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MONOLINEAR ARITHMETICAL AND WORD PROPORTIONS

This paper studies analogical proportions in elementary arithmetic and linguistics where we restrict ourselves to monolinear justifications containing at most one occurrence of a single variable on each side.

Introduction

Analogical reasoning is at the core of human and artificial intelligence and creativity with applications to such diverse tasks as proving mathematical theorems and building mathematical theories, common sense reasoning, learning, language acquisition, and story telling (e.g. [START_REF] Boden | Creativity and artificial intelligence[END_REF][START_REF] Gust | Analogical reasoning: a core of cognition[END_REF][START_REF] Hofstadter | Analogy as the core of cognition[END_REF][START_REF] Hofstadter | Surfaces and Essences. Analogy as the Fuel and Fire of Thinking[END_REF][START_REF] Krieger | Doing Mathematics: Convention, Subject, Calculation, Analogy[END_REF][START_REF] Pólya | of Mathematics and Plausible Reasoning[END_REF][START_REF] Winston | Learning and reasoning by analogy[END_REF][START_REF] Wos | The problem of reasoning by analogy[END_REF].

The author has recently introduced from first principles an abstract algebraic framework of analogical proportions of the form a ∶ b ∶ ∶ c ∶ d within the general setting of universal algebra (Antić, 2022a). Therein analogical proportions are justified by term rewrite rules of the form s → t capturing transformational relationships between elements of the algebra.

In this paper, we study analogical proportions in elementary arithmetic and linguistics within that framework, where we restrict ourselves to monolinear justifications s(z) → t(z) containing at most one occurrence of a single variable z on each side.

Surprisingly, it turns out that even in that very restricted setting, analogical proportions are expressive enough to capture relevant relationships between numbers and words. More precisely, we will show in Theorem 1 that additive monolinear proportions coincide with difference proportions, that is, a ∶ b ∶ ∶ c ∶ d iff ab = cd. Moreover, we we will show in Theorem 5 that multiplicative monolinear proportions coincide with geometric proportions, that is, a ∶ b ∶ ∶ c ∶ d iff a b = c d . We show that in both cases, (almost) all axioms in Antić's (2022a, §4.3) are satisfied in the monolinear setting (cf. Theorems 3 and 6) which implies that in both cases the analogical proportion relation is a congruence relation (cf. Theorems 4 and 7). Finally, we will see in Section 6 that [START_REF] Stroppa | Formal models of analogical proportions[END_REF] prominent model of analogical proportions interpreted in the arithmetical setting coincides with the monolinear fragment within our framework which provides further evidence of the expressibility of our framework.

The main result of Section 5 is the simple characterization of the monolinear entailment relation in the word domain in Theorem 11. Interestingly, it turns out that, in contrast to the general case, in the monolinear word setting the analogical proportion relation satisfies strong inner reflexivity, strong reflexivity, transitivity, and central transitivity (cf. Theorem 18). Since analogical proportions are always reflexive and symmetric, this means that in the monolinear word setting, the analogical proportion relation induces an equivalence relation (see Corollary 20; but see Remark 21).

In a broader sense, this paper is a further step towards a theory of analogical reasoning and learning systems with potential applications to fundamental AI-problems like commonsense reasoning and computational learning and creativity.

For further references on analogical reasoning we refer the interested reader to [START_REF] Hall | Computational approaches to analogical reasoning: a comparative analysis[END_REF] and [START_REF] Prade | A short introduction to computational trends in analogical reasoning[END_REF].

Preliminaries

We expect the reader to be familiar with the framework in Antić (2022a) as we use here the same notation as in Antić (2022a, §2.1) and make use of concepts and results in Antić (2022a, §3-4).

Difference proportions

This section studies additive monolinear arithmetical proportions within Antić's (2022a) general framework where we restrict ourselves to monolinear justifications of the form s(z) → t(z) containing at most one occurrence of a single variable z on each side. We begin by noting that the set of monolinear justifications of a → b in (Z, +, Z) is given by

m-Jus (Z,+,Z) (a → b) = {k + z → ℓ + z | a → b = k + o → ℓ + o, for some o ∈ Z} ∪{k + z → b | a → b = k + o → b, for some o ∈ Z} ∪ {a → b}.
This induces the monolinear entailment relation ⊧ m defined as ⊧ in Antić's (2022a, Definition 8) with Jus replaced by m-Jus.

