x) is given by

∇F (x) =


0 ∇2f1(w) · · · ∇2fn(w)

1
nId

... −Ind
1
nId

 ∈ R(n+1)d×(n+1)d, (39)

To find a zero of the function F , one could use the damped Newton Raphson method

xk+1 = xk − γ∇F (xk)> †F (xk), γ ∈ (0, 1]. (40)

This can be equivalently rewritten as a projection-and-relaxation step given by{
x̄k+1 = argmin ‖x− xk‖2 subject to ∇F (xk)>(x− xk) = −F (xk),

xk+1 = (1− γ)xk + γx̄k+1.
(41)

Using the definition of our function F in (6), we see that each iteration of the Newton Raphson method requires
to project onto the following set of linear equations:

∇F (xk)>(x− xk) = −F (xk),

⇔

 1
n

n∑
i=1

(αi − αti) = − 1
n

n∑
i=1

αti,

∇2fi(w
t)(w − wt)− (αi − αti) = αti −∇fi(wt) for i ∈ {1, . . . , n},

⇔

 1
n

n∑
i=1

αi = 0,

∇2fi(w
t)(w − wt)− αi = −∇fi(wt) for i ∈ {1, . . . , n}.

(42)

Projecting onto (42) is challenging for two reasons: first it accesses all of the data (every function fi is involved)
and second it requires solving a large linear system.

One approach to circumvent this bottleneck is to sketch this linear system: at every iteration, instead of considering
(42), we will project onto a random row compression of this system. Sketching can be for instance as simple as
sampling one of the equations appearing in (42). In its more general form, a sketch corresponds to any linear
transformation of the equations. In our context, this can be written as

S>∇F (xk)>(x− xk) = −S>F (xk), (43)

where S ∈ R(n+1)d×τ is called the sketching matrix, and its number of columns τ is typically small.

This idea is at the core of the Sketched Newton Raphson method (Yuan et al., 2021), which aims at finding a
zero of the function F by iterating:{

x̄k+1 = argmin ‖x− xk‖2 subject to S>k∇F (xk)>(x− xk) = −S>k F (xk),

xk+1 = (1− γ)xk + γx̄k+1,
(44)

where Sk is a sketching matrix randomly sampled at each iteration with respect to some distribution.

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

As we detailed in Section 4, the algorithms proposed in this paper can be seen as particular instances of a Variable
Metric Sketched Newton Raphson method. This more general framework allows, at every iteration, to project the
previous iterate onto (43) with respect to some non-euclidean metric. The algorithm writes as follows:{

x̄k+1 = argmin ‖x− xk‖2Wk
subject to S>k∇F (xk)>(x− xk) = −S>k F (xk),

xk+1 = (1− γ)xk + γx̄k+1.
(45)

Here, both Sk and Wk are randomly sampled with respect to a distribution which may depend on xk. Besides,
Wk is positive-definite. The closed form solution to (45) is given in (18), thanks to the following Lemma.

Lemma D.1. If the iterates in (17) are well defined, then they are equivalent to (18).

Proof. Let xk+1 be the iterate defined by (17), where we assumed that the linear system S>k∇F (xk)>(x− xk) =
−S>k F (xk) has a solution. Let us do a change of variable u = x− xk, and write x̄k+1 = xk + u∗ where

u∗ = argmin ‖u‖2Wk
subject to S>k∇F (xk)>u = −S>k F (xk).

We can call Lemma A.5 to obtain that

u∗ = −W−1
k ∇F (xk)Sk

(
S>k∇F (xk)>W−1

k ∇F (xk)Sk
)†

S>k F (xk).

The claim follows after writing that xk+1 = (1− γ)xk + γ(xk + u∗) = xk + γu∗.

D.2 SAN is a particular case of SNRVM

Let us consider SAN, described in Algorithm 1, and rewrite it as an instance of the Variable Metric Sketched
Newton Raphson method (45). Given a probability π ∈ (0, 1), we define for all x ∈ R(n+1)d a distribution DSAN

x

as follows: (S,W) ∼ DSAN
x means that

• with probability π we have

S =


Id
0d
...

0d

 and W = I(n+1)d, (46)

• with probability 1− π, we sample j ∈ {1, · · · , n} uniformly and set

S =



0d
...
Id
...

0d

 ← j + 1 and W =


∇2fj(w)

Id
. . .

Id

 . (47)

Lemma D.2. Let π ∈ (0, 1) and γ ∈ (0, 1] a step size. Algorithm 1 (SAN) is equivalent to the Variable
Metric Sketched Newton Raphson method (45) applied to the function F defined in (6), where at each iteration
(Sk,Wk) is sampled with respect to DSAN

xk , as defined in (46)-(47).

Proof. Let us consider the Variable Metric Sketched Newton Raphson method described in this Lemma. We
consider two cases, corresponding to the two classes of events described in (46) and (47).

Suppose that we are in the case (which holds with probability π) given by (46). In this case we have

S>k∇F (xk)>(x− xk)
(39)+(46)

=
[
0d

1
nId · · · 1

nId
]

(x− xk)

=
1

n

n∑
i=1

(αi − αki)

S>k F (xk)
(6)+(46)

=
1

n

n∑
i=1

αki .

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Those expressions mean that the linearized equation (43) is equivalent to 1
n

n∑
i=1

αi = 0. So the update of the

variables is exactly given by (24).

