
HAL Id: hal-03886179
https://hal.science/hal-03886179v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative Regularization via Dual Diagonal Descent
Guillaume Garrigos, Lorenzo Rosasco, Silvia Villa

To cite this version:
Guillaume Garrigos, Lorenzo Rosasco, Silvia Villa. Iterative Regularization via Dual Diagonal De-
scent. Journal of Mathematical Imaging and Vision, 2017, 60 (2), pp.189-215. �10.1007/s10851-017-
0754-0�. �hal-03886179�

https://hal.science/hal-03886179v1
https://hal.archives-ouvertes.fr

Iterative regularization via dual diagonal descent ∗

Guillaume Garrigos1, Lorenzo Rosasco1,2, and Silvia Villa3

1 LCSL, Istituto Italiano di Tecnologia and Massachusetts Institute of Technology,

Bldg. 46-5155, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

guillaume.garrigos@iit.it

2 DIBRIS, Università degli Studi di Genova

Via Dodecaneso 35, 16146, Genova, Italy

lrosasco@mit.edu

3 Dipartimento di Matematica, Politecnico di Milano

Via Bonardi 9, 20133 Milano, Italy

silvia.villa@polimi.it

Abstract

In the context of linear inverse problems, we propose and study a general iterative regulariza-
tion method allowing to consider large classes of regularizers and data-fit terms. The algorithm
we propose is based on a primal-dual diagonal descent method. Our analysis establishes con-
vergence as well as stability results. Theoretical findings are complemented with numerical
experiments showing state of the art performances.

Keywords: Splitting methods, Dual problem, Diagonal methods, Iterative regularization, Early stop-
ping

Mathematics Subject Classifications (2010): 90C25, 49N45, 49N15, 68U10, 90C06

1 Introduction

Many applied problems in science and engineering can be modeled as noisy inverse problems.
This is true in particular for many problems in image processing, such as image denoising, image
deblurring, image segmentation, or inpainting. Tackling these problems requires to deal with their

∗This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by
NSF STC award CCF-1231216. The research of Guillaume Garrigos was partially supported by the Air Force Office
of Scientific Research, Air Force Material Command, USAF, under grant number F49550-1 5-1-0500 .L. Rosasco
acknowledges the financial support of the Italian Ministry of Education, University and Research FIRB project
RBFR12M3AC. S. Villa is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

1

ar
X

iv
:1

61
0.

02
17

0v
3

 [
m

at
h.

O
C

]
 1

3
Ju

l 2
01

7

possible ill-posedeness [50] and to devise efficient numerical procedures to quickly and accurately
compute a solution.

Tikhonov regularization is a classical approach to restore well-posedness [47]. A stable solution
is defined by the minimization of an objective function being the sum of two terms: a data-fit
term and a regularizer ensuring stability. From a numerical perspective, first order methods have
recently become popular to solve the corresponding optimization problem [37]. Indeed, simplicity
and low iteration cost make these methods especially suitable in large scale applications.

In practice, finding the best Tikhonov regularized solution requires specifying a regularization
parameter determining the trade-off between data-fit and stability. Discrepancy principles [50],
SURE [70, 45], and cross-validation [71] are some of the methods used to this purpose. An obser-
vation important for our work is that, from a numerical perspective, choosing the regularization
parameter for Tikhonov regularization typically requires solving not one, but several optimization
problems, i.e. one for each regularization parameter to be tried. Clearly, this can dramatically
increase the computational costs to find a good solution, and the question of how to keep accuracy
while ensuring better numerical complexity is a main motivation for our study.

In this paper, we depart from Tikhonov regularization and consider iterative regularization
approaches [12]. The latter are classical regularization techniques based on the observation that
stopping an iterative procedure corresponding to the minimization of an empirical objective has
a self-regularizing property [50]. Crucially, the number of iterations becomes the regularization
parameter, and hence controls at the same time the stability of the solution as well as the compu-
tational complexity of the method. This property makes parameter tuning numerically efficient and
iterative regularization an alternative to Tikhonov regularization, which potentially alleviates the
aforementioned drawbacks. Indeed, an advantage of iterative regularization strategies is that they
are developed in conjunction with the optimization algorithm, which is tailored to the structure of
the problem of interest.

Iterative regularization methods are classical both in linear [50] and non linear inverse prob-
lems [12, 53], for quadratic data-fit term and quadratic regularizers. Extensions to more general
regularizers have been considered in recent works [10, 26, 27, 21]. However, we are not aware of
iterative regularization methods that allow considering more general data-fit terms. Indeed, while
this is easily done in Tikhonov regularization, how to do the same in iterative regularization is less
clear and our study provides an answer.

Our starting point is viewing the inverse problem as a hierarchical optimization problem defined
by the regularizer and the data-fit term. The latter can belong to wide classes of convex, but possibly
non-smooth functionals. To solve such an optimization problem we combine duality techniques [36]
with a diagonal approach [11]. As a result, we obtain a primal-dual method, given by a diagonal
forward-backward algorithm on the dual problem. The algorithm thus obtained is simple and easy
to implement. Our main result proves convergence in the noiseless case, and is an optimization
result interesting in its own right. Combining this result with a stability analysis allows to derive
iterative regularization properties of the method. Our theoretical analysis is complemented with
numerical results comparing the proposed method with Tikhonov regularization on various imaging
problems. The obtained results show that our approach is competitive in terms of accuracy and
often outperforming Tikhonov regularization from a numerical perspective. To the best of our
knowledge, our analysis is the first study on iterative regularization methods for general data-fit
terms and hence it is a step towards broadening the applicability and practical impact of these
techniques.

2

The rest of the paper is organized as follows. In Section 2 we collect some technical definitions
and results needed in the rest of the paper, whereas in Section 3 we recall the basic ideas in inverse
problems and regularization theory. In Section 4 we introduce the algorithm we propose in this
paper and present in Section 5 its regularization properties, which constitutes our main results.
The theoretical analysis of the (3-D) method is made in Sections 6 and 7, while Section 8 contains
its numerical study. The Appendix contains the proof of some auxiliary and technical results.

2 Background and notation

We give here some mathematical background needed in the paper. We refer to [14, 65] for an
account of the main results in convex analysis.

Since our algorithm will essentially rely on duality arguments, we first introduce the notion of
(Fenchel) conjugate. Let H be a Hilbert space, 2H its power set, and f : H −→ [−∞,+∞]. Its
Fenchel conjugate f∗ : H −→ [−∞,+∞] is

(∀x ∈ H) f∗(x) := sup
x′∈H

{
〈x′, x〉 − f(x′)

}
.

We say that f is coercive if lim‖x‖→+∞ f(x) = +∞. We denote by Γ0(H) the set of proper,
convex and lower semi-continuous functions from H to]−∞,+∞]. Let σ ∈]0,+∞[. We say that
f ∈ Γ0(H) is σ-strongly convex if f − σ‖ · ‖2/2 ∈ Γ0(H). The Fenchel conjugate of a σ-strongly
convex function is differentiable, with a σ−1-Lipschitz continuous gradient [14, Theorem 18.15].
We recall that the subdifferential of f ∈ Γ0(H) is the operator ∂f : H → 2H defined by, for every
x ∈ H,

x∗ ∈ ∂f(x)⇔ (∀x′ ∈ H) f(x′)− f(x)− 〈x∗, x′ − x〉 ≥ 0.

If f is Fréchet differentiable at x ∈ H, then ∂f(x) = {∇f(x)}. The subdifferential also enjoys a
symmetry property with respect to the Fenchel conjugation [14, Theorem 16.23]:

(∀(x, x∗) ∈ H2) x∗ ∈ ∂f(x)⇔ x ∈ ∂f∗(x∗).

Given two functions f, g ∈ Γ0(H), their infimal convolution (or inf-convolution) is the function
f#g in Γ0(H) defined by

(∀x ∈ H) (f#g)(x) := inf
x′∈H

{
f(x′) + g(x− x′)

}
.

The Fenchel conjugate of the infimal convolution of two functions can be simply computed by the
following rule [14, Proposition 13.21(i)]

(f#g)∗ = f∗ + g∗. (2.1)

We also recall the notion of proximity operator, which is a key tool to define the algorithm we
study. The proximity operator of f ∈ Γ0(H) is the operator proxf : H −→ H defined by, for every
x ∈ H,

proxf (x) = argmin
x′∈H

{
f(x′) +

1

2
‖x′ − x‖2

}
. (2.2)

The proximity operator is particularly relevant when computing the gradient of the conjugate of a
strongly convex function.

3

Lemma 2.1 Let H1, H2 be Hilbert spaces. Let J ∈ Γ0(H2), σ ∈]0,+∞[, x′ ∈ H1, and W : H1 →
H2 be a linear orthogonal operator. Let f ∈ Γ0(H1) be the function defined by f(x) = J(Wx) +
σ‖x− x′‖2/2. Then,

(∀x ∈ H1) ∇f∗(x) = W ∗proxσ−1J(Wx′ + σ−1Wx).

The proof is postponed to Appendix 10.1.

We end this section by introducing the notion of conditioning [75, 77, 79], which is a common
tool in the optimization and regularization literature [60, 19], and will be required later for the
data-fit function.

Definition 2.2 Let f ∈ Γ0(H) having a unique minimizer x0 ∈ H. The function f is said to
be well conditioned if there exists a positive even function m ∈ Γ0(R) such that, for every t ∈ R,
m(t) = 0 =⇒ t = 0, and

(∀x ∈ H) m (‖x− x0‖) ≤ f(x)− f(x0). (2.3)

In that case, m is called a conditioning modulus (or growth modulus) for f . Let p ∈ [1,+∞[. We
say that f is p-well conditioned, if there exists (ε, γ) ∈ (]0,+∞[)2 such that

(∀t ∈]−ε, ε[) m(t) ≥ γ

p
|t|p (2.4)

Notation. We adopt the following standard notation: R+ = [0,+∞[, R++ =]0,+∞[, Rd++ =

]0,+∞[d, N∗ = N \ {0}. The identity operator from a set to itself is denoted by Id. Given C a
subset of a topological space, intC denotes the interior of C. The set of minimizers of a function f
is denoted by argmin f , and its domain is noted dom f . The range of a linear operator A : H1 → H2

will be denoted by ImA, and its norm is denoted by ‖A‖. The norms in the considered Hilbert
spaces are always denoted by ‖ · ‖.

3 Background: inverse problems and regularization

In this section, we recall basic notions in inverse problems theory and introduce Tikhonov and
iterative regularization.

3.1 Linear inverse problems

Let X and Y be Hilbert spaces. Given ȳ ∈ Y and a bounded linear operator A : X −→ Y the
corresponding inverse problem is to find x̄ ∈ X satisfying

ȳ = Ax̄. (3.1)

For example, in denoising A = Id and in deblurring A is an integral operator for suitable kernel. In
general, the above problem is ill-posed, in the sense that a solution might not exist, might not be
unique, or might not depend continuously to the data ȳ [50]. The first step towards restoring well-
posedness is then to introduce a notion of generalized solution. This latter definition hinges on the

4

choice of a regularizer, that is a functional R ∈ Γ0(X) and a data-fit function D : Y 2 −→ R∪{+∞}.
A generalized solution x† ∈ X is then defined as a solution of the problem

minimize
{
R(x)

∣∣ x ∈ argminx′∈X D(Ax′, ȳ)
}
. (P)

Consider the following classical example to illustrate the above definition.

Example 3.1 (Moore-Penrose solution) Let R(x) = ‖x‖ and D(Ax, y) = ‖Ax − y‖2 for all
x ∈ X. Then, under mild assumptions, there exists a unique generalized solution to (P) which is
the Moore-Penrose solution x† = A†ȳ, where A† is the pseudo-inverse of A [50].

We add two comments. First, note that there might be more than one generalized solution,
however in the following we will restore uniqueness of x† by assuming R to be strongly convex.
Second, as we discuss next, in general x† might not depend continuously on ȳ, as it is clear from
the Example 3.1. This last observation is crucial, since in practice only a noisy datum is avail-
able. Ensuring continuity, hence stability, to noisy data is the main motivation of regularization
techniques described in the next section. We first add a few further examples of regularizers and
data-fit functions, and one remark.

Example 3.2 (Regularizers) A choice of regularizer popular in image processing is the `1-norm
of the coefficients of x ∈ X with respect to an orthonormal basis, or a more general dictionary, e.g.
a frame. Indeed, this regularizer can be shown to correspond to a sparsity prior assumption on
the solution [61]. Another popular choice of regularizer is the total variation [68], due to its ability
to preserve edges. Other possibilities are total generalized variation [23], or infimal convolutions
between total variation and higher order derivatives [32]. Yet another possibility is to consider a
Huber norm of the gradient, instead of the L1 norm [33]. We refer to [56] for additional references.

We next discuss several examples of data-fit functions. Flexibility in the choice of the latter is
a key aspect for our study.

Example 3.3 (Data-fit function) As mentioned above, a classical choice for the data-fit func-
tion is the `2 norm:

(∀(u, y) ∈ Y 2) D(u; y) = ‖u− y‖2/2.
We list a few further examples.

• the `1-norm in Rd,
(∀(u, y) ∈ Rd × Rd) D(u; y) = ‖u− y‖1;

• the Kullback-Leibler divergence, defined , for every y ∈ Rd, as D(u; y) := KL(y, u) =∑d
i=1 kl(yi, ui), where

kl(yi, ui) =

d∑
i=1

yi log
yi
ui
− yi + ui if (yi, ui) ∈]0,+∞[2

+∞ otherwise;

• the weighted sum of L1 and L2 norms in Rd [52],

(∀(u, y) ∈ Rd × Rd) D(u; y) = ‖u− y‖1 +
σ

2
‖u− y‖2,

for some σ ∈]0,+∞[;

5

• the Huber data-fit function [30] in Rd. Let σ ∈ R++ and the Huber function be hσ : R→ R+,

(∀t ∈ R) hσ(t) =

{
1

2σ t
2 if |t| ≤ σ

|t| − σ
2 otherwise.

(3.2)

Then the corresponding data-fit function can be formulated as, (∀(u, y) ∈ Rd × Rd),

D(u; y) = Hσ(u− y) :=
d∑
i=1

hσ(ui − yi).

Both the choice of the regularizer and the data-fit function reflect some prior information about the
problem at hand. This latter observation can be further developed taking a probabilistic (Bayesian)
perspective, as we recall in the next remark.

Remark 3.4 (Bayesian interpretation) In a Bayesian framework, the choice of regularizers and
data-fit functions can be related to the choice of a prior distribution on the solution and a noise
model with a corresponding likelihood. In particular, for the data fit functions it can be seen that
the quadratic norm is related to Gaussian noise and moreover,

• the L1-norm is related to impulse noise, e.g. salt and pepper or random-valued impulse noise
[63],

• the Kullback-Leibler divergence is related to Poisson noise [57],

• the weighted sum of L1 and L2 norms is related to mixed Gaussian and impulse noise [52],

• and the Huber data-fit function [30] is related to the mixed Gaussian and impulse noise.

