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Abstract

We provide a comprehensive study of the convergence of the forward-backward algorithm un-

der suitable geometric conditions, such as conditioning or Łojasiewicz properties. These geomet-

rical notions are usually local by nature, and may fail to describe the fine geometry of objective

functions relevant in inverse problems and signal processing, that have a nice behaviour on mani-

folds, or sets open with respect to a weak topology. Motivated by this observation, we revisit those

geometric notions over arbitrary sets. In turn, this allows us to present several new results as well

as collect in a unified view a variety of results scattered in the literature. Our contributions include

the analysis of infinite dimensional convex minimization problems, showing the first Łojasiewicz

inequality for a quadratic function associated to a compact operator, and the derivation of new lin-

ear rates for problems arising from inverse problems with low-complexity priors. Our approach

allows to establish unexpected connections between geometry and a priori conditions in inverse

problems, such as source conditions, or restricted isometry properties.

1 Introduction

Splitting algorithms based on first order descent methods are widely used to solve high dimensional

convex optimization problems in signal and image processing [28], compressed sensing [31], and

machine learning [84]. Their main advantage is their simplicity and complexity independent of the

dimension of the problem. The worst case convergence rates of these methods have been intensively

investigated in the last twenty years. The simplest example is the gradient method applied to a

smooth convex function, which is known to converge in values as o(n−1) [32, 94]. Analogous results

are known for the forward-backward splitting algorithm. We refer to these results as worst case since

no particular assumption is made on the objective function aside from convexity and existence of

a solution. Note that these rates are sharp, meaning that there are functions for which these rates

are arbitrarily accurate. Clearly such a large class of convex functions allows for functions with

wild behaviors around the minimizers [16], behaviors that might hardly appear in practice. It is then

natural to ask whether improved rates can be proved under further regularity assumptions.
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Previous work on optimization rates with geometry. One classical geometrical assumption is strong

convexity, which indeed guarantees linear convergence rates [50, 95]. In practice, strong convexity

is often too restrictive, and one would wish to relax it, while retaining fast rates. A relaxation of

this condition is given by geometric conditions that, roughly speaking, describe convex functions

f ∈ Γ0(X) that behave like

x 7→ dist p(x, argmin f ), (1)

for some p ≥ 1 and on some subset Ω ⊂ X, which is typically a neighborhood of the minimizers

and/or a sub-level set. The intuition behind this kind of assumption required on a neghborhood of

the solution is clear: the bigger is p, the more the function is “flat” around its minimizers, which in

turns means that a gradient descent algorithm will converge slowly. The idea of exploiting geometric

conditions to derive convergence rates has a long history dating back to [89, 91], and plenty of similar

convergence rates results have been derived under different yet related geometrical properties.

The optimization community focused on several different but related geometric assumptions,

namely the p-conditioning, the p-metric subregularity and the p-Łojasiewicz properties (see Section

3 for their definitions). The first1 result exploting geometry to derive fast convergence rates dates

back to Polyak [89, Theorem 4], showing that the gradient method converges linearly (in terms of

the values and iterates) when the objective function verifies the 2-Łojasiewicz inequality. Improved

convergence rates for first-order descent methods were then obtained in [91], considering notions

slightly stronger than p-metric subregularity, and proving finite convergence of the proximal algo-

rithm for p = 1, and linear convergence for p = 2. These results are improved and extended in [82],

analyzing for the first time convergence rates for the iterates of the proximal algorithm using metric

subregularity for general p ∈ [1,+∞[. The results in [82] recover those in [91] (see also [96, 97]), but

also derive superlinear rates for p ∈ ]1, 2[, and sublinear rates for p > 2. Roughly speaking, the re-

sults in [82] show that the bigger is p the slower is the algorithm. A related notion, nowadays called

the Luo-Tseng error bound condition, has been considered in the seminal paper [81], and implies

the linear convergence of several first order methods. Recently, this condition has been shown to be

equivalent to 2-conditioning [40, 74]. In the early 90’s, some attention was devoted to the study of

p-conditioned functions, in particular for p = 1 (some authors call this property superlinear con-

ditioning, sharp growth or sharp minima property). In this context, [45, 64, 23] showed that the

proximal algorithm terminates after a finite number of iterations. For p = 1, Polyak [90, Theorem

7.2.1] obtained the finite termination for the projected gradient method. The 2-conditioning was also

used to obtain linear rates for the proximal algorithm in [70]. In [3], it was observed that the p-

Łojasiewicz property could be used to derive precise rates for the iterates of the proximal algorithm.

The authors obtain finite convergence when p = 1, linear rates when p ∈ ]1, 2], and sublinear rates

when p ∈ ]2,+∞[. Similar results can be found in [4, 83]. Such convergence rates for the iterates have

been extended to the forward-backward algorithm (and its alternating versions) in [18], and similar

rates also hold for the convergence of the values in [27, 46]. More recently, various papers focused on

conditions equivalent (or stronger) to the 2-conditioning to derive linear rates [67, 75, 41, 78, 40, 61].

Some effort has also been made to show that the Łojasiewicz property and conditioning are equiva-

lent [16, 17], and to relate it to other error bounds appearing in the literature [61]. See also [85] for a

refined analysis of linear rates for the projected gradient algorithm under conditions that interpolate

between strong convexity and 2-conditioning (see also Subsection 4.3).

A key observation. Our study starts from a basic observation which allows a number of develop-

ments. Indeed, motivated by several relevant examples described in Section 5, we require condi-

tion (1) to hold on an arbitrary set Ω, which in general is neither a neighborhood of the solution,

nor a sublevel set. This extension allows to establish a connection with modeling assumptions con-

sidered in different contexts and unveil their role in optimization. As we explain below, modeling

assumptions, such as source conditions in inverse problems [42] or the restricted injectivity property

in sparse recovery [25], correspond to conditioning assumptions on specific subsets. This ensures

global convergence rates for the forward-backward algorithm that are faster compared to those given

by a worst case analysis and indeed often observed in practice.

1If we discard the “classic” strong convexity assumption.
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Geometry and inverse problems. As a first example of the importance of considering arbitrary sets

Ω to define geometrical properties, consider linear inverse problems Ax = y for which the operator

A is an infinite dimensional compact operator, making the problem severely ill-posed. A common

modeling assumption is to suppose that the minimal norm solution of the problem satisfies a source

condition, which can be seen as a measure of its regularity (see Section 5.1 for a definition). Under this

condition, it is shown that the sublinear rate of the gradient algorithm is faster than the worst case

one [42]. However, such a behavior cannot be apparently explained in terms of classical geometrical

conditions satisfied by the least squares function: indeed, it was shown in [53] that such a least

squares function cannot verify any Łojasiewicz inequality (1) in a neighborhood of its minimizers.

On the contrary,thanks to the extension of the definition considered in this paper, we show that

geometric assumptions are indeed satisfied, but only on specific subsets. More precisely, we show in

Theorem 5.9 that the source condition guarantees that the least squares ‖Ax − y‖2 is p-Łojasiewicz

(p > 2) on a dense affine subspace having empty interior. This allows therefore to explain the faster

global rates of the gradient algorithm which are typically observed in this context.

As a second example, consider linear inverse problems with a low-complexity prior, such as

sparse inverse problems. For these problems, the restricted injectivity condition [25] is a key model-

ing assumption to guarantee stable recovery: it means that, even if a linear measurement is corrupted

by noise, we can hope to reconstruct an approximated solution by solving a regularized optimiza-

tion problem. In Section 5.2, we show that this assumption implies a 2-conditioning of the problem

over a (nonconvex) cone of sparse vectors. Since this set is active, in the sense that it is reached

by the algorithm after a finite time, it immediately gives us asymptotic linear rate of the algorithm.

For problems with more general low-complexity priors the situation is similar: an active set will be

identified by the iterates of the algorithm, and we show that restricted injectivity condition on the

tangent cone to this active set induces a 2-conditioning of the problem on this set. Depending on the

applications or on the hypothesis made on the problem, this set can be a low-dimensional manifold,

or a set with less structure, and can be computed within the partial smoothness framework [54] or

the mirror stratification one [43].

Paper contents. Motivated by the estimation problems presented in Section 5, the goal of this paper

is to provide a comprehensive study of the convergence rates of the forward-backward algorithm

for convex minimization problems satisfying geometric conditions on arbitrary sets. We collect in a

unified view a variety of results scattered in the literature, and we extend them to this more general

setting. In addition, we derive several novel results along the way. The paper is organized as follows.

After reviewing and discussing worst-case convergence results for the forward-backward algo-

rithm in Section 2, we give in Section 3 the definition of different geometric conditions for a proper

convex lower semicontinuous function f : p-conditioning, p-metric subregularity, and p-Łojasiewicz

property on general subsets Ω ⊂ X, rather than sublevel sets or open sets, as typically done in the

literature. We show that those geometrical notion are equivalent, provided that the set Ω is stable

by the semigroup generated by ∂ f (see Proposition 3.3). Since establishing p-conditioning of a func-

tion may be hard in general, we provide two sum rules for conditioned functions in Theorem 3.15

and Theorem 3.17. The first one establishes that if a strictly convex function remains p-conditioned

under linear perturbations, then it is also p-conditioned under convex perturbation. The second one

gives conditions under which the sum of two conditioned functions are conditioned. It allows us to

show in particular that the ROF model (minimization of the total variation and the Kullback-Leibler

divergence) is 2-conditioned on every bounded set.

Section 4 exploits the p-Łojasiewicz property on general sets to study the convergence of the

forward-backward algorithm. In Theorem 4.1, we recover and extend results from the literature,

getting finite / superlinear / linear / sublinear convergence rates, depending on the value of p ∈
[1,+∞[ to our more general setting. Along the way, we extend the sharp superlinear rate known

for the proximal method to the Forward-Backward algorithm. In addition, our approach allows to

derive in a unified setting both nonasymptotic/global and asymptotic/local convergence results,

see Corollaries 4.11 and 4.12. We go beyond the classical analysis by introducing a p-Łojasiewicz

property with p taking nonpositive values. This allows to study convex functions being bounded

from below but with no minimizers, a case which has drawn little attention so far, but which can
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arise for instance in function approximation [35] or in statistical learning theory [34, Theorem 9] (see

also Section 5.1). For such ill-posed problems, we derive new and sharp sublinear rates for the values

in Theorem 4.6, interpolating between o(n−1) and o(1). We further show in Section 4.3 that the 2-

conditioning is essentially equivalent to the linear convergence of the forward-backward algorithm,

illustrating the importance of this notion for convergence rate analysis.

In Section 5, we apply the aforementioned results to optimization problems arising from inverse

problems, and discuss the interaction between geometry and modeling assumptions. The key results

of this section are Theorem 5.9 and Theorem 5.20. Theorem 5.9 establishes that classical source con-

ditions in inverse problems guarantee the Łojasiewicz property on special sets, and therefore give

better convergence rates of the gradient method with respect to worst case ones. Theorem 5.20 says

that if we have an a priori assumption about the minimizer, which is assumed to belong to a set C,

then a restricted injectivity property of the Hessian of the smooth component of the objective func-

tion implies that f is 2-conditioned on this set C around the minimizer. This guarantees asymptotic

linear rates for forward-backward when combined with Corollary 4.15.

2 The forward-backward algorithm: notation and background

2.1 Notation and basic definitions

We recall a few classic notions and introduce some notation. Throughout the paper X is a Hilbert

space. Given Ω ⊂ X, we note int Ω and cl Ω its interior and closure. We say that Ω is a cone,

if Ω =]0,+∞[Ω. We note cone(Ω) (resp. span(Ω)) the smallest cone (resp. linear subspace) in

X containing Ω. Let x ∈ X, δ ∈ ]0,+∞[, and let BX(x, δ) and BX(x, δ) denote respectively the

open and closed balls of radius δ centered at x. We also use BX and BX to denote BX(0, 1) and

BX(0, 1), and SX to denote the unit sphere BX \ BX . The distance of x ∈ X from a set Ω ⊂ X is

dist (x, Ω) = inf{‖x − y‖ : y ∈ Ω}, and ‖Ω‖ stands for dist (0, Ω), so, in particular ‖∅‖ = +∞. If Ω

is closed and convex, proj(x, Ω) is the projection of x onto Ω, and the relative interior and the strong

relative interior of Ω are respectively defined as [11, Definition 6.9]: ri Ω = {x ∈ Ω | cone(C − x) =

span(C − x)}, sri = {x ∈ Ω | cone(C − x) = cl span(C − x)}. Given a bounded linear operator

A between two Hilbert spaces, its spectrum, noted spec(A), is the set of spectral values λ ∈ R such

that A − λI is not boundedly invertible. We also note spec∗(A) := spec(A) \ {0}. The set of singular

values of A, noted σ(A), is defined as σ(A) :=
√

spec∗(AA∗), and we note σin f (A) := inf σ(A).

Let Γ0(X) be the class of convex, lower semi-continuous, and proper functions from X to ]−∞,+∞].

For f ∈ Γ0(X) and x ∈ X, ∂ f (x) ⊂ X denotes the (Fenchel) subdifferential of f at x [11, Definition

16.1], and dom f (resp. dom ∂ f ) denotes the effective domain of f (resp. of ∂ f ). Moreover, f ∗ is

the Fenchel conjugate of f , namely f ∗(v) = supx∈X〈x, v〉 − f (x) for all v ∈ X. We introduce the

shorthand notation dom∗ f := dom f \ argmin f . We also introduce the following notation for the

(strict) sublevel sets of f ∈ Γ0(X): for every r ∈]− ∞,+∞], [ f < r] := {x ∈ X | f (x) < r}.

The following assumption will be made throughout this paper.

Assumption 2.1. Let X be a Hilbert space, g ∈ Γ0(X), and h : X → R be differentiable and convex, with

L-Lipschitz continuous gradient for some L ∈ ]0,+∞[ and set f = g + h.

Splitting methods, such as the forward-backward algorithm, are extremely popular for minimiz-

ing an objective function as in Assumption 2.1. To have an implementable procedure, we implicitly

assume that the proximal operator of g can be easily computed (see e.g. [28]):

(∀λ > 0)(∀x ∈ X) proxλg(x) = argmin
u∈X

{

g(u) +
1

2λ
‖u − x‖2

}

. (2)

Remembering Assumption 2.1 is in force, we introduce the Forward-Backward (FB) map for λ ∈
]0, 2L−1[:

Tλ : x ∈ X 7−→ Tλx := proxλg(x − λ∇h(x)) ∈ X, (3)

so that the FB algorithm can be simply written as xn+1 = Tλxn.
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2.2 The Forward-Backward algorithm: worst-case analysis

The following theorem collects known results about the convergence of the FB algorithm. This is a

“worst-case” analysis, in the sense that it holds for every f ∈ Γ0(X) satisfying Assumption 2.1. The

main goal of Section 4 is to show how these results can be improved taking into account the geometry

of f at its infimum.

Theorem 2.2 (Forward-Backward - convex case). Suppose that Assumption 2.1 is in force, and let (xn)n∈N

be generated by the FB algorithm with λ ∈]0, 2L−1[. Then:

i) (Descent property) The sequence ( f (xn))n∈N is decreasing, and converges to inf f .

ii) (Féjer property) For all x̄ ∈ argmin f , the sequence (‖xn − x̄‖)n∈N
is decreasing.

iii) (Boundedness) The sequence (xn)n∈N is bounded if and only if argmin f is nonempty.

Suppose in addition that f is bounded from below. Then

iv) (Subgradients convergence) The sequence (‖∂ f (xn)‖ )n∈N
converges decreasingly to zero, with ‖∂ f (xn+1)‖2 =

O ( f (xn)− inf f ) .

Moreover, if argmin f 6= ∅, we have:

v) (Weak convergence) The sequence (xn)n∈N converges weakly to a minimizer of f .

vi) (Global rates for function values) For all n ∈ N,

f (xn)− inf f ≤ C
dist (x0, argmin f )2

2λn
, with C =

{

1 if λ ≤ L−1,

1 + 2(λL − 1)(2− λL)−1 otherwise.

vii) (Asymptotic rates for function values) When n → +∞, f (xn)− inf f = o
(

n−1
)

.

Theorem 2.2 collects various convergence results on the FB algorithm. Item i) appears in [94, Theorem

3.22] (see also [52]). Item ii) is a consequence of the nonexpansiveness of the FB map (see (3)) [65,

Lemma 3.2]. Item iii), which is a consequence of Opial’s Lemma [87, Lem. 5.2], can be found in [94,

Theorem 3.12]. Item iv) follows from Lemma A.9.ii) in the Annex. Item v) is also a consequence of

Opial’s Lemma, see [65, Proposition 3.1]. Items vi) and vii) are proved in [32, Theorem 3] (see also

[20, Proposition 2] and [12, Theorem 3.1]).

Remark 2.3 (Sharpness of the results in the worst-case). The convergence results in Theorem 2.2

are sharp, in the following sense. First, the iterates may not converge strongly: see [8, 52] for a

counterexample in Γ0(ℓ
2(N)). Even in finite dimension, no sublinear rates should be expected for

the iterates. To see this, apply the proximal algorithm to the function x ∈ R 7→ fp(x) = |x|p, whose

unique minimizer is zero. When p ∈ ]2,+∞[, there exists a constant Cp > 0 depending on (‖x0‖, λ, p)

such that (see e.g. the discussion following [83, Proposition 2.5], or Lemma A.1):

(∀n ≥ 1) |xn| ≥ Cpn−1/(p−2), where lim
p→+∞

1

p − 2
= 0. (4)

The estimate (4) also provides a lower bound for the rates on the objective values:

fp(xn)− inf fp ≥ C
p
p n−p/(p−2). (5)

The above lower bounds imply that the rate in Theorem vii) cannot be improved into a rate O(n−δ),

for some δ > 1, because we can always find a p large enough verifying p/(p − 2) > δ. It also

means that no polynomial rates can be expected for ‖xn − x̄‖. This fact was also observed in [32,

Theorem 12] on an infinite dimensional counterexample. When f is bounded from below, but has no

minimizers, the values f (xn)− inf f go to zero but no rates can be obtained in general. To see this,

consider for any α > 0 the function fα ∈ Γ0(R) defined by

fα : R →]− ∞,+∞] : fα(x) = |x|−α if x < 0, +∞ otherwise. (6)

5



If (xn)n∈N is obtained by applying the proximal algorithm to this function, then (see Lemma A.1)

there exists Cα > 0 such that:

fα(xn)− inf fα ≥ C−α
α n−α/(2+α), where lim

α→0

α

2 + α
= 0 and lim

α→+∞

α

2 + α
= 1. (7)

Observe that this lower bound on the objective function values implies that the convergence for

those functions is slower than the usual O(n−1) rate obtained in Theorem 2.2.vi). It also shows that

no polynomial rates can be proven for the values when argmin f = ∅.