Let now j be in {1, . . . , n} sampled uniformly, and suppose that we are in the case given by (47). We can then
compute

S>k∇F (xk)>(x− xk)
(39)+(47)

=
[
∇2fj(w

k) 0d · · · −Id · · · 0d
]

(x− xk)

= ∇2fj(w
k)(w − wk)− (αj − αkj)

S>k F (xk)
(6)+(47)

= ∇fj(wk)− αkj .

Those expressions mean that the linearized equation (43) is equivalent to ∇2fj(w
k)(w − wk)− αj = −∇fj(wk).

So the update of the variables is exactly given by (25). The conclusion follows Lemma A.2.

D.3 SANA is a particular case of SNRVM

Let us consider SANA, described in Algorithm 2, and rewrite it as an instance of the Variable Metric Sketched
Newton Raphson method (45). We define for all x ∈ R(n+1)d a distribution DSANA

x as follows: (S,W) ∼ DSANA
x

means that, with probability 1/n we sample j ∈ {1, · · · , n} and we have

S =



Id 0d

0d
...

... Id

...
...

0d 0d


← j + 1 and W =


∇2fj(w)

Id
. . .

Id

 . (48)

Lemma D.3. Let γ ∈ (0, 1] be a step size. Algorithm 2 (SANA) is equivalent to the Variable Metric Sketched
Newton Raphson method (45) applied to the function F defined in (6), where at each iteration (Sk,Wk) is
sampled with respect to DSANA

xk , as defined in (48).

Proof. Let k ∈ N, and suppose that we have sampled j ∈ {1, . . . , n} and Sk and Wk according to (48). Therefore,

S>k∇F (xk)>(x− xk)
(39)+(48)

=

[
0d

1
nId · · · · · · · · · 1

nId
∇2fj(w

k) 0d · · · −Id · · · 0d

]
(x− xk)

=

 1
n

n∑
i=1

(αi − αki)

∇2fj(w
k)(w − wk)− (αj − αkj)


S>k F (xk)

(6)+(48)
=

 1
n

n∑
i=1

αki

∇fj(wk)− αkj

 .
Those expressions mean that the linearized equation (43) is equivalent to the two equations

n∑
i=1

αi = 0 and

∇2fj(w
k)(w − wk)− αj = −∇fj(wk). So the update of the variables is exactly given by (30). The conclusion

follows Lemma A.4.

E Proofs for the results in Section 4, including Theorems 4.5 and 4.8

E.1 Proof of Proposition 4.3

Proof. Let us start by showing that Assumption 4.1 is satisfied for SAN and SANA. The distribution DSAN
x

(resp. DSANA
x) defined in the Section D.2 (resp. Section D.3) is clearly finite and proper so long as π ∈ (0, 1). It

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

remains to compute E[SS>]. We can see that it is a block-diagonal matrix Diag
(
πId,

1−π
n Id, · · · , 1−π

n Id
)

(resp.

Diag
(
Id,

1
nId, · · · , 1

nId
)
), which is invertible since π ∈ (0, 1).

Now let us turn on Assumption 4.2. To prove that ∇F (x)>∇F (x) is invertible, it is enough to show that
∇F (x) is injective. Let x = (w ;α) ∈ Rd+dn, and let us first show that ∇F (x) is injective. Suppose there exists
x̄ = (w̄ ; ᾱ) ∈ Rd+dn such that ∇F (x)x̄ = 0. Consequently from (39) we have that

n∑
i=1

∇2fi(w)ᾱi = 0

1

n
w̄ = ᾱi, for i = 1, . . . , n. (49)

Substituting out the ᾱi’s we have that

∇2f(w)w̄ =
1

n

n∑
i=1

∇2fi(w)w̄ = 0.

Consequently, since ∇2f(w) is positive definite (recall Assumption 1.1), and in particular injective, we have that
w̄ = 0. Thus it follows from (49) that ᾱi = 0 for i = 1, . . . , n. This all shows that x̄ = 0, and concludes the proof
that ∇F (x) is injective.

Furthermore, ∇F (x) is a square matrix, thus invertible. We have F (x) ∈ Im
(
∇F (x)>

)
.

Finally ∇F (x)>∇F (x) is invertible since

Null
(
∇F (x)>∇F (x)

)
= Null (∇F (x)) = {0}.

E.2 SNRVM is equivalent to minimizing a quadratic function over a random subspace

Lemma E.1. (Lemma 10 in Gower et al. (2019)). For every matrix M and symmetric positive semi-definite
matrix G such that Null (G) ⊂ Null (M), we have that Null

(
M>) = Null

(
MGM>).

Lemma E.2. Let Assumptions 4.1 and 4.2 hold. Then the iterates of SNRVM are equivalent to

xk+1 = argminx∈Rp f̂k(xk) +
〈
∇f̂k(xk), x− xk

〉
+

1

2γ

∥∥x− xk∥∥2

Wk
(50)

subject to x ∈ xk + Im
(
W−1

k ∇F (xk)Sk
)
,

where f̂k is defined in (19).

Proof. Start by observing that the problem in (50) is strongly convex, and therefore has a unique solution that
we will note x∗. Let us prove that x∗ is exactly xk+1 whose closed form expression is given in (18). For this, let τ
be the number of columns for Sk, and let u ∈ Rτ . We can then write that x∗ = xk + W−1

k ∇F (xk)Sku
∗, where

u∗ is any solution of the following unconstrained optimization problem:

u∗ ∈ argminu∈Rτ
〈
∇f̂k(xk),W−1

k ∇F (xk)Sku
∗
〉

+
1

2γ

∥∥W−1
k ∇F (xk)Sku

∗∥∥2

Wk
.

