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THRESHOLDING GRADIENT METHODS IN HILBERT SPACES:
SUPPORT IDENTIFICATION AND LINEAR CONVERGENCE

GUILLAUME GARRIGOS, LORENZO ROSASCO, AND SILVIA VILLA

ABSTRACT. We study `1 regularized least squares optimization problem in a separable Hilbert
space. We show that the iterative soft-thresholding algorithm (ISTA) converges linearly, without
making any assumption on the linear operator into play or on the problem. The result is obtained
combining two key concepts: the notion of extended support, a finite set containing the support,
and the notion of conditioning over finite dimensional sets. We prove that ISTA identifies the solution
extended support after a finite number of iterations, and we derive linear convergence from the
conditioning property, which is always satisfied for `1 regularized least squares problems. Our
analysis extends to the the entire class of thresholding gradient algorithms, for which we provide
a conceptually new proof of strong convergence, as well as convergence rates.

KEYWORDS. Forward-Backward method, support identification, conditioning, convergence rates.

MSC. 49K40, 49M29, 65J10, 65J15, 65J20, 65J22, 65K15, 90C25, 90C46.

1. INTRODUCTION

Recent works show that, for many problems of interest, favorable geometry can greatly
improve theoretical results with respect to more general, worst-case perspective [1, 16, 5, 20].
In this paper, we follow this perspective to analyze the convergence properties of threshold
gradient methods in separable Hilbert spaces. Our starting point is the now classic iterative
soft thresholding algorithm (ISTA) to solve the problem

(1) f (x) = ‖x‖1 +
1
2
‖Ax− y‖2,

defined by an operator A on `2(N) and where ‖ · ‖1 is the `1 norm.
From the seminal work [11], it is known that ISTA converges strongly in `2(N). This result is

generalized in [9] to a wider class of algorithms, the so-called thresholding gradient methods,
noting that these are special instances of the Forward-Backward algorithm, where the proximal
step reduces to a thresholding step onto an orthonormal basis (Section 2). Typically, strong
convergence in Hilbert spaces is the consequence of a particular structure of the considered
problem. Classic examples being even functions, functions for which the set of minimizers
has a nonempty interior, or strongly convex functions [30]. Further examples are uniformly
convex functions, or functions presenting a favorable geometry around their minimizers, like
conditioned functions or Lojasiewicz functions, see e.g. [4, 20]. Whether the properties of ISTA,
and more generally threshold gradient methods, can be explained from this perspective is not
apparent from the analysis in [11, 9].

Our first contribution is revisiting these results providing such an explanation: for these
algorithms, the whole sequence of iterates is fully contained in a specific finite-dimensional
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subspace, ensuring automatically strong convergence. The key argument in our analysis is
that after a finite number of iterations, the iterates identify the so called extended support of
their limit. This set coincides with the active constraints at the solution of the dual problem,
and reduces to the support, if some qualification condition is satisfied.
Going further, we tackle the question of convergence rates, providing a unifying treatment of
finite and infinite dimensional settings. In finite dimensions, it is clear that if A is injective,
then f becomes a strongly convex function, which guarantees a linear convergence rate. In
[22], it is shown, still in a finite dimensional setting, that the linear rates hold just assuming
A to be injective on the extended support of the problem. This result is generalized in [8] to
a Hilbert space setting, assuming A to be injective on any subspace of finite support. Linear
convergence is also obtained by assuming the limit solution to satisfy some nondegeneracy
condition [8, 26]. In fact, it was shown recently in [6] that, in finite dimension, no assumption
at all is needed to guarantee linear rates. Using a key result in [25], the function f was shown
to be 2-conditioned on its sublevel sets, and 2-conditioning is sufficient for linear rates [2].
Our identification result, mentioned above, allows to easily bridge the gap between the finite
and infinite dimensional settings. Indeed, we show that in any separable Hilbert space, linear
rates of convergence always hold for the soft-thresholding gradient algorithm under no further
assumptions. Once again, the key argument to obtain linear rates is the fact that the iterates
generated by the algorithm identify, in finite time, a set on which we know the function to have
a favorable geometry.

The paper is organized as follows. In Section 2 we describe our setting and introduce the
thresholding gradient method. We introduce the notion of extended support in Section 3,
in which we show that the thresholding gradient algorithm identifies this extended support
after a finite number of iterations (Theorem 3.9). In Section 4 we present some consequences
of this result on the convergence of the algorithm. We first derive in Section 4.1 the strong
convergence of the iterates, together with a general framework to guarantee rates. We then
specify our analysis to the function (1) in Section 4.2, and show the linear convergence of ISTA
(Theorem 4.8). We also consider in Section 4.3 an elastic-net modification of (1), by adding an
`p regularization term, and provide rates as well, depending on the value of p ∈]1,+∞[.

2. THRESHOLDING GRADIENT METHODS

Notation. We introduce some notation we will use throughout this paper. N is a subset of N.
Throughout the paper, X is a separable Hilbert space endowed with the scalar product 〈·, ·〉,
and (ek)k∈N is an orthonormal basis of X. Given x ∈ X, we set xk = 〈x, ek〉. The support of x
is supp(x) = {k ∈ N | xk 6= 0}. Analogously, given C ⊂ X, Ck = {〈x, ek〉 : x ∈ C}. Given
J ⊂N, the subspace supported by J is denoted by XJ = {x ∈ X | supp(x) ⊂ J} and the subset
of finitely supported vectors c00 = {x ∈ X : supp(x) is finite }. Given a collection of intervals
{Ik}k∈N of the real line, with a slight abuse of notation, we define, for every k ∈ N ,

B∞,I =
⊕
k∈N

Ik = {x ∈ X : x = ∑
k∈N

tkek, with tk ∈ Ik for every k ∈ N}.