3.2 Tikhonov and iterative regularization

The basic idea of regularization is to approximate a generalized solution x† of (P) with a family
of solutions having better stability properties. More precisely, given a pair (A, ȳ), a regularization
method defines a sequence (xλ)λ∈Λ ∈ X, where Λ =]0,+∞[, or Λ = N. The idea is that the so
called regularization parameter λ controls the accuracy with which xλ approximates x†. Indeed,
the first basic regularization property is to require

xλ → x†, as λ→ 0, (3.3)

(or as λ → +∞ when Λ = N). The second basic property of a regularization method is stability.
Given ŷ a noisy version of the exact datum ȳ, this latter property can be seen as the requirement
for the sequence (x̂λ)λ∈Λ ∈ X, corresponding to the regularization method applied to (A, ŷ), to be
sufficiently close to (xλ)λ∈Λ ∈ X. This latter property, together with the regularization property,
allows to show that x̂λ is a good approximation to x† – at least provided a suitable regularization
parameter choice λ ∈ Λ. We refer to [50] for further details and illustrate the above definitions
with two specific examples of regularization operators.

6

Tikhonov regularization. In the setting of Example 3.1, Tikhonov regularization is defined by
the following minimization problem

xλ = minimize
x∈X

‖x‖2 +
1

λ
‖Ax− y‖2.

The above approach easily extends to more general regularizers/data-fit terms considering

xλ = minimize
x∈X

R(x) +
1

λ
D(Ax, y). (Pλ)

From the above definition it is clear that Tikhonov regularization requires to solve an optimization
problem, for each value of the regularization parameter λ. For large scale applications, or if the
problem is non-linear, solving (Pλ) exactly is not possible, so only an approximation of xλ can be
considered. While a variety of techniques can be used to this purpose, iterative methods, and in
particular those based on first order methods, are particularly favored. Broadly speaking, for
each regularization parameter λ ∈ Λ ⊂]0,+∞[, an iterative optimization method is defined by a
sequence

x0,λ ∈ X, xn+1,λ = Algorithm(xn,λ;λ; y), (3.4)

in such a way that xn,λ tends to xλ as n grows. It is then clear that, as mentioned in the intro-
duction, the need to select a regularization parameter can have a dramatic effect from a numerical
perspective. Indeed, in practice Λ is a finite set ΛN ⊂]0,+∞[, and an optimization problem needs
to be solved for each regularization parameter λ ∈ ΛN . If N is the cardinality of the set ΛN , the
numerical complexity of the iteration (3.4) is now multiplied by N .

The question of deriving alternative regularization techniques tackling directly non-linearity and
large scale issues, and having better complexity, is then of both theoretical and practical relevance.
As mentioned next, iterative regularization provides one such alternative.

Iterative regularization. Iterative regularization is typically derived considering an iterative
optimization procedure to solve directly problem (P) (rather than (Pλ)),

x0 ∈ X, xn+1 = Algorithm(xn; y). (3.5)

For instance, in the setting of Example 3.1, a classical iterative regularization method is the Landwe-
ber method [50] defined by the iteration

x0 ∈ X, xn+1 = xn − τA∗(Ax− y),

where τ ∈
]
0, 2‖A‖−2

[
is a stepsize. Note that for iterative regularization methods, the regular-

ization parameter is the number of iterations. In this setting, the regularization property (3.3)
reduces to the convergence of the iteration to x† when (3.5) is applied with y = ȳ. Stability, when
iteration (3.5) is applied to noisy data, is ensured by defining a regularization parameter choice,
which in this case is a stopping criterion.

When compared to Tikhonov regularization, the advantage of iterative regularization is mostly
numerical. Computing solutions corresponding to different regularization parameters is straight-
forward, since the latter is simply the number of iterations. In practice, this property often turns
into dramatic computational speed-ups while performing regularization parameter tuning.

7

A main motivation for this work is the observation that, differently from Tikhonov regular-
ization, how to design iterative regularization for general regularizers and data-fit terms is not as
clear. Iterative regularization method that allow to consider more general regularizers are known
in the literature, but are typically restricted to quadratic data-fit functions. In practice this latter
choice can be limiting, since considering different data-fit functions is often crucial. However, we
are not aware of studies considering iterative regularization for general classes of error functions.
The results we describe next are a step towards filling this gap.

4 The Diagonal Dual Descent (3-D) method

In this section, we describe the iterative algorithm we propose and analyze in the rest of the paper.
We begin by an informal description introducing some basic ideas, before providing a more detailed
discussion.

4.1 Diagonal algorithms

We will consider an iterative optimization method based on a diagonal principle. The classic
idea [11] is to combine an optimization algorithm, with a sequence of approximations of the given
problem (P), changing eventually the approximation at each step of the algorithm. In our setting,
this corresponds to an algorithm as in (3.4) where the parameter λ can be updated at each iteration,

x0 ∈ X, xn+1 := Algorithm(xn;λn; y), λn → 0. (4.1)

Roughly speaking, we allow the algorithm to “switch” between penalized problems corresponding
to different values of λ. As briefly recalled previously, for iterative regularization methods, the
number of iterations, and thus here the sequence (λn)n∈N, controls the accuracy with which xn
approaches x†.

We will first show that the basic regularization property holds, namely that in the noiseless
case xn → x†, as n → +∞, provided that λn → 0. Then, we will prove stability with respect to
noise. Combining this latter property with the regularization one will allow us to derive a suitable
stopping rule and to build a stable approximation of x†. In particular, in the presence of noise, the
stopping rule will impose termination of the iterative procedure before λn reaches 0, preventing
numerical instabilities. We now illustrate the diagonal principle in the setting of Example 3.1.

Example 4.1 (Diagonal Landweber algorithm) In the setting of Example 3.1, a basic diagonal
algorithm is the diagonal Landweber algorithm

x0 ∈ X, λn → 0, τ > 0 is a stepsize,
xn+1 = xn − τA∗(Axn − y)− τλnxn.

(4.2)

The above iteration can be seen as the gradient descent method applied to (Pλ), for R = 1
2‖·‖

2 and
D(·; y) = 1

2‖·−y‖
2, and especially considering λ to change at each iteration. The above iteration has

been mainly studied for nonlinear inverse problems, and is known under several names: modified
Landweber iteration [69], iteratively regularized Landweber iteration [53], iteratively regularized
gradient method [12], or Tikhonov-Gradient method [66]. In Figure 1, we illustrate the difference
between the diagonal Landweber algorithm and the classic Tikhonov method.

8

Figure 1: Thick dotted line: Tikhonov regularization path {xλ}λ>0. Thin plain lines: Gradient
Descent solving (Pλ) for λ ∈ {1, 0.75, 0.5, 0.25, 0.1}, starting from x0. Thick plain line: Diagonal
Landweber algorithm, with λn = (n+ 1)−1. Here A = [(1, 1)T , (1, 0)T] and y = (2, 1)T .

Figure 2: Exact same setting than for Figure 1, but here λn is constant by parts, taking successively
its values in {1, 0.75, 0.5, 0.25, 0.1}.

It is interesting to relate diagonal methods to “warm-restart”, a heuristic commonly used to
speed up the computations of Tikhonov regularized solutions for different regularization parameter
values [17].

Example 4.2 (Warm restart) Warm restart, or continuation method, is a popular heuristic used
to approximately follow the path {xλ : λ ∈ Λ} of solutions of problem (Pλ). The method is based
on considering a sequence of problems (Pλi)i∈N for a decreasing family of parameters (λi)i∈N in
R++. Then, the solutions corresponding to larger values of λi are computed first and used to
initialize – “warm” start – the next problem. The rationale behind the method, is the empirical
observation that solving (Pλ) with a first-order method as in (3.4) is faster if λ is large [51]. It is
easy to see that this continuation strategy generates a sequence (xn)n∈N which corresponds to the
diagonal algorithm (4.1), for a piecewise constant decreasing sequence (λn)n∈N. The warm restart
principle is illustrated in Figure 2.

In the optimization setting, the literature on diagonal methods is vast. Diagonal procedures as
in (4.1) have been the object of various studies since the 70’s [22, 54, 62, 55], considering various
algorithms coupled with a large class of penalization methods, such as Tikhonov penalization,
exponential barrier methods, interior methods, or more general principles. More precisely, diagonal

9

versions of the proximal algorithm have been considered in [54, 55, 9, 1, 72, 42, 2, 29], the diagonal
gradient method has been studied in [64], and the diagonal projected gradient method in [22, 62].
More recently, a diagonal version of the forward-backward algorithm has been investigated in
[58, 59, 7, 43], see also [76, Section 17.3.2]. The above papers are concerned with convergence
of the considered optimization criterion, corresponding to the regularization property for noiseless
data in inverse problems. Stability and early stopping results are known only for the diagonal
Landweber method [69, 66, 12, 53].

A main novelty of our work is considering a dual diagonal approach, since the diagonal methods
studied in the literature are essentially primal1. These latter approaches are well suited if the
data-fit function x 7→ D(Ax; y) is “simple”, in the sense that either the proximity operator of
x 7→ D(Ax; y) is easy to compute, or D is smooth. However, these properties might not be satisfied
by the data-fit functions of interest, see Example 3.3. In particular, when the data-fit function
D(·; y) is nonsmooth and A is not orthogonal, primal algorithms cannot be used. As we discuss
next, a dual approach is necessary in this case, and requires the regularizer R to be strongly convex.
Note that, up to now, all studies on iterative regularization algorithms dealt with strongly convex
regularizers and the least squares as the loss function, so the novelty in our approach is that it allows
to extend the iterative regularization principle to a large family of regularizers/loss functions.

We point out that our analysis builds on ideas and results recently developed to solve penalized
problems (Pλ), see [24, 33, 36, 38] and references therein. These latter works use duality techniques
to introduce classes of algorithms that decouple the contribution of D, R, and A. We have also
been inspired by recent results concerning general diagonal dynamical systems [4].

4.2 Main assumptions on the problem

Before describing the regularization method that we propose, we introduce the main assumptions
on the constituents of the problem. Throughout the paper we make the simplifying assumption
that there exists x̄ ∈ X satisfying (3.1). The next assumption concerns the data-fit function D, and
in particular its geometry, which is characterized by the notion of conditioning function, introduced
in Definition 2.2.

Assumption (AD) on the data-fit function:

(AD1) D : Y × Y −→ [0,+∞], and

(∀(u, y) ∈ Y 2) D(u; y) = 0 ⇐⇒ u = y.

(AD2) for every y ∈ Y , Dy := D(·; y) decomposes as

Dy = ψy # φy,

where φy ∈ Γ0(Y), and ψy = Jy +
σψ
2 ‖ · ‖

2 for some Jy ∈ Γ0(Y) and σψ ∈ R++.

(AD3) D(·; ȳ) is coercive and p-well conditioned for some p ∈ [1,+∞[, with conditioning modulus
m̄.

1In [2], the authors show that the proposed proximal method can be used to solve the dual problem, but the
regularization method they consider is the exponential barrier, which is not of interest here.

10

Assumption (AD2) is equivalent to Dy ∈ Γ0(Y), but with the structural decomposition Dy =
ψy # φy we are able to detect its (possible) strongly convex component. We will see later that ψy
and φy play a different role in our algorithm. This decomposition is not a restriction, since one can
always take ψy = δ{0}, which is, for every σ ∈ R++, σ-strongly convex, allowing the general form
Dy = φy ∈ Γ0(Y). For instance, all the data-fit functions listed in Example 3.3 admit a trivial
decomposition in which either ψy or φy coincide with δ{0}, except for the Huber data-fit function,
which can be equivalently written as

(∀u ∈ Rd) Hσ(u− y) =
(
‖ · ‖1#

σ

2
‖ · −y‖2

)
(u).

Note that we assume the strong convexity constant σψ to be independent of y, which is always the
case in the examples considered in Example 3.3.

Concerning (AD3), we remark that the coercivity of Dȳ is always satisfied in the finite dimen-
sional setting, since, by (AD1), the zero level set of Dy is nonempty and bounded [14, Proposition
11.12]. The p-well conditioning assumption is satisfied for all the data fidelities considered in Ex-
ample 3.3, and their conditioning modulus can be easily computed, see Lemmas 10.1 and 10.2 in
Appendix 10.2. All the mentioned losses are 2-well conditioned, except for the L1 norm, which is
1-well conditioned.

Assumption (AR) on the regularizer:

(AR1) R is σR-strongly convex, with σR ∈ R++,

(AR2) x̄ ∈ domR.

Assumption (AR1) plays a key role in our approach, which is based on the solution of the dual
problem: indeed, strong convexity is necessary for recovering primal solutions from the dual ones.
Note that sparsity inducing regularizers are not strongly convex in general, since they are usually
the composition of the L1 norm (or some mixed norm) with a linear operator. But we can enforce
assumption (AR1), and thus apply our algorithm by adding a strongly convex quadratic term to
the original regularizer, thus using a form of elastic-net penalty [78]. Assumption (AR2), combined
with (AD1), implies that the ideal problem (P) with y = ȳ has a solution and is equivalent to

minimize {R(x) | Ax = y} .

4.3 A primal-dual diagonal method

As announced in Section 4.1, our regularization method is a diagonal descent algorithm on the
dual. Given λ ∈ R++, we start by introducing the Fenchel-Rockafellar dual of problem (Pλ) [14,
Definition 15.19]:

minimize
u∈Y

R∗(−A∗u) +
1

λ
D∗y(λu). (Dλ)

It is known that (Pλ) converges, in an appropriate sense, to (P) as λ goes to zero [3]. We will show
in Proposition 6.2 that, when y = ȳ, (Dλ) converges to the dual problem

minimize
u∈Y

R∗(−A∗u) + 〈ȳ, u〉. (D)

11

The decomposition we made explicit in (AD2) allows to express D∗y as the sum of a smooth and a
Γ0(Y) component. More precisely, by (2.1), we have

D∗y = (ψy #φy)
∗ = ψ∗y + φ∗y,

so that (Dλ) can be rewritten as:

minimize
u∈Y

R∗(−A∗u) +
1

λ
ψ∗y(λu)︸ ︷︷ ︸+

1

λ
φ∗y(λu)︸ ︷︷ ︸

smooth nonsmooth

We underline the fact that R∗ and ψ∗y are Fréchet differentiable, with their gradient being respec-

tively σ−1
R and σ−1

ψ -Lipschitz continuous [14, Theorem 18.15(v)-(vii)]. Then, it is natural to solve
(Dλ) using a forward-backward method [39], which alternates between gradient steps with respect
to the smooth part, and proximal steps with respect to the nonsmooth part. This forward-backward
splitting algorithm, coupled with the diagonal principle discussed in Section 4.1, takes the following
form:

u0 ∈ Y, (λn)n∈N, τ ∈ R++,
wn+1 = un + τA∇R∗(−A∗un)− τ∇ψ∗y(λnun),

un+1 = proxτλ−1
n φ∗y(λn·)(wn+1).

By introducing an auxiliary primal variable, and making use of the Moreau decomposition theorem
[14, Theorem 14.3], we obtain the final form of our algorithm:

Diagonal Dual Descent (3-D) method

Let (λn)n∈N be a sequence in]0,+∞[decreasing to 0,
let L = ‖A‖2/σR + λ0/σψ, and τ ∈]0, 1/L].
Let u0 ∈ Y , and for all n ∈ N, let

xn = ∇R∗(−A∗un)
(3-D) wn+1 = un + τAxn − τ∇ψ∗y(λnun)

un+1 = wn+1 − τprox(τλn)−1φy

(
τ−1wn+1

)

The above method, dubbed (3-D), is a first order method, in which the main components
of the problem (R,A, ψy, and φy) are activated separately. (3-D) requires the computation of the
proximity operator of φy. By definition, this is an implicit step, and the solution of the minimization
problem in (2.2) is needed. However, in many cases of interest, this proximity operator can be easily
computed in closed form [37]. Also, the computation of the gradients ∇R∗ and ∇ψy∗ is needed
in (3-D), which also corresponds to the computation of a proximity operator, as shown in the
following.