Writing down the optimality conditions for this convex quadratic problem, we see that u∗ must verify:

γS>k∇F (xk)>W−1
k ∇f̂k(xk) + S>k∇F (xk)>W−1

k ∇F (xk)Sku
∗.

Let us choose the pseudo inverse solution of this linear system:

u∗ = −γ
(
S>k∇F (xk)>W−1

k ∇F (xk)Sk
)†

S>k∇F (xk)>W−1
k ∇f̂k(xk). (51)

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Using the definition of f̂k, we can write

∇f̂k(xk) = ∇F (xk)
(
∇F (xk)>W−1

k ∇F (xk)
)†
F (xk).

All we need to prove now is that

∇F (xk)>W−1
k ∇F (xk)

(
∇F (xk)>W−1

k ∇F (xk)
)†
F (xk) = F (xk). (52)

To see why (52) is true, first notice that ∇F (xk)>W−1
k ∇F (xk)

(
∇F (xk)>W−1∇F (xk)

)†
is the orthogonal

projector onto the range of ∇F (xk)>W−1
k ∇F (xk). Moreover, using the fact that W−1

k is injective together with
Lemma E.1, we can write that

Im
(
∇F (xk)>W−1

k ∇F (xk)
)

= (Null
(
F (xk)>W−1

k ∇F (xk)
)⊥

= (Null
(
∇F (xk)

)⊥
= Im

(
∇F (xk)>

)
.

Since we know from Assumption 4.2 that ∇F (xk)> is surjective, and so that F (xk) belongs in the range of
∇F (xk)>, we deduce that (52) is true. We can now inject (52) into (51), and obtain finally that

x∗ = xk + W−1
k ∇F (xk)Sku

∗

= xk − γW−1
k ∇F (xk)Sk

(
S>k∇F (xk)>W−1

k ∇F (xk)Sk
)†

S>k F (xk),

which is exactly (18).

E.3 About ρ in Theorem 4.5

Lemma E.3. If A, B are two symmetric positive semi-definite matrices then Null (A+B) = Null (A) ∩
Null (B).

Proof. If x ∈ Null (A) ∩Null (B) then it is trivial to see that x ∈ Null (A+B). If x ∈ Null (A+B), then

0 = 〈(A+B)x, x〉 = 〈Ax, x〉+ 〈Bx, x〉,

where by positive semi-definiteness we have 〈Ax, x〉 ≥ 0 and 〈Bx, x〉 ≥ 0. The sum of nonnegative numbers being
nonegative, we deduce that

〈Ax, x〉 = 〈Bx, x〉 = 0.

Since 〈Ax, x〉 = 0, we deduce from the fact that A is symmetric that Ax = 0. Similarly, Bx = 0, which concludes
the proof.

The following Lemma will be needed in the proof of Theorem 4.5.

Lemma E.4. Recall the definition of H(x) given by

H(x)
def
= E

[
S
(
S>∇F (x)>W−1∇F (x)S

)†
S>
]
, (53)

If Assumption 4.1 and 4.2 hold, then H(x) is invertible. Moreover, for every symmetric positive definite matrix
W and x ∈ Rp we have that

min
v∈Im(W−1/2∇F (x))\{0}

〈
W−1/2∇F (x)H(x)∇F (x)>W−1/2v, v

〉
‖v‖2

(54)

is exactly the smallest positive eigenvalue of W−1/2∇F (x)H(x)∇F (x)>W−1/2.

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Proof. Let x ∈ Rp and (S,W) ∼ Dx. Let G = ∇F (x)>W−1∇F (x) which is symmetric positive semi-definite.
Since ∇F (x)>∇F (x) and W are invertible we have that G is invertible. Consequently Null (G) = {0} ⊂
Null

(
S>
)
. Thus by Lemma E.1 (with M = S>) we have that

Null
((

S>∇F (x)>W−1∇F (x)S
)†)

= Null
(
S>∇F (x)>W−1∇F (x)S

)
= Null (S) .

Using Lemma E.1 once again with G =
(
S>∇F (x)>W−1∇F (x)S

)†
and M = S, we have that

Null
(

S
(
S>∇F (x)>W−1∇F (x)S

)†
S>︸ ︷︷ ︸

def
=HS,W(x)

)
= Null

(
S>
)

= Null
(
SS>

)
. (55)

Observe that with our notations and from Assumption 4.1,

H(x) = ES,W∼Dx [HS,W(x)] =

r∑
i=1

piHSi(x),Wi(x)(x).

As HSi(x),Wi(x)(x) is symmetric positive semi-definite, we can use Lemma E.3 to write

Null (H(x)) = Null

(
r∑
i=1

piHSi(x),Wi(x)(x)

)
=

r⋂
i=1

Null
(
HSi(x),Wi(x)(x)

)
(55)
=

r⋂
i=1

Null
(
Si(x)Si(x)>

)
= Null

(
ES∼Dx

[
SS>

])
= {0}

This means that H(x) is invertible for all x ∈ Rp.