Interestingly, it turns out that monolinear additive arithmetical proportions are characterized by difference proportions.

Theorem 1 (Difference proportion theorem). For any integers a, b, c, d ∈ Z,

(Z, +, Z) ⊧ m a ∶ b ∶ ∶ c ∶ d ⇔ a = k + o, b = ℓ + o, c = k + u, d = ℓ + u, k, ℓ, o, u ∈ N ⇔ a -b = c -d (difference proportion).
Proof. We first show

a = k + o, b = ℓ + o, c = k + u, d = ℓ + u ⇔ a -b = c -d, (1) 
for some integers k, ℓ, o, u ∈ Z. The direction from left to right holds trivially. For the other direction, we proceed as follows. We can always write a = k+o and b = ℓ+o, for some k, ℓ, o ∈ Z. We then have ab = kℓ. Analogously, we can always write c = k + u and d = ℓ ′ + u, for some ℓ ′ , u ∈ Z. We then have cd = kℓ ′ . By assumption, we have ab = cd which implies kℓ = kℓ ′ and therefore ℓ = ℓ ′ and finally d = ℓ + u.

We now proceed to show the first equivalence in the statement of the theorem. (⇒) By assumption, we have In the second case, by assumption we must have some monolinear justification s(z) → t(z) of a → b c → d in (Z, +, Z). We distinguish the following cases:

(Z, +, Z) ⊧ m a → b c → d which holds iff either m-Jus (Z,+,Z) (a → b) ∪ m-Jus (Z,+,Z) (c → d) = ∅ or m-Jus (Z,+,Z) (a → b c → d)
( 

′ (z) → t ′ (z). We distinguish the following cases: (a) If s ′ (z) → t ′ (z) equals b → a or b → c, we must have c = a. (b) Else if s ′ (z) → t ′ (z) equals k ′ + z → ℓ ′ + z, we must have b = k ′ + o, a = ℓ ′ + o, b = k ′ + u, and c = ℓ ′ + u, for some o, u ∈ Z, which implies b = k ′ + o = k ′ + u and therefore o = u and hence a = ℓ ′ + o = ℓ ′ + u = c. (c) Finally, if s ′ (z) → t ′ (z) equals k ′ + z → a, we must have a = c. (⇐) Every justification of the form k + z → ℓ + z is a characteristic justification by Antić's (2022a, Uniqueness lemma) since k + z and ℓ + z are injective in (Z, +, Z). Since a -b = c -d holds by assumption, z → z +b-a is a characteristic justification of a ∶ b ∶ ∶ c ∶ d in (Z, +, Z). □
Interestingly, additive monolinear arithmetical proportions are equivalent to arithmetical proportions in the domain of natural numbers (N, S) with the successor function S(a) ∶= a+1.

Corollary 2. For any natural numbers a, b, c, d ∈ N, Antić's (2022b, Difference proportion theorem). □ Theorem 3. All the axioms in Antić (2022a, §4.3) hold in (Z, +, Z) with respect to ⊧ m except for commutativity.1 

(Z, +, Z) ⊧ m a ∶ b ∶ ∶ c ∶ d ⇔ (N, S) ⊧ a ∶ b ∶ ∶ c ∶ d. Proof. A direct consequence of
Proof. In addition to the positive part of Theorem 6, we have the following remaining proofs:

• Commutativity fails since a -b ≠ b -a whenever a ≠ b. • Central permutation follows from a -b = c -d ⇔ a -c = b -d. • Strong inner reflexivity follows from a -a = c -d ⇒ d = c • Strong reflexivity follows from a -b = a -d ⇒ d = b. • Transitivity follows from a -b = c -d and c -d = e -f ⇒ a -b = e -f. • Inner transitivity follows from a -b = c -d b -e = d -f a -b + b -e = c -d + d -f a -e = c -f .
• Central transitivity is a direct consequence of transitivity. Explicitly, we have