Note that
⊕

k∈N Ik is a subspace of X. Therefore, the components of each element of
⊕

k∈N Ik
must be square summable. The closed ball of center x ∈ X and radius δ ∈ ]0,+∞[ is denoted
by BX(x, δ). Let C ⊂ X be a closed convex set. Its indicator and support functions are denoted
δC and σC, respectively, and the projection onto C is projC. Moreover, int C, bd C, ri C, and qri C
will denote respectively the interior, the boundary, the relative interior, and the quasi relative
interior of C [4, Section 6.2]. The set of proper convex lower semi-continuous functions from
X to R ∪ {+∞} is denoted by Γ0(X). Let f ∈ Γ0(X) and let r ∈ ]0,+∞[. The sublevel set of f
is S f (r) = {x ∈ X | f (x)− inf f < r}. The proximity operator of f is defined as

(∀λ ∈ ]0,+∞[) proxλ f (x) = argmin {y ∈ X | f (y) +
1

2λ
‖y− x‖2}.
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Let I ⊂ R be a closed interval. Then, proxσI
= softI , where

(∀t ∈ R) softI(t) =


t− inf I if t < inf I
0 if t ∈ I
t− sup I if t > sup I,

is the soft-thresholder corresponding to I.

Problem and main hypotheses. We consider the general optimization problem

(P) min
x∈X

f (x), f = g + h,

where typically h will play the role of a smooth data fidelity term, and g will be a nonsmooth
sparsity promoting regularizer. More precisely, we will make the following assumption:

(H)



h ∈ Γ0(X) is bounded from below,
h is differentiable, and ∇h is L-Lipschitz continuous on X, L ∈ ]0,+∞[,
g = ∑

k∈N
gk(〈·, ek〉), with gk = ψk + σIk , where:

• for all k ∈ N , Ik is a proper closed interval of R, and I = {Ik}k∈N ,
• for all k ∈ N , (∃ω > 0) [−ω, ω] ⊂ Ik,
• for all k ∈ N , ψk ∈ Γ0(R) is differentiable at 0 with ψk(0) = 0 and ψ′k(0) = 0.

As stated in the above assumption, in this paper we focus on a specific class of functions g.
They are given by the sum of a weighted `1 norm and a positive smooth function minimized
at the origin, namely:

‖ · ‖1,I = ∑
k∈N

σIk , ψ = ∑
k∈N

ψk.

In [9] the following characterization has been proved: the proximity operators of such func-
tions g are the monotone operators T : X → X such that for all x ∈ X, T(x) = (Tk(xk))k∈N , for
some Tk : R→ R which satisfies

(∀k ∈ N ) Tk(xk) = 0 ⇐⇒ xk ∈ Ik.

A few examples of such, so called, thresholding operators are shown in Figure 1, and a more
in-depth analysis can be found in [9].

FIGURE 1. Some examples of thresholding proximal operators in R. On the left: | · | =
σ[−1,1] (blue), | · | + | · |1.5 (yellow), | · | + | · |2 (green), | · | + | · |6 (red). On the right:
| · |+ δ[−0.5,0.75] (blue), | · |+ | · |1.5 + δ[−1,1] (yellow), and | · | − ln(1− | · |) + δ]−1,1[ (red).
Observe that here the range of proxg is equal to the domain of ∂ψ.
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A well-known approach to approximate solutions of (P) is the Forward-Backward algorithm
[4]

(FB) x0 ∈ X, λ ∈]0, 2L−1[, xn+1 = proxλg(xn − λ∇h(xn)).

In our setting, (FB) is well-defined and specializes to a thresholding gradient method. The Propo-
sition below gathers some basic properties of g and f following from assumption (H).

Proposition 2.1. The following hold.
(i) ‖ · ‖1,I is the support function of B∞,I =

⊕
k∈N Ik,

(ii) dom ∂‖ · ‖1,I = c00,
(iii) g ∈ Γ0(X) and it is coercive,
(iv) f is bounded from below and argmin f is nonempty,
(v) the dual problem

(D) min
u∈X

g∗(u) + h∗(−u),

admits a unique solution ū ∈ X, and for all x̄ ∈ argmin f , ū = −∇h(x̄).
(vi) for all x ∈ X and all λ > 0, the proximal operator of g can be expressed as

proxλg(x) = ∑
k∈N

proxλψk
(softλIk(xk)) ek.

Proof. (i): see Proposition A.5(ii).
(ii): see Proposition A.5(iii).
(iii): see Proposition A.5(ii).
(iv): it is a consequence of the coercivity of g and the fact that both h and g are bounded

from below.
(v): the smoothness of h implies the strong convexity of h∗, and the existence and uniqueness

of ū, see [4, Theorems 15.13 and 18.15]. The equality ū = −∇h(x̄) follows from [4, Proposition
26.1(iv)(b)].