Now, take any x ∈ Rp, and a symmetric positive definite matrix W. Then W−1/2∇F (x)H(x)∇F (x)>W−1/2 is
symmetric, semi-definite positive. Since H(x) and W are invertible, we can apply Lemma E.1 again to obtain

Null
(
∇F (x)>W−1/2

)
= Null

(
W−1/2∇F (x)H(x)∇F (x)>W−1/2

)
. (56)

Consequently

Im
(
W−1/2∇F (x)

)
=
(
Null

(
∇F (x)>W−1/2

))⊥
(56)
=
(
Null

(
W−1/2∇F (x)H(x)∇F (x)>W−1/2

))⊥
. (57)

Therefore, we conclude that (54) is equal to

min
v∈(Null(W−1/2∇F (x)H(x)∇F (x)>W−1/2))

⊥\{0}

〈
W−1/2∇F (x)H(x)∇F (x)>W−1/2v, v

〉
‖v‖2

= λ+
min

(
W−1/2∇F (x)H(x)∇F (x)>W−1/2

)
> 0.

E.4 Proof of Theorem 4.5

Proof. Let k ∈ N. In this proof, we will write ∇Fk as a shorthand for ∇F (xk), and we introduce the notation

∇WFk
def
= W

−1/2
k ∇F (xk). First we aim to establish a relationship between f̂k(xk) =

∥∥F (xk)
∥∥2

(∇F>k W−1
k ∇Fk)†

and∥∥F (xk)
∥∥2

H(xk)
. Observe that Assumption 4.2 allows us to write that

(∀x ∈ Rp) F (x) = ∇F (x)>W
−1/2
k (∇F (x)>W

−1/2
k)†F (x). (58)

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

This is due to the fact that ∇F (x)>W
−1/2
k (∇F (x)>W

−1/2
k)† is the projection matrix onto Im

(
∇F (x)>W

−1/2
k

)
,

where W
−1/2
k is surjective, meaning that Im

(
∇F (x)>

)
= Im

(
∇F (x)>W

−1/2
k

)
. From (58) we have that∥∥F (xk)

∥∥2

H(xk)
=

〈
F (xk),H(xk)F (xk)

〉
(58)
=

〈
∇WF>k (∇WF>k)†F (xk),H(xk)∇WF>k (∇WF>k)†F (xk)

〉
=

〈
(∇WF>k)†F (xk),∇WFkH(xk)∇WF>k

(
(∇WF>k)†F (xk)

)〉
Lemma E.4
≥ ρ ‖(∇WF>k)†F (xk)‖2 (59)

= ρ
∥∥F (xk)

∥∥2

(∇WF>k ∇WFk)
† (60)

(19)
= 2ρf̂k(xk), (61)

where in (59) we used that Im
(
(∇WF>k)†

)
= Im

(
∇WFk

)
together with Lemma E.4, and in (60) we used that

(M)†>(M)† = (M>)†(M)† = (MM>)† for every matrix M. Now, we turn onto the study the term f̂k(xk).
Compute its gradient with respect to the metric induced by Wk at xk:

∇Wk f̂k(xk) = W−1
k ∇Fk(∇F>k W−1

k ∇Fk)†F (xk)

= W
−1/2
k (∇F>k W

−1/2
k)†F (xk). (62)

This, together with the Assumption 4.4, allows us to write that

f̂k+1(xk+1) ≤ f̂k(xk) +
〈
∇f̂k(xk), xk+1 − xk

〉
+
L

2

∥∥xk+1 − xk
∥∥2

Wk

(18)+(62)
= f̂k(xk)− γ

〈
nWk(xk),W−1

k ∇FkSk
(
S>k∇F>k W−1

k ∇FkSk
)†

S>k F (xk)
〉
Wk

+
γ2L

2

∥∥∥W−1
k ∇FkSk

(
S>k∇F>k W−1

k ∇FkSk
)†

S>k F (xk)
∥∥∥2

Wk

(58)
= f̂k(xk)− γ

〈
F (xk),Sk

(
S>k∇F>k W−1

k ∇FkSk
)†

S>k F (xk)
〉

+
γ2L

2

∥∥∥W−1
k ∇FkSk

(
S>k∇F>k W−1

k ∇FkSk
)†

S>k F (xk)
∥∥∥2

Wk

= f̂k(xk)− γ
(

1− γL

2

)∥∥F (xk)
∥∥2

Sk(S>k ∇F>k W−1
k ∇FkSk)

†
S>k

γ=1/L
= f̂k(xk)− γ

2

∥∥F (xk)
∥∥2

Sk(S>k ∇F>k W−1
k ∇FkSk)

†
S>k

(63)

where in (63) we use the identity M†MM† = M† with M = S>k∇F>k W−1
k ∇FkSk. Taking the expectation

conditioned on xk in the inequality (63) gives

E
[
f̂k+1(xk+1) | xk

]
≤ E

[
f̂k(xk) | xk

]
− γ

2

∥∥F (xk)
∥∥2

H(xk)

≤ E
[
f̂k(xk) | xk

]
− ργf̂k(xk).

Taking full expectation and expanding the recurrence gives finally

E
[
f̂k+1(xk+1)

]
≤ (1− ργ)E

[
f̂k(xk)

]
.

E.5 SNRVM for solving linear systems

Here we consider the simplified case in which our objective function (1) is a quadratic function. In this case, the
stationarity condition (5) is a linear system. To simplify the notation, let us denote in this section the resulting
linear system as

Ax = b, where A ∈Mp(R), p = d(n+ 1). (64)

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

In other words, our nonlinear map is given by F (x) = Ax− b. Because ∇F (x) = A>, where A is a square matrix,
we see that the assumptions on F in Assumption 4.2 are verified if and only if A is invertible.