3 Identifying the geometry of a function

3.1 Definitions

In this section we introduce the main geometrical concepts that will be used throughout the paper

to derive precise rates for the FB method. Roughly speaking, these notions characterize functions

which behave like (1) on an arbitrary set Ω ⊂ X.

Definition 3.1. Let p ∈ [1,+∞[, let f ∈ Γ0(X) with argmin f 6= ∅, and Ω ⊂ X. We say that:

i) f is p-conditioned on Ω if there exists a constant γ f ,Ω > 0 such that:

∀x ∈ Ω ∩ dom f ,
γ f ,Ω

p
dist (x, argmin f )p ≤ f (x)− inf f .

ii) ∂ f is p-metrically subregular on Ω if there exists a constant γ∂ f ,Ω > 0 such that:

∀x ∈ Ω ∩ dom∗ f , γ∂ f ,Ωdist (x, argmin f )p−1 ≤ ‖∂ f (x)‖ .

iii) f is p-Łojasiewicz on Ω if there exists a constant c f ,Ω > 0 such that:

∀x ∈ Ω ∩ dom∗ f , ( f (x)− inf f )
1− 1

p ≤ c f ,Ω‖∂ f (x)‖ .

We will refer to these notions as global if Ω = X, and as local if Ω = BX(x̄; δ) ∩ [ f < r] for some

x̄ ∈ argmin f , and δ ∈]0,+∞], r ∈] inf f ,+∞].

The notion of conditioning, introduced in [98, 105], is a common tool in the optimization and

regularization literature [6, 86, 66, 101, 17]. It is also called the growth condition [86], and it is strongly

related to the notion of Tikhonov wellposedness [38]. The p-metric subregularity coincides with

metric subregularity of the subdifferential at the origin, and it is less used, generally defined for

p = 1 or 2 with Ω equal to a neighborhood of a specific minimizer [36, 67]. It is also called upper

Lipschitz continuity at zero of ∂ f−1 in [29], or inverse calmness [37]. The Łojasiewicz property goes

back to [79], and was initially designed as a tool to guarantee the convergence of trajectories for the

gradient flow of analytic functions, before its recent use in convex and nonconvex optimization. It is

generally presented with a constant θ ∈ [0, 1] which is equal, in our notation, to 1− 1/p [79, 1, 14, 17],

or 1/p [83, 53, 46]. In the remark below we explain the main difference between our definition and

the one usually considered in the literature.

Remark 3.2. There is a subtle but crucial difference in the terminology used in Definition 3.1 with

respect to the one commonly used for the Łojasiewicz property. It is usually said that a function

has the Łojasiewicz property at x̄ if there exist δ > 0, c > 0, and r > inf f such that f (x)− f (x̄) ≤
c‖∂ f (x)‖− holds on Ω = BX(x̄; δ) ∩ [ f < r]. If the latter property holds for every x̄ ∈ S ⊂ X, the

function is said to have the Łojasiewicz property on S. This is a different requirement with respect to

the one in Definition 3.1. Indeed, we require the inequality to hold uniformly on Ω, while the above

definition must hold locally around every point of interest in a given set, and typically only allows

for asymptotic convergence rates (see Corollary 4.12). This change of viewpoint is motivated by the

fact that for many convex functions, we have more than just a local information about the geometry
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(see Sections 3.3 and 4). More importantly, it is actually necessary for the analysis of the problems

discussed in Section 5, which motivated this paper. Beyond that, it also allows to understand in a

unified framework both global (Corollary 4.11) and local (Corollary 4.12) convergence rates.

The notions introduced in Definition 3.1 are closely related to each other. Indeed, for convex func-

tions, p-conditioning implies metric subregularity, which implies the Łojasiewicz property. Under

some additional assumptions, it is possible to show that the reverse implications hold. For instance,

metric subregularity implies conditioning when Ω = argmin f + δBX, δ > 0 [102, Theorem 4.3].

Similar results can also be found in [2, 7, 41, 39], and [29, Theorem 5.2] (for Ω = X). Also, it is shown

in [17, Theorem 5] that the local Łojasiewicz property implies local conditioning. The next result,

proved in Annex A.2, extends the mentioned ones, and states the equivalence between conditioning,

metric subregularity, and Łojasiewicz property on ∂ f -invariant sets (see Definition A.2 in Annex A.2).

Proposition 3.3. Let p ∈ [1,+∞[, let Ω ⊂ X, and let f ∈ Γ0(X) be such that argmin f 6= ∅. Consider

the following properties:

i) f is p-conditioned on Ω ,

ii) ∂ f is p-metrically subregular on Ω,

iii) f is p-Łojasiewicz on Ω.

Then i) =⇒ ii) =⇒ iii). One can respectively take γ∂ f ,Ω = γ f ,Ω/p and c f ,Ω = γ
−1/p
∂ f ,Ω . Assuming in

addition that Ω is ∂ f -invariant, we also have iii) =⇒ i) with γ f ,Ω = c
−p
f ,Ω p1−p.

The two next propositions show that these geometric notions are stronger when p is smaller, and

are meaningful only on sets containing minimizers (their proof follow directly from Definition 3.1

and are left to the reader).

Proposition 3.4. Let f ∈ Γ0(X) be such that argmin f 6= ∅, Ω ⊂ X, and p′ ≥ p ≥ 1.

i) If f is p-conditioned (resp. ∂ f is p-metrically subregular) on Ω, then f is p′-conditioned (resp.

∂ f is p′-metrically subregular) on Ω ∩ δBX for any δ ∈]0,+∞[.

ii) If f is p-Łojasiewicz on Ω, then f is p′-Łojasiewicz on Ω ∩ [ f < r] for any r > inf f .

Proposition 3.5. Let f ∈ Γ0(X) be such that argmin f 6= ∅. If Ω ⊂ X is a weakly compact set for

which Ω ∩ argmin f = ∅, then f is p-conditioned on Ω for any p ∈ [1,+∞[.

3.2 Examples

In this section, we collect some relevant examples.

Example 3.6 (Uniformly convex functions). Suppose that f ∈ Γ0(X) is uniformly convex of order

p ∈ [2,+∞[ [11, Definition 10.7]. Then, there exists γ > 0 such that [101, Corollary 3.5.11.iv]:

(∀(x1, x2) ∈ dom ∂ f 2)(∀x∗1 ∈ ∂ f (x1)) f (x2)− f (x1)− 〈x∗1 , x2 − x1〉 ≥
γ

p
‖x2 − x1‖p.

Such function is globally p-conditioned, with γ f ,X = γ, and globally p-Łojasiewicz, with c f ,X =

(1 − 1/p)1−1/pγ−1/p (see Lemma A.4). In the strongly convex case, when p = 2, the 2-Łojasiewicz

inequality holds with the constant c f ,X = 1/
√

2γ, which is sharp. Examples of uniformly convex

functions of order p are x 7→ ‖x‖p [11, Example 10.16].

Example 3.7 (Least squares). Let A : X → Y be a nonzero bounded linear operator between Hilbert

spaces, and f (x) = (1/2)‖Ax − y‖2, for some y ∈ Y. Then, the conditioning, metric subregularity,

and Łojasiewicz properties, with p = 2 and Ω = X, are equivalent to verify on Ker A⊥, respectively:

γ f ,X‖x‖2 ≤ 〈A∗Ax, x〉, γ∂ f ,X‖x‖ ≤ ‖A∗Ax‖, and 〈A∗Ax, x〉 ≤ 2c2
f ,X‖A∗Ax‖2.
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If σinf(A∗A) > 0 holds, one can see that the above inequalities hold with

γ f ,X = γ∂ f ,X = 1/(2c2
f ,X) = σinf(A∗A),

meaning in particular that f is globally 2-conditioned. Since σinf(A∗A) > 0 is equivalent for R(A∗A)

to be closed (see Proposition 5.2), it is in particular always true when Y has finite dimension. If

instead σinf(A∗A) = 0 holds, [53, Theorem 2.1] shows that f cannot satisfy any local p-Łojasiewicz

property, for any p ≥ 1. This is for instance the case for infinite dimensional compact operators. Nev-

ertheless, we will show in Section 5, that the least squares always satisfies a p-Łojasiewicz property

on the so-called regularity sets, for any p > 2.

Example 3.8 (Convex piecewise polynomials). A convex continuous function f : RN → R is said

to be convex piecewise polynomial if RN can be partitioned in a finite number of polyhedra P1, ..., Ps

such that for all i ∈ {1, ..., s}, the restriction of f to Pi is a convex polynomial, of degree di ∈ N. The

degree of f is defined as deg( f ) := max{di | i ∈ {1, ..., s}}. Assume deg( f ) > 0. Convex piecewise

polynomial functions are conditioned [71, Corollary 3.6]. More precisely, for all r > inf f , f is p-

conditioned on its sublevel set Ω = [ f < r], with p = 1+(deg( f )− 1)N. In general, the constant γ f ,Ω

(which depends on r) cannot be explicitly computed. This result implies that polyhedral functions

(deg( f ) = 1) are 1-conditioned (in agreement with [23, Corollary 3.6]), and that convex piecewise

quadratic functions (deg( f ) = 2) are 2-conditioned (in agreement with [70, Theorem 2.7]). More

generally, convex semi-algebraic functions are locally p-conditioned [15].

Example 3.9 (L1 regularized least squares). Let f (x) = α‖x‖1 + (1/2)‖Ax − y‖2, for some linear

operator A : RN → RM, y ∈ RM and α > 0. As observed in [17, Section 3.2.1], f is convex piecewise

polynomial of degree 2, thus it is 2-conditioned on every nonempty level set Ω = [ f < r]. The

computation of the conditioning constant γ f ,Ω is rather difficult. In [17, Lemma 10] an estimate

of γ f ,Ω is provided, by means of Hoffman’s bound [58]. Extensions of this result to the infinite

dimensional setting can be found in [49].

Example 3.10 (Regularized problems). Let X be an Euclidean space, f (x) := g(x) + h(Ax), where

A : X → RM is a linear operator, g ∈ Γ0(X), and h ∈ Γ0(R
M) is a strongly convex C1,1 function, and

argmin f 6= ∅. Then f is 2-conditioned on any level set Ω = [ f < r], for r > inf f , if

i) g(x) = ‖x‖p with p ∈ ]1, 2], (see [104, Corollary 2]),

ii) g(x) = ‖x‖p
p with p ∈ ]1, 2], (use [40, Theorem 4.2]; the details are left to the reader as an

exercise, and can be checked in the Appendix),

iii) g(x) = ‖x‖∗ is the nuclear norm of the matrix x ∈ X, provided the following qualification

condition holds2 (see [103]): ∃x̄ ∈ argmin f such that −A∗∇h(Ax̄) ∈ ri ∂‖ · ‖∗(x̄).

iv) g is polyhedral (see [103, Proposition 6]).

Note that in [103, 104], the authors do not prove directly that the functions are 2-conditioned, but that

they verify the so-called Luo-Tseng error bound, that is known to be equivalent to 2-conditioning

on sublevel sets [40, Corollary 3.6]. Note also that in items ii-iv), the strong convexity and C1,1

assumptions on h can be weakened (see [103] and [40, Theorem 4.2]).

Example 3.11 (Distance to an intersection). Let C, D be two closed convex sets in X such that C ∩
D 6= ∅, and for which the intersection is sufficiently regular, i.e. 0 ∈ sri (C − D). Let f (·) =

max{dist (·, C), dist (·, D)}. Clearly, f ∈ Γ0(X), and argmin f = C ∩ D. Then f is 1-conditioned on

bounded sets [10, Theorem 4.3]. Let p ∈ [1,+∞[. From ‖ · ‖∞ ≤ ‖ · ‖p, it follows that the function x 7→
dist (x, C)p + dist (x, D)p is p-conditioned on bounded sets. The regularity condition 0 ∈ sri (C − D)

is not necessary if the two sets are polyhedral, as proved by Hoffman [58].

2We mention that this result was originally announced in [60, Theorem 3.1] without the qualification condition, but then

corrected in [103, Proposition 12 & following remarks], in which the authors show that such condition is necessary.
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Example 3.12 (Minimum of Łojasiewicz functions). If f = mini=1,...,m fi, with fi ∈ Γ0(R
N) being

continuous on its domain, and locally p-Łojasiewicz at x̄ ∈ argmin f , then f is locally p-Łojasiewicz

at x̄ [74, Theorem 3.1]. It is important to notice that this result do not need the fi’s to be convex.

The next section presents new sum rules for conditioned functions.

3.3 A sum rule for p-conditioned functions

Since verifying conditioning directly with the definition can be difficult, it is very useful to establish

which basic operations preserve conditioning. In this section we present two new sum rules for con-

ditioned functions in a setting where f = g + h ◦ A, where g and h are convex and A is a bounded

linear operator. Theorem 3.15 states that if g strictly convex and p-conditioned up to linear pertur-

bations then also f is p-conditioned. Theorem 3.17 provides an alternative where the assumption of

strict convexity of g is replaced by a stable conditioning assumption on h, which we formalise in the

next definition, inspired by the terminology used in [88, 41, 40].

Definition 3.13. Let f ∈ Γ0(X), Ω ⊂ X, and p ∈ [1,+∞[. We say that f is p-tilt-conditioned if, for

every u ∈ X, the tilted function f + 〈u, ·〉 has no minimizers, or is p-conditioned on Ω.

Note that a similar notion is already present in the literature: if f is p-tilt-conditioned (in our

sense) on every compact set, then it is firmly convex in the sense of [40, Definition 4.1].

Example 3.14 (Tilt-conditioned functions). Many conditioned functions relevant for inverse prob-

lems are also tilt-conditioned:

• The 1-norm ‖ · ‖1, and more generally every polyhedral function, are 1-tilt-conditioned on Eu-

clidean spaces [23, Cor. 3.6].

• Convex piecewise polynomials of degree 2 are 2-tilt-conditioned on their sublevel sets. This is

due to Example 3.8 and the fact that this class of functions is stable up to linear perturbations.

• For the same reasons as above, p-uniformly convex functions are p-tilt-conditioned on X, for

p ≥ 2.

• If KL(x1; x2) denotes the Kullback-Leibler divergence between two vectors in ]0,+∞[N, then

the divergence KL(x1; ·) is 2-tilt-conditioned on bounded sets. This result is new, and its proof

can be found in Lemma A.6.

• The nuclear norm is 2-tilt-conditioned on bounded sets [103, Proposition 11].

• See [40, Section 4] for more examples and properties of 2-tilt-conditioned functions on compact

sets.

In this first theorem, we show that if a strictly convex function remains conditioned up to linear

perturbations, then it is also stable up to convex perturbations:

Theorem 3.15 (Sum rule involving a strictly convex tilt-conditioned function). Let f = g + h ◦ A,

where g ∈ Γ0(X), let Y be a Hilbert space, h ∈ Γ0(Y) and A : X → Y a bounded linear operator. Suppose

that argmin f 6= ∅. Let Ω ⊂ X, and assume that:

a) the nondegeneracy condition 0 ∈ sri (dom h − A(dom g)) holds,

b) g is strictly convex on its domain,

c) g is p-tilt conditioned on Ω for some p ∈ [1,+∞[.

Then, f is p-conditioned on Ω. We have γ f ,Ω = γg̃,Ω, where g̃ = g + 〈·, u〉, for some u ∈ X.
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Proof. Let x̄ ∈ argmin f ; Fermat’s rule implies that 0 ∈ ∂ f (x̄). Using assumption a) with [11, Thm.

16.47], we can write 0 ∈ ∂g(x̄) + A∗∂h(Ax̄). Let v̄ ∈ −∂h(Ax̄) be such that 0 ∈ ∂g(x̄) − A∗v̄, i.e.,

x̄ ∈ ∂g∗(A∗v̄). Let x ∈ Ω ∩ dom f , and set g̃ = g − 〈A∗v̄, ·〉. Using the fact that linear forms are

continuous, we can use again Fermat’s rule together with a sum rule [87, Thm. 3.30] to write

u ∈ argmin g̃ ⇔ 0 ∈ ∂(g − 〈A∗v̄, ·〉)(u) = ∂g(u)− A∗v̄ ⇔ A∗v̄ ∈ ∂g(u) ⇔ u ∈ ∂g∗(A∗v̄), (8)

meaning that argmin g̃ = ∂g∗(A∗v̄) 6= ∅. It follows then from assumption c) that g̃ is p-conditioned

on Ω. Moreover, because g is strictly convex, we have ∂g∗(A∗v̄) = {x̄} [11, Prop. 16.37.i], and

argmin f = {x̄} [11, Cor 11.9]. These facts mean that argmin g̃ = argmin f . We can now write the

conditioning of g̃ evaluated at x, together with the convexity of h (remember that −v̄ ∈ ∂h(Ax̄)):

g(x) ≥ g(x̄) + 〈A∗v̄, x − x̄〉+ (γg̃,Ω/p)dist p(x, argmin f ),

h(Ax) ≥ h(Ax̄) + 〈−v̄, Ax − Ax̄〉.

Observe that we are allowed to use the conditioning of g̃ at x, because x ∈ dom f ⊂ dom g = dom g̃.

Summing these two last inequalities gives

f (x)− inf f ≥
γ f ,Ω

p
dist p(x, argmin f ),

with γ f ,Ω := γg̃,Ω, which concludes the proof.

Remark 3.16 (On the nondegeneracy condition a) of Theorem 3.15). This condition is very mild, and

is satisfied under any of the following sufficient conditions (we note x̄ a minimizer of f ):

• h is continuous at Ax̄ (see [11, Prop. 16.27 & Prop. 6.19.vii]).

• h has a full domain.

• dim Y < +∞, x̄ ∈ qri dom g and Ax̄ ∈ ri dom h (see [11, Def. 6.9 & Prop. 6.19.ix]). These

inclusions hold for instance if g and h have open domains.

Theorem 3.15 is useful, but proves to be impractical when g is not strictly convex, which typically

happens when g corresponds to some low-complexity-inducing regularizer used in inverse problems

(ℓ1 norm, group lasso, nuclear norm, total variation, etc). The next theorem provides a setting for

those functions; in exchange for the strict convexity of g, we will require h to also be tilt-conditioned,

and to some strong qualification condition to hold.