a -b = b -c and b -c = c -d ⇒ a -b = c -d. □ Theorem 4. The analogical proportion relation ∶ ∶ is a congruence relation on (Z, +, Z) × (Z, +, Z), that is, for any integers a, b, c, d, a ′ , b ′ , c ′ , d ′ ∈ Z, (Z, +, Z) ⊧ m a ∶ b ∶ ∶ c ∶ d (Z, +, Z) ⊧ m a ′ ∶ b ′ ∶ ∶ c ′ ∶ d ′ (Z, +, Z) ⊧ m a + a ′ ∶ b + b ′ ∶ ∶ c + c ′ ∶ d + d ′ .
Proof. The fact that ∶ ∶ is reflexive, symmetric, and transitive by Theorem 3 shows that it is an equivalence relation. The following deriviation proves that it is a congruence relation:

(Z, +, Z) ⊧ m a ∶ b ∶ ∶ c ∶ d a -b = c -d (Z, +, Z) ⊧ m a ′ ∶ b ′ ∶ ∶ c ′ ∶ d ′ a ′ -b ′ = c ′ -d ′ (a + a ′ ) -(b + b ′ ) = a -b + a ′ -b ′ = c -d + c ′ -d ′ = (c + c ′ ) -(d + d ′ ) (Z, +, Z) ⊧ m a + a ′ ∶ b + b ′ ∶ ∶ c + c ′ ∶ d + d ′ . □

Geometric proportions

This section studies multiplicative monolinear arithmetical proportions in (Q, ⋅, Q) where Q denotes the rational numbers. We begin by noting that the set of justifications of a → b in The rest of the proof is similar to the proof of Theorem 1. □

(Q, ⋅, Q) is given by m-Jus (Q,⋅,Q) (a → b) = {kz → ℓz | a → b = ko → ℓo, for some k, ℓ, o ∈ Q} ∪ {kz → b | a → b = ko → b, for some k, o ∈ Q} ∪ {a → b}. So in
Theorem 5 shows that monolinear multiplicative arithmetical proportions can be geometrically interpreted as analogical proportions between rectangles. Moreover, the simple characterization of the monolinear relation in Theorem 5 allows us to analyze the axioms in Antić (2022a, §4.3) within the monolinear setting.

6. All the axioms in Antić (2022a, §4.3) are satsified within (Q, ⋅, Q) with respect to ⊧ m .3 

Proof. We have the following proofs:

• The proofs of symmetry, inner symmetry, reflexivity, and determinism are analogous to the corresponding proofs of Antić (2022a, Theorem 28). • Commutativity follows from Theorem 5 together with

(Q, ⋅, Q) ⊧ m ko ∶ ℓo ∶ ∶ ℓo ∶ ko, for all k, ℓ, o ∈ Q.
• Central permutation follows from Theorem 5 together with

(Q, ⋅, Q) ⊧ m ko ∶ ℓo ∶ ∶ ku ∶ ℓu ⇔ (Q, ⋅, Q) ⊧ m ok ∶ uk ∶ ∶ oℓ ∶ uℓ.
• Strong inner reflexivity follows from Theorem 5 together with

(Q, ⋅, Q) ⊧ m ko ∶ ko ∶ ∶ ku ∶ d ⇔ d = ku.
• Strong reflexivity follows from Theorem 5 together with • Inner transitivity follows from the following derivation:

(Q, ⋅, Q) ⊧ m ko ∶ ℓo ∶ ∶ ko ∶ d ⇔ d = ℓo.
(Q, ⋅, Q) ⊧ m a ∶ b ∶ ∶ c ∶ d Theorem 5 a b = c d a = bc d (Q, ⋅, Q) ⊧ m b ∶ e ∶ ∶ d ∶ f Theorem 5 b e = d f e = bf d a e = bc d bf d = bcd bf d = c f (Q, ⋅, Q) ⊧ m a ∶ e ∶ ∶ c ∶ f . • Central transitivity is an immediate consequence of transitivity. □ Theorem 7. The analogical proportion relation ∶ ∶ is a congruence relation on (Q, ⋅, Q) × (Q, ⋅, Q) with respect to monolinear entailment, that is, (Q, ⋅, Q) ⊧ m a ∶ b ∶ ∶ c ∶ d (Q, ⋅, Q) ⊧ m a ′ ∶ b ′ ∶ ∶ c ′ ∶ d ′ (Q, ⋅, Q) ⊧ m aa ′ ∶ bb ′ ∶ ∶ cc ′ ∶ dd ′ .
Proof. The fact that ∶ ∶ is reflexive, symmetric, and transitive by Theorem 6 shows that it is an equivalence relation. The following deriviation proves that it is a congruence relation, where a, b, c, d, a ′ , b ′ , c ′ , d ′ ∈ Q are arbitrary:

(Q, ⋅, Q) ⊧ m a ∶ b ∶ ∶ c ∶ d Theorem 5 (Q, ⋅, Q) ⊧ m ko ∶ ℓo ∶ ∶ ku ∶ ℓu (Q, ⋅, Q) ⊧ m a ′ ∶ b ′ ∶ ∶ c ′ ∶ d ′ Theorem 5 (Q, ⋅, Q) ⊧ m k ′ o ′ ∶ ℓ ′ o ′ ∶ ∶ k ′ u ′ ∶ ℓ ′ u ′ (Q, ⋅, Q) ⊧ m (ko)(k ′ o ′ ) ∶ (ℓo)(ℓ ′ o ′ ) ∶ ∶ (ku)(k ′ u ′ ) ∶ (ℓu)(ℓ ′ u ′ ) (Q, ⋅, Q) ⊧ m (kk ′ )(oo ′ ) ∶ (ℓℓ ′ )(oo ′ ) ∶ ∶ (kk ′ )(uu ′ ) ∶ (ℓℓ ′ )(uu ′ ) (Q, ⋅, Q) ⊧ m aa ′ ∶ bb ′ ∶ ∶ cc ′ ∶ dd ′ . □ 4.1.
Primes. We shall now prove some properties of the monolinear entailment relation with respect to primes.

Proposition 8. Let p, q, p ′ , q ′ be primes. We have (N, ⋅, N) ⊧ m p ∶ q ∶ ∶ p ′ ∶ q ′ ⇔ (p = q and p ′ = q ′ ) or (p = p ′ and q = q ′ ).

Proof. By Theorem 5, we have

(N, ⋅, N) ⊧ m p ∶ q ∶ ∶ p ′ ∶ q ′ ⇔ p = ko, q = ℓo, c = ko ′ , d = ℓo ′ , for some k, ℓ, o, o ′ ∈ N.
We distinguish two cases. First, if k = 1 and o = p, then q = ℓp which implies ℓ = 1 and therefore q ′ = o ′ and p ′ = o ′ . Second, if o = p and o = 1, then q = ℓ and p ′ = po ′ which implies o ′ = 1 and therefore q ′ = ℓ = q. □ Proposition 9. Let p, q be primes, and let c, d ∈ N. We have

(N, ⋅, N) ⊧ m p ∶ q ∶ ∶ c ∶ d ⇔ (p = q and c = d) or
(p ≠ q and c = pu and d = qu, for some u ∈ ).

Proof. By Theorem 5, we have

(N, ⋅, N) ⊧ m p ∶ q ∶ ∶ c ∶ d ⇔ p = ko, q = ℓo, c = ku, d = ℓu, for some k, ℓ, o, u ∈ N.
We distinguish two cases. First, if k = 1 and o = p, then q = ℓp and thus ℓ = 1 and q = p and c = d = u. Second, if k = p and o = 1, then q = ℓ, c = pu, and d = qu, for some u ∈ N. □

Monolinear word proportions

In the rest of this section, Σ denotes a finite non-empty alphabet and ⋅ denotes concatenation of words. We denote the empty word by ε. As usual, we denote the set of all words over Σ by Σ * and define Σ * ∶= Σ * ∪ {ε}.