In this setting the SNR method (16) is known as the sketch-and-project method (Gower and Richtárik, 2015a).
The sketch-and-project method has been shown to converge linearly at a fast rate (Gower and Richtárik, 2015a,b).
Thus this quadratic case serves as a good sanity check to verify if our rate of convergence in Theorem 4.5 recovers
the well known fast linear rate of the sketch-and-project method. This is precisely what we investigate in the
next lemma. It only remains to reformulate Assumption 4.4, which we do in the following lemma.

Lemma E.5. If {Wk}k∈N is a sequence of invertible matrices such that

Wk+1 �Wk, (65)

and A is invertible, then Assumption 4.4 holds with L = 1.

Proof. Using the fact that F (x) = Ax− b and ∇F (x) = A>, we can rewrite definition (19) as

f̂k(x) =
1

2
‖Ax− b‖2(AW−1

k A>)† . (66)

Now, since A is invertible, we have (AW−1
k A>)† = A>

−1
WkA

−1. So, if x∗ is the unique solution to (64), then
we obtain

f̂k(x) =
1

2
‖x− x∗‖2Wk

. (67)

Using Assumption 65 together with the fact that f̂k is quadratic to conclude that

f̂k+1(xk+1)
(65)

≤ f̂k(xk+1)

= f̂k(xk) + 〈∇f̂k(xk), xk+1 − xk〉+
1

2
‖xk+1 − xk‖2∇2f̂k(xk)

= f̂k(xk) + 〈∇f̂k(xk), xk+1 − xk〉+
1

2
‖xk+1 − xk‖2Wk

.

Proposition E.6. Let A ∈ Mp(R) be invertible, b ∈ Rp, and x∗ be the solution to (64). Let (xk)k∈N be a
sequence generated from SNRVM (18), with F (x) = Ax− b, and γ = 1. We assume that, at every iteration
k ∈ N, the matrices (Sk,Wk) are sampled from a finite proper distribution (see Assumption 4.1) such that for
all x, Dx is independant of x, that EDx [SS>] is invertible and Wk is constant and equal to some invertible
matrix W ∈Mp(R).

Let
ρ

def
= λmin

(
W−1/2A>EDx0 [S(S>AW−1A>S)†S>]AW−1/2

)
.

It follows that ρ ∈ (0, 1), and

E
[
‖xk − x∗‖2W

]
≤ (1− ρ)‖x2 − x∗‖2W. (68)

Proof. We are going to apply the result in Theorem 4.5, so we start by checking its assumptions. First, our
assumptions on the sampling ensure that Assumption 4.1 is verified. Second, as discussed earlier in this section,
the fact that A is invertible ensures that Assumption 4.2 holds true. Third, our assumption that Wk ≡ W
together with Lemma E.5 tells us that Assumption 4.4 holds with L = 1, meaning that we take a stepsize γ = 1.

Let H
def
= EDx0 [S(S>AW−1A>S)†S>]. Note that this matrix is independant of k, because we assumed the

distribution Dx to be independant of x. We also know that H is invertible, thanks to Lemma E.4. Therefore,
ρ = λmin

(
W−1/2A>HAW−1/2

)
> 0.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

To prove that ρ ≤ 1, observe that

W−1/2A>E[S(S>AW−1A>S)†S>]AW−1/2

= E[W−1/2A>S(S>AW−1/2W−1/2A>S)†S>AW−1/2]

= E[(S>AW−1/2)>((S>AW−1/2)(S>AW−1/2))†(S>AW−1/2)]

= E[(S>AW−1/2)†(S>AW−1/2)],

where (S>AW−1/2)†(S>AW−1/2) is the orthogonal projection onto the range of W−1/2A>S. Consequently
λmax((S>AW−1/2)†(S>AW−1/2)) ≤ 1, and from Jensen’s inequality, we deduce that the eigenvalues of its
expectation also are in (0, 1]. Whence ρ ∈ (0, 1].

To conclude the proof, see that under our assumptions, the quantity ρ(x) defined in Theorem 4.5 is independent
of x, and equal to ρ. We have verified all the assumptions needed to call Theorem 4.5, which proves the claim.

The rate of convergence given in (68) is exactly the well known linear rate of convergence given in Theorem 4.6
in (Gower and Richtárik, 2015b). For example, if A is symmetric positive definite, and we can set Wk ≡ A and
sample the sketching matrix S ∈ Rp×1 according to

P[S = ei] =
Aii

Trace (A)
, for i = 1, . . . ,m.9

With this choice of sketch and metric, the resulting method (18) is known as coordinate descent (Leventhal and
Lewis, 2010; Gower and Richtárik, 2015a). In this case, our resulting rate in (68) is controlled by

ρ = λmin

(
A1/2E

[
ei (Aii)

†
e>i
]

A1/2
)

=
λmin (A)

Trace (A)
,

which is exactly the celebrated linear convergence rate of coordinate descent first given in (Leventhal and Lewis,
2010).

Proposition E.6 shows that our main convergence theory in Theorem 4.5 is tight in this quadratic setting. That
is, when specialized to a linear mapping F (x) and a fixed metric W ≡Wk, our Theorem 4.5 recovers the best
known convergences results as a special case.

E.6 Proof of Theorem 4.7

Lemma E.7. Let Assumption 4.6 hold. Let x ∈ Ω, let (Ŝ,Ŵ) be in the domain of Dx, and consider

A := Ŵ−1/2∇F (x)H(x)∇F (x)>Ŵ−1/2, where H(x) is defined in (53). Then

λmin(A) ≥ µ2
∇F
L2
∇F

µW
LW

µ̄S
LS

.