Theorem 3.17 (Sum rule for tilt-conditioned functions). Let f = g+ h ◦ A, where g ∈ Γ0(X), h ∈ Γ0(Y)

and A : X → Y is a bounded linear operator with closed range. Suppose that argmin f 6= ∅, and let Ω ⊂ X.

If ψ ∈ Γ0(Y) denotes the corresponding Fenchel-Rockafellar dual problem ψ(v) = g∗(A∗v) + h∗(−v), and

a) the nondegeneracy condition 0 ∈ sri (dom h − A(dom g)) holds,

then argmin ψ 6= ∅. Moreover, if

b) there is v̄ ∈ argmin ψ for which the following qualification conditions are satisfied:

0 ∈ sri (∂g∗(A∗v̄)− A−1∂h∗(−v̄)), (9)

0 ∈ sri (R(A)− ∂h∗(−v̄)) , (10)

c) g is p1-tilt-conditioned on Ω, and h is p2-tilt-conditioned on AΩ for some p1, p2 ≥ 1,

then f is p-conditioned on every bounded subset of Ω, with p := max{p1, p2}.

Proof. The beginning of this proof starts as in the proof of Theorem 3.15: we use the nondegeneracy

assumption a) with [11, Thm. 16.47] to get some x̄ ∈ argmin f and v̄ ∈ −∂h(Ax̄) such that x̄ ∈
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∂g∗(A∗v̄). So the condition [11, Thm. 19.1.iii] is verified, meaning that strong duality holds (in the

sense that inf f = − inf ψ). This allows to use [11, Cor. 19.2] to obtain

x̄ ∈ argmin f = ∂g∗(A∗v̄) ∩ A−1∂h∗(−v̄). (11)

We can use again [11, Cor. 19.2], this time on the dual problem, to also obtain

v̄ ∈ argmin ψ = −∂h(Ax̄) ∩ A∗−1∂g(x̄).

The above equality allows us to assume, without loss of generality, that v̄ is the element of argmin ψ

satisfying b). So, it remains to prove that, for all δ > 0, there exists γ > 0 such that:

(∀x ∈ Ω ∩ δBX ∩ dom f ) f (x)− inf f ≥ γdist p(x, ∂g∗(A∗v̄) ∩ A−1∂h∗(−v̄)). (12)

Fix δ > 0, let x ∈ Ωδ := Ω ∩ δBX ∩ dom f , and set g̃ = g − 〈A∗v̄, ·〉 and h̃ = h + 〈v̄, ·〉. Setting

p = max{p1, p2}, we see from assumption c) and Proposition 3.4 that g̃ and h̃ are p-conditioned

on the bounded sets Ωδ and AΩδ, respectively. Using the same arguments as in (8), we obtain that

argmin g̃ = ∂g∗(A∗v̄) ∋ x̄ and argmin h̃ = ∂h∗(−v̄) ∋ Ax̄. Therefore, the conditioning of g̃ (resp. h̃)

evaluated at x ∈ dom f ⊂ dom g = dom g̃ (resp. Ax ∈ A dom f ⊂ dom h = dom h̃) writes as

g(x) ≥ g(x̄) + 〈A∗v̄, x − x̄〉+ (γg̃,Ωδ
/p)dist p(x, ∂g∗(A∗v̄)),

h(Ax) ≥ h(Ax̄) + 〈−v̄, Ax − Ax̄〉+ (γh̃,AΩδ
/p)dist p(Ax, ∂h∗(−v̄)).

Summing these two last inequalities gives,

f (x)− inf f ≥ C1 (dist p(x, ∂g∗(A∗v̄)) + dist p(Ax, ∂h∗(−v̄))) , (13)

with C1 = p−1 min{γg̃,Ωδ
, γh̃,AΩδ

}. Since ‖ · ‖∞ ≤ ‖ · ‖p on R2, we deduce that

f (x)− inf f ≥ C1 max {dist (x, ∂g∗(A∗v̄)), dist (Ax, ∂h∗(−v̄))}p ,

It remains to lower bound the right hand side by the distance to argmin f . By Example 3.11, thanks

to the qualification condition (9) and the fact that Ωδ is bounded, we derive from (11) that there exists

C2 > 0 independent of x such that

dist (x, argmin f ) ≤ C2 max{dist (x, ∂g∗(A∗v̄)), dist (x, A−1∂h∗(−v̄))}. (14)

Define y := proj(Ax, R(A) ∩ ∂h∗(−v̄))), which is well defined since we assumed R(A) to be closed.

Let φy ∈ Γ0(X) be defined by φy(u) := (1/2)‖Au − y‖2. Since y ∈ R(A), necessarily inf φy = 0, so

we deduce from Example 3.7 that

(∀u ∈ X) φy(u) ≥ (σinf(A∗A)/2)dist 2(u, argmin φy). (15)

On the one hand, we have argmin φy = A−1y ⊂ A−1∂h∗(−v̄). On the other hand, the definition of y

implies φy(x) = (1/2)dist 2(Ax, R(A) ∩ ∂h∗(−v̄)). Thus, it follows from (15) that

dist (Ax, R(A) ∩ ∂h∗(−v̄)) ≥ σinf(A) dist (x, A−1∂h∗(−v̄))).

Since this is true for any x ∈ Ωδ, we can combine it with (14) to get for all x ∈ Ωδ

dist (x, argmin f ) ≤ C3 max{dist (x, ∂g∗(A∗v̄)), dist (Ax, R(A) ∩ ∂h∗(−v̄))}, (16)

with C3 = C2 max{1, σinf(A)−1}. To end the proof, use the qualification condition (10) with Example

3.11 again to get some C4 > 0 such that for all x ∈ Ωδ,

dist (Ax, R(A) ∩ ∂h∗(−v̄)) ≤ C4 max{dist (Ax, R(A)), dist (Ax, ∂h∗(−v̄))} (17)

= C4dist (Ax, ∂h∗(−v̄)).

The above inequality, combined with (16) and (12), concludes the proof.
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Remark 3.18 (On the qualification conditions). When g is not strictly convex, the conclusion of The-

orem 3.17 may not hold if the qualification conditions (9) and (10) are removed, as proved in [103,

Section 4.4.4] with g = ‖ · ‖∗. Let us give some sufficient conditions for (9) and (10) to hold:

• If X and Y have finite dimension, b) is equivalent to

0 ∈ ri A∂g∗(A∗v̄)− ri ∂h∗(−v̄).

To prove this, use [11, Cor. 6.15] and [92, Thm. 6.7] to see that the above condition is equiv-

alent to (9), which implies (10). This condition is for instance satisfied if 0 ∈ ri ∂ψ(v̄) and

0 ∈ ri dom g∗ + A∗(ri dom h∗) (see [11, Thm. 16.47]). Those are the two conditions needed in

[40, Theorem 4.2].

• If X and Y have finite dimension and h is strictly convex, then a sufficient condition for b) is

x̄ ∈ ri ∂g∗(A∗v̄) [11, Prop. 18.9].

• If X and Y have finite dimension, g is polyhedral and h is strictly convex, then assumption b) is

not needed. As pointed out in [40, Cor. 4.3], this is due to the fact that the subdifferentials of h∗

and g∗ are polyhedral, which allows the use of Hoffman’s bound [58] instead of [10, Theorem

4.3] in the proof.

Remark 3.19 (On the closedness of the range). In Theorem 3.15 we assume R(A) to be closed. To

see how important this hypothesis is in infinite dimension, take g = 0 (which is not strictly convex),

h = ‖ · ‖2 and A an operator with a nonclosed range. Then, for this example, the qualification

conditions cannot be satisfied. Indeed, even if (9) is automatically satisfied (because ∂g∗(0) = X),

condition (10) reduces to 0 ∈ sri R(A), which is equivalent by definition to R(A) = cl R(A), which

is impossible. Worse, even if we could get rid of this qualification condition, and if the conclusion of

the theorem were true, we would obtain that x 7→ ‖Ax‖2 is 2-conditioned on bounded sets, which

was proven to be impossible in [53, Theorem 2.1] (combine it with Proposition 3.3).

Remark 3.20 (Previous results). Our results can be seen as extensions and refinements of arguments

from [40], where the authors introduce the ideas of exploiting the 2-conditioning of tilted functions

on compact sets, together with the description of argmin f as an intersection (11). Theorem 3.17

improves on [40, Thm. 4.2] and [40, Cor. 4.3] which require the argmin f to be bounded, and h to be

in C1 with dom h = Y (we only ask for a compatibility condition which is satisfied if h is continuous

at Ax̄, see Remark 3.16). As far as we know, Theorem 3.15 is the first sum rule of this kind with such

weak assumptions on g.

To illustrate the interest of these sum rules, we provide a new result for regularized inverse prob-

lems where the loss function is the Kullback-Leibler divergence, and the regularizer is a polyhedral

function, such as the ℓ1 norm, or the Total Variation, which are commonly used in the signal and

image processing literature.

Proposition 3.21. Let f (x) = g(x) + KL(y; Ax), where g ∈ Γ0(R
N) is polyhedral, A ∈ MM,N(R),

and y ∈]0,+∞[M. If argmin f 6= ∅, then f is 2-conditioned on bounded sets.

Proof. We just have to verify the hypotheses of Theorem 3.17, by noting h := KL(y; · ). First, the

nondegeneracy condition a) is verified because dom h is open, and h is continuous on its domain

(see Remark 3.16). Second, the qualification conditions b) are not needed because we are in a finite

dimensional setting, g is polyhedral and h is strictly convex (see Remark 3.18). Finally, g being

polyhedral implies that it is globally 1-tilt-conditioned (see [23, Corollary 3.6]), and we prove in

Lemma A.6 that h is 2-tilt-conditioned on bounded sets, so c) is verified.

4 Sharp convergence rates for the Forward-Backward algorithm

In this section, we present sharp convergence results for the forward-backward algorithm applied to

p-Łojasiewicz functions on a subset Ω, building on the ideas in [5]. We extend the analysis to the case
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where Ω is an arbitrary set, which will allow us to deal with infinite dimensional inverse problems

(see Section 5.1), or structured problems for which all the information is encoded in a manifold (see

Section 5.2). We also provide explicit rates of convergence, for both the iterates and the values. The

proofs of Section 4.1 are left in the Annex A.3.

4.1 Refined analysis with p-Łojasiewicz functions

Theorem 4.1 (Strong convergence and rates, p ≥ 1). Suppose that Assumption 2.1 is in force, and that f

is bounded from below. Let (xn)n∈N be generated by the FB algorithm. Assume that:

a) (Localization) for all n ∈ N, xn ∈ Ω ⊂ X,

b) (Geometry) f is p-Łojasiewicz on Ω, for some p ≥ 1.

Then the sequence (xn)n∈N has finite length in X, meaning that ∑n∈N ‖xn+1 − xn‖ < +∞, and converges

strongly to some x∞ ∈ argmin f 6= ∅. Moreover, there exist some constants Cp, C′
p > 0 with explicit

expressions (see equations (53) and (55)), such that the following convergence rates hold, depending on the

value of p, and of κ := λ(2 − λL)[2c2
f ,Ω]

−1:

i) If p = 1, then xn = x∞ for every n ≥ ( f (x0)− inf f )/κ.

ii) If p ∈]1, 2[, the convergence is superlinear: for all n ∈ N,

f (xn+1)− inf f ≤
(

f (xn)− inf f

κ

)

p
2(p−1)

and ‖xn+1 − x∞‖ ≤ Cp( f (xn)− inf f )1/2,

iii) If p = 2, the convergence is linear: for all n ∈ N,

f (xn+1)− inf f ≤ 1

1 + κ
( f (xn)− inf f ) and ‖xn+1 − x∞‖ ≤ C2( f (x0)− inf f )1/2 (1 + κ)−n/2 .

iv) If p ∈]2,+∞[, the convergence is sublinear: for all n ∈ N,

f (xn)− inf f ≤ (C′
p)

p/(p−2)n
− p

p−2 and ‖xn+1 − x∞‖ ≤ Cp(C
′
p)

1/(p−2)n
− 1

p−2 .

Note that the rates range from the finite termination, for p = 1, to the worst-case rates seen

in Theorem 2.2, when p tends to +∞. The bigger is p, the more the function is ill-conditioned, in

the sense that the rates of its values become closer to o(n−1), and the rates of its iterates become

arbitrarily slow.

Remark 4.2 (Related work). Theorem 4.1 collects known and new results. We present a simple proof

of this theorem, focusing on the analysis of a real sequence satisfying (51) (see [27, Theorem 3.2]

or [46, Theorem 3.4] for previous results). The superlinear rates in ii), which were known for the

proximal point algorithm [82], are new for the Forward-Backward algorithm. Moreover, the case

p = 2 was giving R-linear rates for the values in [27, 46], while we prove here Q-linear rates. Also,

the quantification of the number of steps in the case p = 1 involving κ is new.

Remark 4.3 (On the sharpness of the rates I). Let f = ‖ · ‖p . According to (4) and (5), the order of

the sublinear rates for the forward-backward algorithm that we obtain for both iterates and values

are sharp when p ∈]2,+∞[, see Remark 2.3. When p = 2, we see that the proximal algorithm

verifies xn+1 = (1 + 2λ)−1xn, and the algorithm converges linearly. Finally, when p ∈ ]1, 2[, the

order of superlinearity that we obtain is not sharp, since for this function the proximal algorithm

has a Q-superlinear rate of order (p − 1)−1. It is shown in [82, Theorem 3.1] that dist (xn, argmin f )

converges with this order for the proximal algorithm. For this, the author uses the stronger notion of

metric subregularity, and we will extend this result in Theorem 4.21 to the FB algorithm.
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Remark 4.4 (Best stepsize and condition number). When p ∈ [1, 2], we directly see that the bigger

is κ, the better are the constants in the rates for the values. This is true also for p > 2, by looking in

the proof of Theorem 4.1 to the definition of the constant C′
p. The constant κ is maximal when we

take λ = L−1, in which case κ = (L2c2
f ,Ω)

−1. When f is a γ-strongly convex function, κ = γ/L is

the condition number of f (see Example 3.6) . So (L2c2
f ,Ω)

−1 can be seen as a generalized condition

number, extending this notion from strongly convex functions to p-Łojasiewicz ones.

In Theorem 4.1 the p-Łojasiewicz assumption with p ∈ [1,+∞[ implies that the argmin f is

nonempty. In what follows we will derive convergence rates for the objective function values, even

in the case where f is bounded from below but has no minimizers. Such results are of interest for in-

stance in function approximation theory, where the goal is to find the best approximation of a target

function within a specified function class [35]. Since in general the considered classes are not closed

in the ambient space, the minimizer of the error does not exist, but convergence rates in objective

function values are useful. A similar problem appears also in supervised statistical learning theory,

where some convergence results can still be obtained are available (see e.g. [34, Theorem 9] and [33,

Theorem A.1]).

We show below that the p-Łojasiewicz notion can be extended to nonpositive values of p, which

allows to describe thegeometry of problems without minimizers. Based on this new definition, we

then derive sharp convergence rates for the objective function values.

Definition 4.5. Let p ∈ ]−∞, 0[, let f ∈ Γ0(X) be bounded from below, and let Ω ⊂ X. We say that f

is p-Łojasiewicz on Ω if ∃c f ,Ω > 0 such that the Łojasiewicz inequality holds:

∀x ∈ Ω ∩ dom∗ f , ( f (x)− inf f )
1− 1

p ≤ c f ,Ω‖∂ f (x)‖ .

Similarly to the case p ≥ 1, where this property describes the behavior of f around its minimizers,

here it describes the decay of f (x) when ‖x‖ goes to +∞. This assumption leads to convergence rates,

interpolating between o(1) and o(n−1), depending on the value of p < 0. We will see in Section 5.1

that this result applies to ill-posed linear problems involving a compact operator between infinite

dimensional spaces.

Theorem 4.6 (Rates of convergence, p < 0). Let f ∈ Γ0(X) be bounded from below and satisfying As-

sumption 2.1, (xn)n∈N be generated by the FB algorithm. Assume that:

a) (Localization) for all n ∈ N, xn ∈ Ω ⊂ X,

b) (Geometry) f is p-Łojasiewicz on Ω, for some p < 0.

Then the values converge sublinearly (with C′
p defined as in (53)):

∀n ∈ N, f (xn)− inf f ≤ C
′ p

p−2
p n

p
2−p .

Remark 4.7 (On the sharpness of the rates II). The rates obtained in Theorem 4.6 are sharp. Indeed,

the function defined in (6) is p-Łojasiewicz on R with p = −α, and our rates match the lower bounds

obtained in Remark 2.3.

Theorem 4.6, together with Theorem 4.1, give a complete (and sharp) picture of the asymptotic

behavior of the FB algorithm. In fact, looking at the proofs of the mentioned results, we see that the

only properties of forward-backward algorithm that are used are (47) and (48). We can then extend

the previous theorems to a broader class of first-order descent methods, which encompasses block

coordinate descent methods, and/or variable metric extensions of the FB algorithm [5, 18, 46].

Theorem 4.8 (General first-order descent method). The statements of Theorems 4.1 and 4.6 remain true

if the sequence (xn)n∈N is generated by any algorithm satisfying:

(∃a > 0) a‖xn+1 − xn‖2 ≤ f (xn+1)− f (xn) (18)

(∃b > 0) ‖∂ f (xn+1)‖ ≤ b‖xn+1 − xn‖. (19)

In that case the constant appearing in Theorem 4.1 becomes κ := ab−2c−2
f ,Ω.
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4.2 How to localize the sequence of iterates

One of the two assumptions we do in Theorems 4.1 and 4.6 is that the sequence belongs to a set Ω

on which the geometry of f is known. We discuss here some possible choices. One first simple case

is when Ω remains invariant under the action of Tλ (see also Annex A.2).

Definition 4.9. We say that Ω ⊂ X is FB-invariant if for all λ ∈]0, 2L−1[, TλΩ ⊂ Ω.

Example 4.10 (FB-invariant sets). Theorem 2.2i)-ii) and Lemma A.9.ii) imply that these sets are FB-

invariant (as well as any of their intersection):

• BX(x̄, δ) and BX(x̄, δ) for every x̄ ∈ argmin f , and for every δ ∈ ]0,+∞],

• [ f < r] for every r > inf f ,

• {x ∈ X | ‖∂ f (x)‖ < M} and {x ∈ X | ‖∂ f (x)‖ ≤ M}, for every M ∈]0,+∞],

• Ω = {xn}n∈N if (xn)n∈N is generated by the FB algorithm.