Let us describe in detail what are the main steps of (3-D) when considering a pair of
regularizer/data-fit function among the ones discussed in Examples 3.2 and 3.3. We start with
the first step, which involves the strongly convex regularizer R:

• Let R = 1
2‖ · ‖

2, then ∇R∗(x) = x for every x ∈ X.

12

• Let X = Rd, and, for every x ∈ X, let R(x) = ‖Wx‖1 + σ
2 ‖x‖

2, with W ∈ Rd×d. If W is an
orthogonal matrix, Lemma 2.1 yields

∇R∗(x) = W ∗proxσ−1‖·‖1(σ−1Wx),

where proxσ−1‖·‖1 is the well-known soft-thresholding operator [44, 39]. If W is not orthogonal,
as it is the case for the total variation, we can only write

∇R∗(x) = proxσ−1‖W ·‖1(σ−1x),

and the proximity operator have to be computed by a separate procedure.

Then, we consider the second step of (3-D) involving ψy, the strongly convex part of the data-fit
function:

• If ψy = δ{0}, then ∇ψ∗y = 0.

• If ψy = 1
2‖ · −y‖

2, then, for every u ∈ Y , ∇ψ∗y(u) = u+ y.

• If X = Rd and, for every u ∈ Rd, ψy(u) = α1‖u− y‖1 + α2
2 ‖u− y‖

2, then

∇ψ∗y(u) = y + proxα−1
2 α1‖·‖1(α−1

2 u).

Finally, the third step of (3-D) involves φy, the Γ0(Y) part of the data-fit function:

• If φy = δ{0}, then proxαφy = 0.

• If X = Rd and, for every u ∈ Rd, φy(u) = ‖u− y‖1, then proxαφy(u) = y + proxα‖·‖1(u− y).

• If X = Rd and φy = KL(y, ·), the proximity operator of φy can be computed in closed form. Its
expression can be found in [31] (see also [48]).

4.4 Relationship between (3-D) and other methods

Before presenting our main results, we relate (3-D) to algorithms known in the literature.

Remark 4.3 (Diagonal Lagrangian methods) Assume that there exists G ∈ Γ0(Y) such that
for all (u, y) ∈ Y 2, D(u; y) = G(u− y). Then, problem (Pλ) can be rewritten as

minimize
Ax−z=y

R(x) +
1

λ
G(z).

Thanks to its structure, this problem is well suited for Lagrangian methods. Introduce then the
Lagrangian L : X×Y 2×R++ → R∪{+∞} and, for τ ∈ R++, the augmented Lagrangian Lτ : X×
Y 2 × R++ → R ∪ {+∞} of this problem, being respectively

L(x, z, u;λ) = R(x) + 1
λG(z) + 〈u,Ax− z − y〉,

Lτ (x, z, u;λ) = L(x, z, u;λ) + τ
2‖Ax− z − y‖

2.

Tseng’s Alternating Minimization Algorithm [73] is applicable and writes as,

13

(z−1, u0) ∈ Y 2,
xn = argmin

x∈X
L(x, zn−1, un;λ),

zn = argmin
z∈Y

Lτ (xn, z, un;λ),

un+1 = un + τ(Axn − zn − y).

The diagonal version of this Alternating Minimization Algorithm, where λ is replaced by λn, is
exactly (3-D) applied to ψy = δ{0} and φy = G(· − y).

If G is strongly convex, it is not necessary to use the augmented Lagrangian to update zn.
Instead, we can use a simple Lagrangian method [74]:

(z−1, u0) ∈ Y 2,
xn = argmin

x∈X
L(x, zn−1, un;λ),

zn = argmin
z∈Y

L(xn, z, un;λ),

un+1 = un + τ(Axn − zn − y).

It can be verified that the diagonal version of this algorithm coincides with (3-D), applied to
ψy = G(· − y) and φy = δ{0}. Observe that, thanks to the decomposition we made explicit in
(AD2), (3-D) unifies the two cases, and generalizes the analysis to a general data-fit function, such
as the Kullback-Leibler divergence, not necessarily of the form G(· − y).

Remark 4.4 (Diagonal Mirror descent) Let X = Rd, and suppose that D(·; y) = ψy = 1
2‖ ·

−y‖2. Let (xn, wn, un)n∈N be the sequence generated by (3-D), and define, for every n ∈ N, x∗n =
−A∗un. Then

x∗0 ∈ ImA∗

xn = ∇R∗(x∗n)
x∗n+1 = x∗n − τA∗(Axn − y)− τλnx∗n.

Since x∗n ∈ ∂R(xn), the latter can be seen as a diagonal version of the mirror descent method of
[16, 21] applied to (Pλ), with R as a mirror function. In particular, when R = 1

2‖ · ‖
2, the (3-D)

algorithm coincides with the Diagonal Landweber algorithm of Example 4.1, with an initialization
x0 = x∗0 ∈ ImA∗ (see more discussion on this in Remark 6.8).

5 Regularization properties of (3-D)

In this section we present the two main results of this paper. The convergence of (3-D) for exact data
is studied in Section 5.1 and its stability properties are considered in Section 5.2. The corresponding
proofs are postponed to Sections 6 and 7, respectively.

5.1 Regularization

We consider the regularization properties of (3-D) in the noiseless case. From an optimization
perspective, this consists in studying the convergence of the algorithm. To prove convergence of
(xn)n∈N, we need to impose a suitable decay condition on (λn)n∈N. More precisely, we impose

14

a summability condition on (λn)n∈N, which is directly related to the p-well conditioning of Dȳ

assumed in (AD3):

(λn)n∈N ∈ `
1
p−1 (N).

Note that, when p = 1, the notation 1/0 will stand for∞. In this case, the condition is automatically
satisfied, since in the definition of (3-D) it is required that λn ↓ 0.

Theorem 5.1 (Convergence) Let (xn, wn, un)n∈N be generated by (3-D) with y = ȳ. Suppose

that assumptions (AR) and (AD) hold, and suppose that (λn)n∈N ∈ `
1
p−1 (N). Let x† be the solution

of the problem (P). Then the following three properties are equivalent:

(i) ∂R(x†) ∩ ImA∗ 6= ∅,
(ii) the dual problem (D) admits a solution,

(iii) (un)n∈N is a bounded sequence.

If one of these properties is satisfied, then the following hold:

(i) (un)n∈N weakly converges to a solution of (D).

(ii) (xn)n∈N strongly converges to x†, with

‖xn − x†‖ = o
(
n−1/2

)
. (5.1)

(iii) Let u† be any solution of problem (D) and let N ∈ N be such that ‖u†‖λN ∈ int dom m̄∗.
Then,

∀n ≥ N, ‖xn − x†‖ ≤
C√
n−N

, (5.2)

with C2 =
1

τσR
‖uN − u†‖2 +

+∞∑
n=N

2
σRλn

m̄∗(‖u†‖λn).

We next collect several observations on our convergence result.

Remark 5.2 (On the qualification condition) The assumption ∂R(x†) ∩ ImA∗ 6= ∅ is used
as a qualification2 condition for the optimization problems (P) and (D). When R is the squared
norm, it is an instance of a common assumption in the inverse problem literature, known as source
condition (also source-wise representation, or smoothness assumption) [50]. In this more general
form, it has been considered in the context of iterative regularization methods in a series of papers,
see [26, 20] and references therein. Observe that this qualification condition is verified as soon as
R is continuous at x†, and ImA is closed.3 Thus, this assumption is always satisfied in a finite
dimensional setting.

2Here the term qualification condition shall be understood as in the optimization literature. It is a sufficient
condition ensuring, in our case, strong duality between the problems (P) and (D). It should not be confused with
the notion of qualification used in the inverse problem literature, which is a property for a regularization method [50,
Remark 4.6].

3To see this, it is enough to write the optimality condition of (P) and use the Moreau-Rockafellar Theorem [65,
Theorem 3.30].

15

Remark 5.3 (On the convergence and rates) As we already mentioned, primal diagonal
splitting methods for solving problem (P) are considered in [29, 64, 7, 8, 43]. It is proved in these
papers that, under a strong convexity assumption, the iterates converge strongly, but no rates of
convergence are provided. To the best of our knowledge, the available results on convergence rates
for a diagonal algorithm are limited to the diagonal Landweber algorithm [69, 66, 12, 53]. So,
Theorem 5.1 is the first result establishing convergence rates for the iterates obtained with such
a general diagonal scheme. Even for primal algorithms, no convergence rates are known for the
sequence (D(Axn; ȳ))n∈N. For our dual scheme, the sequence of iterates (xn)n∈N is not necessar-
ily contained in the domain of the loss function, therefore convergence rates cannot be expected
without additional assumptions.

The convergence rates obtained for the iterates can also be compared with those of non-diagonal
schemes. Indeed, when dealing with the exact data ȳ, the problem (P) consists in minimizing R
over the set of solutions of the linear equation Ax = ȳ, so one could consider other algorithms
that solve this problem. One possibility is to use a forward-backward splitting on the dual of
(P), a.k.a. mirror descent or linearized Bregman iteration. In this case the rate of convergence
O(n−1/2) for the primal sequence have been obtained in [27] (see also references therein). In this
setting, it is possible to accelerate the rate of convergence by using an inertial method on the dual,
and get O(n−1) for the primal sequence [34, 67]. The convergence rate O(n−1/2) for the sequence
(D(Axn; ȳ))n∈N has been proved using the cutting plane method in [15].

Remark 5.4 (On the decay of the parameters (λn)n∈N) To get convergence we impose a
summability assumption on (λn)n∈N. This kind of hypothesis also appears in [64, 7, 8, 43] and
is a key for obtaining convergence in the primal setting. Here we would like to highlight that our
assumption is easier to deal with than the one discussed in the above mentioned papers. Indeed, in
their primal setting, the authors make an assumption on (λn)n∈N related to the well-conditioning
of the data-fit function x 7→ D(Ax; ȳ) (see [4, Example 4.1]). But it can be difficult to compute the
conditioning modulus for a general data-fit function coupled with a linear operator, and in general
such a modulus doesn’t exist. For instance this happens when A is ill-conditioned (take for instance
1
2‖Ax−ȳ‖

2 when A does not have a closed range). Our dual approach plays a crucial role here, since
it allows us to make an assumption which involves only the data-fit function u ∈ Y 7→ D(u; ȳ), and
does not depend on the linear operator. In addition, we point out that we do not need to consider a
slow decay for (λn)n∈N. Indeed, it is a common assumption for primal diagonal methods to assume
that (λn)n∈N /∈ `1(N) (slow parametrization hypothesis). See more discussion on this in Remark
6.7.

5.2 Stability

One of the main advantages of (3-D) is its capability to handle general data-fit functions, and
therefore to be adaptive to the nature of the noise, see Remark 3.4.

According to Theorem 5.1, the iterates of (3-D) converge to the unique solution of problem (P)
when we have access to the exact datum ȳ. Since we are interested in the situation where only
a noisy version is available, in this section we investigate how the error on ȳ affects the sequence
generated by (3-D). More precisely, let ŷ be a noisy estimate of ȳ (in a sense that will be made

16

precise later). We consider the application of (3-D) to the perturbed datum ŷ, that is

x̂n = ∇R∗(−A∗ûn),
ŵn+1 = ûn + τAx̂n − τ∇ψ∗ŷ(λnûn),

ûn+1 = ŵn+1 − τprox(τλn)−1φŷ

(
τ−1ŵn+1

)
,

(5.3)

initialized with û0 ∈ X. We then consider the auxiliary sequence obtained applying (3-D) to the
ideal datum ȳ, with the same stepsizes, same sequence of parameters (λn)n∈N, and same initial
point u0 = û0. If we write

‖x̂n − x†‖ ≤ ‖x̂n − xn‖+ ‖xn − x†‖, (5.4)

we immediately see that the analysis of (3-D) as a regularization method is based on the decom-
position of the error in two terms. The first one is the error due to the noisy data, whose growth
depends on the number of iterations, and the amplitude of the error between ŷ and ȳ. The second
is an approximation/regularization error, which coincides with the optimization error in the noise
free case, that we bounded in Theorem 5.1. This decomposition suggests that when the stability
error is of the same order of the optimization error, the iteration should be stopped. Thus, itera-
tive regularization properties of (3-D), as for iterative regularization methods, depend on a reliable
early stopping rule (see Proposition 7.1). This behavior is known as semiconvergence [50, 18]. As
stressed above, to state this stability result we need to quantify the error introduced in the problem
by the noisy observation ŷ. In the case of additive noise, a natural measure is δ = ‖ȳ − ŷ‖. We
next introduce a similar notion, which is tailored for more general noise models. It involves the
data-fit function, and in particular the proximity operators of φȳ and Jȳ (see (AD2)) and their
noisy counterparts φŷ and Jŷ required in the (3-D)’s steps.

Definition 5.5 Let Assumption (AD) hold. Let (y, ŷ) ∈ Y 2, let δ ∈ R++, and let θ ∈ R+. We
say that ŷ is a (δ, θ)-perturbation of y according to D, and write ŷ ∈ Sδ,θ(y), if the two following
conditions are satisfied:

sup
u∈Y

‖prox(Jy/σψ)
(u)− prox(Jŷ/σψ)

(u)‖ ≤ δ, (5.5)

(∀α > 0) sup
u∈Y

‖proxαφy(u)− proxαφŷ(u)‖ ≤ αθδ. (5.6)

Definition 5.5 identifies perturbations of the data that ensure stability of the data-fit function.
Here, stability is measured in terms of sensitivity of the proximity operators of the components
of D(·, ·) with respect to perturbations of the second variable. Since the definition is somewhat
implicit, before proving the stability result, we consider some specific data-fit functions, and give
examples of ŷ for which the conditions (5.5) and (5.6) are verified.

Example 5.6 We show that for the commonly used data-fit functions, the set of perturbed data
Sδ,θ(y) can be either characterized, or estimated. See Lemmas 10.4 and 10.5 in the Appendix for
the proof of items (iii-iv).

(i) if ψy (resp. φy) is independent of y, then (5.5) (resp. (5.6)) is trivially satisfied for every ŷ ∈ Y .
This is the case for the function δ{0}, and for the L1 norm term appearing in the Huber loss.

(ii) if ψy = ‖ · −y‖2/2, then Jy = ‖y‖2/2−〈x, y〉, σψy = 1, and ‖prox(Jy/σψ)(u)−prox(Jŷ/σψ)(u)‖ =
‖y − ŷ‖. The previous computations imply in particular that for the quadratic and Huber data-fit

17

functions (see Example 3.3), we recover the usual definition of perturbation and the classical notion
of additive noise, that is, for every θ ≥ 0

Sδ,θ(y) = {ŷ ∈ Y | ‖y − ŷ‖ ≤ δ}.