In the monolinear word domain, the set of monolinear justifications of a → b in (Σ * , ⋅, Σ * ) is therefore given by (cf. Antić, 2022a, Definition 7)

l-Jus (Σ * ,⋅,Σ * ) (a → b) = {a 1 za 3 → b 1 zb 3 | a = a 1 a 2 a 3 → b 1 b 2 b 3 ; a 1 , a 2 , a 3 , b 1 , b 3 ∈ Σ * } ∪{a 1 za 3 → b | a = a 1 a 2 a 3 → b; a 1 , a 2 , a 3 ∈ Σ * } ∪ {a → b}. This implies l-Jus (Σ * ,⋅,Σ * ) (a → b c → d) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ a 1 za 3 → b 1 zb 3 a → b = a 1 a 2 a 3 → b 1 a 2 b 3 c → d = a 1 c 2 a 3 → b 1 c 2 b 3 a 1 , a 2 , a 3 , b 1 , b 3 , c 2 ∈ Σ * ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ∪ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a 1 za 3 → b b = d a → b = a 1 a 2 a 3 → b c → d = a 1 c 2 a 3 → b a 1 , a 2 , a 3 , c 2 ∈ Σ * ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ∪ {a → b | a = c, b = d}.
The monolinear entailment relation ⊧ m is defined as ⊧ in Antić (2022a, Definition 8) with Jus replaced by l-Jus.

Remark 10. In the word algebra (Σ * , ⋅) containing no constants, the only monolinear rewrite rule is z → z which justifies only inner reflexive proportions of the form a ∶ a ∶ ∶ c ∶ c. This explains why we instead consider the algebra (Σ * , ⋅, Σ * ) in which every word is a constant.

Characterization of monolinear entailment. Recall that analogical proportions are justified by monolinear justifications of the form a 1 za 3 → b 1 zb 2 , a 1 za 3 → b, or a → b. This leads to the following characterization of the monolinear entailment relation.

Theorem 11. For any words a, b, c, d ∈ Σ * ,

(Σ * , ⋅, Σ * ) ⊧ m a ∶ b ∶ ∶ c ∶ d ⇔ a = a 1 a 2 a 3 , b = b 1 a 2 b 3 , c = a 1 b 2 a 3 , d = b 1 b 2 b 3 , for some a 1 , a 2 , a 3 , b 1 , b 2 , b 3 ∈ Σ * .
Proof. (⇒) By assumption, we have

(Σ * , ⋅, Σ * ) ⊧ m a → b c → d which holds iff either l-Jus (Σ * ,⋅,Σ * ) (a → b) ∪ l-Jus (Σ * ,⋅,Σ * ) (c → d) = ∅, or l-Jus (Σ * ,⋅,Σ * ) (a → b c → d)
is non-empty and subset maximal with respect to d. In the first case, notice that neither l-

Jus (Σ * ,⋅,Σ * ) (a → b) nor l-Jus (Σ * ,⋅,Σ * ) (c → d) can be empty since we always have a → b ∈ l-Jus (Σ * ,⋅,Σ * ) (a → b) and c → d ∈ l-Jus (Σ * ,⋅,Σ * ) (c → d).
In the second case, by assumption we must have some monolinear justification s(z

) → t(z) of a → b c → d in (Σ * , ⋅, Σ * ).
We distinguish the following cases:

(

1) If s(z) → t(z) equals a → b or c → d, we must have a = c and b = d. (2) Else if s(z) → t(z) equals a 1 za 3 → b 1 zb 3 , we must have a = a 1 a 2 a 3 , b = b 1 a 2 b 3 , c = a 1 b 2 a 3 , d = b 1 b 2 b 3 , for some a 1 , a 2 , a 3 , b 1 , b 2 , b 3 ∈ Σ * . (3) Else if s(z) → t(z) equals a 1 za 3 → b, we must have a = a 1 a 2 a 3 , c = a 1 b 2 a 3 , and d = b, for some a 1 , a 2 , a 3 , b 2 ∈ Σ * .
Then, by assumption, we must also have 