Proof. Let us write H := H(x), J := ∇F (x) and U := J>Ŵ−1/2, so that A = U>HU . Therefore,

λmin(A) ≥ λmin(U>U)λmin(H).

From Assumption 4.2 we know that Ŵ is invertible, and also that J is injective, so from Assumption 4.6 and the
fact that J is a square matrix, we deduce that J is invertible, and therefore deduce that U is invertible as well.
This means that λmin(U>U) > 0 and that

λmin(U>U) = λmin(UU>) = λmin(J>Ŵ−1J) ≥ λmin(J>J)λmin (̂̂W−1) =
σmin(J)2

λmax(W)
≥ µ2

∇F
LW

.

Now we turn to H, and write H = E
[
SBS>

]
, where B = (S>GS)†, with G = J>W−1J . From the same

arguments as above, we know that that G is invertible under our assumptions. So, using properties of the pseudo
inverse with the fact that G is symmetric and Lemma E.1, we can write that

Null (B) = Null
(
(S>GS)>

)
= Null

(
S>GS

)
= Null (S) .

9Here ei ∈ Rm is the i-th unit coordinate vector and Trace (A) =
∑m

i=1 Aii is the trace of A.

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Therefore, for all x ∈ Rp we have S>x ∈ Null (B)
⊥

. So, by noting λ∗min(B) the smallest nonzero eigenvalue of B,
we can write that

〈SBS>x, x〉 = 〈BS>x,BS>〉 ≥ λ∗min(B)‖S>x‖2 = λ∗min(B)〈SS>x, x〉.
Here

λ∗min(B) = ‖B†‖−1 = ‖S>GS‖−1 ≥ ‖SS>‖−1‖G‖−1 ≥ ‖SS>‖−1‖J>J‖−1‖W−1‖−1 ≥ L−1
S L−2

∇FµW ,

where we used the fact that ‖W−1‖−1 = λmin(W) and ‖J>J‖−1 = σmax(J)−2. By combining those last
inequalities we obtain that

〈Hx, x〉 = E
[
〈SBS>x, x〉

]
≥ L−1

S L−2
∇FµWE

[
〈SS>x, x〉

]
= L−1

S L−2
∇FµW 〈E

[
SS>

]
x, x〉

≥ L−1
S L−2

∇FµW µ̄S‖x‖2.
This means that λmin(H) ≥ L−1

S L−2
∇FµW µ̄S . If we recombine all our inequalities, we ultimately obtain that

λmin(A) ≥ µ2
∇F
LW

L−1
S L−2

∇FµW µ̄S ,

which is what we needed.

Lemma E.8. Let Assumption 4.6 hold. Let x ∈ Ω, let (Ŝ,Ŵ) be in the domain of Dx. Then

λmin
(
(∇F (x)>W−1∇F (x))†

)
≥ L−2

∇FµW > 0.

In particular, for all k ∈ N, if xk ∈ Ω almost surely then

E
[
f̂k(xk)

]
≥ µW

2L2
∇F

E
[
‖F (xk)‖2

]
a.s.

Proof. We have λmin
(
(∇F (x)>W−1∇F (x))†

)
= ‖∇F (x)>W−1∇F (x)‖−1 where

‖∇F (x)>W−1∇F (x)‖ ≤ σmax(∇F (x))2λmin(W)−1 ≤ L2
∇Fµ

−1
W ,

which gives the desired lower bound on the eigenvalues. Now, given xk ∈ Ω we immediately deduce that

f̂k(xk) ≥ µW
2L2
∇F
‖F (xk)‖2.

The conclusion follows by taking the expectation on this inequality.

Proof of Theorem 4.7. Keeping the notations of Theorem 4.5, we see from Lemma E.7 that we can take

ρ =
µ2
∇F
L2
∇F

µW
LW

µ̄S
LS

> 0,

from which we obtain that

(∀k ∈ N) E
[
f̂k(xk)

]
≤ (1− ργ)

k E
[
f̂0(x0)

]
almost surely.

We now can use Lemma E.8 to lower bound the left member of that inequality, and obtain

(∀k ∈ N)
µW

2L2
∇F

E
[
‖F (xk)‖2

]
≤ (1− ργ)

k E
[
f̂0(x0)

]
almost surely.

The conclusion follows by taking

C = E
[
f̂0(x0)

] L2
∇F
µW

.

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

E.7 Proof of Theorem 4.8

The proof of Theorem 4.8, which can be found at the end of this section, will combine Theorem 4.7 with the
forthcoming Propositions E.9 and E.13.

Proposition E.9. Let Assumption 1.1 hold. For SAN and SANA, Assumption 4.6 holds on every compact set
Ω.

Proof. First, remember that Assumption 4.2 holds for SAN and SANA (see Proposition 4.3), and that m = p =
(n+ 1)d. Now, let Ω be a compact set, and verify that the bounds in Assumption 4.6 hold.

We start with the sketching matrices S, for which we know (see the proof of Proposition 4.3 in Section E.1) that

‖SS>‖ = 1 and E
[
SS>

]
= Diag

(
πId,

1− π
n

Id, · · · ,
1− π
n

Id

)
or Diag

(
Id,

1

n
Id, · · · ,

1

n
Id

)
.

In both cases, we see that we can take LS = 1 and µ̄L = min{ 1
n ,

1−π
n , π}.

