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Abstract: Periodontitis is an inflammatory disease associated with a dysbiosis of the oral flora
characterized by a chronic sustained inflammation leading to destruction of tooth-supporting
tissues. Over the last decade, an association between periodontitis and systemic disorders such
as cardiovascular diseases, rheumatoid arthritis and obesity has been demonstrated. The role of
periodontal pathogens, notably Porphyromonas gingivalis (P. gingivalis), in the onset or exacerbation of
systemic diseases has been proposed. P. gingivalis expresses several virulence factors that promote its
survival, spreading, and sustaining systemic inflammation. Recently, the impact of periodontitis on
gut dysbiosis has also been suggested as a potential mechanism underlying the systemic influence of
periodontitis. New therapeutic strategies for periodontitis and other dysbiotic conditions, including
the use of beneficial microbes to restore healthy microbial flora, may pave the way to improved
therapeutic outcomes and more thorough patient management.
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1. Introduction

Periodontitis is an oral inflammatory disease of infectious origin affecting periodontium,
characterized by gingival swelling and bleeding, periodontal pocket formation and clinical attachment
loss, destruction of tooth-supporting tissue and ultimately to tooth loss [1,2]. Periodontitis is among
the most common diseases worldwide, with its severe form affecting approximately 11% of the
global population [3]. This disease represents a major public health issue as periodontitis has been
correlated with decreased oral health and related quality of life [4]. Furthermore, an association with
several systemic diseases such as cardiovascular diseases, diabetes and rheumatoid arthritis was
established [5]. The oral microbiome is a highly complex ecosystem with thousands of microbial
phylotypes detected [6], and its understanding presents a challenge. In the context of periodontal
inflammation, the contribution of microbiome dysbiosis is under investigation due to the molecular
mechanisms underlying this microbiome state being poorly understood.

Microbiome dysbiosis is characterized by an imbalance between microbial species and their
environment. The imbalance seems to be driven by the subversion of host immunity due to keystone
pathogens even when they are present in low abundance [7,8]. Typically, an inflammatory host
response would lead to the clearance of pathogenic bacteria. However, in the case of periodontal
disease, it promotes the growth of keystone pathogens due to gingival inflammatory exudate being
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a rich source of nutrients [9]. Keystone pathogens, such as Porphyromonas gingivalis (P. gingivalis),
facilitate the subversion of the host immune response through polymicrobial synergy allowing for
the growth of both themselves and other dysbiotic species [10–12]. Polymicrobial synergy within the
pathogenic oral biofilm is critical for the establishment and spread of periodontal disease. It has been
demonstrated in vitro that there is a cooperative biofilm formation involving Streptococcus gordonii,
Fusobacterium nucleatum (F. nucleatum) and P. gingivalis [12]. When cocultured, these bacteria elicited
extensive changes on each other’s biochemical signatures to support cohabitation within the biofilm [13].
During colonization, F. nucleatum triggers the activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase in the host cells which provides a more favorable environment for P. gingivalis
attachment [14]. Furthermore, this leads to the upregulation of virulence factor, mfa1 fimbriae, in both
F. nucleatum and P. gingivalis preventing dendritic cell maturation allowing the disruption of the innate
immune response [12].

P. gingivalis deploys an extensive arsenal of virulence factors such as lipopolysaccharide, proteases,
fimbriae and a CRISPR-Cas system [8,15,16]; enabling it to modulate the host immune response to
promote its survival through cellular colonization and spreading [17,18]. During the initial phase
of infection, this bacterium manipulates the immune system through inhibition of cytokines and
chemokines secretion [19,20]. Neutrophil homing to the gingival tissues is critical for maintaining
homeostasis between the host and the microbiome. P. gingivalis creates a chemokine paralysis by
degrading IL-8 through its secreted gingipain proteases and prevents IL-8 transcription through
SerB, a haloacid dehalogenase (HAD) family serine phosphatase [21,22]. Furthermore, the ability of
P. gingivalis to persist in the periodontal tissue after chemokine paralysis may depend to its ability to
hijack the complement system, preventing its clearance from the oral cavity [11,23,24]. In addition to
paralyzing the immune response, P. gingivalis also targets other periodontal cell types such as gingival
epithelial cells, fibroblasts, periodontal ligament cells, and osseous cells, leading to the establishment
of an inflammatory environment [17,18,25–27]. This hijacking of the host immune response hinders
immune cell recruitment, allowing P. gingivalis to spread and colonize the periodontal pocket.