(iii) Suppose that φy = G(· −y), for some G ∈ Γ0(Y) such that argminG = {0}. This covers most
of the data-fit functions having an additive form: any norm (e.g. the Lp norms for p ∈ [1,+∞]),
the Huber loss, or sums of these functions. Lemma 10.4 shows that

sup
α>0

sup
u∈Y

‖proxαφy(u)− proxαφŷ(u)‖ = ‖y − ŷ‖.

So, if we moreover assume that ψy = δ{0}, we obtain

Sδ,0(y) = {ŷ ∈ Y | ‖ŷ − y‖ ≤ δ}.

(iv) Let Y = Rd, and Dy = φy = KL(y, ·). Let y, ŷ ∈ Rd++. Then, for all α ∈ R++,

sup
u∈Rd

‖proxαφy(u)− proxαφŷ(u)‖ =
√
α‖
√
ŷ −√y‖,

so that

Sδ,θ(y) =

{
{ŷ ∈ Y | ŷ > 0, ‖

√
ŷ −√y‖ ≤ δ} if θ = 1/2,

{y} if θ 6= 1/2,

where the notation
√
y shall be understood componentwise.

Theorem 5.7 (Existence of early-stopping) Under the same assumptions as in Theorem 5.1,
assume that the qualification condition

∂R(x†) ∩ ImA∗ 6= ∅

holds. Let ŷ ∈ Y , and let (x̂n, ŵn, ûn)n∈N be the sequence generated by (3-D) algorithm with û0 = u0

and y = ŷ. Moreover, suppose that

• ŷ ∈ Y is a (δ, θ)-perturbation of ȳ according to D, with δ ∈ [0,+∞[and θ ∈]0,+∞[;

• for every n ∈ N, λn = λ0/(n+ 1)β, for some β ∈]p− 1,+∞[.

Then there exists t(δ) ∼ δ−2/(3+2βθ) such that for all c ≥ 1, the early stopping rule n(δ) = dct(δ)e
verifies

‖x̂n(δ) − x†‖ = O
(
δ

1
3+2βθ

)
when δ → 0.

As said before, the key for the proof of Proposition 7.1 is the estimation (5.4), where we combine
the regularization rates of Theorem 5.1, and a stability estimate whose proof can be found in Section
7:

‖xn − x̂n‖ = O
(
δn1+βθ

)
.

As can be directly seen, the stability bound depends on the chosen data-fit function. The depen-
dence is through the exponents β and θ, whose choice is restricted by the geometry (see (AD3)) and
the stability properties of the data-fit function. In particular, though the best rates are obtained
for θ = 0, this choice is not always feasible, as Example 5.6 shows. We discuss more in detail
the dependence of the iterative regularization rates from the two parameters β and θ in the next
remark.

18

Remark 5.8 (On the effect of (β,θ) on the resulting rate) Our stability result shows that
the convergence rates are faster when βθ is close to zero. For most data-fit functions presented in
Example 5.6, in particular the ones having an additive form, we can consider errors with θ = 0. In
this case, the stopping rule n(δ) ∼ δ−2/3 leads to a rate of convergence O(δ1/3). It is worth noting
that in this setting, both estimates are independent from the choice of the parameter sequence
(λn)n∈N. This is not the case if θ 6= 0, e.g. for the Kullback-Leibler divergence, where we need to
take θ = 1/2. For this function, for which the assumption λn ∈ `1/(p−1)(N) is satisfied with p = 2, it
is possible to reach a convergence rate arbitrarily close to O(δ1/4) by considering β arbitrarily close
to 1. Our method is, at the best, of order O(δ1/3). When specialized to the square loss, this rate is
not optimal. The optimal one, which is achieved e.g. for the diagonal Landweber algorithm, is of
the same order of the Tikhonov regularization, and it is O(δ1/2) [66, Theorem 6.5]. It is an open
question to know whether our rates can be improved (by a smarter choice of the early stopping
rule, as in [67]), or if it is not possible to achieve optimal rates in such a general setting.

Remark 5.9 (On early stopping in practice) Theorem 5.7 states the existence of a stopping
time for which a stable reconstruction is achieved, and thus establish that the (3-D) method is an
iterative regularization procedure. In particular, this explains the dependence on the noise of the
warm restart method, often used in practice to speed up Tikhonov regularization. Theorem 5.7
is mainly of theoretical interest, since the stopping iteration depends on constants that are not
available, and on the noise level δ, which as well is often not accessible. However, every parameter
selection method used in practice (e.g. discrepancy principle or cross-validation) to choose the
regularization parameter in Tikhonov regularization can be used in this context as well. This will
be illustrated in the numerical section 8.

6 Theoretical analysis: convergence result

In this section we prove the convergence of (3-D). We assume that (xn, wn, un)n∈N is a sequence
generated by the (3-D) algorithm, using the exact data y = ȳ. We introduce the following notation
which will be used in the subsequent proofs. For every n ∈ N and every u ∈ Y ,

• dn(u) := R∗(−A∗u) + 1
λn
D∗ȳ(λnu),

• d∞(u) := R∗(−A∗u) + 〈ȳ, u〉.

Here dn is the the objective function in (Dλ), the dual problem of (Pλ), for λ = λn, while d∞ is
the one appearing in (D).

Since (3-D) is a diagonal forward-backward applied to the family of dual functions (dn)n∈N,
we will use classic properties of the forward-backward method to obtain estimates on (un)n∈N.
These estimates combined with the convergence of dn towards d∞ yield the convergence of (un)n∈N
to a solution of (D). We highlight the fact that the proof of these results can be related to the
arguments used in [4, Section 3.1]. Finally, from the strong duality between (P) and (D), we will
derive estimates on the primal sequence (xn)n∈N, and its convergence to a solution of (P).

Proposition 6.1 (Energy estimate) Assume (AD) and (AR) and let (xn, wn, un)n∈N be the se-
quence generated by the (3-D) method. Then, for every u ∈ Y and every n ∈ N,

1

2τ
‖un+1 − u‖2 −

1

2τ
‖un − u‖2 ≤ dn(u)− dn(un+1).

19

Proof. Let us introduce the notation Ψn := 1
λn
ψy, Φn := 1

λn
φy and R∗A := R∗ ◦ (−A∗). From the

definition of (3-D), we have un+1 = proxτΦ∗n
(wn+1), which implies

0 ∈ ∂Φ∗n(un+1) +
un+1 − wn+1

τ
(6.1)

= ∂Φ∗n(un+1) +
un+1 − un

τ
+∇R∗A(un) +∇Ψ∗n(un).

By developing the squares, we obtain

1

2τ
‖un+1 − u‖2 −

1

2τ
‖un − u‖2 = − 1

2τ
‖un − un+1‖2 +

〈
un − un+1

τ
, u− un+1

〉
. (6.2)

Once combined with (6.1), this gives, for some u∗n+1 ∈ ∂Φ∗n(un+1),

1

2τ
‖un+1 − u‖2−

1

2τ
‖un − u‖2 (6.3)

= − 1

2τ
‖un − un+1‖2 +

〈
u∗n+1, u− un+1

〉
+ 〈∇(R∗A + Ψ∗n)(un), u− un+1〉.

Convexity of Φ∗n yields 〈
u∗n+1, u− un+1

〉
≤ Φ∗n(u)− Φ∗n(un+1). (6.4)

We also have

〈∇(R∗A + Ψ∗n)(un), u− un+1〉 = 〈∇(R∗A + Ψ∗n)(un), u− un〉 − 〈∇(R∗A + Ψ∗n)(un), un+1 − un〉,

where the convexity of R∗A + Ψ∗n gives

〈∇(R∗A + Ψ∗n)(un), u− un〉 ≤ (R∗A + Ψ∗n)(u)− (R∗A + Ψ∗n)(un), (6.5)

and the Descent Lemma [65, Lem. 1.30] applied to R∗A + Ψ∗n (whose gradient is L-Lipschitz con-
tinuous) implies

−〈∇(R∗A + Ψ∗n)(un), un+1 − un〉 ≤
L

2
‖un+1 − un‖2 − (R∗A + Ψ∗n)(un+1) + (R∗A + Ψ∗n)(un). (6.6)

By inserting (6.4), (6.5) and (6.6) into (6.3), we finally obtain

1

2τ
‖un+1 − u‖2 −

1

2τ
‖un − u‖2 ≤

(
L

2
− 1

2τ

)
‖un − un+1‖2 + dn(u)− dn(un+1). (6.7)

The conclusion follows from the assumption τ ≤ 1
L .

Proposition 6.2 (Dissipativity) Assume (AD) and (AR) and let (xn, wn, un)n∈N be the sequence
generated by the (3-D) method. Then,

(i) for all u ∈ Y , dn(u) ↓ d∞(u) as n→ +∞,

(ii) dn(un+1) ↓ inf d∞ ∈ R as n→ +∞.

20

Proof. (i): Let u ∈ Y . It is enough to show that the real-valued function

λ ∈]0,+∞[7→ 1

λ
D∗ȳ(λu) (6.8)

is increasing in λ, and converges to 〈ȳ, u〉 when λ→ 0. Since D∗ȳ(0) = − inf Dȳ = 0 by (AD1), the
function in (6.8) can be rewritten as

λ ∈]0,+∞[7→
D∗ȳ(0 + λu)−D∗ȳ(0)

λ
. (6.9)

Convexity of D∗ȳ implies that the quotient in (6.9) is increasing in λ [14, Prop. 17.2]. Moreover, the

limit of this quotient when λ→ 0 is, by definition,
dD∗ȳ
du (0), the directional derivative of D∗ȳ at zero,

in the direction u. Assumption (AD3) and [14, Prop. 14.16, Prop. 16.21 & Thm. 17.19] implies that
dD∗ȳ
du (0) equals the support function of ∂D∗ȳ(0) evaluated at u. But here ∂D∗ȳ(0) = argminDȳ = {ȳ}

by (AD1), which means that the quotient in (6.9) tends to 〈ȳ, u〉 when λ→ 0.

(ii): First, we observe that inf d∞ > −∞. To see this, use the Fenchel-Young inequality together
with (AR2) to write, for all u ∈ Y :

d∞(u) = R∗(−A∗u) + 〈ȳ, u〉
= R∗(−A∗u)− 〈x̄,−A∗u〉
≥ −R(x̄) > −∞.

Define now, for all n ≥ 1, rn := dn−1(un) − inf d∞, and let us show that rn ↓ 0. First, apply
Proposition 6.1 with u = un to obtain

0 ≤ 1

2τ
‖un+1 − un‖2 ≤ dn(un)− dn(un+1). (6.10)

Since we showed that the sequence (dn)n∈N is decreasing, dn(un) ≤ dn−1(un) for every n ∈ N. We
deduce then from (6.10) that, for every n ∈ N, 0 ≤ rn− rn+1, meaning that (rn)n∈N is a decreasing
sequence. It follows from (i) that dn ↓ d∞, therefore rn ≥ d∞(un) − inf d∞ ≥ 0. So there exists
some positive real ` ≥ 0 such that rn ↓ `.

Let us finish the proof by showing that ` ≤ 0. Let u ∈ Y . Proposition 6.1 yields, for every
n ∈ N,

1

2τ
‖un+1 − u‖2 −

1

2τ
‖un − u‖2 ≤ dn(u)− dn(un+1).

Do a telescopic sum on the above inequality and divide by k ∈ N∗ to derive

1

k

k∑
n=0

dn(un+1)− dn(u) ≤ 1

2τk
‖u0 − u‖2. (6.11)

On the one hand, the right hand side of (6.11) tends to zero when k → +∞. On the other hand,
we saw that dn(un+1)− dn(u) tends to `+ inf d∞− d∞(u) when n→ +∞. By Cesaro’s lemma, we
can pass to the limit in (6.11) to obtain

`+ inf d∞ − d∞(u) ≤ 0.

Since this inequality is true for any u ∈ Y , we deduce that ` ≤ 0.

In the following, we will need an estimate of the rate of convergence of dn to d∞, in particular
once evaluated at some element of argmin d∞. For this, we will exploit the geometry of the data-fit
function Dȳ, through its conditioning modulus m̄.

21

Lemma 6.3 Let (AD) and (AR) hold and (λn)n∈N be as in the (3-D) method. For every u† ∈
argmin d∞ and every n ∈ N,

dn(u†)− d∞(u†) ≤ 1

λn
m̄∗(‖u†‖λn). (6.12)

Proof. From the definition of dn and d∞, we have

dn(u†)− d∞(u†) =
1

λn

(
D∗ȳ(λnu

†)− 〈ȳ, λnu†〉
)
. (6.13)

It follows from the definition of conditioning modulus (2.3) that, for every u ∈ Y , Dȳ(u) ≥ m̄(‖u−
ȳ‖). This implies, for every u ∈ Y , D∗ȳ(u) ≤ (m̄(‖ · −ȳ‖))∗ (u) (see [14, Prop. 13.14]). Since
m̄ : R→ [0,+∞] is an even function, we derive from [14, Prop. 13.20 & Ex. 13.7] that

(m̄(‖ · −ȳ‖))∗ (u) = m̄∗(‖u‖) + 〈ȳ, u〉.

The result follows by taking u = λnu
†.

Lemma 6.4 If (AD) holds, then 0 ∈ int dom m̄∗. Moreover, if (λn)n∈N is used in (3-D) and
satisfies (λn)n∈N ∈ `1/(p−1)(N), then for every r ∈ R++, and for every N ∈ N such that rλN ∈
int domm∗, we have:

+∞∑
n=N

1

λn
m̄∗(rλn) < +∞.

Proof. Assumption (AD) implies that argmin m̄ = {0}. From [14, Prop. 11.12 & 14.16], it follows
that 0 ∈ int dom m̄∗. Let r ∈ R++ and let N ∈ N be such that rλN ∈ int dom m̄∗. Note that,
since λn ↓ 0, we have rλn ∈ int dom m̄∗ for every n ≥ N . (AD3) implies that m̄ ≥ f on] − ε, ε[,
where here f := γ| · |p/p. We derive from Lemma 10.3 (see Appendix) that there exists ε′ ∈ R++

such that m∗ ≤ f∗ on] − ε′, ε′[. This allows us to easily estimate SN (r) :=
∑+∞

n=N
1
λn
m̄∗(rλn), by

considering the two cases p = 1 and p > 1.
If p = 1, let M ≥ N be an integer such that rλM < min{γ, ε′}. Since in that case f∗(t) = δ[−γ,γ](t),
we directly see that

SN (r) ≤
M∑
n=N

1

λn
m̄∗(rλn) < +∞.

If p > 1, let M ≥ N be an integer such that rλM < ε′. In this case, f∗(t) = γ1−q

q |t|
q, where

q = p/(p− 1). Then we deduce that

SN (r) ≤ γ1−q

q

M∑
n=N

1

λn
m̄∗(rλn) +

γ1−qrq

q

+∞∑
n=m

λ
1
p−1
n ,

where the last sum is finite since λn ∈ `1/(p−1)(N).

We are now ready to prove Theorem 5.1, whose proof using two main ingredients. First, we
will use the estimations we made on the sequence un to prove its weak convergence, thanks to the
celebrated Opial’s lemma (see [65, Lemma 5.2] for a proof):

Lemma 6.5 (Opial) Let S be a subset of a Hilbert space H, and (xn)n∈N be a sequence in H.
Assume that

22

(i) for all x ∈ S, the real sequence (‖xn − x‖)n∈N admits a limit,

(ii) every weak limit point of (xn)n∈N belong to S.