(Σ * , ⋅, Σ * ) ⊧ m a ∶ b ∶ ∶ c ∶ b
′ (z) → t ′ (z) equals b ′ 1 zb ′ 3 → a ′ 1 za ′ 3 , for some b ′ 1 , b ′ 3 , a ′ 1 , a ′ 3 ∈ Σ * , we must have b = b ′ 1 b ′ 2 b ′ 3 = b ′ 1 c ′ 2 b ′ 3 and a = a ′ 1 b ′ 2 a ′ 3 and c = a ′ 1 c ′ 2 a ′ 3 , for some b ′ 2 , c ′ 2 ∈ Σ * . The identity b ′ 1 b ′ 2 b ′ 3 = b ′ 1 c ′ 2 b ′ 3 implies b ′ 2 = c ′ 2 and again a = c. (c) Finally, if s ′ (z) → t ′ (z) equals b ′ 1 zb ′ 3 → a, we must also have a = c. (⇐) The monolinear justification a 1 za 3 → b 1 zb 3 is a characteristic justification of a 1 a 2 a 3 → b 1 a 2 b 3 a 1 c 2 a 3 → b 1 c 2 b 3 and a 1 c 2 a 3 → b 1 c 2 b 3 a 1 a 2 a 3 → b 1 a 2 b 3 in (Σ * , ⋅, Σ *
) by Antić's (2022a, Uniqueness lemma) since a 1 za 3 and b 1 zb 3 both induce injective word functions. Analogously, b 1 zb 3 → a 1 za 3 is a characteristic justification of

a 1 c 2 a 3 → b 1 c 2 b 3 a 1 a 2 a 3 → b 1 a 2 b 3 and a 1 a 2 a 3 → b 1 a 2 b 3 a 1 c 2 a 3 → b 1 c 2 b 3 .
Hence, we have shown the theorem. □

Corollary 12. For any words a, c, e, f ∈ Σ * , 

(Σ * , ⋅, Σ * ) ⊧ m a ∶ eaf ∶ ∶ c ∶ ecf .
(Σ * , ⋅, Σ * ) / ⊧ m a ∶ a R ∶ ∶ c ∶ c R .
Proof Proof. We have the following proofs:

• The proofs of symmetry, inner symmetry, reflexivity, and determinism are analogous to the corresponding proofs of Antić (2022a, Theorem 28). • Central permutation fails 4 , for example, given the alphabet Σ ∶= {a 1 , a 2 , a 3 , b 1 , b 3 , c 2 } since as a consequence of Theorem 11, we have

(Σ * , ⋅, Σ * ) ⊧ m a 1 a 2 a 3 ∶ b 1 a 2 b 3 ∶ ∶ a 1 c 2 a 3 ∶ b 1 c 2 b 3 whereas (Σ * , ⋅, Σ * ) / ⊧ m a 1 a 2 a 3 ∶ a 1 c 2 a 3 ∶ ∶ b 1 a 2 b 3 ∶ b 1 c 2 b 3 .
• Strong inner reflexivity and strong reflexivity are immediate consequences of Theorem 11.

Commutativity fails, for example, in Σ ∶= {a, b} since as a consequence of Theorem 11, we have

(Σ * , ⋅, Σ * ) / ⊧ m a ∶ b ∶ ∶ b ∶ a.
• Transitivity is an immediate consequence of Theorem 11.

• Inner transitivity fails, for example, in Σ ∶= {a 1 , a 2 , a 3 , b 1 , b 3 , c 2 , d 2 , e 1 , e 3 } since as a consequence of Theorem 11, we have

(Σ * , ⋅, Σ * ) ⊧ m a 1 a 2 a 3 ∶ b 1 a 2 b 3 ∶ ∶ a 1 c 2 a 3 ∶ b 1 c 2 a 3 and (Σ * , ⋅, Σ * ) ⊧ m b 1 a 2 b 3 ∶ e 1 a 2 e 3 ∶ ∶ b 1 d 2 b3 ∶ e 1 d 2 e 3 whereas (Σ * , ⋅, Σ * ) /
⊧ m a 1 a 2 a 3 ∶ e 1 a 2 e 3 ∶ ∶ a 1 c 2 a 3 ∶ e 1 d 2 e 3 .

• Finally, central transitivity is an immediate consequence of transitivity already shown above.

□

Remark 19. The fact that central permutation fails gives a negative answer to Antić's (2022a, Problem 30) in the monolinear setting. One can easily verify, using the characterization in Theorem 11, that this does in general not hold.

Related work

The following notion of an arithmetical proportion is an instance of the more general definition due to Stroppa and Yvon (2006, Proposition 2) given for abelian semigroups adapted to the additive setting of this paper (cf. Antić, 2022a, §5.3). (2) This shows that [START_REF] Stroppa | Formal models of analogical proportions[END_REF] notion of an additive arithmetical proportion coincides with the monolinear fragment of our framework and should therefore not be used as a definition for additive arithmetical proportions beyond the monolinear case as is demonstrated in the next example.
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Corollary 13 .