(vi): it follows from A.5(iv) together with [9, Proposition 3.6]. �

3. EXTENDED SUPPORT AND FINITE IDENTIFICATION

3.1. Definition and basic properties. We introduce the notion of extended support of a vector
and prove some basic properties of the support of solutions of problem (P).

Definition 3.1. Let x ∈ X. The extended support of x is

esupp(x) = supp(x) ∪ {k ∈ N | −∇h(x)k ∈ bd Ik}.

It is worth noting that the notion of extended support depends on the problem (P), since its
definition involves h (see Remark 3.4 for more details). It appears without a name in [22], and
also in [14, 15, 17] for regularized least squares problems. Below we gather some results about
the support and the extended support.

Proposition 3.2. Let x ∈ dom ∂ f , then supp(x) and esupp(x) are finite.

Proof. Let x ∈ dom ∂ f = dom ∂g, and let u ∈ ∂g(x) and let us start by verifying that supp(x)
is finite. Let x∗ ∈ ∂g(x), and let y = x + x∗. Proposition 2.1(vi) implies that for all k ∈ supp(x),
proxψk

◦ softIk(yk) 6= 0. Lemma A.4 and the definition of softIk imply that yk /∈ Ik, and in
particular that |yk| ě ω for all k ∈ supp(x). Then we derive that

|supp(x)| = ω−2 ∑
k∈supp(x)

ω2 ď ω−2 ∑
k∈supp(x)

|yk|2 ď ω−2‖y‖2 < +∞.

Next, we have to verify that J is finite, where J = {k ∈ N | − ∇h(x)k ∈ bd Ik}. If N is
finite, this is trivial. Otherwise, we observe that (∇h(x)k)k∈N ∈ `2(N ), which both implies
that ∇h(x)k tends to 0 when k→ +∞ in N . Since [−ω, ω] ⊂ Ik, we deduce that J must be
finite. �
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The following proposition clarifies the relationship between the support and the extended
support for minimizers.

Proposition 3.3. Let x̄ ∈ argmin f .
(i) If 0 ∈ qri ∂ f (x̄) then esupp(x̄) = supp(x̄).

Assume that ψk is differentiable on dom ∂ψk, for all k ∈ N . Then
(ii) esupp(x̄) = supp(x̄) ⇔ 0 ∈ qri ∂ f (x̄).

Assume moreover that ψ ≡ 0. Then
(iii) esupp(x̄) = {k ∈ N | −∇h(x̄)k ∈ bd Ik}.
(iv) There exists J ⊂ N such that J = esupp(x̄) for every x̄ ∈ argmin f .
(v) esupp(x̄) = ∪{supp(x) | x ∈ argmin f } ⇔ (∃x ∈ argmin f ) 0 ∈ qri ∂ f (x).

Proof of Proposition 3.3. Since x̄ ∈ argmin f ⊂ dom ∂g, it follows from Proposition 3.2 that
supp(x̄) is finite. Moreau-Rockafellar’s sum rule [29, Theorem 3.30], Proposition A.5(iii),
Proposition A.1(i) then yield

(2) ∂ f (x̄)k = ∇h(x̄)k +

{
∂ψk(x̄k) + ∂σIk(x̄k) if k ∈ supp(x̄)
Ik if k /∈ supp(x̄).

Since supp(x̄) is finite and ∂ψk(x̄k) + ∂σIk(x̄k) is a closed interval of R, Proposition A.3 and
Proposition A.1(iii) imply

(3) (∀k ∈ N ) (qri ∂ f (x̄))k = ∇h(x̄)k +

{
ri (∂ψk(x̄k) + ∂σIk(x̄k)) if k ∈ supp(x̄)
int Ik if k /∈ supp(x̄).

(i): observe that

0 ∈ qri ∂ f (x̄) ⇒ (∀k /∈ supp(x̄)) −∇h(x̄)k ∈ int Ik(4)
⇔ {k ∈ N | xk = 0 and −∇h(x̄)k ∈ bd Ik} = ∅
⇔ esupp(x̄) = supp(x̄).

(ii): note that from 0 ∈ ∂ f (x̄) and (2), we have −∇h(x̄)k ∈ ∂ψk(x̄k) + ∂σIk(x̄k) for all k ∈
supp(x̄). But both ψk and σIk are differentiable at x̄k 6= 0, so for all k ∈ supp(x̄), qri (∂ψk(x̄k) +
∂σIk(x̄k)) = ∂ψk(x̄k) + ∂σIk(x̄k) holds. So we deduce from (4) that item (ii) holds.

(iii): observe that, via (2) and Proposition A.1(ii), for all k ∈ supp(x̄), −∇h(x̄)k ∈ bd Ik,
meaning that indeed esupp(x̄) = {k ∈N | − ∇h(x̄)k ∈ bd Ik}.