2. Distant Dissemination of P. gingivalis

Over the last decade, there has been increased interest on the links between periodontitis and
systemic diseases [5]. Among them, an association has been demonstrated with major chronic
diseases such as cardiovascular diseases [28], diabetes [29], metabolic syndrome [30], rheumatoid
arthritis [31] and more recently obesity [32] (Figure 1). Interestingly, periodontitis has been documented
as contributing to the risk of all-cause mortality in an older European population (subjects 60–70 years
of age; hazard ratio = 1.57 (1.04–2.36) after adjustment for confounding variables) [33]. Therefore,
the systemic effects of oral pathogens and the role they play in chronic diseases has become a major
research focus.

Among the oral bacteria that exhibit systemic effects, P. gingivalis has stood out. It has been
detected in several diseased tissues and organs in both humans and animal models. The translocation
of P. gingivalis to the distant tissues such as the liver or joint after oral administration [34,35] and
its detection in brains of patients with Alzheimer’s disease [36] has led to an increased interest in
determining its role in chronic inflammatory diseases.
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3. Pathogenicity of P. gingivalis: The Case of Atherothrombosis 

Chronic infection has been identified as a potential contributor to the development of 
atherosclerotic lesions independent of classical risk factors such as unfavorable lipid profile [37,38]. 
Chlamydia pneumoniae, Helicobacter pylori, P. gingivalis and certain viruses have been detected within 
atheromatous plaque [39–41]. However, their impact remains under investigation. Several 
periodontal pathogens have been detected in both atherosclerotic plaque and healthy vessels [41,42]. 
P.gingivalis is among the most commonly found organism in these studies due to its ability to persist 
within vascular tissue through cell-to-cell transmission [43]. 

The severity of periodontitis in experimental models has been shown to correlate with the 
magnitude of the systemic inflammation as well as atheromatous plaque formation. Oral 
administration of P. gingivalis has been reported to accelerate the development of atherosclerosis in 
apolipoprotein E knock out (Apoe−/−) mice [38,44,45]. In the experimental models of periodontitis, it 
has been demonstrated that there is an increased systemic inflammation, potentially contributing to 
vascular lesion development [46,47]. Signaling through TLR-2 and TLR-4 is critical for the 
development of periodontitis, as well as atherosclerotic plaque progression [48]. It has been 
demonstrated that P. gingivalis is able to activate these membrane receptors on the endothelial level 
[49,50] triggering the secretion of cytokines such as TNF-α, IL-1, IL-18 and M-CSF [51] thus, 
contributing to a persistent inflammation. Furthermore, in these mice, P. gingivalis DNA can be found 
in the aortic tissue along with an abundance of activated macrophages [44,45]. Interestingly, when 

Figure 1. Porphyromonas gingivalis influences the development of multiple chronic inflammatory
conditions. Through the cross-reactive antibodies (atherothrombosis, rheumatoid arthritis), increased
levels of systemic inflammation (atherothrombosis, rheumatoid arthritis, gut microbiome dysbiosis,
metabolic disorders), as well as overall microbiome dysbiosis. (↑ = increase ↓= decrease).

3. Pathogenicity of P. gingivalis: The Case of Atherothrombosis

Chronic infection has been identified as a potential contributor to the development of
atherosclerotic lesions independent of classical risk factors such as unfavorable lipid profile [37,38].
Chlamydia pneumoniae, Helicobacter pylori, P. gingivalis and certain viruses have been detected within
atheromatous plaque [39–41]. However, their impact remains under investigation. Several periodontal
pathogens have been detected in both atherosclerotic plaque and healthy vessels [41,42]. P. gingivalis is
among the most commonly found organism in these studies due to its ability to persist within vascular
tissue through cell-to-cell transmission [43].