Then S 6= ∅ if and only if (xn)n∈N is bounded. In such a case, (xn)n∈N weakly converges to some
element belonging to S.

Second, we will exploit the strong duality between (P) and (D) to recover strong convergence for
the primal sequence (xn)n∈N through estimations made on the dual one (un)n∈N. The key result is
the following lemma (whose proof is in the Appendix):

Lemma 6.6 (Primal-dual values-iterates bound) Let f ∈ Γ0(X) be σ-strongly convex, g ∈ Γ0(Y)
and A : X → Y be a bounded linear operator. Let x† be the unique minimizer of p := f + g ◦A, and
let d := f∗ ◦ (−A∗) + g∗. Then

argmin d 6= ∅ ⇔ 0 ∈ ∂f(x†) +A∗∂g(Ax†).

In that case, for every u ∈ Y and every x := ∇f∗(−A∗u), we have

σ

2
‖x− x†‖2 ≤ d(u)− inf

u∈Y
d. (6.14)

Proof. [of Theorem 5.1] (i)⇐⇒ (ii): The equivalence follows directly from Lemma 6.6 with f = R
and g = δ{y}.

(ii)⇐⇒ (iii): To prove this equivalence, together with the weak convergence of (un)n∈N towards
a minimizer of d∞, we will apply Opial’s lemma with f = d∞ and S = argmin d∞. We thus only
have to verify hypotheses (1) and (2) of Opial’s lemma. We start with hypothesis (1) of Opial’s
lemma. Without loss of generality, we can assume S 6= ∅. Let u† ∈ S, and let us show that the
sequence hn := 1

2τ ‖un − u
†‖2 admits a limit when n → +∞. Using successively Propositions 6.1,

6.2, and Lemma 6.3, we obtain

hn+1 − hn (6.15)

≤ dn(u†)− d∞(u†) + d∞(u†)− dn(un+1)

≤ dn(u†)− d∞(u†)

≤ 1

λn
m̄∗(λn‖u†‖).

Lemma 6.4 implies that (hn)n∈N is a quasi-Fejér sequence, and therefore (hn)n∈N is convergent
(see for instance [35, Lem. 3.1]). We now turn to hypothesis (2) of Opial’s Lemma: assume that
there exists a subsequence (unk)k∈N converging weakly to some u∞ ∈ Y . By using the lower-
semicontinuity of d∞, we obtain

d∞(u∞) ≤ liminf k→+∞d∞(unk). (6.16)

Moreover, we know from Proposition 6.2 that dn ↓ d∞, so d∞(unk) ≤ dnk−1(unk). This, together
with the fact that dn−1(un) → inf d∞, implies that (6.16) is equivalent to d∞(u∞) ≤ inf d∞,
meaning that u∞ ∈ S.

23

Next, we focus on the strong convergence of the primal sequence (xn)n∈N. Let u† be any solution
of (D). Use Lemma 6.6 with f = R and g = δ{y}, together with Proposition 6.2 to obtain

σR
2
‖xn − x†‖2 ≤ dn−1(un)− d∞(u†). (6.17)

The goal is to obtain an estimate on the rate of convergence to zero of rn := dn−1(un) − d∞(u†).
By using the same argument as in (6.15), we obtain, for every n ∈ N,

hn+1 − hn ≤
1

λn
m̄∗(λn‖u†‖)− rn+1. (6.18)

Lemma 6.4 ensures that there exists some N ∈ N such that ‖u†‖λN ∈ int dom m̄∗, and also that
such integer verifies

SN (‖u†‖) :=
+∞∑
n=N

1

λn
m̄∗(‖u†‖λn) < +∞. (6.19)

As a consequence, a telescopic sum on (6.18) gives

+∞∑
n=N

rn+1 ≤ hN + SN (‖u†‖) < +∞.

From Proposition 6.2 it follows that rn is decreasing and positive, therefore

0 ≤ nr2n ≤
2n∑
k=n

rk
n→+∞−→ 0,

which means that rn = o
(
n−1

)
. This, together with (6.17), implies that ‖xn − x†‖ = o

(
n−

1
2

)
.

To obtain the rates (5.2), we will do a similar analysis. Let εn := (n − N)rn + hn. Then, for
every n ≥ N , the inequality rn+1 ≤ rn and (6.18) yield

εn+1 − εn = (n−N + 1)rn+1 − (n−N)rn + hn+1 − hn
≤ rn+1 + hn+1 − hn,
≤ 1

λn
m̄∗(λn‖u†‖).

Therefore,

(n−N)rn ≤ εn = εN +
n−1∑
k=N

εk+1 − εk ≤ hN + SN (‖u†‖).

Dividing by (n−N) and using (6.17), we finally obtain (5.2).

Remark 6.7 (On the non slow-decay assumption on λn) A key point in our proof is the fact
that we perform a diagonal descent method on a sequence of functions (dn)n∈N which is monoton-
ically decreasing to d∞. This property ensures the Mosco convergence of (dn)n∈N to d∞, which is
essential for viscosity methods [58, 4]. This decreasing property might explain the fact that we do
not require (λn)n∈N /∈ `1(N), which is instead a standard assumption for diagonal primal methods

24

[59, 64, 7, 43]. The rationale behind this might be that we do not need to make the link between
(Pλ) and

minλR(x) +D(Ax; y). (P̆λ)

In fact, while (Pλ) and (P̆λ) are trivially equivalent for fixed λ, things change if λ is allowed to
move. When λ ↓ 0, the function R+ λ−1D(A·; y) is monotonically increasing to R+ δy(Ax), while
λR + D(A·; y) is monotonically decreasing to δdomR + D(A·; y). So (Pλ) converges towards the
problem we are interested in (the one in (P)), but it is not decreasing, while (P̆λ) has the desired
decreasing property, but converges to the “wrong” problem. To pass from one model to the other,
it is necessary for primal diagonal schemes to perform an appropriate change of variable (see [28,
Section 1.2] or [6, Section 4]), which requires the assumption that λ doesn’t tend to zero too fast:
whence the assumption (λn)n∈N /∈ `1(N) (see also [41, Thm. 2] and the following remark). In our
dual diagonal scheme, we have the combination of the two desirable properties at the same time:
indeed (dn)n∈N is decreasing and (Dλ) converges towards the dual of (P).

Remark 6.8 (On the Diagonal Landweber algorithm) In light of the previous remark, it is
interesting to look again at the Diagonal Landweber algorithm. As discussed in Remark 4.4, the
Diagonal Landweber algorithm can be seen as a primal diagonal scheme, and (λn)n∈N /∈ `1(N) is
generally assumed to ensure the convergence of (xn)n∈N to x†, which is the minimal norm solution
of Ax = ȳ. Otherwise, it is known that without this assumption, the regularizer R = (1/2)‖ · ‖2
is ignored, and the sequence might converge to any other solution of Ax = ȳ (see [28, Proposition
1.2] or [41, Theorem 2]). On the other hand, as we mentioned in Remark 4.4, Diagonal Landweber
can also be seen as a realization of (3-D), where we require (λn)n∈N ∈ `1(N) to get convergence to
x†. This seems contradictory at a first sight with the above discussion, and one might wonder why
the limit point of the sequence is indeed x†. In fact, as observed in Remark 4.4, (3-D) requires
that we initialize the algorithm with x0 ∈ ImA∗. This implies that the generated sequence (xn)n∈N
will belong to ImA∗, which is orthogonal to the affine space of solutions {x ∈ X |Ax = ȳ}. As a
consequence, (xn)n∈N can only converge to a solution of Ax = ȳ belonging also to ImA∗, which is
exactly x†.

7 (3-D) as an iterative regularization procedure

In this section, (xn, wn, un)n∈N and (x̂n, ŵn, ûn)n∈N are generated by the (3-D) algorithm, using
the exact data ȳ and the noisy ones ŷ, respectively. We assume here that both sequences have the
same initialization.

As suggested by (5.4), showing that (3-D) acts as an iterative regularization procedure requires
a stability estimate, which controls the error propagation (‖x̂n − xn‖)n∈N in the presence of noisy
data. Analogously to what happen for the classical Landweber iteration [50], this can be bounded
in terms of the number of iterations and an estimate of the noise.

Proposition 7.1 (Stability) Let assumptions (AR) and (AD) hold. Let δ ∈ R+, let θ ∈ R+, and
let ŷ ∈ Y be a (δ, θ)-perturbation of ȳ according to D. Then, for all n ∈ N∗,

‖xn − x̂n‖ ≤
δ

‖A‖

(
n+ τ θ−1

n−1∑
k=0

λ−θk

)
.

25

Proof. We introduce the notation Ψn := λ−1
n ψȳ, Ψn := λ−1

n φȳ, together with their noisy counterpart
Ψ̂n := λ−1

n ψŷ and Φ̂n := λ−1
n φŷ. By definition of (3-D), and using the triangle inequality:

‖un+1 − ûn+1‖ ≤ ‖proxτΦ∗n
(wn+1)− proxτΦ∗n

(ŵn+1)‖+ ‖proxτΦ∗n
(ŵn+1)− proxτ Φ̂∗n

(ŵn+1)‖.

Nonexpansivity of the proxτΦ∗n
[14, Prop. 12.27], together with the assumption on the noise (5.6)

and Lemma 2.1, implies

‖un+1 − ûn+1‖ ≤ ‖wn+1 − ŵn+1‖+ λ−θn τ θδ. (7.1)

Let us introduce the notation R∗A := R∗ ◦ (−A∗), and define

Tn : Y → Y, u 7→ Tnu := u− τ(∇R∗A(u) +∇ψ∗n(λnu)).

Then we have from the definition of (3-D):

wn+1 − ŵn+1 = Tnun − Tnûn − τ(∇ψ∗n(λnûn)−∇ψ̂∗n(λnûn)).

Using the assumption on the noise (5.5), we can write

‖wn+1 − ŵn+1‖ ≤ ‖Tnun − Tnûn‖+ τδ.

Since ∇R∗A+∇ψ∗n(λn·) is L-Lipschitz continuous, and because it is assumed in (3-D) that τ ≤ L−1,
we deduce that Tn is a non-expansive operator [14, Theorem 18.15], leading to the estimation

‖wn+1 − ŵn+1‖ ≤ ‖un − ûn‖+ τδ. (7.2)

By combining (7.1) and (7.2), we obtain for all n ≥ 1

‖un − ûn‖ ≤ ‖u0 − û0‖+ δτn+ δτ θ
n−1∑
k=0

λ−θk

The fact that xn = ∇R∗(−A∗un), where ∇R∗ ◦ (−A∗) is ‖A‖σR -Lipschitz continuous, implies

σR
‖A‖
‖xn − x̂n‖ ≤ ‖u0 − û0‖+ δτn+ δτ θ

n−1∑
k=0

λ−θk

Since τ ≤ σR
‖A‖2 , the conclusion follows. We are now ready to prove our main stability result.

Proof. [of Theorem 5.7] Theorem 5.1 ensures the existence of a solution u† ∈ Y for the dual
problem (D). It follows from Lemma 6.4 that there exists N ∈ N such that ‖u†‖λN ∈ int dom m̄∗.
Then we derive from Theorem 5.1 that

(∀n > N) ‖xn − x†‖ ≤
b√

n−N
,

with b := ‖uN − u†‖2/(τσR) + SN (‖u†‖)/σR, where SN (‖u†‖) is defined in (6.19). On the other
hand, from Proposition 7.1 and the hypothesis on (λn)n∈N, we have

(∀n ∈ N) ‖xn − x̂n‖ ≤ δan1+βθ,

26

with a = (1 + λ−θ0 τ θ−1)‖A‖−1. Thus, for every n > N ,

‖x̂n − x†‖ ≤ δan1+βθ +
b√

n−N
. (7.3)

The idea now is to derive an early stopping rule n(δ) by minimizing the right hand side of (7.3).
We will achieve this by considering, for α := βθ, T := N and δ ∈ R++, the real valued function

fδ : t ∈]T,+∞[7→ fδ(t) := δat1+α +
b√
t− T

.

First observe that fδ is convex, so we can characterize its minimizers with the Fermat’s rule. This
function is differentiable on]T,+∞[, and f ′δ(t) = 0 if and only if

tα(t− T)3/2 = C1δ
−1, with C1 :=

b

2a(1 + α)
. (7.4)

The function η(t) := tα(t − T)3/2 is strictly increasing on]T,+∞[, and is a bijection between
]T,+∞[and]0,+∞[. So we deduce from (7.4) that there exists a unique minimizer for fδ, given
by t(δ) := η−1

(
C1δ

−1
)
. Moreover, we also deduce from the relation η(t(δ)) = C1δ

−1 that δ 7→ t(δ)
is decreasing, and that t(δ) ↑ +∞ when δ ↓ 0.

Now we define an early stopping rule by taking n(δ) := dct(δ)e, for some fixed c ≥ 1, and we

want to estimate fδ(n(δ)). For this, start by writing n(δ) = c(δ)t(δ), where c(δ) = dct(δ)e
t(δ) . From

now we assume that t(δ) ≥ T + 1, which is achieved as soon as δ is small enough, since t(δ) ↑ +∞.
In particular, we deduce that c(δ) ∈ [c, c+ 1], and this implies that

fδ(n(δ)) = δa(c(δ)t(δ))α+1 +
b√

c(δ)t(δ)− T

≤ δa((c+ 1)t(δ))α+1 +
b√

t(δ)− T
.

Now we can use (7.4) to write

1√
t(δ)− T

= C
−1/3
1 δ1/3t(δ)

α
3 ,

which gives in turn

fδ(n(δ)) ≤ δa((c+ 1)t(δ))α+1 + bC
−1/3
1 δ1/3t(δ)α/3. (7.5)

Now we need to estimate t(δ). Let γ := 2
3+2α ; by using (7.4), a simple computation shows that

δ−γ

t(δ)
= C−γ1

(
1− T

t(δ)

) 3
3+2α

.

But we assumed that t(δ) ≥ T + 1, so

δ−γ

t(δ)
≥ C−γ1

(
1

T + 1

) 3
3+2α

,

27

which gives in turn

t(δ) ≤ C2δ
−2

3+2α , with C2 := C
2

3+2α

1 (T + 1)
3

3+2α .

The above inequality together with (7.5) finally gives

fδ(n(δ)) ≤ C3δ
1

3+2α ,

with C3 := a(1 + c)α+1Cα+1
2 + bC

−1/3
1 C

α/3
2 .

8 Numerical results: Deblurring and denoising

In this section we perform several numerical experiments using the (3-D) algorithm for image
denoising and deblurring. We consider problems of the form (P), involving a data-fit function
selected according to the nature of the noise, and a regularizer promoting some desired property
of the solution. For all the experiments, the linear operator A is a blurring operator defined by
a Gaussian kernel of size 9 × 9 and variance 10. In our experiments, we compare two versions of
(3-D), corresponding to two different choices of the sequence (λn)n∈N: an online choice, and an a
priori choice.