Assuming that Ω is FB-invariant, the localization property becomes a simple assumption on the

initialization of the algorithm. The proof of the next corollary is immediate:

Corollary 4.11 (Geometry on stable sets gives global rates). Let f ∈ Γ0(X) be bounded from below

and satisfying Assumption 2.1, and (xn)n∈N be generated by the FB algorithm. Assume that Ω ⊂ X

is FB-invariant and that:

a) (Initialization) x0 ∈ Ω,

b) (Geometry) f is p-Łojasiewicz on Ω, for some p ∈]− ∞, 0[∪[1,+∞[.

Then the results of Theorems 4.1 and 4.6 apply for the sequence (xn)n∈N.

In some cases, it is possible to remove the assumption x0 ∈ Ω, to the price of having only asymp-

totic rates. Indeed, it suffices to prove that the sequence will enter in Ω at a certain iteration, which is

the argument used in [5, 46], in a non-convex setting. This happens for instance with the local level

sets, under a slight compactness assumption (see below).

Corollary 4.12 (Local geometry gives asymptotical rates). Let f ∈ Γ0(X) be such that argmin f 6= ∅

and satisfying Assumption 2.1. Let (xn)n∈N be generated by the FB algorithm and assume that:

a) (Compactness) (xn)n∈N admits a subsequence strongly converging to x̄ in X,

b) (Local geometry) for some p ∈ [1,+∞[:

(∃(δ, r) ∈ ]0,+∞]) such that f is p-Łojasiewicz on BX(x̄, δ) ∩ [ f < r + inf f ].

Then there exists n0 ∈ N such that the rates of Theorem 4.1 apply for the sequence (xn0+n)n∈N.

Proof. Let (xnk
)k∈N be a subsequence strongly converging to some x∞, which belongs to argmin f

according to Theorem 2.2. Therefore, f is p-Łojasiewicz on Ω := BX(x∞, δ) ∩ [ f < r + inf f ], for

some (δ, r) ∈ ]0,+∞]. Since xnk
→ x∞ and f (xnk

) ↓ inf f , there exists K ∈ N such that xnK ∈ Ω.

Since Ω is FB-invariant, we conclude that (xn)n≥N ⊂ Ω.

Remark 4.13 (On the compactness assumption). The compactness assumption made in Corollary

4.12 is always satisfied in finite dimension. Indeed Theorem 2.2 guarantees that the sequence is

bounded under the assumption that argmin f 6= ∅. If X has infinite dimension, this assumption can

be verified provided that f has compact level sets, due to the decreasing property of f (xn).
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The property that a sequence (xn)n∈N generated by an algorithm reaches a set of interest Ω after

a finite number of iterations, is usually called identifiability, or finite identification of Ω [100, 68, 54],

and Ω is therefore called an active set. For instance, the so-called active manifolds can be identified in

finite time, under the assumption that f is partially smooth with respect to this manifold [54, 55]. An

alternative approach, recently introduced in [43], shows that the strata of mirror-stratifiable functions

are identifiable. We will use this notion of active strata to derive another asymptotic convergence

result.

Before introducing the notion of mirror-stratifiability, we recall that a set M ⊂ RN is said to be

stratified by {Mi}s
i=1 ⊂ M if this family is a finite partition ⊔Mi = M such that Mi ∩ cl Mj 6= ∅ ⇔

Mi ⊂ cl Mj. The latter inclusion endows the family of strata with an order relation Mi � Mj ⇔ Mi ⊂
cl Mj. Given a point x ∈ M, it will be useful to note Mx the unique strata which contains x.

Definition 4.14 (Mirror-stratifiable function). We say that a function f ∈ Γ0(R
N) is mirror-stratifiable

if

a) dom ∂ f (resp. dom ∂ f ∗) is stratified by {Mi}s
i=1 (resp. {M∗

i }s
i=1),

b) the map J f : M 7−→ ⋃

x∈M
ri ∂ f (x) realizes a bijection between {Mi}s

i=1 and {M∗
i }s

i=1,

c) the map J f is decreasing, in the sense that Mi � Mj ⇔ J f (Mj) � J f (Mi).

Both notions appear naturally in most sparsity-based inverse problems such as the 1-norm, group-

lasso norm, nuclear norm, or the total variation, or any polyhedral function, see [43] for more details

and many examples.

Corollary 4.15. Suppose that Assumption 2.1 is in force, that X = RN , and let (xn)n∈N be the se-

quence generated by the FB algorithm converging to some x̄ ∈ argmin f . Assume that:

a) g is mirror-stratifiable, and we define Cx̄ := ∪{M | Mx̄ � M � J−1
g (M∗

−∇h(x̄)
)},

b) f is p-Łojasiewicz on Cx̄ ∩ BX(x̄, δ) for some δ ∈]0,+∞] and p ∈ [1,+∞[.

Then there exists n0 ∈ N such that the rates of Theorem 4.1 apply for the sequence (xn0+n)n∈N. Note

that Cx̄ = Mx̄ holds whenever 0 ∈ ri ∂ f (x̄).

Proof. It follows from [43, Theorem 4] that there exists n0 ∈ N for which xn0+n ∈ Cx̄ for every n ∈ N.

Since (xn)n∈N converges to x̄, we can assume that n0 is such that xn0+n ∈ Cx̄ ∩ BX(x̄, δ) for every

n ∈ N. This, together with b), allows to apply Theorem 4.1 to the sequence (xn0+n)n∈N. The equality

Cx̄ = Mx̄ follows directly from the bijectivity of Jg, and the fact that −∇h(x̄) ∈ ri ∂g(x̄).

The reader not familiar with the notion of mirror-stratifiability might wonder what is the active

set Cx̄ appearing in Corollary 4.15. Here are a few example of interest:

Example 4.16. We keep here the notations of Corollary 4.15:

• If g(x) = ‖x‖1, we can choose a stratification based on sets with prescribed support, which

gives

Cx̄ = {x ∈ R
N | supp(x̄) ⊂ supp(x) ⊂ act(−∇h(x̄))}, (20)

where supp(x) is the support of x, and act(x∗) = {i | |xi| = 1} is the set of active indices

of x∗ in [−1, 1]N. Some authors call act(−∇h(x̄)) the extended support of x̄. In the case that

0 ∈ ri ∂ f (x̄), we have supp(x̄) = act(−∇h(x̄)).

• If g(x) = ‖x‖∗ is the nuclear norm, we can choose a stratification based on sets of matrices with

prescribed rank, which gives

Cx̄ = {x ∈ MM,N(R) | rank (x̄) ≤ rank (x) ≤ # act(σ(−∇h(x̄)))}, (21)

where σ(x∗) denotes the set of singular values of the matrix x∗. If 0 ∈ ri ∂ f (x̄), we have

rank (x̄) = # act(σ(−∇h(x̄))).
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Remark 4.17 (Partial smoothness). Even if there is no direct relation between mirror stratification

and partial smoothness, all the above mentioned functions are both mirror-stratifiable and partially

smooth, and it would be immediate to provide an analogue result to Corollary 4.15 for partially

smooth functions. Note that when using the identification theorems for partially smooth functions,

it is necessary to assume the qualification condition 0 ∈ ri ∂ f (x̄) to hold. In this case, the active

manifold coincide with the active set Cx̄ = Mx̄ for most practical cases (polyhedral functions, spectral

norms), meaning that those cases are already covered by Corollary 4.15.

Remark 4.18 (On the assumptions). Note that our assumptions do not require or imply that f has

unique minimizer; we only require f to be Łojasiewicz on the active set. In Section 5.2, we will

show how this geometrical assumption can be guaranteed, provided that ∇2h(x̄) is injective when

restricted to the tangent cone of the active set. In [74, Thm. 3.7] the authors provide a sufficient

condition for the Łojasiewicz inequality to hold locally when g is a partially smooth function.

4.3 Linear rates of convergence for the Forward-Backward algorithm

In this Section we give more insights on the linear rates for the FB algorithm. According to Theorem

4.1, f (xn)− inf f and ‖xn − x∞‖ converge linearly when a 2-Łojasiewicz property is verified. Another

decreasing quantity of interest is dist (xn, argmin f ), and its Q-linear convergence is equivalent to

asking that the forward-backward map Tλ satisfies

(∃ε f ,Ω ∈]0, 1[)(∀x ∈ Ω ∩ dom f ) dist (Tλx, argmin f ) ≤ ε f ,Ωdist (x, argmin f ). (22)

If such property holds on a set Ω containing (xn)n∈N, the sequence (dist (xn, argmin f ))n∈N will

converge Q-linearly. In fact, it is possible to show that (22) is equivalent to the 2-conditioning of f on

Ω, provided this set is FB-invariant (see Definition 4.9). This fact has been observed in [85] for the

projected gradient method, with Ω = X and λ = L−1, and below we extend the argument to our

more general setting.

Proposition 4.19 (Linear rates and 2-conditioning). Suppose that Assumption 2.1 is in force and

assume that argmin f 6= ∅. Let Ω ⊂ X and λ ∈]0, 2L−1[.

i) If f verifies (22) on Ω, then it is 2-conditioned on Ω with γ f ,Ω = λ−1(2 − λL)(1 − ε f ,Ω)
2.

ii) If f is 2-conditioned on TλΩ, then it verifies (22) on Ω with ε f ,Ω = (1+ λγ f ,Ω)
−1/2 for stepsizes

λ ∈
]

0, L−1
]

.

Then, on FB-invariant sets, the 2-conditioning is equivalent to (22), for stepsizes λ ∈
]

0, L−1
]

.

Proof. Let S = argmin f , and let x ∈ Ω. It follows from the triangular inequality that

dist (x, S) ≤ ‖x − proj(Tλx, S)‖ ≤ ‖x − Tλx‖+ dist (Tλx, S). (23)

Lemma A.9.i) implies that

‖x − Tλx‖2 ≤ 2λ(2 − λL)−1( f (x)− inf f ) (24)

For item i), combine (22), (23), and (24):

(1 − ε f ,Ω)
2dist (x; S)2 ≤ ‖Tλx − x‖2 ≤ 2λ(2 − λL)−1( f (x)− inf f ).

For item ii), Lemma A.9.i) with u = proj(x; S), and the fact that λ ≤ 1/L implies

‖Tλx − proj(x; S)‖2 ≤ dist (x; S)2 − 2λ( f (Tλx)− inf f ).

Then, since f is 2-conditioned on TλΩ ∋ Tλx, we can conclude from

dist (Tλx; S)2 ≤ ‖Tλx − proj(x; S)‖2 ≤ dist (x; S)2 − λγ f ,Ωdist (Tλx; S)2.
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Let us assume that f is a γ-strongly convex function, with γ > 0 as in Example 3.6, and let x̄ be its

unique minimizer. Let (xn)n∈N be generated by the FB algorithm, for which we take λ = 1/L, and

define the condition number of f as κ := γ/L. We compare the different linear rates that we can get

for ‖xn − x̄‖ by using different theorems, relying on more or less strong assumptions. Using that f is

2-Łojasiewicz (with c f ,X = (2γ)−1/2, see Example 3.6), Theorem 4.1 yields R-linear rates of the form

‖xn − x̄‖ ≤ Cεn, C > 0,

where ε = 1/
√

1 + κ. If instead we exploit 2-conditioning (recall that in general this is a stronger

notion than 2-Łojasiewicz , Proposition 3.3), we obtain Q-linear rates from Proposition 4.19 with

exactly the same constant ε. If we use directly the strong convexity of f , we obtain in this case Q-

linear rates with ε = 1 − κ (see e.g. [95, Proposition 3]). So, the more information we use, the better

rates we derive. In [85], the authors investigate different notions belonging between strong convexity

and the 2-conditioning. For instance, under an assumption of “quasi strong convexity”, they obtain

ε =
√

(1 − κ)/(1 + κ), which is smaller than (1 + κ)−1/2, but not as good as 1 − κ. In conclusion,

two aspects are crucial in the linear convergence of forward-backward. First, to have Q-linear rates

for the iterates, it is necessary and sufficient to require the 2-conditioning of the function, due to

the equivalence result of Proposition 4.19. Second, just assuming 2-conditioning is not a guarantee

of having a fast computation of the solution, since linear rates can be arbitrarily slow on any finite

number of iterations. Indeed two constants play a key role: the condition number κ, which is directly

related to γ f ,Ω (some extra assumptions on f could improve the value of γ f ,Ω, see e.g. the discussion

in Subsection 5.2), and ε (see also [85]).

4.4 Superlinear rates and finite termination

In this section, we refine the convergence analysis for the case p ∈ ]1, 2[, replacing the p-Łojasiewicz

property with p-metric subregularity (or p-conditioning). As discussed in Remark 4.3, the order of

superlinear convergence that we derive for the FB algorithm in the case p ∈]1, 2[ is not sharp. In

Theorem 4.21, using p-metric subregularity (or p-conditioning) instead of p-Łojasiewicz , we derive

better (and indeed sharp, see Remark 4.3) superlinear rates. Keep in mind these three notions are

only equivalent via Proposition 3.3 if Ω verifies a stability condition. The proof of Theorem 4.21

below follows directly from the next lemma, which is a partial analogue of Proposition 4.19-ii).

Lemma 4.20. Suppose that Assumption 2.1 is in force and assume that argmin f 6= ∅.

i) If ∂ f is p-metrically subregular on Ω ⊂ X, then for all p ∈ ]1, 2[, and x ∈ dom∗ f :

Tλx ∈ Ω ⇒ dist (Tλx, argmin f )p−1 ≤ 2/(λγ∂ f ,Ω)
−1dist (x, argmin f ).

ii) If f is p-conditioned on Ω, then for all p ∈ ]1, 2[, and x ∈ dom∗ f :

(x, Tλx) ∈ Ω2 ⇒ ( f (Tλx)− inf f )p−1 ≤
(

p/γ f ,Ω

)2
(2/λ)p ( f (x)− inf f ).

Proof. Let S = argmin f . Lemma A.9.ii), the triangular inequality, and Theorem 2.2-ii) yield

λ‖∂ f (Tλx)‖ ≤ ‖Tλx − x‖ ≤ ‖Tλx − proj(x, S)‖+ ‖proj(x, S)− x‖ ≤ 2dist (x, S). (25)

For i), use the hypothesis with (25) to derive γ∂ f ,Ωdist (Tλx, S)p−1 ≤ (2/λ)dist (x, S). For ii), use the

p-Łojasiewicz inequality via Proposition 3.3 , together with (25) and the p-conditioning:

( f (Tλx)− inf f )p−1 ≤ (p/γ f ,Ω)‖∂ f (Tλx)‖p ≤ (p/γ f ,Ω)
2(2/λ)p( f (x)− inf f )

Theorem 4.21. Assume that p ∈]1, 2[ and that the hypotheses of Theorem 4.1 hold. If the p-Łojasiewicz hy-

pothesis is replaced by p-metric subregularity (resp. p-conditioning), then dist (xn, argmin f ) (resp. f (xn)−
inf f ) Q-superlinearly converges with order (p − 1)−1.
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We now discuss the relevance of these fast rates when f is p-Łojasiewicz with p ∈ [1, 2[. While

superlinear rates are well-known for the proximal algorithm applied to sharp functions, it is not

observed for the gradient method. The apparent contradiction between this result and practice is

in fact related to a quite intuitive fact, stated in the following Proposition: the more a function is

smooth, the less it can be sharp. This means that the gradient algorithm cannot be applied to p-

Łojasiewicz function, with p < 2, because it is incompatible with ∇ f being Lipschitz continuous. A

similar statement, under different assumptions, can be found in [13, Proposition 2.8].

Proposition 4.22. Let f ∈ Γ0(X) be such that dom f has a nonempty interior. Assume f to be dif-

ferentiable on Ω, where Ω ⊂ X is convex and such that3 proj(Ω; argmin f ) ( Ω. Assume that f is

p-conditioned on Ω, and that ∇ f is α-Hölder continuous on Ω, i.e.

(∃L∇ f ,Ω,α > 0)(∃α > 0)(∀(x, y) ∈ Ω2) ‖∇ f (x)−∇ f (y)‖ ≤ L∇ f ,Ω,α‖x − y‖α.

Then p ∈ [α + 1,+∞[. In the case that p = α + 1, we have moreover that γ f ,Ω ≤ L∇ f ,Ω,α.

Proof. Let x ∈ Ω ∩ dom∗ f , and x̄ := proj(x, argmin f ). Then x̄ ∈ Ω and x̄ 6= x. For all t ∈ ]0, 1],

let xt := tx + (1 − t)x̄. Then xt ∈ Ω \ argmin f and x̄ = proj(xt, argmin f ). From the p-conditioning

assumption and the Descent Lemma A.10 applied at (x̄, xt) ∈ Ω2, we see that:

(∀t ∈ ]0, 1]) 0 <
γ f ,Ω

p
‖xt − x̄‖p ≤ f (xt)− f (x̄) ≤

L∇ f ,Ω

α + 1
‖xt − x̄‖α+1. (26)

If we suppose that p < α + 1, then by passing to the limit for t → 0, we get γ f ,Ω/p ≤ 0 which is

impossible. So p ≥ α + 1, and if equality holds, γ f ,Ω ≤ L∇ f ,Ω follows from (26).

As a consequence of Proposition 4.22, we should not expect more than linear rates for the gradient

method applied to a C1,1 convex function. Such a result cannot be extended straightforwardly to the

Forward-backward algorithm. For instance, the function f (x) = ‖x‖2 + ‖x‖ has a nontrivial smooth

term in its decomposition, but is still sharp at its minimizer.

5 Linear inverse problems: from modeling assumptions to conver-

gence rates

Throughout this section, X and Y are Hilbert spaces and A : X −→ Y is a bounded linear operator.

X is called the parameter space and Y is the data space. Given the linear inverse problem Ax = y,

for some y ∈ Y, we are interested in the (possibly regularized) convex optimization problem

min
x∈X

f (x) = g(x) + D(Ax; y), (27)

where g ∈ Γ0(X) and h = D(·, y) ∈ Γ0(Y). The goal of this section is to show that typical modeling

assumptions made in the inverse problem literature can be interpreted as geometric assumptions

on (27), which are often not local, in the sense of Definition 3.1. First, we show that the classical

source conditions are equivalent to a Łojasiewicz condition on suitable subsets, that we call source

sets. Second, we show that the restricted isometry property, which is the key for exact recovery in

sparsity based regularization, induces a 2-conditioning of the problem over a cone of sparse vectors,

which is identified in finite time by the algorithm. This result extends to general inverse problems

with mirror-stratifiable regularizing functions, for which the restricted isometry property entails a

2-conditioning of the problem over an active set (introduced in Corollary 4.15).