(iv): it follows from the uniqueness of ∇h(x̄), see Proposition 2.1(v).
(v): if there is some x ∈ argmin f such that 0 ∈ qri ∂ f (x), we derive from (ii) and (iv)

that esupp(x̄) = supp(x). So, the inclusion esupp(x̄) ⊂ ∪{supp(x′) | x′ ∈ argmin f } holds.
The reverse inclusion comes directly from the definition of esupp(x̄) and (iv). For the reverse
inclusion, assume that esupp(x̄) = ∪{supp(x) | x ∈ argmin f } holds, and use the fact that
esupp(x̄) is finite to apply Lemma A.9, and obtain some x ∈ argmin f such that supp(x) =
esupp(x̄). We then conclude that 0 ∈ qri ∂ f (x) using (iv) and (ii). �

Remark 3.4 (Extended support and active constraints). Assume that ψ = 0. Since g∗ is the
indicator function of B∞,I , in this case, the dual problem (D) introduced in Proposition 2.1(v)
can be rewritten as

(D’) min
u∈X

(∀k∈N ) uk∈Ik

h∗(−u).

This problem admits a unique solution ū ∈ B∞,I , and the set of active constraints at ū is

{k ∈ N | ūk ∈ bd Ik}.
Since ū = −∇h(x̄) for any x̄ ∈ argmin f by Proposition 2.1(v), Proposition 3.3(iii) implies
that the extended support for the solutions of (P) is in that case nothing but the set of active
constraints for the solution of (D’).
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Remark 3.5 (Maximal support and interior solution). If ψ = 0 and the following (weak) quali-
fication condition holds

(w-CQ) (∃x ∈ argmin f ) 0 ∈ qri ∂ f (x),

then, thanks to Lemma A.9 the extended support is the maximal support to be found among
the solutions. If for instance h is the least squares loss on a finite dimensional space, it can
be shown that the solutions having a maximal support are the ones belonging to the relative
interior of the solution set [3, Theorem 2]. However, there are problems for which (w-CQ) does
not hold. In such a case Proposition 3.3 implies that the extended support will be strictly larger
than the maximal support (see Example 3.7). The gap between the maximal support and the
extended support is equivalent to the lack of duality between (P) and (D).

Example 3.6. Let g : R2 → R : x 7→ ‖x‖1 and h : R2 → R : x 7→ (x1 − x2 − 1)2. In this case,
argmin f = [x̄1, x̄2], where x̄1 = (0.5, 0) and x̄2 = (0,−0.5), as can be seen in Figure 2. The
solutions x̄ ∈]x̄1, x̄2[ are the ones having the maximal support, since supp(x̄) = {1, 2}, and
also satisfy 0 ∈ ri ∂ f (x̄). Instead, on the relative boundary of argmin f we have supp(x̄i) = {i}
and 0 /∈ ri ∂ f (x̄i) for i ∈ {1, 2}. This example is a one for which the extended support is the
maximal support among the solutions.

Example 3.7. Let g : R→ R : x 7→ |x| and h : R→ R : x 7→ (x− 1)2/2. Then argmin f = {x̄},
with x̄ = 0, as can be seen in Figure 2. The support of x̄ is empty, and 0 /∈ ri ∂ f (x̄) = [−2, 0].
In this case, condition (w-CQ) does not hold. This can also be seen from the dual problem
minu∈[−1,1] u2/2 − u, whose unique constraint is active at the solution ū = −∇h(x̄) = 1,
meaning that esupp(x̄) = {1} 6= supp(x̄).

FIGURE 2. Left and center: respectively level sets and graph of f in Example
3.6, with argmin f in thick. Right: graph of f in Example 3.7.

3.2. Finite identification. A sparse solution x̄ of problem (P) is usually approximated by means
of an iterative procedure (xn)n∈N. To obtain an interpretable approximation, a crucial prop-
erty is that, after a finite number of iterations, the support of xn stabilizes and is included in
the support of x̄. In that case, we say that the sequence (xn)n∈N identifies supp(x̄). The support
identification property has been the subject of active research in the last years [22, 15, 26, 18, 17],
and roughly speaking, in finite dimension it is known that support identification holds when-
ever x̄ satisfies the qualification condition 0 ∈ qri ∂ f (x̄). But this assumption is often not
satisfied in practice, in particular for noisy inverse problems (see e.g. [18]). In [22, 14], the case
g(x) = ‖x‖1 is studied in finite dimension and it is shown that the extended support of x̄ is
identified even if the qualification condition does not hold. Thus, the qualification condition
0 ∈ qri ∂ f (x̄) is only used to ensure that the extended support coincides with the support (see
Proposition 3.3).

In this section we extend these ideas to the setting of thresholding gradient methods in
separable Hilbert spaces, and we show in Theorem 3.9 that indeed the extended support is
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always identified after a finite number of iterations. For this, we need to introduce a quantity,
which measures the stability of the dual problem (D).

Definition 3.8. We define the function ρ : X −→ R as follows:

(5) (∀u ∈ X) ρ(u) = inf
uk∈int Ik

dist (uk, bd Ik).

Also, given any x̄ ∈ argmin f , we define ρsol = ρ(−∇h(x̄)).

It can be verified that ρ(u) ∈ ]0,+∞[ for all u ∈ X (this is left in the Annex, see Proposi-
tion A.2). Moreover, ρsol is uniquely defined, thanks to Proposition 2.1(v).

Theorem 3.9 (Finite identification of the extended support). Let (xn)n∈N be generated by the
Forward-Backward algorithm (FB), and let x̄ be any minimizer of f . Then, the number of iterations for
which the support of xn is not included in esupp(x̄) is finite, and cannot exceed ρ−2

sol λ
−2‖x0 − x̄‖2.