 13 There are an alphabet Σ and words a, b, c, d ∈ Σ * such that ab = cd / ⇒ (Σ * , ⋅, Σ * ) ⊧ m a ∶ b ∶ ∶ c ∶ d. Proof. For example, put Σ ∶= {a, b} and a ∶= a, b ∶= b, c ∶= ε, and d ∶= ab and apply Theorem 11. □ Problem 14. Does Corollary 13 hold for ⊧ instead of ⊧ m ? Definition 15. We denote the reverse of a word a by a R . Corollary 16. There are an alphabet Σ and words a, b ∈ Σ * such that

Corollary 20 .

 20 The analogical proportion relation ∶ ∶ is an equivalence relation on pairs of words in (Σ * , ⋅, Σ * ) × (Σ * , ⋅, Σ * ) with respect to monolinear entailment. Remark 21. By extending the concatenation operation from words to word proportions component-wise, for the relation ∶ ∶ to be a congruence relation on (Σ * , ⋅, Σ * ) × (Σ * , ⋅, Σ * ) it needs to satisfy, for all words a, b, c, d, a ′ , b′ , c ′ , d ′ ∈ Σ * , (Σ * , ⋅, Σ * ) ⊧ m a ∶ b ∶ ∶ c ∶ d (Σ * , ⋅, Σ * ) ⊧ m a ′ ∶ b ′ ∶ ∶ c ′ ∶ d ′ (Σ * , ⋅, Σ * ) ⊧ m aa ′ ∶ bb ′ ∶ ∶ cc ′ ∶ dd ′ .

Definition 22 .

 22 For any integers a, b, c, d ∈ Z, define(Z, +, Z) ⊧ SY a ∶ b ∶ ∶ c ∶ d ∶⇔ a = k + o, b = ℓ + o, c = k + u, d = ℓ + u, k, ℓ, o, u ∈ Z.By the Difference Proportion Theorem 1, we clearly have(Z, +, Z) ⊧ SY a ∶ b ∶ ∶ c ∶ d ⇔ (Z, +, Z) ⊧ m a ∶ b ∶ ∶ c ∶ d.

  . For example, put Σ ∶= {a, b} and a ∶= ab, b ∶= ba, c ∶= ba, and d ∶= ab and apply Theorem 11. □ Problem 17. Does Corollary 16 hold for ⊧ instead of ⊧ m ? 5.2. Axioms. The simple characterization of the monolinear proportion relation in Theorem 11 allows us to analyze the axioms in Antić (2022a, §4.3) within the monolinear word setting.

	Theorem 18. The monolinear word proportion relation satisfies
	• symmetry,
	• inner symmetry,
	• reflexivity,
	• determinism,
	• strong inner reflexivity,
	• strong reflexivity,
	• transitivity,
	• central transitivity,
	and, in general, it dissatisfies
	• central permutation,
	• commutativity,
	• inner transitivity.

The monotonicity axiom is irrelevant here.

This will be essential in Section 4.1 when we study primes.

The monotonicity axiom is irrelevant here.

Example 23. In Antić's (2022a, Example 59) we have seen that (Z, +, Z) ⊧ 0 ∶ 0 ∶ ∶ 1 ∶ 2, characteristically justified by z → z + z, non-monolinear since z occurs more than once on the right-hand side; on the other hand, we have seen that this proportion is not captured within [START_REF] Stroppa | Formal models of analogical proportions[END_REF] framework,

and hence cannot be detected by monolinear justifications alone, that is, as a consequence of ( 2) and (3) we have

The multiplicative case is analogous.

Future work

The major line of future research is to study arithmetical and word proportions in the full framework beyond the monolinear case. This task is non-trivial given that providing explicit representations of the sets of justifications is difficult in the non-monolinear setting. A reasonable next step therefore is to consider the em linear fragment consisting of linear justifications of the form s(z 1 , . . . , z n ) → t(z 1 , . . . , z m ) containing multiple variables so that each variable can occur at most once on each side.

As a long term goal, we wish to understand arithmetical and word proportions in the general framework in Antić (2022a) which appears to be difficult with the available tools.