The severity of periodontitis in experimental models has been shown to correlate with the
magnitude of the systemic inflammation as well as atheromatous plaque formation. Oral administration
of P. gingivalis has been reported to accelerate the development of atherosclerosis in apolipoprotein
E knock out (Apoe−/−) mice [38,44,45]. In the experimental models of periodontitis, it has been
demonstrated that there is an increased systemic inflammation, potentially contributing to vascular
lesion development [46,47]. Signaling through TLR-2 and TLR-4 is critical for the development
of periodontitis, as well as atherosclerotic plaque progression [48]. It has been demonstrated that
P. gingivalis is able to activate these membrane receptors on the endothelial level [49,50] triggering the
secretion of cytokines such as TNF-α, IL-1, IL-18 and M-CSF [51] thus, contributing to a persistent
inflammation. Furthermore, in these mice, P. gingivalis DNA can be found in the aortic tissue along
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with an abundance of activated macrophages [44,45]. Interestingly, when nonsurgical periodontal
therapy is performed in these models, there is a reduction in systemic inflammation as well as aortic
inflammation supporting the causative role oral microbiome dysbiosis [52].

Oxidized low density lipoproteins (OxLDLs) are believed to initiate the immunological response
found in atherosclerosis [53]. It has been demonstrated in patients with stable coronary artery disease,
as well as acute coronary disease, that antibodies directed against key virulence factors of P. gingivalis
can cross-react with OxLDLs, malondialdehyde-modified low-density lipoprotein (MDA-LDL) and
to malondialdehyde acetaldehyde-modified low-density lipoprotein (MAA-LDL) [54]. In vitro, the
synergic effects between risk factors have also been observed. Indeed, P. gingivalis-induced effects
can be influenced by the cellular environment and other proinflammatory triggers, such as oxidized
low-density lipoproteins, (Ox-LDL) [55] highlighting the fact that vascular inflammation could arise
from different mechanisms and insults. The antibody cross-reaction between bacterial components
and host molecules may also contribute to the inflammatory environment in the atherosclerotic
plaque. In mouse models, immunization with P. gingivalis or its gingipain, Rgp44, seems to display
athero-protective effects in the modulation of plaque size, and anti-inflammatory cytokines IL-10 and
IL-5 [54].

Based on the cumulative evidence strengthening the role of bacterial infection in atherosclerosis,
several clinical trials have been conducted assessing the impact of antibiotic administration
on atherosclerosis-related parameters in patients with stable coronary artery disease (WIZARD,
ACES, CLARICOR), acute coronary syndrome (PROVE-IT-TIMI) and peripheral artery disease
(PROVIDENCE-1) [56–60]. However, none of these trials demonstrated long term benefit of such a
therapeutic strategy. These results might be explained by the fact that 1. antibiotics never penetrate
a biofilm unless mechanically disrupted; 2. antibiotics must be able to address host cell invasion by
pathogens; 3. the poorly designed studies focus mainly on late stages of atherothrombosis, reducing
the ability to detect a benefit of such an approach [61]. Future trials testing the effect of antibiotics on
earlier stage disease might be worth consideration.