Remark 3.10 (Optimality of the identification result). Theorem 3.9 implies that after some iter-
ations the inclusion supp(xn) ⊂ esupp(x̄) holds. Let us verify that it is impossible to improve
the result, i.e. that in general we cannot identify a set smaller than esupp(x̄). In other words,
is it true that

(6) (∃x0 ∈ X)(∃x̄ ∈ argmin f )(∀n ∈N) supp(xn) = esupp(x̄)?

If (w-CQ) holds, the answer is yes. Indeed, if there is x̄ ∈ argmin f such that 0 ∈ qri ∂ f (x̄),
we derive from Proposition 3.3(i) that esupp(x̄) = supp(x̄). So by taking x0 = x̄, and us-
ing the fact that it is a fixed point for the Forward-Backward iterations, we conclude that
supp(xn) ≡ esupp(x̄). If (w-CQ) does not hold, then this argument cannot be used, and
it is not clear in general if there always exists an initialization which produces a sequence
verifying (6). Consider for instance the function in Example 3.7. Taking x0 ∈]0,+∞[ and a
stepsize λ ∈]0, 1[, the iterates are defined by xn+1 = (1− λ)xn, meaning that for all n ∈N,
supp(xn) ≡ {1}, which is exactly esupp(x̄). So in that case (6) holds true.

Proof. Let x̄ ∈ argmin f , and let E = Xesupp(x̄) be the finite dimensional subspace of X sup-
ported by esupp(x̄). First define the “gradient step” operator

Tλh = Id− λ∇h,

so that the Forward-Backward iteration can be rewritten as xn+1 = proxλg(Tλh(xn)). Proposi-
tion 2.1(vi) implies that for all k ∈ N and all n ∈N∗,

(7) xn
k = proxλψk

◦ softλIk(Tλh(xn−1)k).

Since x̄ is a fixed point for the forward-backward iteration [4, Proposition 26.1(iv)], we also
have

(8) x̄k = proxλψk
◦ softλIk(Tλh(x̄)k).

Using the fact that proxλψk
is nonexpansive, and that softλIk is firmly non-expansive [4, Propo-

sition 12.28], we derive

‖xn − x̄‖2 = ∑
k∈N
|xn

k − x̄k|2 ď ∑
k∈N
|softλIk(Tλh(xn−1)k)− softλIk(Tλh(x̄)k)|2

ď ∑
k∈N
|Tλh(xn−1)k − Tλh(x̄)k|2 − |(Id− softλIk)(Tλh(xn−1)k)− (Id− softλIk)(Tλh(x̄)k)|2

ď ‖Tλh(xn−1)− Tλh(x̄)‖2 − σ2
n,k,

where
σn,k = |(Id− softλIk)(Tλh(xn−1)k)− (Id− softλIk)(Tλh(x̄)k)|.

Moreover, the gradient step operator TG is non-expansive since λ ∈
]
0, 2L−1[ (see e.g. [24,

Lemma 3.2]), so we end up with

(9) (∀n ∈N∗)(∀k ∈ N ) ‖xn − x̄‖2 ď ‖xn−1 − x̄‖2 − σ2
n,k.

7



The key point of the proof is to get a nonnegative lower bound for σn,k which is independent
of n, when xn /∈ E.

Assume that there is some n ∈N∗ such that xn /∈ E. This means that there exists k ∈ N \
esupp(x̄) such that xn

k 6= 0. Also, since supp(x̄) ⊂ esupp(x̄), we must have x̄k = 0, meaning
that Tλh(x̄)k = −λ∇h(x̄)k. We deduce from (7), (8), and Lemma A.4, that

(10) Tλh(xn−1)k /∈ λIk and Tλh(x̄)k ∈ int λIk.

Since Id− softλIk is the projection on λIk, we derive from (10) that

σn,k = |projλIk
(Tλh(xn−1)k)− Tλh(x̄)k|.

Moreover projλIk
(Tλh(xn−1)k) ∈ bd Ik, therefore by Definition 3.8 and (10), we obtain that

σn,k ě λdist (λ−1Tλh(x̄)k, bd Ik) ě λρ(λ−1Tλh(x̄)k) = λρ(−∇h(x̄)k) = λρsol.

Plugging this into (9), we obtain

(11) ∀n ∈N∗, xn /∈ E ⇒ ‖xn − x̄‖2 ď ‖xn−1 − x̄‖2 − ρ2
solλ

2.

Next note that the sequence (xn)n∈N is Féjer monotone with respect to the minimizers of f (see
e.g. [20, Theorem 2.2]) — meaning that (‖xn − x̄‖)n∈N is a decreasing sequence. Therefore the
inequality (11) cannot hold an infinite number of times. More precisely, xn /∈ E can hold for at
most λ−2ρ−2

sol‖x0 − x̄‖2 iterations. �

4. STRONG CONVERGENCE AND RATES

4.1. General results for thresholding gradient methods. Strong convergence of the iterates
for the thresholding gradient algorithm was first stated in [11, Section 3.2] for g = ‖ · ‖1, and
then generalized to general thresholding gradient methods in [9, Theorem 4.5]. We provide
a new and simple proof for this result, exploiting the ”finite-dimensionality” provided by the
identification result in Theorem 3.9.