Second, let Wi be in the domain of Dx. According to their definition in (47, 48), and because the fi is of class
C2 (see Assumption 1.1), we know that each Wi is continuous with respect to x. Moreover, we know (again
from Assumption 1.1) that Wi is definite positive : λmin(Wi) > 0. This is true for every x ∈ Ω, so by continuity
of λmin and the compactness of Ω, we deduce that inf

x∈Ω
λmin(Wi) > 0. Similarly, sup

x∈Ω
λmax(Wi) < +∞. This

means that the constants µW and LW are well defined in (0,+∞).

Finally, we need to control the singular values of ∇F (x) over Ω. We use here the same arguments that we used
for Wi : ∇F (x) is continuous with respect to x, and it is invertible (because it is square and injective, see
Proposition 4.3).

Now we will show that Assumption 4.6 holds if f is smooth and strongly convex.

Assumption E.10. There exists 0 < µf ≤ Lf such that for all i ∈ {1, . . . , n}, the function fi : Rd −→ R is of
class C2, µf -strongly convex and has a Lf -Lipschitz continuous gradient.

Lemma E.11. Let ϕ : [0,+∞) −→ [1,+∞) be defined as

ϕ(t) :=

√
1 +

1

2

(
t+
√

4t+ t2
)
. (69)

1. ϕ(t) is well defined and increasing on [0,+∞[.

2. ϕ(t)−1 =
√

1 + 1
2

(
t−
√

4t+ t2
)
.

3. For all a ∈ (0,+∞), ϕ(at)ϕ(t−1)t−1/2 is decreasing on (0,+∞).

4. For all a ∈ (0,+∞), and all t ≥ 1, ϕ(at)ϕ(t−1) ≤ ϕ(1)
√
t
√

2 + a.

Proof. 1 : It is well defined because t +
√

4t+ t2 ≥ 0. It is increasing because it is the composition, sum and
product of increasing functions on [0,+∞[. Point 2 is a simple exercise. Point 3 is a bit more technical. Let
φ(t) = ϕ(at)2ϕ(t−1)2t−1, which is the square of the quantity of interest. We can compute its derivative, and a
some effort we obtain that

t3φ′(t) = −
[
t+

1

2

(
1 +
√

1 + 4t
)] [

1 +
at√

4at+ a2t2

]
− 1

2

[
1 +

1 + 2t√
1 + 4t

] [
1 +

1

2

(
at+

√
4at+ a2t2

)]
.

It is clear that the above expression is the sum of two negative terms, implying that φ is decreasing. For item 4,
we use the monotonicity of item 3 to get

ϕ(at)ϕ(t−1) ≤ ϕ(a · 1)ϕ(1)
√
t.

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

From the inequality a+
√
a2 + 4a ≤ 2a+ 2 (it is easy to prove it by rearranging the terms and taking the square),

we deduce that

ϕ(a) ≤
√

1 +
1

2
(2a+ 2) =

√
2 + a.

Lemma E.12. Let A ∈ Rm×d be an injective matrix. Let ϕ be defined as in (69) and consider:

A :=

[
Id 0d,m
A Im

]
.

Then ‖A‖ = ϕ
(
‖A>A‖

)
.

Proof. We start by remembering that ‖A| is the largest singular value of A. The singular values of A are exactly
the square root of the eigenvalues of A>A, which is given by

A>A :=

[
Id + A>A A>

A Im

]
.

We compute its eigenvalues by finding the roots of its characteristic polynomial, that we note P ∈ R[X]. Using a
simple formula for computing the determinant of a 2× 2 block matrix, we can write, for all X 6= −1 :

P (X) = det

[
(1−X)Id + A>A A>

A (1−X)Im

]
= det ((1−X)Im) det

(
(1−X)Id + A>A−A>((1−X)Im)−1A

)
= (1−X)m det

(
(1−X)Id + A>A− 1

1−XA>A

)
= (1−X)m−d det

(
(1−X)2Id + (1−X)A>A−A>A

)
= (1−X)m−d det

(
(1−X)2Id −XA>A

)
.

The right member of this equality is polynomial in X, since the determinant of a matrix is polynomial in its
coefficients, and our assumption that A is injective implies that m− d ≥ 0. In particular this right member is
well defined and continuous at X = −1, which means that the equality holds true for every X ∈ R.

We see that 1 is a root of P , with multiplicity m−d. The other roots are the zeroes of det
(
(1−X)2Id −XA>A

)
,

for which we see that

det
(
(1−X)2Id −XA>A

)
= 0 ⇔ (1−X)2 is an eigenvalue of XA>A

⇔ (1−X)2 = Xλ for λ ∈ spec(A>A)

⇔ X = 1 +
1

2

(
λ±

√
4λ+ λ2

)
for λ ∈ spec(A>A),

which gives us the remaining 2d roots (counted with multiplicity). This proves that the singular values of A are 1
(with multiplicity m− d) and (see Lemma E.11.2)

{ϕ(λ), ϕ(λ)−1 | λ ∈ spec
(
A>A

)
}.

Since ϕ is increasing (Lemma E.11.1), and ϕ(λ) ≥ 1, we conclude that the largest singular value of A is
ϕ
(
‖A>A‖

)
.

Proposition E.13. Let Assumption E.10 hold, and consider the SAN (resp. SANA) algorithm. Let c =

√
3+
√

5
2 .

Jiabin Chen , Rui Yuan , Guillaume Garrigos , Robert M. Gower

Then Assumption 4.6 is verified, with Ω = Rp and:

µW = min{1, µf}, LW = max{1, Lf},
µ̄S = min

{
1−π
n , π

} (
resp. µ̄S = 1

n

)
, LS = 1,

µ∇F = µW
c
√
n
√

2+L2
, L∇F = LW c

√
n
√

2 + L2.