3Note that proj(Ω; argmin f ) ⊂ Ω holds when Ω = BX(x̄, δ) ∩ [ f < r], for x̄ ∈ argmin f , because proj(·; argmin f ) is

nonexpansive.
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5.1 Łojasiewicz property of quadratic functions via source conditions in Hilbert

spaces

All across this Section 5.1, we assume that A : X → Y is a bounded linear operator, that y ∈ Y,

and that f (x) := (1/2)‖Ax − y‖2 is the associated least squares function. We will also note y† :=

proj(y, cl R(A)), and, whenever argmin f 6= ∅, we will note x† := proj(0, argmin f ), which verifies

Ax† = y†.

5.1.1 Elements of linear algebra

Before going further into the topic, let us recall some basic (but not necessarily well-known) facts

about bounded linear operators in Hilbert spaces. A first important difference with the finite-dimensional

setting is that the set of minimizers of f can be empty:

Proposition 5.1 ([51, Theorem 3.1.1]). Let A : X → Y be a bounded linear operator, y ∈ Y and

f (x) := ‖Ax − y‖2/2. Then argmin f 6= ∅ ⇔ y ∈ R(A) + R(A)⊥ ⇔ y† ∈ R(A).

We see that argmin f 6= ∅ is guaranteed when R(A) is closed, which for instance cannot happen for

compact operators with infinite-dimensional range [51, Theorem 3.1.3]. Observe that the closedness

of R(A) can be checked by means of its singular values:

Proposition 5.2. Let A : X → Y be a bounded linear operator. Then R(A) is closed if and only if

σin f (A) > 0.

Proof. Use the fact that R(A) = R((AA∗)1/2) [42, Proposition 2.18] together with [53, Remark 2.3]

and the fact that spec((AA∗)1/2) = spec(AA∗)1/2 [56, §32 Theorem 3].

5.1.2 Known results about the Landweber algorithm

The quadratic function f can be minimized by means of a gradient method, defined as

(∀n ∈ N) xn+1 = xn − λA∗(Axn − y), with x0 ∈ X and λ ∈
]

0, 2‖A∗A‖−1
[

. (28)

A vast literature is devoted to this algorithm, which is often called in this context the Landweber

algorithm. It is well-known that whenever argmin f 6= ∅, the sequence (xn)n∈N generated by the

Landweber algorithm converges strongly to the projection of x0 onto argmin f (see e.g. [42, Theorem

6.1], or [51, Theorem 3.3.2] for varying stepsizes). When the range R(A) is closed, the algorithm be-

haves exactly as in finite dimensions: both iterates and values converge linearly, see Example 3.7 and

Theorem 4.1. If the R(A) is not closed, instead, the rates for ‖xn − x̄0‖ can be arbitrarily slow without

additional assumptions [32, Theorem 12]. Moreover, [53, Theorem 2.1] shows that no local Łojasiewicz

property can be satisfied by such quadratic function when R(A) is not closed. This could suggest

that it is not possible to rely on geometrical assumptions to obtain convergence rates. Nevertheless,

as we will see below, this is not true. Indeed, in the inverse problem literature, this worst-case sce-

nario is avoided by making an extra assumption on the problem. For instance, if the following source

condition is verified

(∃µ ∈ ]0,+∞[) x† ∈ R(A∗A)µ, (29)

the Landweber algorithm initialized with x0 = 0 is known [42] to have the rates

f (xn)− inf f = O(n−(1+2µ)), and ‖xn − x†‖ = O(n−µ). (30)

Also, when argmin f = ∅, a source condition in Y can be made:

(∃ν ∈ ]0,+∞[) y† ∈ R(AA∗)ν, (31)

so that the Landweber algorithm initialized with x0 = 0 verifies [34, Theorem 2.10]:

f (xn)− inf f = O(n−2ν). (32)
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The source condition (31) can be understood in light of Proposition 5.1. Indeed, this proposition

says that the problem is well posed (in the sense that argmin f 6= ∅) when y† ∈ R(A). So it is

reasonable to think that the “deeper” y† is in R(A), and the easier the problem is. In the ill-posed

case y† ∈ cl R(A) \ R(A), we could also imagine that the “further away” y† is from R(A), and the

more difficult the problem is. Estimating the location of y† can be done thanks to the spaces R(AA∗)ν,

because they form a sequence of nonincreasing dense subsets of cl R(A) (see Lemma A.14 and [42,

Proposition 2.8]):

cl R(A) = cl
⋃

ν>0

R(AA∗)ν and R(AA∗)1/2 = R(A).

The aim of this section is to highlight how the rates (30) and (32) can be simply explained using the

results of Section 4. We show that the source conditions (29) and (31) are equivalent to assume that

the initialization x0 of the algorithm belongs to a so-called source set. Our main result in this section

consists in showing that the function f satisfies a Łojasiewicz inequality on these source sets, which

are FB-invariant. As a by-product of Corollary 4.11, we will obtain a new and simple geometrical

interpretation of the rates in (30) and (32).

5.1.3 Regularity spaces and source sets

Definition 5.3 (Regularity space and source set). 1. Given (ν, δ) ∈ ]0,+∞[× ]0,+∞[, the data reg-

ularity space and the data source set are respectively defined as:

Yν := y† + R(AA∗)ν and Yν,δ := y† + {(AA∗)νω | ω ∈ cl R(A), ‖ω‖ ≤ δ}.

2. Given (µ, δ) ∈ ]−1/2,+∞[× ]0,+∞[, the regularity space and the source set are respectively

defined as:

Xµ := A−1Yµ+1/2 and Xµ,δ(y) := A−1Yµ+1/2,δ,

where A−1 denotes the preimage of a set under the application A.

Proposition 5.4.

i) argmin f = ∅ if and only if Xµ = ∅ for all µ ∈ [0,+∞[.

ii) argmin f 6= ∅ if and only if Xµ = X for all µ ∈ ]−1/2, 0].

iii) Assume R(A) is closed. Then Xµ = X for all µ ∈ ]−1/2,+∞[.

Proof. Given any x ∈ X, observe that x ∈ X0 is, by definition, equivalent to Ax ∈ Y1/2. Since

R(A) = R(AA∗)1/2, the latter is equivalent to Ax ∈ y† + R(A). We can then easily deduce, using

also Proposition 5.1, that X0 = X ⇔ X0 6= ∅ ⇔ y† ∈ R(A) ⇔ argmin f 6= ∅. For items i) and ii), the

claim follows directly from the nonincreasingness of {Xµ}−1/2<µ<+∞. For item iii), observe that for

all ν > 0, spec((AA∗)ν) = spec(AA∗)ν [56, §32 Theorem 3]. As a consequence of Proposition 5.2, we

deduce that R(AA∗)ν is closed, and therefore R(AA∗)ν = R(A) (see Lemma A.14 in the Annex). In

particular, Yν = y† + R(A) for all ν ∈ ]0,+∞[, and the result follows from item ii).

For well-posed problems, for which argmin f 6= ∅ (and x† exists), the source sets can be expressed

with a simpler expression (the proof is left in the Annex):

Lemma 5.5 (Source sets for well-posed problems). Assume that argmin f 6= ∅. Then, for all µ > 0

and δ > 0:

Xµ = {x†}+ Ker A + R(A∗A)µ and Xµ,δ = {x†}+ Ker A + {(A∗A)µw | w ∈ Ker A⊥, ‖w‖ ≤ δ}.

Remark 5.6. Given that x† ∈ ker A⊥, we see that the classical conditions in (29) and (31) are equiv-

alent, with our notations, to 0 ∈ Xµ and 0 ∈ Xν−1/2. This means in particular that (29) is just a

particular case of (31).
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Remark 5.7 (Source sets as balls). Assume that A is injective and y ∈ R(A). For all µ > 0, R(A∗A)µ is

a dense subspace of X (Lemma A.14), and we can endow it with the norm induced by the unbounded

operator (A∗A)−µ, defined as ‖x‖µ := inf{‖w‖ | w ∈ X and x = (A∗A)µw}. Then, we see that the

source sets Xµ,δ are nothing but balls centered at the solution x†, with respect to this norm:

Xµ,δ = {x ∈ X | ‖x − x†‖µ ≤ δ},

while Xµ is the affine space spanned by these balls. By doing an analogy with the following example,

the reader can think about this norm ‖ · ‖µ in X as if it was a Sobolev norm in an L2 space. Note that

these balls may have an empty interior with respect to the topology of X.

Example 5.8 (Regularity spaces as Sobolev spaces). Assume that X is the space of zero mean L2-

functions on [0, 2π]:

X =

{

ϕ ∈ L2([0, 2π]),
∫ 2π

0
ϕ(t) dt = 0

}

.

If A is the linear integration operator defined on X, then R(A∗A)µ coincides with the Sobolev space

H2µ([0, 2π])∩ X [59, Theorem 6.4], so that the regularity space is here

Xµ = {x†}+ H2µ([0, 2π])∩ X.

5.1.4 Properties of quadratic functions on source sets

Here is the main result of this section: on each source set Xµ,δ, the least squares functional f is p-

Łojasiewicz with p = 2 + µ−1.

Theorem 5.9 (Geometry of least squares on source sets). Let µ ∈ ]−1/2, 0[∪ ]0,+∞[ and δ ∈ ]0,+∞[.

Then f (x) = 1
2‖Ax − y‖2 is p-Łojasiewicz on Ω = Xµ,δ, with

p = 2 + µ−1 and c f ,Ω = 2−(µ+1)/(2µ+1)δ1/(1+2µ). (33)

Moreover, these two constants are sharp.

Proof. Let x ∈ Xµ,δ and remind that y† = proj(y, cl R(A)). From Definition 5.3 and the definition of

y†, we get

Ax = y† + (AA∗)µ+1/2ω, where ω ∈ ker A∗⊥ with ‖ω‖ ≤ δ, (34)

f (x)− inf f = (1/2)‖Ax − y†‖2 and ‖∇ f (x)‖ = ‖A∗(Ax − y†)‖. (35)

We first prove that f verifies the Łojasiewicz inequality by using the interpolation inequality (see

Lemma A.13 in the Annex) with α = µ + (1/2) and β = µ + 1, together with (34):

‖Ax − y†‖ = ‖(AA∗)µ+1/2ω‖ ≤ ‖(AA∗)1+µω‖
2µ+1
2µ+2 ‖ω‖

1
2µ+2 ≤ ‖(AA∗)1+µω‖

2µ+1
2µ+2 δ

1
2µ+2 . (36)

We use (34) in the right member of (36), to write

‖(AA∗)1+µω‖2 = ‖(AA∗)1/2(AA∗)µ+1/2ω‖2 = ‖(AA∗)1/2(Ax − y†)‖2 = ‖A∗(Ax − y†)‖2. (37)

By combining (34), (35), (36) and (37), we obtain the following inequality

f (x)− inf f = (1/2)‖Ax − y†‖2 ≤ (1/2)δ
1

µ+1 ‖A∗(Ax − y†)‖
2µ+1
µ+1 = (1/2)δ

1
µ+1 ‖∇ f (x)‖

2µ+1
µ+1 .

Then the desired Łojasiewicz inequality holds by taking p := 2 + µ−1. Now we verify that the

obtained constants in (33) are sharp. For this, let X = ℓ2(N), and let (ek)k∈N ⊂ X be its canonical

basis. Let (σk)k∈N be a strictly positive sequence converging to zero, and define A : X −→ X as

follows: ∀x = (xk)k∈N ∈ X, Ax := ∑k∈N σkxkek. Let f (x) = (1/2)‖Ax‖2, y = 0, and let us assume

that f is p-Łojasiewicz on Xµ,δ for some p ≥ 1:

(∀x ∈ Xµ,δ) [(1/2)‖Ax‖2]1−(1/p) ≤ c f ,Xµ,δ
‖A∗Ax‖. (38)
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Let vk := δσ
2µ
k ek ∈ Xµ,δ, which satisfies ‖A∗Avk‖ = δσ

2+2µ
k , and deduce from (38) that

(∀k ∈ N) 2(1−p)/pδ(2p−2)/p ≤ c f ,Xµ,δ
σ
(1/p)(4µ+2)−2µ
k δ. (39)

It follows from σk → 0 that 4µ − 2µp + 2 ≤ 0, which is equivalent to µp ≥ 2µ + 1. If µ > 0, it means

that p ≥ 2 + µ−1 > 0, which is a regime in which the smallest is p, the better. If µ ∈]− 1/2, 0[, then

p ≤ 2 + µ−1 < 0, which is a regime in which the largest is p, the better. In both cases we see that

2 + µ−1 is the best possible exponent. Moreover, when p = 2 + µ−1, (39) becomes 2
− 1+µ

1+2µ δ
1

1+2µ ≤
c f ,Xµ,δ

, which implies the sharpness of the constant obtained in (33).

Remark 5.10. The result of Theorem 5.9 contrasts with [53, Theorem 2.1], in which the authors show

that no local Łojasiewicz property can be satisfied by a quadratic function when R(A) is not closed.

The key difference here is that we look at the Łojasiewicz property on specific dense sets with empty

interior (see Remark 5.7).

Let us now verify that the source sets are invariant under the action of the Landweber algorithm

(28). As mentioned at the beginning of the section, the Landweber algorithm is the gradient decent

algorithm applied to a quadratic function, and therefore it is an instance of the FB algorithm. We can

thus apply the convergence rates of Section 4 once we prove that the source sets are invariant.

Proposition 5.11 (Invariance of source sets). For all (µ, δ) ∈ ]−1/2, ∞[× ]0,+∞[2, the source set Xµ,δ

is FB-invariant.

Proof. Let x ∈ Xµ,δ, λ ∈ ]0, 2/‖A∗A‖[, and let us prove that Tλx = x − λA∗(Ax − y) belongs to Xµ,δ.

By using Lemma 5.5, we deduce that Ax = y† + (AA∗)νω, ν := µ + 1/2, and ω ∈ cl R(A) with

‖ω‖ ≤ δ. Since A∗(Ax − y) = A∗(Ax − y†), this implies that

ATλx = Ax − λAA∗(Ax − y†) = y† + (AA∗)ν(I − λAA∗)ω

The above equality shows that Tλx ∈ Xµ. It remains only to prove that T̂λω := (I − λAA∗)ω verifies

T̂λω ∈ cl R(A) and ‖T̂λω‖ ≤ δ. The condition T̂λω ∈ cl R(A) immediately follows from ω ∈ cl R(A)

and AA∗ω ∈ R(A). Next, observe that T̂λω is obtained by applying a gradient descent step to ω

with respect to the function u 7→ (1/2)‖A∗u‖2. Since this function has zero as a minimizer, and is

differentiable with a ‖A∗A‖-Lipschitz gradient, the Fejér property (see Theorem 2.2-ii)) implies that

‖T̂λω‖ ≤ ‖ω‖ ≤ δ.

Next we combine all the results of this section to derive convergence rates of the Landweber

algorithm under source conditions from Łojasiewicz conditions.

Corollary 5.12 (Convergence rates for Landweber algorithm). Let (xn)n∈N be a sequence generated

by the Landweber algorithm (28). Assume that for some µ ∈ ]−1/2,+∞[, the source condition

x0 ∈ Xµ is satisfied. Then:

i) f (xn)− inf f = O(n−(1+2µ)),

ii) If µ > 0, then ‖xn − x̄0‖ = O(n−µ), where x̄0 := proj(x0, argmin f ).

Proof. For item i), the source condition together with Proposition 5.11 imply (xn)n∈N ⊂ Xµ,δ for some

δ > 0. If µ 6= 0, we derive from Theorem 5.9 that f is 2 + µ−1-Łojasiewicz on Xµ,δ. Depending on

the sign of 2 + µ−1, the rates on f (xn)− inf f follow from Theorems 4.1 and 4.6. If µ = 0, then the

source condition and Proposition 5.4 ensures that y† ∈ R(A), meaning that argmin f 6= ∅, so the

rate O(n−1) follows from Theorem 2.2. For item ii), the convergence and rates on the iterates follows

from Theorem 4.1. To show that the limit of the sequence (let us note it x∞) is x̄0, it is enough to verify

that x∞ − x0 ∈ ker A⊥, since argmin f is an affine space parallel to ker A. Because of the definition of

the algorithm, it is easy to show by recurrence that xn − x0 ∈ R(A∗). This being true for all n ∈ N,

we can pass to the limit and deduce that x∞ − x0 ∈ cl R(A∗) = ker A⊥.
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5.2 Sparsity based regularization, partial smoothness, and restricted injectivity

In this section we turn to the general case of optimization problems coming from a regularized in-

verse problem (27). In particular, we focus on the case where ∇2h verifies a restricted injectivity

condition at a solution, a situation which typically arises when g is mirror-stratifiable, and typical

modeling assumptions from the inverse problems/compressed sensing literature hold. In this set-

ting we will be able to derive the 2-conditioning of the objective function in (27). In what follows, we

will use the notation S+(X) to refer to the set of bounded selfadjoint positive linear operators on X.

5.2.1 Coercive linear operators on a cone

Definition 5.13. We say that K ⊂ X is a cone if it is a union of rays: [0,+∞[K ⊂ K.

Note that we do not require a cone to be convex. This is important for certain applications in

which we have geometrical information about a function over a union of linear spaces, see for in-

stance (40) in the context of sparse regularization problems.

Definition 5.14. Let S ∈ S+(X), let γ ∈ ]0,+∞[, and let K ⊂ X be a cone. We say that S is γ-coercive

on K if, for all d ∈ K, 〈Sd, d〉 ≥ γ‖d‖2.

Example 5.15 (coercivity for positive symmetric matrices). A matrix S ∈ S+(RN) is coercive on a

closed cone K ⊂ RN if and only if S is injective when restricted on K (see Proposition A.15 for a

proof):

K ∩ Ker S = {0}.

Example 5.16. Any operator S ∈ S+(X) is σinf(S)-coercive on Ker S⊥ (see e.g. the proof in [30, Thm.

4]). In particular, if S is positive definite then it is σinf(S)-coercive on X.