Corollary 4.1 (Finite dimensionality for thresholding gradient methods). Let (xn)n∈N be gen-
erated by a thresholding gradient algorithm. Then:

(i) There exists a finite set J ⊂ N such that xn ∈ XJ for all n ∈N∗.
(ii) xn converges strongly to some x̄ ∈ argmin f .

Proof. (i): let x ∈ argmin f and let

J = esupp(x)
⋃
{supp(xn) | n ∈N∗, xn /∈ Xesupp(x)},

and observe that it is finite, as a finite union of finite sets (see Proposition 3.2 and Theorem 3.9).
(ii): it is well known that argmin f 6= ∅ implies that (xn)n∈N converges weakly towards

some x̄ ∈ argmin f (see e.g. [20, Theorem 2.2]). In particular, (xn)n∈N is a bounded sequence
in X. Moreover, (i) implies that (xn)n∈N∗ belongs to XJ , which is finite dimensional. This two
facts imply that (xn)n∈N∗ is contained in a compact set of X with respect to the strong topology,
and thus converges strongly. �

Next we discuss the rate of convergence for the thresholding gradient methods. Beforehand,
we briefly recall how the geometry of a function around its minimizers is related to the rates
of convergence of the Forward-Backward algorithm.

Definition 4.2. Let p ∈ [2,+∞[ and Ω ⊂ X. We say that φ ∈ Γ0(X) is p-conditioned on Ω if

(∃γφ,Ω > 0)(∀x ∈ Ω)
γφ,Ω

p
dist (x, argmin φ)p ď φ(x)− inf φ.

A p-conditioned function is a function which somehow behaves like dist (·, argmin φ)p on a
set. For instance, strongly convex functions are 2-conditioned on Ω = X, and the constant
γφ,X is nothing but the constant of strong convexity. But the notion of p-conditioning is more
general and also describes the geometry of functions having more than one minimizer. For
instance in finite dimension, any positive quadratic function is 2-conditioned on Ω = X, in

8



which case the constant γφ,X is the smallest nonzero eigenvalue of the hessian. This notion is
interesting since it allows to get precise convergence rates for some algorithms (including the
Forward-Backward one) [2]:

• sublinear rates if p > 2,
• linear rates if p = 2.

For more examples, related notions and references, we refer the interested reader to [16, 5, 20].
Corollary 4.1 highlights the fact that the behavior of the thresholding gradient method es-

sentially depends on the conditioning of f on finitely supported subspaces. It is then natural
to introduce the following notion of finite uniform conditioning.

Definition 4.3. Let p ∈ [2,+∞[. We say that a function φ ∈ Γ0(X) satisfies the finite uniform
conditioning property of order p if, for every finite J ⊂ N , ∀x̄ ∈ argmin φ, ∀(δ, r) ∈]0,+∞[2, φ is
p-conditioned on XJ ∩BX(x̄, δ) ∩ Sφ(r).

Remark 4.4. In this definition, we only need information about φ over supports J satisfying
argmin φ ∩ XJ 6= ∅. Indeed, if argmin φ ∩ XJ = ∅, then φ is p-conditioned on XJ ∩BX(x̄, δ) ∩
Sφ(r) for any (δ, r) and for all p ∈ [2,+∞[ according to [20, Proposition 3.4].

In the following theorem, we illustrate how finite uniform conditioning guarantees global
rates of convergence for the threshold gradient methods: linear rates if p = 2, and sublinear
rates for p > 2. Note that these sublinear rates are better than the O(n−1) rate guaranteed in
the worst case.

Theorem 4.5 (Convergence rates for threshold gradient methods). Let (xn)n∈N be generated by
the Forward-Backward algorithm (FB), and let x̄ ∈ argmin f be its (weak) limit. Then the following
hold.

(i) If f satisfies the finite uniform conditioning property of order 2, then there exist ε ∈ ]0, 1[ and
C ∈ ]0,+∞[, depending on (λ, f , x0), such that

(∀n ě 1) f (xn)− inf f ď εn( f (x0)− inf f ) and ‖xn+1 − x̄‖ ď C
√

ε
n.

(ii) If f satisfies the finite uniform conditioning property of order p > 2, then there exist (C1, C2) ∈
]0,+∞[2, depending on (λ, f , x0), such that

(∀n ě 1) f (xn)− inf f ď C1n−
p

p−2 and ‖xn+1 − x∞‖ ď C2n−
1

p−2 .

Proof. According to Corollary 4.1, there exists a finite set J ⊂ N such that for all n ě 1, xn ∈
XJ , and xn converges strongly to x̄ ∈ argmin f . Also, the decreasing and Féjer properties
of the Forward-Backward algorithm (see e.g. [20, Theorem 2.2]) tells us that for all n ∈N,
xn ∈ BX(x̄, δ) ∩ S f (r), by taking δ = ‖x0 − x̄‖ and r = f (x0) − inf f . Therefore, thanks to
the finite uniform conditioning assumption, we can apply [20, Theorem 4.2] to the sequence
(xn+1)n∈N ⊂ Ω = XJ ∩BX(x̄, δ) ∩ S f (r) and conclude. �

4.2. `1 regularized least squares. Let A : X → Y be a linear operator from X to a separable
Hilbert space Y, and let y ∈ Y. In this section, we discuss the particular case when h(x) =
1
2‖Ax− y‖2