For the online approach, we use the warm restart method described in Example 4.2, called
warm 3D in the following. In this case, the sequence (λn)n∈N is taken to be piecewise constant,
and its decay is determined by a stopping rule. In practice, we take Nwr regularization parameters
{Λ1, . . . ,ΛNwr} uniformly distributed on a logarithmic scale in an interval [λmin, λmax]. Then, we
start with λ1 = Λ1 = λmax, and, for every λ ∈ {Λi}Nwri=1 , we set dλ(u) := R∗(−A∗u) + D∗ŷ(λu)/λ,
and we keep λn = λ until the stopping rule∣∣∣∣dλ(un)− dλ(un−1)

dλ(un)

∣∣∣∣ < εwr (8.1)

is verified. This warm 3D method can be considered as a benchmark, since it is one of the most
efficient ways to approximate the regularization path corresponding to Tikhonov regularization [17].

For the a priori choice, that we call hereafter vanilla 3D method, we consider a strictly decreasing
sequence (λn)n∈N. In practice, we take Nv regularization parameters {Λ1, . . . ,ΛNv} uniformly
distributed on a logarithmic scale in an interval [λmin, λmax], and set for every n ∈ {1, . . . , Nv},
λn = Λn. Observe that this choice makes λn an exponentially decreasing sequence:

λn = λmax

(
λmin
λmax

) t−1
Nv−1

.

This implies for instance that Theorem 5.1 applies for any choice of loss function. Concerning
Proposition 7.1, we already discussed in Remark 5.8 the fact that for most loss functions, no
assumptions are required on λn. Only the Kullback-Leibler divergence requires a slow decreasing
sequence to ensure the existence of an early sopping rule in polynomial time. In practice, no
significant difference was observed with the use of the Kullback-Leibler loss.

8.1 Introductory example

Example 8.1 We illustrate the behavior of the (3-D) method. We take x̄ as a 512× 512 grayscale
image, which is blurred and corrupted by a salt and pepper noise of intensity 35% (see Figure 3).

28

Figure 3: From left to right: original image, blurred image without noise, blurred image with noise.

We reconstruct the image by using an L1 data-fit function D(u, y) = ‖u − y‖1, and a regularizer
enforcing sparsity in a wavelet dictionary:

(∀x ∈ X) R(x) = ‖Wx‖1 +
1

2
‖x‖2,

where here W is a Daubechies wavelet transform. We run the (3-D) algorithm for (λmax, λmin) =
(10, 10−2), and take Nv = 1000, and Nwr = 30, εwr = 10−5. In Figure 4, some iterations of these
two algorithms are displayed.

Figure 4: First raw: Some iterates of vanilla 3D, with (n;λn) =
{(350; 0,89), (400; 0,63), (500; 0,32), (750; 0,06), (900; 0,02)}. Second raw: Some iterates of warm 3D,
with (n;λn) = {(377; 0,92), (535; 0,57), (704; 0,28), (2045; 0,02), (2843; 0,01)}.

It can be seen that in the first iterations, the iterates go from an over-smoothed image towards
an approximation of the original image, and then becomes contaminated by the noise. This confirms

29

our theoretical findings by showing that, in presence of noise, the number of iterations plays the role
of a regularization parameter. An early stopping of the iterations leads then to better reconstruction
results than the limit point. By a simple visual inspection in Figure 4, we would decide to stop
the algorithms at the iterates corresponding to the middle column. This transition between over-
smoothing and noise contamination can also be measured, if one has access to the true image x̄. We
can then measure what will be thereafter called the Ground Truth Gap: GTG(x) = (1/d)‖x− x̄‖,
where d is the number of pixels in x̄ (see e.g. Figure 5).

Figure 5: Plot of GTG(xn) with respect to λn,
for various parameters. Dashed lines: warm 3D
with Nwr = 30 (from thin dark gray to thick light
gray: εwr = {10−4, 10−5, 10−6}). Dotted lines:
vanilla 3D (from thin dark gray to thick light gray:
Nv = {103, 104}).

Figure 6: Cumulated number of iterations with re-
spect to λn, for different parameters. Dashed lines:
warm 3D with Nwr = 30 (from thin dark gray to
thick light gray: εwr = {10−4, 10−5, 10−6}). Dotted
lines: vanilla 3D (from thin dark gray to thick light
gray: Nv = {103, 104}).

We first observe that warm 3D and vanilla 3D provide comparable reconstructions, but have
a different complexity. For vanilla 3D, the number Nv controls directly the complexity and the
accuracy of the method: the larger it is, the slower is the decay of λn, and the more parameters
λ are “visited” by the algorithm, improving the quality of the reconstructed image. For warm
3D, Nwr plays a similar role, but here also the stopping rule parameter εwr has a strong indirect
impact: the smaller it is, the slower is the decay of λn because more time is spent by the algorithm
on each λ. Also, the fact that problems (Pλ) with a small λ are harder to solve, heavily influence
the number of iterations. This trade-off between iteration complexity and reconstruction accuracy
is illustrated in Figures 5 and 6. We observe in the plots the behavior predicted by Theorem 7.1:
the slower is the decay of λn, the better can be the solution, but also the larger is the number of
iterations needed to reach this reconstruction. To some extent, the parameters Nv and (Nwr, εwr)
play an analogue role to β in Theorem 7.1. One can also see that vanilla 3D and warm 3D can
behave similarly: for the parameters Nv = 104 and (Nwr, εwr) = (30, 10−6), both methods reach a
similar minimum value for the GTG, while requiring the same total amount of iterations.

We note that these two approaches outperform, in terms of computational time, the “classic”
Tikhonov regularization method. To illustrate this, we compare in Figure 7 the complexity of
classic Tikhonov and warm 3D methods, while the parameter εwr is fixed. While achieving the
same accuracy, classic Tikhonov requires between 2 to 4 times more iterations.

30

Figure 7: Cumulated number of iterations with re-
spect to λn, for different parameters. Dashed lines:
warm 3D with Nwr = 30 (from thin dark gray to thick
light gray: εwr = {10−4, 10−5, 10−6}). Solid lines:
classic Tikhonov (from thin dark gray to thick light
gray: εwr = {10−4, 10−5, 10−6}).

8.2 Parameter selection

In this section, we discuss the problem of the regularization parameter selection. We note again that
iterative regularization provide a different way to explore different regularization level, and not a
way to choose the right level. For the (3-D) method, the number of iterations n is the regularization
parameter, as shown in Proposition 7.1. The problem of choosing the right regularization level–
i.e. the right regularization parameter– is of paramount important and still one of the biggest
challenges in inverse problems. For illustration purposes, in previous numerical experiments, we
used the original image x̄ to find the iterate n̄ for which the ground truth gap GTG(xn) was
minimized. This parameter’s choice is clearly unrealistic in practical situations, where we only
have access to a noisy data ŷ. Many automatic parameters choice are known, e.g. Morozov’s
discrepancy principle [50], or SURE [70]). Next, we comment on how they can be adapted to (3-D)
and in particular, consider the SURE parameter selection method, that we briefly present below.

Remember from (4.1) that our algorithm can be written as xn+1 := Algorithm(xn;λn; ŷ). By
recurrence, we can then express each iterate xn as a function of the starting point and the data

xn = Algorithm(.. Algorithm(x0;λ0; ŷ); .. ;λn; ŷ),

or, more compactly, xn = An(x0; ŷ). The SURE is an unbiased estimator for the Mean Squared
Error,

MSE(x) = (1/d)‖A(xn − x̄)‖2,

provided we have access to the noisy data ŷ and the variance of the noise σ2. This estimator is
defined by:

SURE(xn) :=
1

d
‖Axn − ŷ‖2 +

2σ2

d
〈ADn, ξ〉,

where ξ ∼ N (0, IdRd) and Dn = ∂ŷAn(x0; ·)[ξ] is the weak directional derivative of An(x0; ·) at ŷ
in the direction ξ. For more details on this method, and how to compute it in practice, the reader
might consult [45, Section 4]).

31

The SURE estimator is depicted in Figure 8, in the setting of Example 8.1. One can see, and
this behavior was observed in all experiments, that the curve of SURE(xn) oscillates and is not
convex. This can be problematic when looking for a global minimum: the oscillations, together
with the fact that the global minimum of SURE often presents a sharp shape, do not allow to
find a robust minimizer. To circumvent these artifacts, we applied the following heuristic, which
proved to be efficient in our experiments: smoothing the curve of SURE(xn), and defining the
early stopping iterate n̂ as the one minimizing the slope of this smoothed version of SURE(xn).

Figure 8: Plot of various estimators with respect to λn. Light gray dashed line:
true MSE. Light gray cross: minimum of the true MSE. Gray plain line: SURE.
Black dotted line: smoothed SURE. Black cross: minimum slope of the smoothed
SURE. For display purposes, SURE and its smoothed version are here corrected
by an additive constant.

Note that the statistical properties of the SURE estimator rely on the assumption that the noise
is Gaussian [70, 45]. Nevertheless, as we will see below, it also provides surprisingly good results for
the impulse noise, while being less efficient for the Poisson noise, or the mixed Gaussian-impulse
noise.

8.3 Experiments for various noises and models

In this section, we run and compare vanilla 3D and warm 3D on a data-set, considering different
noises and models for recovering the images. This data-set, which is available online4, is made
of 23 images, whose size range from 500 × 375 to 515 × 512 pixels. For each experiment, the
range of parameters (λmax, λmin) will be chosen accordingly to the nature of the noise and its
variance. To fairly compare vanilla 3D and warm 3D, we will choose for each example the parameters
(Nv, Nwr, εwr) in such a way that the number of iterations for both methods is of the same order
(∼ 103). For each experiment, the early stopping will be defined according to two different rules:
keeping the notations of Section 8.2, n̄ will denote the iterate minimizing the ideal ground truth
gap GTG(xn), while n̂ will be the iterate defined by means of the SURE estimator.

4www.guillaume-garrigos.com/database/image_processing_512.zip

32

www.guillaume-garrigos.com/database/image_processing_512.zip

Example 8.2 Each image of the data-set is blurred and corrupted by a salt and pepper noise of
intensity 35%, and is reconstructed by using an L1 data-fit function D(u, y) = ‖u − y‖1, and a
regularizer enforcing sparsity in a wavelet dictionary:

(∀x ∈ X) R(x) = ‖Wx‖1 +
1

2
‖x‖2,

where here W is a Daubechies wavelet transform. We run the (3-D) algorithm for (λmax, λmin) =
(10, 10−1), and take Nv = 1000 and Nwr = 20, εwr = 10−5 for vanilla 3D and warm 3D, respectively.
The results are summarized in Table 1 and Figure 9.

vanilla 3D warm 3D

Iterations 1000 886± 160

GTG(xn̄) 1,14.10−4 ± 4,5.10−5 1,11.10−4 ± 4,3.10−5

GTG(xn̂) 1,37.10−4 ± 5,8.10−5 1,40.10−4 ± 6,0.10−5

Table 1: Results of the experiments for Example 8.2.

Figure 9: Samples from Example 8.2. From top to bottom: noisy
image, reconstruction with vanilla 3D having access to the GTG
(i.e. xn̄), reconstruction with vanilla 3D using SURE (i.e. xn̂),
and reconstruction with warm 3D (xn̄ then xn̂).

33

Example 8.3 Each image of the data-set is blurred and corrupted by a salt and pepper noise of
intensity 35%, and is reconstructed by using an L1 data-fit function D(u, y) = ‖u − y‖1, and a
regularizer based on the total variation:

(∀x ∈ X) R(x) =
1

10
‖x‖TV +

1

2
‖x‖2.

We run the (3-D) algorithm by taking (λmax, λmin) = (10, 10−1), with Nv = 1000 and Nwr = 20,
εwr = 10−5 for vanilla 3D and warm 3D, respectively. The results are summarized in Table 2 and
Figure 10.

vanilla 3D warm 3D

Iterations 1000 618± 106

GTG(xn̄) 1,02.10−4 ± 4,3.10−5 1,04.10−4 ± 4,0.10−5

GTG(xn̂) 1,05.10−4 ± 4,4.10−5 1,13.10−4 ± 4,1.10−5

Table 2: Results of the experiments for Example 8.3.

Figure 10: Samples from Example 8.3. From top to bottom:
noisy image, reconstruction with vanilla 3D having access
to the GTG (i.e. xn̄), reconstruction with vanilla 3D using
SURE (i.e. xn̂), and reconstruction with warm 3D (xn̄ then
xn̂).

34

Example 8.4 Each image of the data-set is blurred and corrupted by a Gaussian noise of variance
10−2, and is reconstructed by using an L2 data-fit functionD(u, y) = (1/2)‖u−y‖2, and a regularizer
based on the total variation:

(∀x ∈ X) R(x) = ‖x‖TV +
1

2
‖x‖2.

We run the (3-D) algorithm by taking (λmax, λmin) = (1, 10−2), with Nv = 1000 and Nwr = 20,
εwr = 10−4 for vanilla 3D and warm 3D, respectively. The results are summarized in Table 3 and
Figure 11.

vanilla 3D warm 3D

Iterations 1000 1096± 50

GTG(xn̄) 1,41.10−4 ± 4,4.10−5 1,42.10−4 ± 4,4.10−5

GTG(xn̂) 1,48.10−4 ± 4,1.10−5 1,56.10−4 ± 3,9.10−5

Table 3: Results of the experiments for Example 8.4.

Figure 11: Samples from Example 8.4. From top to bottom:
noisy image, reconstruction with vanilla 3D having access
to the GTG (i.e. xn̄), reconstruction with vanilla 3D using
SURE (i.e. xn̂), and reconstruction with warm 3D (xn̄ then
xn̂).

35

Example 8.5 Each image of the data-set is blurred and corrupted by a combination of a Gaussian
noise of variance 5.10−3 and a salt and pepper noise of intensity 5%, and is reconstructed using an
Huber data-fit function D(u, y) = Hσ(x − y) with σ = 0.1, and a regularizer based on the total
variation:

(∀x ∈ X) R(x) = ‖x‖TV +
1

2
‖x‖2.

We run the (3-D) algorithm by taking (λmax, λmin) = (10−1, 10−3), with Nv = 1000 and Nwr = 20,
εwr = 10−4 for vanilla 3D and warm 3D, respectively. The results are summarized in Table 4 and
Figure 12.

vanilla 3D warm 3D

Iterations 1000 3760± 131

GTG(xn̄) 1,56.10−4 ± 4,3.10−5 1,58.10−4 ± 4,3.10−5

GTG(xn̂) 2,16.10−4 ± 6,8.10−5 1,99.10−4 ± 8,2.10−5

Table 4: Results of the experiments for Example 8.5.

Figure 12: Samples from example 8.5. From top to bottom:
noisy image, reconstruction with vanilla 3D having access
to the GTG (i.e. xn̄), reconstruction with vanilla 3D using
SURE (i.e. xn̂), and reconstruction with warm 3D (xn̄ then
xn̂).

36

Example 8.6 Each image of the data-set is blurred and corrupted by a Poisson noise, and is
reconstructed by using a Kullback-Leibler data-fit function D(u, y) = KL(y;u+ b), where b models
a background noise of small intensity, and a regularizer based on the total variation:

(∀x ∈ X) R(x) =
1

10
‖x‖TV +

1

2
‖x‖2.

We run the (3-D) algorithm by taking (λmax, λmin) = (10−1, 10−3), with Nv = 1000 and Nwr = 20,
εwr = 10−4 for vanilla 3D and warm 3D, respectively. The results are summarized in Table 5 and
Figure 13.

vanilla 3D warm 3D

Iterations 1000 3674± 329

GTG(xn̄) 1,24.10−4 ± 4,2.10−5 1,26.10−4 ± 4,2.10−5

GTG(xn̂) 3,51.10−4 ± 3,9.10−5 6,80.10−4 ± 1,93.10−4

Table 5: Results of the experiments for Example 8.6.