In the next proposition we relate the coercivity of the Hessian of a function f on a cone to the 2-

conditioning of f on this cone. This relation can be seen as a weakened analogue of the well known

fact (see [11, Prop. 10.8 & 17.7.(iii)]) that, for f ∈ C2(X) :

f is γ-strongly convex ⇔ (∀x ∈ X) ∇2 f (x) is γ-coercive on X.

Strong convexity is a global notion, which requires the function to have a positive definite quadratic-

like geometry at each x ∈ X. On the contrary, the 2-conditioning requires the function to have a

positive quadratic-like geometry, on a given set Ω. We now state our result (its proof is left in the

Annex A.5). For similar results, see also [19, Section 3.3.1] and [41].

Proposition 5.17 (Coercivity of the Hessian implies 2-conditioning). Let f = g + h with g, h ∈ Γ0(X)

and argmin f 6= ∅. Assume that h is of class C2 in a neighbourhood of x̄ ∈ argmin f , and that ∇2h(x̄)

is γ-coercive on a closed cone K ⊂ X. Then,

(∀γ′ ∈]0, γ[) (∃δ ∈]0,+∞]) s.t. f is 2-conditioned on Ω := x̄ + (K ∩ δBX) with γ f ,Ω = γ′,

and Ω ∩ argmin f = {x̄}. If h ∈ C2(X) and ∇2h is L-Lipschitz, we can take δ = γ−γ′
L .

5.2.2 Conditioning on prox-regular sets via restricted injectivity of the Hessian

Let us define some useful tools from variational analysis. The notion of reached set (or set with

positive reach) was introduced by Federer [44, Def. 4.1], and later extended to prox-regularity (see

Proposition A.19 and [93]).

Definition 5.18. Let C ⊂ RN . The (Bouligand) tangent cone to C at x̄ ∈ C is defined as

TC(x̄) := {d ∈ R
N | (∃tn ↓ 0)(∃dn → d) x̄ + tndn ∈ C}.

The normal cone to C at x̄ is NC(x̄) := {η ∈ RN | (∀d ∈ TC(x̄)) 〈η, d〉 ≤ 0}.
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Definition 5.19. Let C ⊂ RN , and ρ > 0. We say that C is ρ-reached at x̄ ∈ C, if it is locally closed at

x̄, and verifies

(∀η ∈ NC(x̄) ∩ S
RN ) B(x̄ +

1

ρ
η,

1

ρ
) ∩ C = ∅.

We say that C is prox-regular at x̄ if there exists ρ > 0 and a closed neighbourhood U of x̄ such that

C ∩ U is ρ-reached at any x ∈ U. We say further that C is prox-regular if it is prox-regular at every

x̄ ∈ C.

Convex sets, and in particular affine spaces, are prox-regular. Manifolds of class C2 are locally

prox-regular (see Proposition A.19).

We now provide the result at the core of this section, which says that if a minimizer x̄ belongs

to some prox-regular set, and if the Hessian ∇2h(x̄) is injective when restricted to the tangent cone

of this set, then f is 2-conditioned on this set around x̄. This will guarantee asymptotic linear rates

when combined with Corollary 4.15.

Theorem 5.20 (Injective Hessian on tangent cone implies 2-conditioning). Let g, h ∈ Γ0(R
N), and

f = g + h. Assume that there exists some x̄ ∈ argmin f such that:

a) x̄ belongs to some C ⊂ RN which is ρ-reached at x̄,

b) h is of class C2 in a neighbourhood of x̄,

c) Ker ∇2 f (x̄) is γ-coercive on TC(x̄).

Then argmin f|C = {x̄}, and for every γ′ ∈]0, γ[, there exists δ ∈]0,+∞] such that f is 2-conditioned on

Ω := C ∩ B(x̄, δ), with γ f ,Ω = γ′. If we assume moreover that ∇2h is L-Lipschitz continuous, then we can

take δ = 2(γ−γ′)
2L+ρ‖∇2h(x̄)‖ .

Proof. Let K := TC(x̄). Using Proposition A.20, we see that for every γ′ < γ there exists a θ ∈]0, π
2 [

such that the enlarged cone Kθ (see Definition A.16) contains (C− x̄)∩B(0, δ) for δ > 0 small enough,

and such that ∇2h(x̄) is γ′-coercive on Kθ . The conclusion of the claim follows from Proposition 5.17

applied to h and Kθ . Under the additional assumption that ∇2h is L-Lipschitz, take any γ′ ∈]0, γ[,

and let γ′′ := αγ + (1 − α)γ′, with α = 2L/(2L + ρ‖∇2h(x̄)‖). Using again Proposition A.20, we

obtain that ∇2h(x̄) is γ′′-coercive on some cone Kθ , with x̄ + Kθ ⊃ C ∩ B(x̄, δ1) and δ1 = 2(γ −
γ′′)/(ρ‖∇2h(x̄)‖). Then, Proposition 5.17 shows that f is 2-conditioned on Ω = x̄ + Kθ ∩ B(x̄, δ2),

with δ2 = (γ′′ − γ′)/L and γ f ,Ω = γ′. The conclusion follows by seeing that δ1 = δ2 with our choice

of γ′′.

Theorem 5.20 can be used in combination with Corollary 4.15: in this case we obtain that the re-

stricted injectivity of the Hessian on the tangent cone to the active set Cx̄ guarantees asymptotic linear

rates. In the example below, we detail what our assumptions mean for the examples in Example 4.16.

Example 5.21.

• If g(x) = ‖x‖1, the active set (20) is an open and dense subset of the vector space XI = {x ∈
RN | supp(x) ⊂ I} with I = act(−∇h(x̄)). It is therefore ρ-reached for every ρ > 0, and

TCx̄
(x̄) = XI .

• If g(x) = ‖x‖∗, let r = # act(σ(−∇h(x̄))) and let Mr be the manifold of matrices with rank

equal to r. If 0 ∈ ri ∂ f (x̄), the active set Cx̄ (see (21)) is equal to Mr. In particular, it is prox-

regular (see Proposition A.19), and an expression for its tangent space can be found in [69,

Example 2.2]. More generally, Cx̄ is locally prox-regular at x̄ if rank (x̄) = r. To see this, use

the same arguments as in [80, Prop. 3.1]: the fact that the singular values depend continuously

on the matrix allows to find a neighbourhood U of x̄ where the matrices have a rank greater or

equal to r. This means that Cx̄ ∩ U = Mr ∩ U, which is prox-regular.
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Remark 5.22 (Related results with partial smoothness). While our results are new in the setting

of mirror-stratifiable functions (where no condition 0 ∈ ri ∂ f (x̄) is required), they intersect with

existing results when g is partially smooth with respect to an active manifold M. It is shown in [75]

that the γ-coercivity of ∇2h(x̄) on the tangent space TM(x̄) guarantees asymptotic linear rates. We

recover a similar result by combining Theorem [54, Theorem 5.3] with Theorem 5.20 and Theorem

2.2. For a fixed stepsize λ = 1/L, [75, Thm. 3.1] predicts a Q-linear rate arbitrarily close to
√

2(1 − κ)

(where κ = γ/L) provided that κ ≥ 1/2. Instead, our results predict a R-linear rate arbitrarily

close to (1 + (κ/4))−1/2, without condition on κ. Note that our constant is worse (resp. better) than
√

2(1− κ) when κ is close to 1 (resp. 1/2). Note also that the partial smoothness of g together with

[54, Theorem 6.2.ii)] ensures that f is 2-conditioned on a neighbourhood Ω of the solution, with

γ f ,Ω = γ′, meaning that we can use Proposition 4.19 to obtain Q-linear rates arbitrarily close to

(1 + κ)−1/2.

5.2.3 Application to low-complexity inverse problems

Consider f ∈ Γ0(R
N) be defined by, for every x ∈ RN , f (x) = α‖x‖1 + (1/2)‖Ax − y‖2. f is the

sum of a smooth function, with Hessian equal to A∗A, and a nonsmooth function α‖x‖1. Example

3.9 ensures that f is locally 2-conditioned on its sublevel sets without any assumption on A. This

means, according to Theorem 4.1, that for any r > inf f , and any x0 ∈ [ f < r], there exists a constant

ε ∈]0, 1[ such that the iterative soft-thresholding initialized at x0 verifies f (xn+1)− inf f ≤ ε( f (xn)−
inf f ). Nevertheless, expressing the 2-conditioning constant, or ε, in terms of the components of the

problems is far to be easy [17]. One way to recover a meaningful constant is to exploit modeling

assumptions which are usually made to ensure the stability and recovery of the inverse problem

Ax = y.

Suppose that we are given the sequence generated by the iterative soft-thresholding, which con-

verges to a minimizer of f , xn → x̄. It is known that, after some iterations, the support of the sequence

is stable [76, 49]:

(∃I ⊂ {1, . . . , N})(∃n0 ∈ N)(∀n ≥ n0) supp(xn) ⊂ I.

In particular, if the qualification condition 0 ∈ ri ∂ f (x̄) holds, we can take I = supp(x̄) [76, Prop.

3.6]. To estimate the rates of convergence for the sequence, it is then sufficient to make a restricted

injectivity assumption on the matrix A, depending on the knowledge we have on I.

In the case we have access to I, suppose that on the space XI := {x ∈ R
N | supp(x) ⊂ I}

the matrix A is injective, i.e. Ker A ∩ XI = {0} holds. Then, there exists a constant γI > 0 such

that A∗A is γ-coercive on XI (see Example 5.15), which implies via Proposition 5.17 that f is 2-

conditioned on XI , with γ f ,XI
= γI . We deduce then that, asymptotically, the rates are governed

by ε = (1 + γI‖A∗A‖−1)−1. It might happen that instead of knowing I, we have only access to a

partial information via the sparsity level s := |I|. We can then follow the same reasoning with the

(nonconvex) cone Ks := {x ∈ RN | |supp(x)| ≤ s} instead of XI . In that case, the constant γs of

coercivity of A∗A on Ks is defined by

(∀x ∈ Ks) γs‖x‖2 ≤ ‖Ax‖2, (40)

and guarantees linear rates governed by ε = (1+ γs‖A∗A‖−1)−1, using again Proposition 5.17. Such

assumption is classical in sparsity based regularization, and it is related to the so-called Restricted

Isometry Property [25], to ensure uniqueness of the minimizer and guarantee the robustness or re-

covery [99, 26]. Observe that while the computation of γs remains impracticable [9], it is meaningful

with respect to the properties of our problem, and, more importantly, can be estimated when the

matrix A is random [47, Section 9]. Of course, this whole discussion can be extended to other reg-

ularized inverse problems, in particular if ‖ · ‖1 is replaced by a mirror-stratifiable function. In this

case we will use Theorem 5.20 instead of Proposition 5.17 to derive linear rates.
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6 Conclusion and perspectives

In this paper, we dicussed in details how geometry can be used to improve the rates of the FB method,

or more general first-order descent schemes. We characterized the geometry, using tools that are

often encountered in practice, like the p-conditioning, and we provided a new sum rule for it. In

Figure 6.1 we recall the various rates obtained for the FB method, from the worst case scenario (no

minimizers, no assumptions) to the best one (sharp functions).

f (xn)− inf f ‖xn − x∞‖
inf f > −∞ o(1) —

p ∈ ]−∞, 0[ O(np/(2−p)) —

argmin f 6= ∅ o(n−1) decreasing, o(1) in finite dimension

p ∈ ]2,+∞[ O(n−p/(p−2)) O(n−1/(p−2))

p = 2 Q-linear with ε = 1/(1 + κ) R-linear with ε = 1/(1 + κ)

p ∈ ]1, 2[ Q-superlinear of order 1/(p − 1) R-superlinear of order 1/(p − 1)

p = 1 finite finite

Figure 6.1: Convergence rates of the FB algorithm for locally p-Łojasiewicz functions (with the con-

stant κ defined in Theorem 4.1).

We also have discussed how those refined results can be obtained by decoupling the geometrical

information we have on the function and the localization of the sequence we are looking at. This

geometry-based analysis reduces then the gap between theory and practice, where the observed

rates are often better than the ones resulting from a worst case analysis. It moreover shows that linear

rates are tightly linked to 2-conditioned function. In addition, we showed how our analysis can be

specialized to the inverse problems setting, and allows to explain typical modeling assumptions in

this context, such as source conditions and restricted injectivity property. It is worth noting that the

geometrical information such as conditioning or Łojasiewicz property can be exploited to derive

sharper convergence rates for a broader class of functions and/or algorithms than just forward-

backward algorithm [5]. We also emphasize that convexity plays no role in the proofs of Theorems

4.1 and 4.6. Indeed, some of these results were already known for non-convex functions [18, 27,

46]. One of the challenges in the future is to have quantitative results concerning the geometry of

classes of nonconvex functions. For instance, what can be said about “simple” nonconvex piecewise

polynomial functions (see [73] for an answer about maximum of finitely many polynomials)? Can

we estimate the Łojasiewicz exponent of semialgebraic functions, depending on the degree of the

polynomials defining their graph? Finally, a last challenge is the application of such geometrical tools

to derive precise rates for nondescent methods. First results in this direction, using 2-conditioning

are known for inertial methods [85, 77] or stochastic gradient methods [61]. It would be of interest to

understand the behavior of these algorithms for other geometries.

A Appendix

A.1 Worst case analysis: proofs of Section 2

The following Lemma contains a detailed proof for the lower bound (7) in Example 2.3, which can

also be applied to (5) by using a symmetry argument.

Lemma A.1 (Lower bounds for the proximal algorithm). Let p ∈]−∞, 0[∪]2,+∞[, and let fp ∈ Γ0(R)

be the function defined by

if p < 0, fp(x) =

{

|x|p if x < 0,

+∞ if x ≥ 0,
and if p > 2, fp(x) =

{

0 if x < 0,

|x|p if x ≥ 0.
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If x0 ∈ dom f \ argmin f , and xn+1 = proxλ f (xn), then for all n ≥ 1:

fp(xn)− inf fp ≥ C
p
p n

p
2−p with Cp =

(

|x0|2−p + p(p − 2)λ
)

1
2−p

.

Proof. Note that dom fp is an open interval, and that fp is infinitely derivable there. We can then see

that fp, f ′p and f ′′p are non-negative. In particular, we deduce that fp and f ′p are non-decreasing on

dom f .

Let us now take some x0 ∈ dom f \ argmin f , and consider the following continuous trajectory

(∀t ≥ 0) x(t) := sgn(p)
(

|x0|2−p + p(p − 2)t
)

1
2−p

.

It is a simple exercise to verify that x(·) is a solution of this differential equation:

x(0) = x0, ẋ(t) + f ′(x(t)) = 0, x(t) ∈ dom fp.

The main step towards proving our lower bound is to show, by induction, that for every n ∈ N,

xn ≥ x(nλ). This is clearly true for n = 0, so, let us assume now that this is true for n ∈ N, and show

that this implies xn+1 ≥ x((n + 1)λ). Start by writing

x((n + 1)λ) = x(nλ) +
∫ (n+1)λ

nλ
ẋ(t) dt = x(nλ) +

∫ (n+1)λ

nλ
(− f ′p ◦ x)(t) dt.

On the one hand, f ′p is non-negative on dom f , and ẋ(t) = − f ′p(x(t)), which means that x(·) is

increasing. On the other hand, f ′p is non-decreasing, which means that (− f ′p ◦ x) is increasing. This

fact, together with our induction assumption, allows us to write

x((n + 1)λ) ≤ xn +
∫ (n+1)λ

nλ
(− f ′p ◦ x)((n + 1)λ)) dt = xn − λ f ′p(x((n + 1)λ)),

⇔ x((n + 1)λ) + λ f ′p(x((n + 1)λ)) ≤ xn.

Consider now the function φ : dom fp →]0,+∞[ defined by φ(t) = t + λ f ′p(t). It is clearly increas-

ing and bijective on its image, so its inverse φ−1 is also increasing. We observe moreover that, by

definition, the proximal sequence satisfies xn+1 = φ−1(xn). This allows us to write

φ(x((n + 1)λ)) ≤ xn ⇔ x((n + 1)λ) ≤ φ−1(xn) = xn+1.

This ends the proof of the induction argument.

Observe that, given non-negative numbers a, b > 0, the following inequality holds

(∀n ≥ 1) sgn(p)(a + bn)
1

2−p ≥ sgn(p)(a + b)
1

2−p n
1

2−p .

This means that, for all n ≥ 1,

xn ≥ sgn(p)
(

|x0|2−p + p(p − 2)λn
)

1
2−p ≥ sgn(p)

(

|x0|2−p + p(p − 2)λ
)

1
2−p

n
1

2−p = sgn(p)Cpn
1

2−p .

Passing this inequality through fp (which is non-decreasing) yields the desired result.

A.2 Proofs of Section 3

A.2.1 Invariant sets and proofs of Section 3.1

We provide here a result concerning the equivalence between all the notions in Definition 3.1, for

a large class of sets Ω ⊂ X. The sets Ω we will consider are directly related to the gradient flow

induced by ∂ f . Given u0 ∈ dom f , it is known4 that there exists a unique absolutely continuous

trajectory noted u(·; u0) : [0,+∞[−→ X, called the steepest descent trajectory, which satisfies:

(for a.e. t > 0)
d

dt
u(t; u0) + ∂ f (u(t; u0)) ∋ 0, and u(0; u0) = u0. (41)

Following [21], we introduce the notion of invariant sets for the flow of ∂ f :

4See [21, Thm 3.1] when u0 ∈ dom ∂ f , and [21, Thm. 3.2] with [11, Cor. 16.39] when u0 ∈ cl dom f .
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Definition A.2. A set Ω ⊂ X is ∂ f -invariant if for any x ∈ Ω ∩ dom ∂ f and a.e. t > 0, u(t; x) ∈ Ω

holds.

In other words, Ω is said to be ∂ f -invariant if any steepest descent trajectory starting in Ω remains

therein. It is straightforward to see that the intersection of two ∂ f -invariant sets is still ∂ f -invariant.

Example A.3. An easy way to construct a ∂ f -invariant set is to consider the sublevel set of a Lyapunov

function ψ : X → R ∪ {+∞} for the gradient flow induced by ∂ f . A function is said to be Lyapunov

if for any x ∈ dom f , ψ(u(·; x)) : [0,+∞[→ R is decreasing. Classical examples of this kind are:

• Ω = X, which is [ψ < 1] with ψ = 0.

• Ω = [ f < r] for r > inf f , which is [ψ < r] with ψ = f (see [21, Thm. 3.2.17]).