4. P. gingivalis and Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disease that primary affects
the joints, however, the condition can damage a wide variety of body systems including the skin, eyes,
lungs, heart and blood vessels [62]. The notion that RA had an infectious origin is not a new one.
Since the early 19th century, investigators have claimed to identify different bacteria in RA synovial
fluid and tissue. Although these results were not reproducible, the evidence supported the theory that
RA was a result of microbial action either within the joint or systemically [63]. The association between
periodontal disease and RA has long been established [64]. Initially, it was thought that the alveolar
bone destruction and gingival inflammation was part of the same RA-induced damage. It was not
until recently that periodontitis was seen more as a cause than a consequence of RA. Like periodontitis,
the tissue damage seen in RA is due to a host driven inflammation [65,66]. The cytokine signature of
each disease is similar with an increased expression of proinflammatory cytokines, TNF-α and IL-6.
In murine models of experimental arthritis, it was found that there is an increase in the serum levels of
these inflammatory mediators following oral administration of periodontal pathogens, supporting
their role in exacerbating the local and systemic inflammation associated with RA [67–69]. Additionally,
auto-antibodies such as rheumatoid factor and anticollagen antibodies common to RA are often found
in diseased periodontal tissues [70,71]. Specific periodontal pathogens have even been identified as
risk factors for the development of RA, and P. gingivalis in particular has received a lot of attention.
P. gingivalis secretes a petidylarginine deiminase (PAD)-like enzyme (PPAD), which can contribute
to the generation of citrullinated proteins, a major target of autoantibodies in RA [72,73]. PPAD is
secreted in a soluble form and in association with the outer membrane vesicles of P. gingivalis [74]. As a
major virulence factor, PPAD helps to maintain the presence of P. gingivalis in the mouth by preventing
neutrophil function as well as the production of ammonia [75–77]. Clinical isolates of P. gingivalis
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have been shown to be highly enriched in citrullinated proteins due to the functioning of PPAD as
well as its gingipain Rgp [73,78]. In murine models of collagen-induced arthritis, inoculation with
P. gingivalis lead to an increase in citrullinated peptides as well as an increased expression of proteins
targeted for citrullination [78]. The production of bacterial and host citrullinated proteins by PPAD
may further exacerbate the loss of tolerance to citrullinated autoantigens in RA. In murine models of
collagen-induced arthritis PPAD-null mutants, P. gingivalis does not elicit the same level of inflammation
or autoantibodies to collagen type II, highlighting its potential for therapeutic targeting [73]. In addition
to autoreactive antibodies, patients with RA often have high levels of antibodies to P. gingivalis gingipain
domains [79]. A majority of the antigingipain antibodies target the hemagglutinin (HA2-4) as well
as the catalytic domains [80]. Interestingly, in the murine model of collagen-induced arthritis, rats
that received a pretreatment vaccination of the catalytic domain of RgpA had less severe cartilage
erosive changes when compared to controls. Furthermore, rats that received the catalytic domain of
RgpA demonstrated a reduction in inflammatory mediators (IL-1b and TNF-α) both at the mRNA and
protein level in the synovial tissues [79].

It is difficult to clearly define periodontitis and periodontal pathogens as microbial cause of
RA, given 11% of the global adult population present periodontitis and RA affects only 0.5 to
1% [3,81]. However, there is overwhelming evidence to support that periodontal pathogens, specifically
P. gingivalis, play a role in the progression of the disease by allowing for the accumulation of
inflammatory cytokines and autoreactive antibodies, leading to the tissue destruction associated with
RA [69,82–84]. Furthermore, it has been demonstrated in numerous animal models of experimental
arthritis that arthritis can be treated by targeting P. gingivalis and its numerous virulence factors,
supporting the need for further investigation into the effects of nonsurgical periodontal treatment and
the progression of RA in human trials.

5. Impact of P. gingivalis on Obesity, Metabolism, and Gut Microbiota Homeostasis

The amount of data illustrating a relationship between obesity and periodontitis [85] has led to
interest in the potential role played by P. gingivalis on both sustained inflammation in adipose tissue
and gut microbiome-associated changes. It has been suggested that bacterial insult may contribute to
obesity-related chronic inflammation and oxidative stress [86]. Endotoxemia characterized by high
plasma level of bacterial lipopolysaccharides (LPS) has been shown to stimulate adipocyte proliferation
and inflammation in adipose tissue [87]. Interestingly, infection of macrophages by P. gingivalis induced
a switch in macrophage polarization leading to the inhibition of M1 phenotype, illustrating an alteration
of immune response with effects on a cascade of pathways associated with immune cell proliferation
and angiogenesis. These effects are potential causes of the delay in the response to infection observed in
obese individuals [88]. However, it should be mentioned that a sole bacterium cannot cause metabolic
endotoxemia and that the establishment of the low-grade inflammation is the result of a complex
process that involves the whole microbiota, including butyrate-producing bacteria, mucin-degrading
bacteria and LPS-containing bacteria such as P. gingivalis [87,89–91].