Proof. Let x ∈ Rp be fixed, J := ∇F (x) ∈ Rp×p, and (S,W) in the domain of Dx. We need to find uniform
spectral bounds on those three matrices. For S, we have seen already in the proof of Proposition E.9 that we can
take LS = 1, and µ̄L = 1

n for SAN, or min{ 1−π
n , π} for SANA. For W, we see directly from (47, 48) that it is a

block-diagonal matrix, whose eigenvalues are included in [µW , LW], with µW = min{1, µf} and LW = max{1, Lf}.
The rest of this proof is dedicated to the study of J , which requires more work.

Remember that the expression for J is given in (39). We write for convenience that

J =

[
0d H

1
nE> −Ind

]
with E := [Id, · · · , Id] ∈ Rd×nd, H := [H1, · · · , Hn] ∈ Rd×nd, Hi := ∇2fi(w).

Let us now introduce a few more matrices. Let H̄ := ∇2f(w), which can equivalently be written as H̄ =
1
n

∑
iHi = 1

nHE>. Now consider

U :=

[
Id 0d,nd
−H> Ind

]
, D :=

[
H̄ 0d,nd

0nd,d −Ind

]
, V :=

[
Id 0d,nd
−1
n E> Ind

]
.

Note that those three matrices are triangular, and invertible because H̄ is invertible. It is easy to see that
J = U>DV . Indeed,

DV =

[
H̄ 0d,nd

1
nE> −Ind

]
, U>DV =

[
H̄ −H 1

nE> H
1
nE> −Ind

]
=

[
0d H

1
nE> −Ind

]
,

where the last equality comes from the fact that H 1
nE> = H̄. Therefore, it remains to upper bound the right

member of

σmax(J) =
√
λmax(J>J) = ‖J‖ ≤ ‖D‖‖U‖‖V ‖.

Bounding the smallest singular value will follow the same argument. Indeed, from our assumptions, JTJ is
invertible (see Proposition 4.3), but J is a square matrix, therefore J itself is invertible. In consequence, we can

write that J−1 = V −1>D−1U−1, so that

σmin(J) =
1

‖J−1‖ ≥
1

‖D−1‖‖U−1‖‖V −1‖ ,

where one easily computes that

U−1 =

[
Id 0d,nd

H> Ind

]
, D−1 =

[
H̄−1 0d,nd
0nd,d −Ind

]
, V −1 =

[
Id 0d,nd

1
nE> Ind

]
.

It is easy to see, given our smoothness and strong convexity assumptions, that

‖D‖ = max{1, L} = LW and ‖D−1‖ = max{1, µ−1} = µ−1
W .

Now, observe that V and V −1 share the same structure, so we can call Lemma E.12 with A = 1
nET or − 1

nET .
In both cases A>A = n−1Id, meaning that ‖A>A‖ = n−1, and so we deduce that

‖V ‖ = ‖V −1‖ = ϕ(n−1).

Finally, we do the same for U and U−1 : we use Lemma E.12 with A = ±H>. In both cases A>A = HH> =∑n
i=1H

2
i , whose eigenvalues belong to [nµ2, nL2]. Due to the monotonicity of ϕ, we deduce that

‖U‖ = ‖U−1‖ ≤ ϕ(nL2).

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

As a result, we conclude that

σmin(J) ≥ 1

µ−1
W ϕ(n−1)ϕ(nL2)

=
µW

ϕ(n−1)ϕ(nL2)
,

while
σmax(J) ≤ LWϕ(n−1)ϕ(nL2).

We can then conclude by using Lemma E.11.4 and noting c = ϕ(1).

Proof of Theorem 4.8. Suppose first that a) holds. Then we can use Theorem 4.7 together with Proposition E.13,
and combine the constants into play. For the sake of the presentation, we assume π = 1/(n+ 1), so that we can
have a unique lower bound for SAN and SANA : µ̄S = min{ 1

n ,
1

n+1} ≥ 1
2n . We also simplify the expression of c,

by using the bounds c2 ≤ 3 and c4 ≤ 7. If instead b) holds, then there exists a compact set Ω containing almost
surely the sequence. So it remains to combine Theorem 4.7 together with Proposition E.9.

	Introduction
	Function splitting methods
	SAN: the Stochastic Average Newton method
	SANA: alternative with simultaneous projections

	Experiments for SAN applied for GLMs
	Sketched Newton Raphson with a variable metric
	Conclusion
	 Appendix
	A closed form expression for SAN and SANA
	Closed form expression for SAN
	Closed form expression for SANA
	Generic projection onto linear systems

	Implementations for regularized GLMs
	Definition and examples
	SAN with GLMs
	SANA with GLMs

	Experimental details in Section 3 and additional experiments
	Experimental details in Section 3
	Function sub-optimality plots
	Effect of hyperparameters
	Additional experiments for SANA, SNM and IQN applied for L2 logistic regression
	SAN vs SAN without the variable metric

	SAN and SANA viewed as a sketched Newton Raphson method with variable metric
	A sketched Newton Raphson point of view
	SAN is a particular case of SNRVM
	SANA is a particular case of SNRVM

	Proofs for the results in Section 4, including Theorems 4.5 and 4.8
	Proof of Proposition 4.3
	SNRVM is equivalent to minimizing a quadratic function over a random subspace
	About r in Theorem 4.5
	Proof of Theorem 4.5
	SNRVM for solving linear systems
	Proof of Theorem 4.7
	Proof of Theorem 4.8