Y and ψ ≡ 0. The function in (P) then becomes

X 3 x 7→ f (x) = ‖x‖1,I +
1
2
‖Ax− y‖2

Y,

and the Forward-Backward algorithm specializes to the iterative soft-thresholding algorithm
(ISTA). In this special case, linear convergence rates have been studied under additional as-
sumptions on the operator A. A common one is injectivity of A or, more generally, the so-called
Finite Basis Injectivity property (FBI) [8]. The FBI requires A to be injective once restricted to
XJ , for any finite J ⊂ N . It is clear that the FBI property implies that h is a strongly convex
function once restricted to each XJ , meaning that the finite uniform conditioning of order 2
holds. So, the linear rates obtained in [8, Theorem 1] under the FBI assumption can be directly
derived from Theorem 4.5. However, as can be seen in Theorem 4.5 , strong convexity is not
necessary to get linear rates, and the finite uniform 2-conditioning is a sufficient condition (and
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it is actually necessary, see [20, Proposition 4.18]). By using Li’s Theorem on convex piecewise
polynomials [25, Corollary 3.6], we show in Proposition 4.7 below that f satisfies a finite uni-
form conditioning of order 2 on finitely supported subsets, without doing any assumption on
the problem. First, we need a technical Lemma which establishes the link between the condi-
tioning of a function on a finitely supported space and the conditioning of its restriction to this
space.

Lemma 4.6. Let φ ∈ Γ0(X), let m ∈ N∗ and let J = {k1, . . . , km} ⊂ N . Suppose that x̄ ∈
argmin φ ∩ XJ . Let Ξ : Rm → XJ : (u1, ..., um) 7→ ∑m

i=1 uieki . Assume that, for every (δ, r) ∈
]0,+∞[2,

φJ = φ ◦ Ξ ∈ Γ0(R
m) is p-conditioned on BRm(Ξ−1(x̄), δ) ∩ SφJ (r)

Then φ is p-conditioned on XJ .

Proof. Assume without loss of generality that k1 < ... < km. Also, observe that x̄ ∈ XJ ∩
argmin φ implies that ū = Ξ−1(x̄) is well-defined. By definition, inf φ ď inf φJ , and

inf φ = φ(x̄) = φ ◦ Ξ(ū) = φJ(ū) ě inf φJ ,

which implies inf φ = inf φJ . Also, we have

x ∈ Ξ(argmin φJ)⇔ x = Ξ(u) and φJ(u) = inf φJ ⇔ x ∈ XJ and φ(x) = inf φ,

meaning that Ξ(argmin φJ) = argmin φ∩XJ . Let (δ, r) ∈ ]0,+∞[2, and let Ω = XJ ∩BX(x̄, δ)∩
Sφ(r). Since φJ is p-conditioned on BRm(Ξ−1(x̄), δ) ∩ SφJ (r) there exists γ ∈ ]0,+∞[ such that

(12) (∀u ∈ BRm(ū, δ) ∩ SφJ (r))
γ

p
dist (u, argmin φJ)

p ď φJ(u)− inf φJ .

Let x = Ξ(u) in (12). Since ‖Ξ‖ = 1, it is easy to see that ‖x− x̄‖ ď δ and φ(x)− inf φ < r. So
we can rewrite (12) as:

(∀x ∈ Ω)
γ

p
dist (Ξ−1x, argmin φJ)

p ď φ(x)− inf φ.

It follows from Ξ(argmin φJ) = argmin φ ∩ XJ that

(∀x ∈ Ω) φ(x)− inf φ ě
γ

p
dist (x, argmin φ ∩ XJ)

p ě
γ

p
dist (x, argmin f )p.

Therefore φ is p-conditioned on Ω. �

Proposition 4.7 (Conditioning of `1 regularized least squares). Let (Y, ‖ · ‖Y) be a separable
Hilbert space, let y ∈ Y and let A : X → Y be a bounded linear operator. In assumption (H)
suppose that for every k ∈ N , Ik ∈ I is bounded. Then X 3 x 7→ f (x) = ‖x‖1,I +

1
2‖Ax− y‖2

Y
has a finite uniform conditioning of order 2.

Proof. Let J ⊂ N , J = {k1, . . . , km}, with k1 < . . . < km, and suppose that argmin f ∩ XJ 6= ∅.
Define, using the same notation as in Lemma 4.6

hJ : Rm → R : u 7→ 1
2
‖AΞu− y‖2

Y.

Define AJ = AΞ : Rm → Y, and let SJ = (A∗J AJ)
1/2, which verifies R(S∗J ) = R(A∗J ). Thus,

there exists yJ ∈ Rm such that A∗J y = S∗J yJ , so that we can rewrite

(13) hJ(u) =
1
2
‖AJu‖2

Rm +
1
2
‖y‖2

Y − 〈AJu, y〉Y =
1
2
‖SJu− yJ‖2

Rm +
1
2
(‖y‖2

Y − ‖yJ‖2
Rm).

Set sk = SJek ∈ Y. Then, (13) yields

f J(u) =
m

∑
i=1

σIki
(ui) +

1
2

m

∑
i,j=1
〈ski , sk j〉Yuiuj −

m

∑
i=1

(S∗J yJ)iui +
1
2
‖y‖2

Y.