• Ω = B(x̄, δ) for x̄ ∈ argmin f , δ > 0, which is [ψ < δ] with ψ(x) = ‖x − x̄‖ (see [21, Thm.

3.1.7]).

• Ω = {x ∈ X | ‖∂ f (x)‖ < M} for M > 0, which is [ψ < M] with ψ(x) = ‖∂ f (x)‖ (see [21,

Thm. 3.1.6]).

See [21, Section IV.4] for more details on the subject, as well as [22, 63]. It is also a good exercise to

verify that the source sets considered in Proposition 5.11 are ∂ f -invariant.

We next prove Proposition 3.3, stating the equivalence between conditioning, metric subregular-

ity and Łojasiewicz on ∂ f -invariant sets. The proof is based on an argument used in [17, Theorem

5], which relies essentially on the following convergence rate property for the continuous steepest

descent dynamic (41).

Proof of Proposition 3.3. Convexity of f and the Cauchy-Schwartz inequality imply

(∀x ∈ dom f ) f (x)− inf f ≤ ‖∂ f (x)‖ dist (x, argmin f ),

and so i) =⇒ ii) =⇒ iii). Next, we just have to prove that the Łojasiewicz property implies

the conditioning one. So let us assume that f is p-Łojasiewicz on Ω, which is ∂ f -invariant, and fix

x ∈ Ω ∩ dom∗ f . Define, for all t ≥ 0, ϕ(t) := (pc f ,Ω)
−1t1/p, which is derivable on ]0,+∞[, and

for all u ∈ dom f , r(u) = f (u)− inf f . Let us lighten the notations by noting u(·) instead of u(·; x),

so that u(0) = x. Because we will need to distinguish the case in which the trajectory converges in

finite time, we introduce T := inf{t ≥ 0 | u(t) ∈ argmin f} ∈ [0,+∞]. Since x ∈ dom∗ f and u(·) is

continuous, we see that T > 0. For every t ∈ [0, T[, we have u(t) /∈ argmin f , so u(t) ∈ Ω ∩ dom∗ f

and r(u(t)) 6= 0. If T < +∞, we also have for every t > T that u(t) = u(T) and u̇(t) = 0. Now, we

write:

(∀t ∈]0, T[) ϕ(r(x)) ≥ ϕ(r(x))− ϕ(r(u(t))) =
∫ 0

t
(ϕ ◦ r ◦ u)′(τ) dτ =

∫ 0

t
ϕ′((r ◦ u)(τ)) · (r ◦ u)′(τ) dτ.

But d
dτ (r ◦ u)(τ) = −‖u̇(τ)‖2 = −‖∂ f (u(τ))‖2 (see [21]), so that the above equality becomes

(∀t ∈]0, T[) ϕ(r(x)) ≥
∫ t

0
ϕ′((r ◦ u)(τ))‖∂ f (u(τ))‖2 dτ. (42)

Since we assume Ω to be ∂ f -invariant, we can apply the Łojasiewicz inequality at u(τ) ∈ Ω ∩ dom∗ f

for all τ ∈]0, t[, which can be rewritten in this case as 1 ≤ ϕ′(r(u(τ)))‖∂ f (u(τ))‖ . This applied to

(42) gives us:

(∀t ∈]0, T[) ϕ(r(x)) ≥
∫ t

0
‖u̇(τ)‖ dτ. (43)

From (43) and the definition of T, we see that
∫ +∞

0 ‖u̇(τ)‖ dτ ≤ ϕ(r(x)) < +∞, meaning that the

trajectory u(·) has finite length. As a consequence, it converges strongly to some ū when t tends to

+∞. Finally, we use on (43) the fact that ‖u(0)− u(t)‖ ≤
∫ t

0 ‖u̇(τ)‖ dτ, together with the fact that

ū ∈ argmin f (see [21, Thm. 3.11]) to conclude that

1

pc f ,Ω
dist (x, argmin f ) ≤ 1

pc f ,Ω
‖x − ū‖ ≤ ( f (x)− inf f )1/p.
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Proof of Proposition 3.4. i): let S := argmin f 6= ∅. Given δ > 0, there exists M ∈]0,+∞[ such that

sup{dist (x, S) | x ∈ Ω ∩ δBX} ≤ M

Since f is p-conditioned on Ω, we deduce that:

(∀x ∈ Ω ∩ δBX) dist (x, S)p′ = dist (x, S)pdist (x, S)p′−p ≤ (pMp′−p/γ f ,Ω)( f (x)− inf f ),

meaning that f is p′-conditioned on Ω ∩ δBX.

ii): the proof follows the same lines as in i).

Proof of Proposition 3.5. Assume by contradiction that there exists a sequence (zn)n∈N ⊂ Ω such that

n−1dist p(zn, argmin f ) > f (zn)− inf f . (44)

Since Ω is weakly compact, we can assume without loss of generality that zn weakly converges to

some z∞ ∈ Ω when n → +∞. Then, it follows from (44), the boundedness of (zn)n∈N ⊂ Ω and the

weak lower semi-continuity of f that f (z∞)− inf f ≤ 0, meaning that z∞ ∈ argmin f , contradicting

Ω ∩ argmin f = ∅.

A.2.2 Proofs of Section 3.2

Lemma A.4 (The Łojasiewicz constant for uniformly convex functions). Let f ∈ Γ0(X) be uniformly

convex, of order p ≥ 2, with constant γ. Then f is p-Łojasiewicz on X, with c f ,X = q−1/qγ−1/p,

where 1 = (1/p) + (1/q).

Proof. Let x ∈ dom ∂ f , x̄ ∈ argmin f , and x∗ ∈ ∂ f (x). By definition of uniformly convex functions

f (x)− inf f = sup
u∈X

f (x)− f (u) ≤ − inf
u∈X

(〈x∗, u − x〉+ (γ/p)‖u − x‖p) . (45)

The right member of the above inequality involves a strictly convex optimization problem, whose

unique optimal value ū can be determined by using Fermat’s rule:

0 = x∗ + γ‖ū − x‖p−2(ū − x) ⇔ ū = x − γ−1/(p−1)‖x∗‖(2−p)/(p−1)x∗.

Injecting this optimal value in (45) gives, after rearranging the terms,

f (x)− inf f ≤ (1 − 1/p)γ−1/(p−1)‖x∗‖p/(p−1),

and, since x∗ is arbitrary in ∂ f (x), the result follows after passing this inequality to the power 1 −
1/p.

Proof of Example 3.10.ii). To prove the claim, it is enough to verify the three conditions of [40, Theo-

rem 4.2]. The first condition (boundedness of argmin f ) is guaranteed by the fact that f is coercive.

Indeed, h is strongly convex, therefore bounded from below, and g is itself coercive. The second

condition (dual qualification conditions) follows immediately from the fact that both h∗ and g∗, and

are continuously differentiable. To see this, observe that in this example g∗ is (up to a constant) ‖ · ‖q
q,

where q is the conjugate number of p: (1/p) + (1/q) = 1. Moreover, h being strongly convex means

that h∗ is also continuously differentiable, with dom h∗ = RM. The third condition (firm convexity)

is easy to check for h because it is strongly convex; for g the proof is left in the following Lemma.

We can then apply [40, Theorem 4.2], which ensures that f is 2-conditioned on every compact set.

Using again the fact that f is coercive, and therefore has bounded sublevel sets, we conclude that f

is 2-conditioned on every sublevel set.
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A.2.3 Proofs of Section 3.3

Lemma A.5 (p-powers are 2-tilt conditioned when p ∈]1, 2]). Let p ∈]1, 2], u ∈ RN , and f : RN → R

be defined as f (x) = 1
p‖x‖p

p − 〈u, x〉. Then f is 2-conditioned on every bounded subset of R
N .

Proof. This function is a separable sum, so, without loss of generality, we can assume from here that

N = 1 (see [40, Lemma 4.4]). Given a real t ∈ R, we will note its sign with s(t), which is equal to −1

(resp. +1) if t < 0 (resp. t > 0), or 0 if t = 0. Using the convexity, the differentiability of f , and the

Fermat’s rule, we see that f admits a unique minimizer x̄, defined by the relations

0 = s(x̄)|x̄|p−1 − u ⇔ x̄ = s(u)|u|
1

p−1 ⇔ u = s(x̄)|x̄|p−1.

If u = 0, it is immediate to see that f is 2-conditioned on ]− 1, 1[, where the relation |t|2 ≤ |t|p holds.

We therefore assume from now that u 6= 0, which also means that x̄ 6= 0. We now compute (we note

q = p/(p − 1))

inf f = f (x̄) =
1

p
|x̄|p − ux̄ =

1

p
|x̄|p − s(x̄)|x̄|p−1x̄ =

1

p
|x̄|p − |x̄|p = −1

q
|x̄|p,

meaning that we are looking for an inequality like

γ|x − x̄|2 ≤ 1

p
|x|p − ux − inf f =

1

p
|x|p − s(x̄)|x̄|p−1x +

1

q
|x̄|p.

Using the L’Hôpital rule twice allows us to study the following limit:

lim
x→x̄

1
p |x|p − s(x̄)|x̄|p−1x + 1

q |x̄|p

|x − x̄|2 = lim
x→x̄

s(x)|x|p−1 − s(x̄)|x̄|p−1

2(x − x̄)
= lim

x→x̄

(p − 1)|x|p−2

2
=

(p − 1)

2
|x̄|p−2.

Note that our assumption that x̄ 6= 0 ensures that we can take the derivative of the second numerator

around x̄. Since this limit is well-defined, and nonnegative, it means that f is 2-conditioned on a small

enough neighbourhood of x̄. To conclude the proof, it remains to verify that f is 2-conditioned on any

bounded set. This follows immediately from Proposition 3.5 and the fact that argmin f = {x̄}.

Lemma A.6 (Kullback-Leibler divergences are 2-tilt conditioned). Let x̄ ∈]0,+∞[N, and f ∈ Γ0(R
N)

be the Kullback-Leibler divergence to x̄:

f (x) = KL(x̄; x) =
N

∑
i=1

kl(x̄i; xi) where kl(t̄; t) =

{

t̄ log( t̄
t )− t̄ + t if t > 0,

+∞ else.

Then f is 2-tilt-conditioned on every bounded set of RN .

Proof. Let d ∈ RN , and define the tilted function f̃ = f + 〈d·〉. Using Fermat’s rule, we see that

argmin f = ∂ f ∗(−d). It is a simple exercice to verify that dom ∂ f ∗ =]− ∞, 1[N, so argmin f̃ 6= ∅ if

and only if d ∈]− 1,+∞[N . Let d be such vector, and write, for any xi > 0:

f̃i(xi) = x̄i log(
x̄i

xi
)− x̄i + xi + dixi = (1 + di)

(

x̄i

1 + di
log(

x̄i

xi
)− x̄i

1 + di
+ xi

)

.

Let Xi := x̄i
1+di

, which is well defined under our assumption that di > −1. Then

f̃i(xi) = (1 + di)

(

Xi log(
Xi

xi
)− Xi + xi + Xi log(1 + di)

)

= (1 + di)kl(Xi; xi) + ai,

where ai = Xi(1 + di) log(1 + di) > 0. We then observe that argmin f̃i = {Xi}, from which we

deduce that argmin f̃ = {X} with X = (Xi)
N
i=1.

Now, let δ > 0 be fixed, and let x ∈ B(X, δ). Let d := mini di > −1, c := N‖X‖∞, and

C :=
1

δ2c

(

δ

c
− ln

(

1 +
δ

c

))

which is nonnegative because t > ln(1 + t) on ]0,+∞[.
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For each i ∈ {1, . . . , N}, we have |xi − Xi| ≤ δ, so we can use [24, Lem. A.2] on f̃i to write

f̃ (x)− inf f̃ =
N

∑
i=1

f̃i(x)− f̃i(Xi) =
N

∑
i=1

(1 + di)kl(Xi; xi)

≥
N

∑
i=1

(1 + di)C|Xi − xi|2 ≥ (1 + d)C‖X − x‖2.

This proves that f̃ is 2-conditioned on B(X, δ), which conludes the proof.

A.3 The Forward-Backward algorithm and proofs of Section 4

Definition A.7. Given a positive real sequence (rn)n∈N converging to zero, we say that rn converges:

• sublinearly (of order α ∈]0,+∞[) if ∃C ∈]0,+∞[ such that ∀n ∈ N, rn ≤ Cn−α,

• Q-linearly if ∃ε ∈]0, 1[ such that ∀n ∈ N, rn+1 ≤ εrn,

• R-linearly if ∃(sn)n∈N Q-linearly converging such that ∀n ∈ N, rn ≤ sn,

• Q-superlinearly (of order β ∈]1,+∞[) if ∃C ∈]0,+∞[ such that ∀n ∈ N, rn+1 ≤ Cr
β
n ,

• R-superlinearly if ∃(sn)n∈N Q-superlinearly convergent such that ∀n ∈ N, rn ≤ sn.

It is easy to verify that rn is R-superlinearly convergent of order β > 1 if and only if

(∀ε ∈]0, 1[)(∃C > 0)(∀n ∈ N) rn ≤ Cεβn
.

Note that R-linear and R-superlinear convergence ensures only the overall decrease of the sequence,

while Q-linear and Q-superlinear convergence requires the sequence to decrease at a certain speed

for each index. It is immediate from the definition that Q-convergence implies R-convergence.

Lemma A.8 (Estimate for sublinear real sequences). Let (rn)n∈N be a real sequence being strictly

positive and satisfying, for some κ > 0, α > 1 and all n ∈ N: rn − rn+1 ≥ κrα
n+1. Define κ̃ :=

min{κ, κ
α−1

α }, and δ := max
s≥1

min
{

α−1
s , κ−

α−1
α r1−α

0

(

1 − s−
α−1

α

)}

∈ ]0,+∞[ . Then, for all n ∈ N, rn ≤

(κ̃δn)−1/(α−1).

Proof. It can be found in [72, Lemma 7.1], see also the proofs of [3, Theorem 2] or [46, Theorem

3.4].

Lemma A.9. If Assumption 2.1 holds, then for all (x, u) ∈ X2 and all λ > 0:

i) ‖Tλx − u‖2 − ‖x − u‖2 ≤ (λL − 1) ‖Tλx − x‖2 + 2λ( f (u)− f (Tλx)).

ii) ‖∂ f (Tλx)‖ ≤ λ−1‖Tλx − x‖ ≤ ‖∂ f (x)‖ .

Proof of Lemma A.9. To prove item i), start by writing

‖Tλx − u‖2 − ‖x − u‖2 = −‖Tλx − x‖2 + 2 〈x − Tλx, u − Tλx〉 .

The optimality condition in (2) gives x − Tλx ∈ λ∂g(Tλx) + λ∇h(x) so that, by using the convexity

of g:

‖Tλx − u‖2 − ‖x − u‖2 ≤ −‖Tλx − x‖2 + 2λ (g(u)− g(Tλx) + 〈∇h(x), u − Tλx〉) .

Since we can write 〈∇h(x), u − Tλx〉 = 〈∇h(x), u − x〉 + 〈∇h(x), x − Tλx〉, we deduce from the

convexity of h and the Descent Lemma ([11, Theorem 18.15]) that

〈∇h(x), u− Tλx〉 ≤ h(u)− h(x) + h(x)− h(Tλx) +
L

2
‖Tλx − x‖2 = h(u)− h(Tλx) +

L

2
‖Tλx − x‖2.
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Item i) is then proved after combining the two previous inequalities. For item ii), the optimality

condition in (2), together with a sum rule (see e.g. [87, Theorem 3.30]), to deduce that

∀(u, v) ∈ X2, v = proxλg(u) ⇔ λ−1(u − v) +∇h(v) ∈ ∂ f (v). (46)

For the first inequality, use (46) with (u, v) = (x − λ∇h(x), Tλx), together with the contraction prop-

erty of the gradient map x 7→ x − λ∇h(x) when 0 < λ ≤ 2/L (see [11, Cor. 18.17 & Prop. 4.39 &

Remark 4.34.i]) to obtain:

‖∂ f (Tλx)‖ ≤ λ−1‖(x − λ∇h(x))− (Tλx − λ∇h(Tλx))‖ ≤ λ−1‖Tλx − x‖.

For the second inequality, consider x∗ := proj(−∇h(x), ∂g(x)), and use (46) with (u, v) = (x +

λx∗, x), together with the nonexpansiveness of the proximal map (see [11, Prop. 12.28]):

‖Tλx − x‖ = ‖proxλg(x − λ∇h(x))− proxλg(x + λx∗)‖ ≤ λ‖∇h(x) + x∗‖ = λ‖∂ f (x)‖ .

Lemma A.10 (Descent Lemma for Hölder smooth functions). Let f : X −→ R and C ⊂ X be convex.

Assume that f is Gateaux differentiable on C, and that there exists (α, L) ∈]0,+∞[2, such that for all

(x, y) ∈ C2, ‖∇ f (x)−∇ f (y)‖ ≤ L‖x − y‖α holds. Then:

(∀(x, y) ∈ C2) f (y)− f (x)− 〈∇ f (x), y − x〉 ≤ L

α + 1
‖x − y‖α+1.

Proof. The argument used in [101, Remark 3.5.1] for C = X extends directly to convex sets.

Now we can prove the convergence rate results of Section 4.1:

Proof of Theorem 4.1. We first show that (xn)n∈N has finite length. Since inf f > −∞, rn := f (xn) −
inf f ∈ [0,+∞[, and it follows from Lemma A.9 that

a‖xn+1 − xn‖2 ≤ rn − rn+1, with a =
1

2λ
(2 − λL) > 0, (47)

‖∂ f (xn+1)‖ ≤ b‖xn − xn+1‖, with b = λ−1. (48)

If there exists n ∈ N such that rn = 0 then the algorithm would stop after a finite number of iterations

(see (47)), therefore it is not restrictive to assume that rn > 0 for all n ∈ N. We set ϕ(t) := pt1/p and

c := c f ,Ω, so that the Łojasiewicz inequality at xn ∈ Ω ∩ dom∗ f can be rewritten as

(∀n ∈ N) 1 ≤ cϕ′(rn)‖∂ f (xn)‖ . (49)

Combining (47), (48), and (49), and using the concavity of ϕ, we obtain for all n ≥ 1:

‖xn+1 − xn‖2 ≤ bc

a
ϕ′(rn)(rn − rn+1)‖xn − xn−1‖ ≤ bc

a
(ϕ(rn)− ϕ(rn+1))‖xn − xn−1‖.