Figure 13: Samples from Example 8.6. From top to bottom:
noisy image, reconstruction with vanilla 3D having access
to the GTG (i.e. xn̄), reconstruction with vanilla 3D using
SURE (i.e. xn̂), and reconstruction with warm 3D (xn̄ then
xn̂).

37

As can be seen in the above experiments, the results achieved by the vanilla 3D method and the
state-of-the-art warm 3D method are qualitatively comparable. Looking at the ideal early stopping
rule n̄, we see that they both perform very well in presence of impulse noise and Poisson noise (Ex-
amples 8.2, 8.3 and 8.6), and quite well in presence of Gaussian noise and mixed Gaussian-impulse
noise (Examples 8.4 and 8.5). Concerning the early stop n̂ defined with the SURE estimator, it
provided good reconstructions for Gaussian and impulse noise, but less satisfactory ones for the
Poisson noise, and mixed Gaussian-impulse noise. In the latter cases, the blur is removed but the
image is contaminated by the noise, due to a late stopping. This suggests that an appropriate
stopping rule should be investigated for these specific noises.

We emphasize that the practical performance of warm 3D, its computational time, and the
shape of the sequence (λn)n∈N, is crucially affected by the choice of εwr. For instance, in Examples
8.2 and 8.3, εwr = 10−5 and the number of iterations is around 700, while in Examples 8.5 and 8.6,
εwr is taken as 10−4 but the number of iterations is larger (around 3700). We see then in the vanilla
3D method an advantage, which is its direct control on the complexity of the method, thanks to the
a priori choice of Nv. This can be of interest in practice, if one has a fixed computational budget.

9 Conclusion

In this paper we propose and analyze the (3-D) algorithm, a new iterative regularization method for
solving ill-posed inverse problems, and show very good performances in practical imaging problems.
To the best of our knowledge this is the first iterative regularization scheme that allows to consider
general data fit terms and general regularizers, hence offering an alternative to standard Tikhonov
approaches. The method is based on the forward-backward algorithm applied to a dual problem in
a diagonal fashion. The proposed framework encompasses in particular the warm restart technique
often used for classical Tikhonov regularization.

Our study opens many venues for future research. For example, our stability result appears to
be suboptimal, since better result are known in special cases. It would then be interesting to see if
it can be improved. Moreover, in our analysis we assume a solution of the linear inverse problem
to exists, and it would be interesting to relax this assumption. Finally, considering convex, rather
than strongly convex, regularization would be of interesting.

10 Appendix

10.1 Proofs for Section 2

Proof. [of Lemma 2.1] By [14, Theorem 18.15] f∗ is differentiable on H1, and by [14, Proposition
16.23], ∇f∗ = (∂f)−1. Let x ∈ H1 and u ∈ ∂f(x). Since W is surjective and σ‖ · −x′‖2/2 has full
domain, it follows from [14, Proposition 16.42] that

u ∈W ∗∂J(Wx) + σ(x− x′).

Orthogonality of W implies σ−1Wu ∈ σ−1∂J(Wx) +W (x− x′), and hence

(σ−1Wu+Wx′) ∈ (σ−1∂J + I)(Wx).

The definition of proximity operator and the orthogonality of W yield

x = W ∗proxσ−1J(σ−1Wu+Wx′) = ∇f∗(u).

38

10.2 Proofs for Section 4

We start computing the conditioning modulus of various data-fit function terms and we establish
the properties we use.

Lemma 10.1 Let d ∈ N∗, let Y = Rd, and suppose that (AD) is satisfied. Then, the following
hold.

(i) Suppose that Dy = ‖ · −y‖p/p with p ∈]1, 2]. Then its conditioning modulus satisfies

(∀t ∈ R) m(t) = |t|p/p, and m∗(t) = |t|q/q,

where q is the conjugate exponent of p.

(ii) Suppose Dy = ‖ · −y‖1. Then its conditioning modulus satisfies

(∀t ∈ R) m(t) = |t|, and m∗(t) = δ[−1,1].

(iii) Suppose Dy = α1‖ · −y‖1#(α2/2)‖ · −y‖2 for some (α1, α2) ∈ R2
++. Then its conditioning

modulus satisfies, for every t ∈ R,

m(t) = α1hα2
α1

(t) h∗(t) = α1δ[−α1,α1](t) +
1

2α2
t2,

where hα2
α1

is the function defined in (3.2).

The proof of the above lemma is straightforward and it is omitted. The computation of the
conditioning modulus of the Kullback-Leibler divergence is more involved, and is done in the next
lemma.

Lemma 10.2 Let y ∈]0,+∞[d, and Dy = KL(y; ·).

(i) Let c = d‖y‖∞. A conditioning modulus for Dy is

(∀t ∈ R) m(t) := |t| − c ln
(
1 + c−1|t|

)
.

(ii) m∗(t) =

{
−c(|t|+ ln(1− |t|)) if t ∈]− 1, 1[,

+∞ otherwise.

(iii) m(t) = 1
2c t

2 + o(t2) and m∗(t) = c
2 t

2 + o(t2) for t→ 0.

Proof. In this proof we use the notations of Example 3.3. We will consider, for all α > 0 and t ∈ R,

mα(t) := kl(α, α+ |t|) = α ln

(
α

α+ |t|

)
+ |t|.

39

According to [13], mα ∈ Γ0(R). Moreover, argminmα = {0}, so t 7→ mα(t) is an increasing function
on [0,+∞[. For all t ∈ R, α 7→ mα(t) is decreasing, since

∀α > 0,
d

dα
mα(t) = ln

(
α

α+ |t|

)
− α

α+ |t|
+ 1 ≤ 0.

Let us start by showing a one dimensional analogue of (2.3):

∀α > 0, ∀β ∈ R, mα(|β − α|) ≤ kl(α, β). (10.1)

Note that when β ≤ 0, (10.1) is trivially satisfied because kl(α, β) = +∞. Moreover, if β ≥ α, we
have by definition of mα that mα(|β −α|) = kl(α, β). So without loss of generality, we can assume
that β ∈]0, α[. In this case, mα(|β − α|) = KL(α, α+ (α− β)). Introduce now the function

ξα : t ∈ [0, α[7−→ kl(α, α− t)− kl(α, α+ t).

It suffices to prove that ξα(t) ≥ 0 on]0, α[and then take t = α−β ∈]0, α[to obtain (10.1). To prove
this, first observe that ξα(0) = 0, and then observe that ξα is increasing on]0, α[by computing its
derivative:

∀t ∈]0, α[,
d

dt
ξα(t) =

2t2

α2 − t2
≥ 0.

Now that (10.1) is proved, let us prove item 1. Start by considering y = (yi)i∈{1,...,d} and x =

(xi)i∈{1,...,d} in Rd++, and let y∞ := max{yi | i ∈ {1, ..., d}}. Thanks to (10.1), we can write

KL(y, x) =
d∑
i=1

kl(yi, xi) ≥
d∑
i=1

myi(|xi − yi|). (10.2)

By using the fact that α 7→ mα(t) is decreasing, we can bound the above estimate from below with

KL(y, x) ≥
d∑
i=1

my∞(|xi − yi|).

Then, by using Jensen inequality applied to the convex function my∞ , we deduce that

1

d
KL(y, x) ≥ my∞

(
d∑
i=1

1

d
|xi − yi|

)
= my∞

(
1

d
‖xi − yi‖1

)
.

But an easy computation shows that mα(t/d) = mdα(t)/d, so that

1

d
KL(y, x) ≥ 1

d
mdy∞ (‖x− y‖1) .

By observing the fact that ‖x − y‖1 ≥ ‖x − y‖ and recalling that mdy∞ is an increasing function,
we finally obtain KL(y, x) ≥ mdy∞(‖x− y‖), which proves item 1.

We next prove 2, by computing the Fenchel conjugate of m. Since m(t) = mc(t) = cm1(t/c),
we derive m∗(t) = cm∗1(t). We then just have to compute

m∗1(t) = sup
s∈R

ηt(s), with ηt(s) = st− |s|+ ln(1 + |s|),

40

for every s ∈ R. If t = 0, we see from η0 ≤ 0 and η0(0) = 0 that η0 is maximized at 0, whence
m∗1(0) = 0. If t ∈]0, 1[, we have

d

ds
ηt(s) = t− 1 +

1

1 + s
on R++,

which is zero at s = t
1−t ∈ R++. Since ηt is concave, this means that it is maximized there,

whence m∗1(t) = −t − ln(1 − t). If t ∈] − 1, 0[, the same argument shows that ηt is maximized at
s = t

1+t ∈]−∞, 0[, leading in this case to m∗1(t) = t − ln(1 + t). From all of this, we see that
m∗1(t) = |t| − ln(1 − |t|) on] − 1, 1[. Moreover, m∗1(t) tends to +∞ when |t| → 1, so from the
convexity of m∗1 we deduce that m∗1(t) ≡ +∞ when |t| ≥ 1.

Item 3 is a simple consequence of item 2 and the classic Taylor expansion

ln(1 + t) = t− 1

2
t2 + o(t2) when t→ 0.

10.3 Proofs for Section 6

Lemma 10.3 Let f, g ∈ Γ0(R) and let a ∈]0,+∞]. Suppose that, f ≤ g in]−a, a[. If argmin g =
{0}, then there exists ε ∈ R++ such that

∀t ∈]− ε, ε[, f∗(t) ≥ g∗(t).

Proof. First, note that ∂g∗(0) = argmin g = {0} implies that 0 ∈ int dom g∗ (see [14, Prop. 11.12
& 14.16]). Let ε1 > 0 be such that]− ε1, ε1[⊂ int dom g∗. Then ∂g∗ is nonempty on]−ε1, ε1[, and
we can define a function η :]−ε1, ε1[→ R, such that η(t) ∈ ∂g∗(t) for all t ∈]− ε1, ε1[. We derive
from [14, Th. 17.31] and [14, Prop. 17.36] that η is continuous at zero. Now we are ready to prove
the desired inequality. By using the Fenchel-Young inequality successively on g and f , we write for
all t ∈]− ε1, ε1[:

g(η(t)) + g∗(t) = tη(t) ≤ f(η(t)) + f∗(t).

From the continuity of η at zero, we infer the existence of some ε2 ∈]0, ε1[such that |t| < ε2 ⇒
|η(t)| < a. We deduce from our assumption that f(η(t)) ≤ g(η(t)) holds for any t ∈]− ε2, ε2[, and
the conclusion follows.

Proof. [of Lemma 6.6] Let us start by proving ⇒. Assume that there exists some u† ∈ argmin d.
Define x̃ := ∇f∗(−A∗u†), which is equivalent to say that 0 ∈ A∗u†+∂f(x̃). Using Fermat’s rule on
d at u†, we obtain that A∇f∗(−A∗u†) ∈ ∂g∗(u†), which is equivalent to u† ∈ ∂g(Ax̃). So we have

0 ∈ ∂f(x̃) +A∗∂g(Ax̃), (10.3)

where a classic result [65, Corollary 3.31] shows that it implies 0 ∈ ∂(f + g ◦A)(x̃). Because of the
strong convexity of R, this is a sufficient condition for x̃ to be the unique solution of (P), x†. It
follows from (10.3) that we have 0 ∈ ∂f(x†) +A∗∂g∗(Ax†).

Now we turn on proving ⇐, and we assume that there exists some v ∈ ∂g(Ax†) such that
−A∗v ∈ ∂f(x†). Equivalently, ∇f∗(−A∗v) = x† holds, and this implies that A∇f∗(−A∗v) = Ax†.
Since v ∈ ∂g(Ax†) ⇔ Ax† ∈ ∂g∗(v), we deduce that A∇f∗(−A∗v) ∈ ∂g(v), which is a sufficient
condition for v to be a minimizer of d.

41

Now we end the proof by proving (6.14). Let u ∈ Y, x := ∇f∗(−A∗u), z ∈ ∂g∗(u), and we also
take z† := Ax†. Let u† ∈ argmin d, so that by using a similar argument as above, we can write
x† = ∇f∗(−A∗u†), and deduce that z† ∈ ∂g∗(u†). Define the Lagrangian

L(x′, z′, u′) := f(x′) + g(z′) + 〈u′, Ax′ − z′〉,

and compute

L(x†, z†, u)− L(x, z, u) = f(x†)− f(x)− 〈−A∗u, x† − x〉+ g(z†)− g(z)− 〈u, z† − z〉.

By using the fact that f is σ-strongly convex with −A∗u ∈ ∂f(x) and that g is convex with
u ∈ ∂g(z), we deduce that

L(x†, z†, u)− L(x, z, u) ≥ σ

2
‖x− x†‖2. (10.4)

On the one hand, using again −A∗u ∈ ∂f(x), u ∈ ∂g(z) together with the Fenchel-Young theorem
gives us

L(x, z, u) = −g∗(u)− f∗(−A∗u) = −d(u). (10.5)

On the other hand, using z† = Ax†, −A∗u† ∈ ∂f(x†) and u† ∈ ∂g(z†) together with the Fenchel-
Young theorem leads to

L(x†, z†, u) = f(x†) + g(Ax†) (10.6)

= −f∗(−A∗u†)− g∗(u†)
= −d(u†) = − inf d.

The result follows then from (10.4), (10.5) and (10.6).

10.4 Proofs for Section 7

Here we prove the estimations claimed in Example 5.6.

Lemma 10.4 Let H be a Hilbert space, G ∈ Γ0(H) with argmin G = {0}. Let (y1, y2) ∈ H2, and
φi := G(· − yi) for i ∈ {1, 2}. Then

sup
α>0

sup
u∈H

‖proxαφ1
(u)− proxαφ2

(u)‖ = ‖y1 − y2‖. (10.7)

Proof. Let α ∈ R++, and let u ∈ H. By using [37, Table 1.i], we can write for i ∈ {1, 2} that

proxαφi(u) = yi + proxαG(u− yi).

Then it follows that

‖proxαφ1
(u)− proxαφ2

(u)‖ = ‖(Id−proxαG)(u− y1)− (Id−proxαG)(u− y2)‖.

By using first the firm non expansiveness of the proximity operator [14, Prop. 12.27], one directly
obtains

sup
α>0

sup
u∈H

‖proxαφ1
(u)− proxαφ2

(u)‖ ≤ ‖y1 − y2‖. (10.8)

42

To achieve the equality in the inequality above, observe that proxαG(u− yi) converges strongly to
zero when α→ +∞, by using [25, Lem. 1] and argminG = {0}. This implies that

∀u ∈ H, ‖proxαφ1
(u)− proxαφ2

(u)‖ α→+∞−−→ ‖y1 − y2‖.

Lemma 10.5 Let y1, y2 ∈ Rd++, and φi := KL(yi, ·) for i ∈ {1, 2}. Let α ∈ R++. Then

sup
u∈Rd

‖proxαφ1
(u)− proxαφ2

(u)‖ =
√
α‖√y1 −

√
y2‖,

where
√
yi shall be understood component-wise.