The gut microbiome has recently come to be viewed as an organ system in its own right [92].
It is the most diverse commensal ecosystem in the human body that continues to evolve throughout
the human lifespan [93]. Microbes residing in the gut are considered key contributors to host
metabolism as they interact with virtually all human cells and induce significant changes in host
metabolism [89]. Metabolic disorders, such as obesity, are associated with shifts in the microbiota at the
phylum level, especially in the Firmicutes/Bacteroidetes ratio [94]. Saliva is an important transporter
of oral bacteria to the gut as daily saliva production is approximately 0.6 L [95]. Clinical trials
have demonstrated that bacterial counts of periodontal pathogens in saliva (Campylobacter rectus,
F. nucleatum, P. gingivalis, Prevotella intermedia and Tannerella forsythia) were increased with the severity
of periodontal disease (gingivitis/periodontitis) [96]. It has been hypothesized that swallowed oral
pathogens can lead to disturbances in the gut microbiota causing metabolic endotoxemia and metabolic
disorders [97]. Patients with chronic periodontitis have been shown to have less diversity in their
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gut microbiomes [98]. Several studies have investigated the influence of P. gingivalis oral gavage
on the gut microbiome, mostly in animal models. All studies indicate a significant modification
of gut microbiome composition after P. gingivalis oral administration [99,100]. In C57BL/6 mice
infected with P. gingivalis strain W83, Kato et al. showed that the proportion of Bacteroidetes
was significantly reduced compared to sham-administered mice, indicating a dysbiosis of the gut
microbiome. Interestingly, the proportions of other genera such as Lactobacillus and Desulfovibrio were
also affected by P. gingivalis administration [99]. Due to the changes in the gut microbiome, P. gingivalis
administration leads to increased systemic inflammation, endotoxin levels, and intestinal permeability,
even after a single exposure [100]. The increased systemic inflammation contributes to the changes
in gene expression profiles of epididymal adipose tissue, increasing proinflammatory genes while
decreasing insulin sensitivity [97], as well as changes in expression of genes associated with glucose and
lipid metabolism [99,101]. However, the limitations associated with the use of mouse models should
be mentioned. Mouse models lack some human-specific gut bacteria and proportion of bacterial phyla
is different compared to humans. Furthermore, the immune responses also differ [102]. Altogether,
these limitations indicate the need of human studies. In humans, the Human Microbiome Project
demonstrated that several genera, including Bacteroides, Faecalibacterium, Parabacteroides, Eubacteium,
Alistipes, Dialister, Streptococcus, Prevotella, Rosburia, Coprococcus, Veillonella and Oscilibacter could be
detected in both the oral cavity and stool in more than 45% of the included patients [103], highlighting
a potential role for oral bacteria in the disruption of the gut microbiome. It was therefore hypothesized
that saliva is a key driver of microbial composition in the habitats above the stomach. However, the
role of the continuous epithelial lining of the upper gastrointestinal mucosal surfaces has also been
suggested [103].

Obesity is also associated with metabolic alterations such as glucose homeostasis including
glucose intolerance, diabetes and insulin resistance [104], all of which are associated with low-grade
inflammation. Metabolic endotoxemia induced by LPS has been associated with insulin resistance [105].
Interestingly, it was demonstrated that mice fed a high-fat diet and treated with antibiotics
exhibited reduced inflammation, insulin resistance and fat mass gain, emphasizing a role of the
gut microbiota [106]. In the context of periodontitis and experimental periodontitis induced by
P. gingivalis, obese animals exhibited greater periodontal bone loss that in lean animals; a process
attributed to a severe immune dysfunction [88,107–109]. Experimental periodontitis induced by
multispecies (P. gingivalis, F. nucleatum, P. intermedia) oral gavage was associated with increased insulin
resistance [110]. This modulation of the insulin resistance was linked to the recruitment of cells
involved in the adaptive immune response, and a decrease in antibodies against P. gingivalis was
associated with impaired glucose metabolism [110].

Conventional periodontal treatments including scaling and root planning with adjuvant therapies
such as topical antibiotics have been demonstrated to alleviate some of the symptoms of metabolic
disorders. In fact, such treatments have led to a reduction in serum glucose and glycated hemoglobin,
insulin resistance, and fasting glucose levels [111–113]. There is little understanding of the impact of
periodontal treatment on the composition of the gut microbiome. Due to the ability of periodontal
treatment to change the serum metabolome, the effects on the composition of the microbiome should
be investigated.