By taking the square root on both sides, and using Young’s inequality, we obtain

(∀n ≥ 1) 2‖xn+1 − xn‖ ≤ bc

a
(ϕ(rn)− ϕ(rn+1)) + ‖xn − xn−1‖. (50)

Sum this inequality, and reorder the terms to finally obtain

(∀n ≥ 1)
n

∑
k=1

‖xk+1 − xk‖ ≤ bc

a
ϕ(r1) + ‖x1 − x0‖.

We deduce that (xn)n∈N has finite length and converges strongly to some x∞. Moreover, from (48)

and the strong closedness of ∂ f : X ⇒ X, we conclude that 0 ∈ ∂ f (x∞).

Now we prove the convergence rates. Let c = c f ,Ω for short. We first derive rates for the sequence

of values rn := f (xn)− inf f , from which we will derive the rates for the iterates. Equations (47) and

(48) yield

rn − rn+1 ≥ a‖xn+1 − xn‖2 ≥ a

b2
‖∂ f (xn+1)‖2.
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The Łojasiwecz inequality at xn+1 ∈ Ω ∩ dom∗ f implies c2r
2/p
n+1(rn − rn+1) ≥ ab−2r2

n+1, so we deduce

that

(∀n ∈ N) rn+1 6= 0 ⇒ r
2/p
n+1(rn − rn+1) ≥ κr2

n+1, with κ := a(bc)−2. (51)

The rates for the values are derived from the analysis of the sequences satisfying the inequality in

(51). Depending on the value of p, we obtain different rates.

• If p = 1, then we deduce from (51) that for all n ∈ N, rn+1 6= 0 implies rn+1 ≤ rn − κ. Since the

sequence (rn)n∈N is decreasing and positive, rn+1 6= 0 implies n ≤ r0κ−1.

For the other values of p, we will assume that rn > 0. In particular, we get from (51)

(∀n ∈ N) rn − rn+1 ≥ κrα
n+1, with α := 2(p − 1)p−1 and κ := ab−2c−2. (52)

• If p ∈]1, 2[, then α ∈]0, 1[. The positivity of rn+1 and (52) imply that for all n ∈ N, rn+1 ≤ κ−1/αr1/α
n ,

meaning that rn converges Q-superlinearly.

• If p = 2, then α = 1 and we deduce from (52) that for all n ∈ N, rn+1 ≤ (1 + κ)−1rn, meaning that

rn converges Q-linearly.

• If p ∈ ]2,+∞[, then α ∈ ]1, 2[, and the analysis still relies on studying the asymptotic behaviour of a

real sequence satisfying (52). Lemma A.8 in the Annex shows that we have rn+1 ≤ (C′
p)

p/(p−2)n−p/(p−2),

by taking

(C′
p)

−1 := min

{

κ, κ
p−2

2p−2

}

max
s≥1

min

{

p − 2

ps
, κ

2−p
2p−2 r

2−p
p

0

(

1 − s
− p−2

2p−2

)

}

. (53)

To end the proof, we will prove that the rates for ‖xn − x∞‖ are governed by the ones of rn. Let

1 ≤ n ≤ N < +∞, and sum the inequality in (50) between n and N to obtain (remind that b = λ−1):

‖xN − xn‖ ≤
N

∑
k=n

‖xk+1 − xk‖ ≤ pc

aλ
r

1/p
n + ‖xn − xn−1‖.

Next, we pass to the limit for N → ∞, we use (47), and the fact that rn is decreasing to obtain

(∀n ≥ 1) ‖x∞ − xn‖ ≤ pc

aλ
r

1/p
n−1 +

1√
a

√
rn−1. (54)

Note that r1/2
n−1 ≤ r

1
2− 1

p

0 r
1/p
n−1 if p ∈ [2,+∞[, and r

1/p
n−1 ≤ r

1
p− 1

2

0 r1/2
n−1 if p ∈ [1, 2]. So, by defining

Cp :=

{

2pc(2− λL)−1 + (2λr0)
1/2(2 − λL)−1/2r

−1/p
0 if p ≥ 2,

2pcr
1/p
0 (2 − λL)−1r−1/2

0 + (2λ)1/2(2 − λL)−1/2 if p ≤ 2,
(55)

we finally conclude from (54) that ‖x∞ − xn‖ ≤ Cpr
1/ max{2,p}
n−1 when n ≥ 1.

Proof of Theorem 4.6. The proof is as for the case p ∈ ]2,+∞[ of Theorem 4.1: the p-Łojasiewicz prop-

erty implies (51), and the statement follows from Lemma A.8 with α = 2(p − 1)/p ∈ ]2,+∞[.

Proof of Theorem 4.8. The proofs of Theorems 4.1 and 4.6 rely on the combination of the Łojasiewicz

inequality with the estimations (47) and (48), which can be replaced by (18) and (19).

A.4 Linear inverse problems and proofs of Section 5.1

Here we will make use of is the Moore-Penrose pseudo-inverse of A. It is a linear operator (not neces-

sarily bounded), whose domain is D(A†) := R(A) + R(A)⊥, and satisfying

(∀y ∈ D(A†)) A†y := argmin {‖x‖ | A∗Ax = A∗y}.

It is easy to see that, whenever y ∈ D(A†), the solution set of (27) is A†y + ker A.

Lemma A.11. Let A be a bounded linear opertator from X to Y. Then, for every continuous function

φ : [0,+∞[→ R, we have Aφ(A∗A) = φ(AA∗)A.
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Proof. A simple induction argument shows that, for every k ≥ 0, A(A∗A)k = (AA∗)kA. Taking

linear combinations of this equality allows to see that, for every polynomial P ∈ R[X], AP(A∗A) =

P(AA∗)A. Now, if φ is continuous on [0,+∞[, it is in particular continuous on [0, ‖A‖2], which is

an interval containing the spectrum of both A∗A and AA∗. Thus, φ restricted to this interval can be

written as the uniform limit of a sequence of polynomials. Passing to the limit (see [56, Thm. VI.32.1])

in the last equality gives the desired result.

Lemma A.12. For all b ∈ Y, r ∈ ]0,+∞[, the following two properties are equivalent:

1. (∃x ∈ ker A⊥) b = Ax, ‖x‖ = r

2. (∃y ∈ cl R(A)) b =
√

AA∗y, ‖y‖ = r.

Proof. It is shown in [42, Proposition 2.18] that R(A) = R(
√

AA∗), so it is enough to verify this

implication:

(∀(x, y) ∈ ker A⊥ × cl R(A)) Ax =
√

AA∗y ⇒ ‖x‖ = ‖y‖.

Let (x, y) be such a pair. Since Ax =
√

AA∗y and y ∈ cl R(A) = ker
√

AA∗⊥, we deduce that

y = (
√

AA∗)†Ax. Therefore, since AA∗ is self-adjoint, (AA∗)† Ax = (A∗)†x (see [42, p.35]), and

A∗(A∗)†x = proj(x; ker A⊥), we get

‖y‖2 = ‖(
√

AA∗)† Ax‖2 = 〈(AA∗)†Ax, Ax〉 = 〈A∗(A∗)†x, x〉 = ‖x‖2.

Proof of Lemma 5.5. Remind that y† = Ax† = AA†y and let ν = µ + 1/2. Then, Lemma A.12 yields:

b ∈ A−1Yν,δ ⇔ (∃ω ∈ cl R(A)) ‖ω‖ ≤ δ, Ab = y† + (AA∗)µ(AA∗)
1
2 ω with ν = µ + 1/2,

⇔ (∃w ∈ ker A⊥) ‖w‖ ≤ δ, Ab = AA†y + (AA∗)µ Aw with Lemma A.12,

⇔ (∃w ∈ ker A⊥) ‖w‖ ≤ δ, Ab = AA†y + A(A∗A)µw with Lemma A.11,

⇔ (∃w ∈ ker A⊥) ‖w‖ ≤ δ, b − x† − (A∗A)µw ∈ ker A

⇔ b ∈ Xµ,δ.

Lemma A.13 (Interpolation inequality [42, p. 55]). For all x ∈ X and 0 ≤ α < β, we have

‖(A∗A)αx‖ ≤ ‖(A∗A)βx‖
α
β ‖x‖1− α

β .

Lemma A.14 (Powers of self-adjoint operators). Let S be a bounded selfadjoint positive linear oper-

ator on a Hilbert space. Then, for all α > 0, ker S = ker Sα, and cl R(Sα) = cl R(S).

Proof. Given any 0 < α < β, we can write Sβ = Sβ−αSα, from which we deduce that ker Sα ⊂ ker Sβ.

This means that (ker Sα)α>0 is a nondecreasing family. To prove that this family is constant, it is

enough to see that ker S2 ⊂ ker S, which we verify now: If x ∈ ker S2, then ‖Sx‖2 = 〈Sx, Sx〉 =

〈S2x, x〉 = 0, therefore x ∈ Ker S. The conclusion follows from the fact that ker S⊥ = cl R(S).

A.5 Regularized inverse problems and proofs of Section 5.2

Proposition A.15. Let K ⊂ RN be a closed cone and S ∈ S+(RN). Then S is coercive on K if and

only if K ∩ ker S = {0}.

Proof. The direct implication is immediate from Definition 5.14. For the reverse implication, let K be

a closed cone such that K ∩ ker S = {0}. Since S is linear, we know that d 7→ 〈Sd, d〉 is convex and

continuous. So, using the compactness of K ∩ S
RN we deduce that:

(∃d̄ ∈ K ∩ S) inf
d∈K∩S

〈Sd, d〉 = 〈Sd̄, d̄〉. (56)

Because d̄ ∈ K and d̄ 6= 0, we deduce from our assumption that d̄ /∈ Ker S. Therefore, γ := 〈Sd̄, d̄〉 >
0, from which we deduce that S is γ-coercive on K.
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Definition A.16 (Cone enlargement). Let K ⊂ RN be a cone, and θ ∈ [0, π
2 ]. We define the θ-

enlargement of K as

Kθ := R {x ∈ S
RN | (∃y ∈ K ∩ S

RN ) arccos (|〈x, y〉|) ≤ θ} .

Lemma A.17. If K is a closed cone, then Kθ is a closed cone containing K for all θ ∈ [0, π
2 ].

Proof. By definition, Kθ is a cone containing K and ∆θ := {x ∈ S
RN | (∃y ∈ K ∩ S

RN ) arccos (|〈x, y〉|) ≤ θ}
is compact, due to the compactness of K ∩ S. Since 0 6∈ ∆θ , by compactness of ∆θ, we deduce that

Kθ = R∆θ is a closed cone (see e.g. [48, Proposition A.1.1]).

Proposition A.18. Let S ∈ S+(RN) which is γ-coercive on a closed cone K. Then, for every γ′ ∈]0, γ],

S is γ′-coercive on Kθ , with θ := arcsin
(

γ−γ′
‖S‖

)

∈ [0, π
2 [.

Proof. Let θ and γ be as in the statement. Since S is γ-coercive on K, we see that γ ≤ ‖S‖, which

guarantees that θ ∈ [0, π
2 [. Now, the fact that Kθ is closed (Lemma A.17) implies that Kθ ∩ S is

compact in X, so we can use the same arguments as in (56) to deduce that there exists d̄ ∈ Kθ ∩ S
RN

such that 〈Sd̄, d̄〉 = inf
d∈Kθ∩S

RN

〈Sd, d〉. Since d̄ ∈ Kθ, there exists by definition of Kθ some v̄ ∈ K ∩ S

such that arccos(|〈d̄, v̄〉|) ≤ θ. We can use [62, Theorem 1] to write

|〈Sv̄, v̄〉 − 〈Sd̄, d̄〉| ≤ ‖S‖ sin arccos(|〈v̄, d̄〉|) ≤ ‖S‖ sin θ. (57)

Since v̄ ∈ K ∩ S
RN ⊂ Kθ ∩ S

RN , we have 〈Sv̄, v̄〉 ≥ 〈Sd̄, d̄〉. Moreover, arccos(|〈v̄, d̄〉|) ≤ θ, so (57),

implies

〈Sd̄, d̄〉 ≥ 〈Sv̄, v̄〉 − ‖S‖ sin θ ≥ γ − ‖S‖ sin θ = γ′.

We deduce from the definition of d̄ that S is γ′-coercive on Kθ.

Proposition A.19. Let C ⊂ RN , and x̄ ∈ C.

i) For ρ > 0, C is ρ-prox-regular at x̄ if and only if :

(∀x ∈ C)(∀η ∈ NC(x̄)) 〈η, x − x̄〉 ≤ ρ

2
‖η‖‖x − x̄‖2. (58)

ii) If C is a C2 manifold, then there exists δ, ρ > 0 such that C ∩ B(x̄, δ) is ρ-prox-regular.

Proof. Item i) : Definition 5.19 can be rewritten as (∀η ∈ NC(x̄) ∩ S
RN )(∀x ∈ C) x /∈ B(x̄ + 1

ρ η, 1
ρ ),

where the condition x /∈ B(x̄ + 1
ρ η, 1

ρ ) is equivalent to, after developing the square:

1

ρ2
≤ ‖x − x̄ − 1

ρ
η‖2 = ‖x − x̄‖2 +

1

ρ2
‖η‖2 − 2

ρ
〈x − x̄, η〉 = ‖x − x̄‖2 +

1

ρ2
− 2

ρ
〈x − x̄, η〉.

The conclusion follows after cancelling and reorganizing the terms. Item ii) : Every C2-manifold is

prox-regular in the sense of [93, Def. 10.23 & Prop. 13.32]. Therefore, for every x̄ ∈ C, there exists

δ, ρ > 0 such that for every x ∈ C ∩ B(x̄, δ), and for every η ∈ NC(x̄) ∩ S
RN , the inequality (58) holds

[93, Exercice 13.31]. Conclusion follows from the fact that NC(x̄) = NC∩B(x̄,δ)(x̄).

Here is a needed result estimating locally the coercivity of an operator on a prox-regular set via

its coercivity on the tangent cone.

Proposition A.20. Let C ⊂ X be ρ-prox-regular at x̄ ∈ C. Let S : X → X be a bounded positive

selfadjoint linear operator, being γ-coercive on TC(x̄). Then, for all γ′ ∈ ]0, γ[, there exists a cone

K ⊂ X such that S is γ′-coercive on K, and C ∩ BX(x̄, δ) ⊂ x̄ + K, with δ = 2(γ−γ′)
ρ‖S‖ .
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Proof. Let γ′ ∈ ]0, γ[ be fixed, and define θ := arcsin((γ − γ′)‖S‖−1) ∈]0, π
2 [. Let Kθ be the θ-

enlargement of TC(x̄), then Proposition A.18 guarantees that S is γ′-coercive on Kθ . It remains to

prove that there exists δ ∈ ]0,+∞[ such that C ∩ B(x̄, δ) ⊂ x̄ + Kθ . Let x ∈ C. Because C is ρ-reached

at x̄, we know that TC(x̄) is a convex cone (use [44, Thm. 4.8.(12)] and the fact that C is locally closed

at x̄), so we can define y := proj(x− x̄, TC(x̄)), and η := proj(x− x̄, NC(x̄)). Using Moreau’s Theorem

[11, Thm. 6.30], we deduce that η = x − x̄ − y with 〈η, y〉 = 0. We define δ := ‖x − x̄‖, and look for

a condition on it so that x ∈ x̄ + Kθ . For this to happen, it is enough to verify that

〈x − x̄, y〉 ≥ cos(θ)‖x − x̄‖‖y‖. (59)

Now, use Proposition A.19.i) together with the Cauchy-Schwarz inequality, and the polynomial in-

equality X2 − cX ≥ c2/4, to write

‖y‖2 = ‖x − x̄ − η‖2 ≥ ‖x − x̄‖2 + ‖η‖2 − ρ‖η‖‖x − x̄‖2 ≥ δ2(1 − ρ2δ2/4).

We can use this inequality, together with the facts that x − x̄ = y + η and 〈y, η〉 = 0, to write

〈x − x̄, y〉2 = ‖y‖4 ≥ ‖y‖2δ2(1 − ρ2δ2/4).

This allows us to conclude that (59) holds as long as:

1 − ρ2δ2/4 ≥ cos(θ)2 ⇔ ρ2δ2/4 ≤ 1 − cos(θ)2 ⇔ ρδ/2 ≤ sin(θ) =
γ − γ′

‖S‖ .

Proof of Proposition 5.17. Let 0 < γ′ < γ, and set S := argmin f . Since h is of class C2 around x̄ ∈ S,

there exists some δ > 0 such that for all u ∈ δBX, ‖∇2h(x̄ + u) −∇2h(x̄)‖ ≤ γ − γ′. Notice that

when ∇2h is Lipschitz continuous, we can take δ = (γ − γ′)/L. Also, if it is constant, we can just

take δ = +∞ and γ′ = γ. Let us show that f is 2-conditioned on Ω := x̄ + (K ∩ δBX) with the

constant γ f ,Ω = γ′. Take x ∈ Ω ∩ dom g and use the optimality condition at x̄ ∈ S and the convexity

of g to obtain

f (x)− inf f = g(x)− g(x̄) + 〈∇h(x̄), x − x̄〉+ h(x)− h(x̄)− 〈∇h(x̄), x − x̄)〉 ≥ h(x)− h(x̄)− 〈∇h(x̄), x − x̄〉.

By Taylor’s theorem applied to h, we deduce from the inequality above that there exists y ∈ [x, x̄]

such that:

f (x)− inf f ≥ (1/2)〈∇2h(x̄)(x − x̄), x − x̄〉+ (1/2)〈
[

∇2h(y)−∇2h(x̄)
]

(x − x̄), x − x̄〉.

On the one hand, since x ∈ Ω, we have that x − x̄ ∈ K. Thus, from the coercivity of ∇2h(x̄) we have

〈∇2h(x̄)(x − x̄), x − x̄〉 ≥ γ‖x − x̄‖2.

On the other hand, we use the Cauchy-Schwarz inequality together with the definition of δ and the

fact that ‖y − x̄‖ ≤ ‖x − x̄‖ < δ to obtain

〈
[

∇2h(y)−∇2h(x̄)
]

(x − x̄), x − x̄〉 ≥ −(γ − γ′)‖x − x̄‖2.

By combining the three previous inequalities, we deduce that

f (x)− inf f ≥ (γ′/2)‖x − x̄‖2. (60)

This implies that (x̄+K)∩ argmin f = {x̄}, and the statement follows from ‖x − x̄‖ ≥ dist (x; S).
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