Proof. Let u = (uj)j∈{1,...,d} ∈ Rd, and let us denote yi = (yij)j∈{1,...,d} for i ∈ {1, 2}. The proximity
operator of αφi at u is defined component-wise by (see [31, 48])

(
proxαφi(u)

)
j

=
1

2

(
uj − α+

√
(uj − α)2 + 4αyij

)
.

Then,

‖proxαφ1
(u)− proxαφ2

(u)‖2 =
1

4

d∑
j=1

∣∣∣∣√(uj − α)2 + 4αy1j −
√

(uj − α)2 + 4αy2j

∣∣∣∣2 .
Let (a, b) ∈ [0,+∞]2, and define

ξ : t ∈]0,+∞[7→
∣∣∣√t+ a−

√
t+ b

∣∣∣2 .
Since ξ is decreasing on R+, by considering uj = α for all j ∈ {1, . . . , d},

sup
uj∈R

∣∣∣∣√(uj − α)2 + 4αy1j −
√

(uj − α)2 + 4αy2j

∣∣∣∣2 =
∣∣√4αy1j −

√
4αy2j

∣∣2 = 4α|√y1j −
√
y2j |2.

We then conclude that

sup
u∈Rd

‖proxαφ1
(u)− proxαφ2

(u)‖2 =
d∑
j=1

α|√y1j −
√
y2j |2 = α‖√y1 −

√
y2‖2.

References

[1] P. Alart and B. Lemaire, Penalization in non-classical convex programming via variational
convergence, Mathematical Programming, 51, pp. 307–331, 1991.

[2] F. Alvarez and R. Cominetti, Primal and dual convergence of a proximal point exponential
penalty method for linear programming, Mathematical Programming, 93, pp. 87–96, 2002.

43

[3] H. Attouch, Viscosity Solutions of Minimization Problems, SIAM Journal on Optimization, 6,
pp. 769–806, 1996.

[4] H. Attouch, A. Cabot, and M.-O. Czarnecki, Asymptotic behavior of non-autonomous monotone
and subgradient evolution equations, arXiv:1601.00767, 2016.

[5] H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approx-
imation with the steepest descent method, Journal of Differential Equations, 128, pp. 519-540,
1996.

[6] H. Attouch and M.-O. Czarnecki, Asymptotic behavior of coupled dynamical systems with mul-
tiscale aspects, Journal of Differential Equations, 248, pp. 1315-1344, 2010.

[7] H. Attouch, M.-O. Czarnecki, and J. Peypouquet, Prox-Penalization and Splitting Methods for
Constrained Variational Problems, SIAM Journal on Optimization, 21, pp. 149–173, 2011.

[8] H. Attouch, M.-O. Czarnecki, and J. Peypouquet, Coupling Forward-Backward with Penalty
Schemes and Parallel Splitting for Constrained Variational Inequalities, SIAM Journal on Opti-
mization, 21, pp. 1251–1274, 2011.

[9] A. Auslender, J.-P. Crouzeix, and P. Fedit, Penalty-proximal methods in convex programming,
Journal of Optimization Theory and Applications, 55, pp. 1–21, 1987.

[10] M. Bachmayr and M. Burger, Iterative total variation schemes for nonlinear inverse problems,
Inverse Problems 25, 105004, 26 pp., 2009.

[11] M. A. Bahraoui and B. Lemaire, Convergence of diagonally stationary sequences in convex
optimization, Set-Valued Analysis, 2, pp. 49–61, 1994.

[12] A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse
Problems, Springer, New York, 2004.

[13] H.H. Bauschke and J. Borwein, Joint and Separate Convexity of the Bregman Distance, in
Studies in Computational Mathematics, Inherently Parallel Algorithms in Feasibility and Opti-
mization and their Applications, 8, pp. 23–36, 2001.

[14] H.H. Bauschke and P. Combettes, Convex analysis and monotone operator theory, Springer,
New York, 2011.

[15] A. Beck and S. Sabach, A first order method for finding minimal norm-like solutions of convex
optimization problems, Mathematical Programming, 147, pp. 25–46, 2014.

[16] A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for
convex optimization, Operations Research Letters, 31, pp. 167–175, 2003.

[17] S. Becker, J. Bobin, and E. Candès, NESTA: A Fast and Accurate First-Order Method for
Sparse Recovery, SIAM Journal on Imaging Sciences, 4, pp. 1–39, 2011.

[18] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing,
Bristol and Philadelphia, 1998.

44

http://arxiv.org/abs/1601.00767

[19] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. Suter, From error bounds to the complexity of
first-order descent methods for convex functions, arXiv:1510.08234, 2015.

[20] R. I. Bot and B. Hofmann, The impact of a curious type of smoothness conditions on conver-
gence rates in l1-regularization, Eurasian Journal of Mathematical and Computer Applications,
1, pp. 29–40, 2013.

[21] R. I. Bot and T. Hein, Iterative regularization with a general penalty term: theory and appli-
cation to L1 and TV regularization, Inverse Problems, 28, pp. 1–19, 2012.

[22] R. Boyer, Quelques algorithmes diagonaux en optimisation convexe, Ph.D., Université de
Provence, 1974.

[23] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM Journal on Imaging
Sciences, 3, pp. 492–526, 2010.

[24] L. Briceño-Arias and P. L. Combettes, A monotone + skew splitting model for composite
monotone inclusions in duality, SIAM Journal on Optimization 21, pp. 1230–1250, 2011.

[25] R. E. Bruck Jr., A strongly convergent iterative solution of 0 ∈ U(x) for a maximal monotone
operator U in Hilbert space, Journal of Mathematical Analysis and Applications, 48, pp. 114–126,
1974.

[26] M. Burger and S. Osher, A guide to the TV zoo. In Level Set and PDE Based Reconstruction
Methods in Imaging, pp. 1–70. Springer, 2013.

[27] M. Burger, E. Resmerita, and L. He, Error estimation for Bregman iterations and inverse
scale space methods in image restoration, Computing. Archives for Scientific Computing, 81, pp.
109–135, 2007.

[28] A. Cabot, The steepest descent dynamical system with control. Applications to constrained
minimization, ESAIM: Control, Optimisation and Calculus of Variations, 10, pp. 243–258, 2004.

[29] A. Cabot, Proximal Point Algorithm Controlled by a Slowly Vanishing Term: Applications to
Hierarchical Minimization, SIAM Journal on Optimization, 15, pp. 555–572, 2005.

[30] L. Calatroni, J.-C. De Los Reyes, and C.-B. Schönlieb, Infimal convolution of data discrepancies
for mixed noise removal, arXiv:1611.00690, 2016.

[31] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. Wajs, A variational formulation for frame-
based inverse problems, Inverse Problems 23, pp. 1495–1518, 2007.

[32] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related
problems, Numerische Mathematik, 76, pp. 167–188, 1997.

[33] A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with
Applications to Imaging, Journal of Mathematical Imaging and Vision 40, pp. 120–145, 2011.

[34] A. Chambolle and T. Pock, A remark on accelerated block coordinate descent for computing
the proximity operators of a sum of convex functions, preprint hal-01099182v2, 2015.

45

http://arxiv.org/abs/1510.08234
http://arxiv.org/abs/1611.00690

[35] P. L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, in Inherently Paral-
lel Algorithms in Feasibility and Optimization and Their Applications, (D. Butnariu, Y. Censor,
and S. Reich, Eds.), New York: Elsevier, pp. 115–152, 2001.

[36] P. L. Combettes, D. Dũng, and B. C. Vũ, Dualization of signal recovery problems, Set-Valued
and Variational Analysis, 18, pp. 373–404, 2010.

[37] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-
point algorithms for inverse problems in science and engineering, pp. 185–212, Springer, New
York, 2011.

[38] P. L. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with
mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Vari-
ational Analysis 20, pp. 307–330, 2012.

[39] P. L. Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting, Multi-
scale Modeling & Simulation, 4, pp. 1168–1200, 2005.

[40] R. Cominetti and O. Alemany, Steepest descent evolution equations: asymptotic behavior of
solutions and rate of convergence, Transactions of the American Mathematical Society, 351, pp.
4847–4860, 1999.

[41] R. Cominetti, J. Peypouquet, and S. Sorin, Strong asymptotic convergence of evolution equa-
tions governed by maximal monotone operators with Tikhonov regularization, Journal of Differ-
ential Equations, 245, pp. 3753–3763, 2008.

[42] R. Cominetti, Coupling the Proximal Point Algorithm with Approximation Methods, Journal
of Optimization Theory and Applications, 95, pp. 581–600, 1997.

[43] M.-O. Czarnecki, N. Noun, and J. Peypouquet, Splitting forward-backward penalty scheme for
constrained variational problems, arXiv:1408.0974, 2014.

[44] I. Daubechies, M. Defrise, and C. De Mol, An Iterative Thresholding Algorithm for Linear In-
verse Problems with a Sparsity Constraint, Communications on Pure and Applied Mathematics,
57, pp. 1413–1457, 2004.

[45] C.-A. Deledalle, S. Vaiter, J.-M. Fadili, and G. Peyré, Stein Unbiased GrAdient estimator of
the Risk (SUGAR) for multiple parameter selection, SIAM Journal on Imaging Sciences, 7, pp.
2448–2487, 2014.

[46] D. Donoho and I Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81,
pp.425–455, 1994.

[47] A. Dontchev and T. Zolezzi, Well-posed optimization problems, Springer-Verlag, Berlin, 1993.

[48] F.-X. Dupé, J. Fadili, andj.-L. Starck, Deconvolution under Poisson noise using exact data-fit
function and synthesis or analysis sparsity priors, Statistical Methodology, 9, pp. 4–18, 2012.

[49] H. Egger, On the Convergence of modified Landweber iteration for nonlinear inverse problems,
Johann Radon Institute Computational Applied Mathematics, Technical Report SFB-2010-017,
2010.

46

http://arxiv.org/abs/1408.0974

[50] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht,
1996.

[51] E. Hale, W. Yin, and Y. Zhang, Fixed-Point Continuation for `1-Minimization: Methodology
and Convergence, SIAM Journal on Optimization, 19, pp.1107–1130, 2008.

[52] M. Hintermüller and A. Langer, Subspace correction methods for a class of non-smooth and
non-additive convex variational problems with mixed `1/`2 data-fidelity in image processing,
SIAM Journal on Imaging Sciences, 6, pp. 2134–2173, 2013.

[53] B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear
Ill-Posed Problems, De Gruyter, Berlin, 2008.

[54] A. A. Kaplan, On Convex Programming with Internal Regularization, Soviet Mathematics,
Doklady Akademii Nauk, 19, pp. 795–799, 1975.

[55] A. A. Kaplan, Iteration processes of convex programming with internal regularization, Siberian
Mathematical Journal, 20, pp. 219–226, 1979.

[56] A. Langer, Automated Parameter Selection for Total Variation Minimization in Image Restora-
tion, arXiv 1509.07442v3, 2015.

[57] T. Le, R. Chartran, and T. Asaki,A variational approach to reconstructing images corrupted
by Poisson noise, Journal of Mathematical Imaging and Vision, 27, pp. 257–63, 2007.

[58] B. Lemaire, Coupling optimization methods and variational convergence, in Trends in Mathe-
matical Optimization, International Series of Numerical Mathematics, 84, pp. 163–179, 1988.

[59] B. Lemaire, On the Convergence of Some Iterative Methods for Convex Minimization, in Recent
Developments in Optimization, Lecture Notes in Economics and Mathematical Systems, 429,
pp. 252–268, 1995.

[60] B. Lemaire, Well-posedness, conditioning and regularization of minimization, inclusion and
fixed-point problems, Pliska Studia Mathematica Bulgarica, 12, pp. 71–84, 1998.

[61] S. Mallat, A Wavelet Tour of Signal Processing, 3rd edition. Elsevier/Academic Press, Ams-
terdam, 2009.

[62] B. Martinet, Perturbation des mthodes d’optimisation. Applications, R.A.I.R.O. - Analyse
numrique, 12, pp. 153–171, 1978.

[63] M. Nikolova, Minimizers of cost-functions involving non- smooth data-fidelity terms. Applica-
tion to the processing of outliers., SIAM Journal of Numerical Analysis 40, pp. 965–994, 2002.

[64] J. Peypouquet, Coupling the Gradient Method with a General Exterior Penalization Scheme
for Convex Minimization, Journal of Optimization Theory and Applications, 153, pp. 123–138,
2011.

[65] J. Peypouquet, Convex optimization in normed spaces. Theory, methods and examples.,
Springer, New York, 2015.

47

[66] R. Ramlau, TIGRA – an iterative algorithm for regularizing nonlinear ill-posed problems,
Inverse Problems, 19, pp. 433–465, 2003.

[67] S. Matet, L. Rosasco, S .Villa, and B. C. Vũ, Don’t relax: early stopping for convex regular-
ization, manuscript 2016.

[68] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Physica D: Nonlinear Phenomena, 60, pp.259–268, 1992.

[69] O. Scherzer, A Modified Landweber Iteration for Solving Parameter Estimation Problems, Ap-
plied Mathematics and Optimization, 38, pp. 45–68, 1998.

[70] C. Stein, Estimation of the mean of a multivariate normal distribution, Annals of Statistics,
9, pp. 1135–1151, 1981.

[71] I. Steinwart and A. Christmann, Support Vector Machines, Springer, New York, 2008.

[72] P. Tossings, The perturbed Tikhonov’s algorithm and some of its applications, ESAIM: Math-
ematical Modelling and Numerical Analysis, 28, pp. 189–221, 1994.

[73] P. Tseng, Applications of a Splitting Algorithm to Decomposition in Convex Programming and
Variational Inequalities, SIAM Journal on Control and Optimization, 29, pp. 119–138, 1991.

[74] H. Uzawa, Iterative methods for concave programming, in Studies in Linear and Nonlinear
Programming, Stanford University Press, Stanford, pp. 154–165, 1958.

[75] M. M. Vainberg, Le problème de la minimisation des fonctionelles non linéaires, C.I.M.E. IV
ciclo (1970).

[76] I. Yamada, M. Yukawa and M. Yamagishi, Minimizing the Moreau Envelope of Nonsmooth
Convex Functions over the Fixed Point Set of Certain Quasi-Nonexpansive Mappings, in Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, Springer New York, 2011.

[77] T. Zolezzi, On equiwellset minimum problems, Applied Mathematics and Optimization, 4, pp.
209–223, 1978.

[78] Z. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the
Royal Statistical Society, Series B, 67, pp. 301–320, 2005.

[79] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.

48

	1 Introduction
	2 Background and notation
	3 Background: inverse problems and regularization
	3.1 Linear inverse problems
	3.2 Tikhonov and iterative regularization

	4 The Diagonal Dual Descent (3-D) method
	4.1 Diagonal algorithms
	4.2 Main assumptions on the problem
	4.3 A primal-dual diagonal method
	4.4 Relationship between (3-D) and other methods

	5 Regularization properties of (3-D)
	5.1 Regularization
	5.2 Stability

	6 Theoretical analysis: convergence result
	7 (3-D) as an iterative regularization procedure
	8 Numerical results: Deblurring and denoising
	8.1 Introductory example
	8.2 Parameter selection
	8.3 Experiments for various noises and models

	9 Conclusion
	10 Appendix
	10.1 Proofs for Section ??
	10.2 Proofs for Section ??
	10.3 Proofs for Section ??
	10.4 Proofs for Section ??