6. Clinical Implications

Periodontal treatment aims to achieve resolution of gingival inflammation and a decrease in the
pathogenic bacterial load [114]. It includes nonsurgical periodontal therapy consisting of oral hygiene
instructions, scaling and root planning of affected teeth. In cases of severe lesions, anti-infective
treatment may be used as an adjunctive to mechanical treatment. Accordingly, antiseptics, antibiotics,
and local anti-infective treatments such as photodynamic therapy have been proposed to reduce the
need for additional surgical treatment [115–117]. Such therapeutic approaches are effective in most
clinical situations. However, in some patients, refractory lesions and recurrence leading ultimately to
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tooth loss could be observed [118,119], emphasizing the need for pharmacological approaches such
as antibiotics.

Recently, the modulation of the biofilm composition has also been proposed as a therapeutic
approach through the administration of beneficial microbes [120,121]. In this aspect, Lactobacillus strains,
especially L.reuteri, were the most evaluated in human clinical settings. They showed a significant
impact with a reduction in clinical attachment loss (−0.42 mm, p = 0.002) and gingival inflammation,
as well as a significant reduction in bleeding on probing (−14.66%, p = 0.03) [121]. The mechanisms
associated with oral administration of probiotics at the periodontal level are not fully elucidated
yet. However, probiotic treatment has demonstrated an inhibitory effect towards bacteria present
within periodontal biofilms such as Streptococcus mutans, Streptococcus gordonii, Tannerella forsythia and
Actinomyces naeslundi. Interestingly, it was also demonstrated that the antimicrobial activity of L. reuteri
was not associated with its viability, as even heat-killed bacteria or culture supernatant were effective,
indicating a likely role for substances produced by the beneficial bacteria such as reutericyclin [122].
Interestingly, in rodent models, the restoration of a healthy gut flora concomitant with administration
of probiotics such as L. plantarum was associated to cardioprotective effects, improved cardiac function
and decreased inflammatory markers [123].

The gut symbiont Akkermansia muciniphila (A. muciniphila) has been evaluated as a new potential
therapeutic tool for periodontitis. A. muciniphila has attracted growing interest due to its host-beneficial
properties. In several rodent models, supplementation with A. muciniphila reduces obesity, insulin
resistance, glucose intolerance, steatosis and gut permeability [124–126]. Such properties suggest
A. muciniphila as a next-generation probiotic [127]. Furthermore, there has been additional focus on
one of its membrane proteins, Amuc_1100 [128], demonstrating its ability to recapitulate the effect
induced by live bacteria. Amuc_1100 interacts with TLR- 2 and -4 resulting in the improvement of gut
barrier function and anti-inflammatory IL-10 secretion in mouse models [125,129]. In humans, a recent
proof-of-concept exploratory study shows that the supplementation with A. muciniphila was safe and
well tolerated. Most importantly, the administration of this gut commensal administration in human
obese volunteers, notably in pasteurized form, contributed to body weight reduction in comparison
with placebo treated patients, but also reduced the level of markers associated with liver dysfunction
and inflammation such as fasting plasma insulin, total cholesterol and γGT [130]. In the context of
periodontitis, administration of A.muciniphila in a murine model of experimental periodontitis was
associated with improved periodontal healing [120]. This effect was associated with a modulation
of P. gingivalis virulence by A. muciniphila in cocultures. As observed for L. reuteri, some studies
showed the role of a secreted bacterial byproduct, Amuc_1100 in the anti-inflammatory properties [125].
The impact of the oral administration of A. muciniphila on the gut microbiome was also observed and
associated with changes in the ratio of Firmicutes/Bacteroidetes, highlighting a potential influence of
gut ecology on systemic inflammation levels [120].

7. Conclusions

The detrimental effect of periodontitis on other major systemic diseases with high social and
financial consequences has been demonstrated. Modulation of the microbiome has emerged as an
exciting potential treatment that could pave the way for a new approach to managing periodontal
diseases, as well as their systemic effects. New research is needed to establish the molecular
mechanisms involved, and to elucidate effects related to both local antimicrobial properties and
systemic anti-inflammatory effects associated with the transition from a dysbiotic to a healthy gut
microbiome. Additionally, studies are needed to determine the most effective probiotic organisms,
strains, dosage, and routes of administration necessary to achieve optimal outcomes in each respective
disease. With further research into the effects of modulation of the oral microbiome on systemic disease,
promising new treatments for these chronic inflammatory diseases will emerge.
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