Since the intervals Ik are bounded, their support functions are finite valued and piecewise
linear, so f J is a piecewise polynomial of degree two in Rm. We then apply [25, Corollary 3.6]
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to derive that f J is 2-conditioned on S f J (r), for any r ∈ ]0,+∞[. We conclude by using Lemma
4.6. �

Combining Theorem 4.5 and Proposition 4.7, we can now state our main result concerning
the linear rates of ISTA.

Theorem 4.8 (Linear convergence for the iterative soft thresholding). Under the assumptions of
Proposition 4.7, let (xn)n∈N be the sequence generated by the forward-backward algorithm applied to f .
Then (xn)n∈N converges strongly to some x̄ ∈ argmin f , and there exists two constants ε ∈ ]0, 1[ and
C ∈ ]0,+∞[, depending on (λ, L, x0, I , A, y), such that

(∀n ě 1) f (xn)− inf f ď εn( f (x0)− inf f ) and ‖xn+1 − x̄‖ ď C
√

ε
n.

Remark 4.9 (On the linear rates). The convergence rate for the iterative soft-thresholding has
been a subject of interest since years, and have been obtained only under additional assump-
tions on A [8]. Theorem 4.8 closes the question about the linear rates, by proving that they
always hold. However, there are still several open problems, related to the estimation of the
constant appearing in these linear rates. This is related to the estimation of the constant γ f ,Ω
in Definition 4.2, when Ω = S f (r) ∩ XJ for some finite J ⊂ N . Up to now, the only available
result is based on Hoffman’s lemma, which doesn’t allow for explicit lower bounds on γ f ,Ω
[28, 6]. Having a tight lower bound for γ f ,Ω, depending on A restricted to XJ , would be of
interest to go in this direction.

4.3. `1 + `p regularized least squares. We are now interested in `1 + `p-regularizers, i.e. when

g(x) = ‖x‖1,I +
1
p
‖x‖p, with ‖x‖p = ∑

k∈N

|xk|p, p > 1.

The case p = 2 is also known as elastic net regularization and has been proposed in [34]. The
elasitc-net penalty has been studied by the statistical machine learning community as an al-
ternative to the `1 regularization in variable selection problems where there are highly cor-
related features and all the relavant ones have to be identified [13]. See also [10] for the
case p < 2. Note that the proximal operator of such g can be computed explicitly when
p ∈ {4/3, 3/2, 2, 3, 4} (see [9]).

Proposition 4.10 (Geometry of (`1 + `p) regularized least squares). Let p ∈]1,+∞[, let (Y, ‖ ·
‖Y) be a separable Hilbert space, let y ∈ Y and let A : X → Y be a bounded linear operator.
In assumption (H) suppose that for every k ∈ N , Ik ∈ I is bounded. Then f : X → R : x 7→
‖x‖1,I +

1
p‖x‖

p
p +

1
2‖Ax− y‖2

Y has a finite uniform conditioning of order max{2, p}.

Proof. Let J ⊂ N , m = |J| and p′ = max{p, 2}. We define, by using the same notation as in
Lemma 4.6,

gJ(u) =
m

∑
i=1

σIki
(ui) +

1
p
|ui|p and hJ(u) =

1
2
‖AΞu− y‖2

Y.

We are going to prove that f J = gJ + hJ is p′-conditioned on BRm(ū, δ), for any δ > 0. To do
so, we will apply to f J the sum rule in Theorem A.7, which requires two hypotheses. We must
verify that the functions gJ and hJ are conditioned up to linear perturbations (see equation
(18)), and that the qualification condition in (19) holds, namely (since Rm is finite dimensional
the strong relative interior coincides with the relative interior):

(14) 0 ∈ ri
(
∂g∗J (−∇hJ(ū))− ∂h∗J (∇hJ(ū))

)
.

According to (13), ∂h∗J (∇hJ(ū)) = ū + ker SJ . Also, according to [4, Proposition 13.30 & Ex-
ample 13.27(iii)], we have, for every v ∈ Rm, g∗J (v) = ∑m

i=1
1
q dist (vi, Iki)

q, with q = p/(p− 1).
Since t 7→ |t|q is continuously differentiable on R, [4, Example 17.33 and Proposition 17.31(ii)])
imply that g∗J is Gâteaux differetiable on Rm. This, together with the fact that ri ker SJ = ker SJ ,
means that (14) is equivalent to

(15) 0 ∈ ri
(
∇g∗J (−∇hJ(ū))− ū + ker SJ

)
= ∇g∗J (−∇hJ(ū))− ū + ker SJ .
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The latter inclusion holds true, since ū ∈ argmin f J is equivalent to ū ∈ ∇g∗J (−∇hJ(ū)). Thus,
it only remains to prove that h̄J = hJ − 〈`, ·〉 and ḡJ = gJ − 〈`, ·〉 are respectively 2 and p′-
conditioned on BRm(ū, δ), for ` being respectively in R(∇hJ) and R(∂gJ).

Let us start with h̄J . According to (13), h̄J is a positive quadratic function being bounded
from below, so it is 2-conditioned on Rm, with γh̄J ,Rm being the smallest nonzero eigenvalue
of SJ . Next, ` ∈ R(∂gJ) implies that there exists v ∈ X such that ` ∈ ∂ḡJ(v). Then, 0 ∈
∂ḡJ((v)), and this implies that v is a minimizer of ḡJ . It is also unique since gj is strictly convex.
If v /∈ BRm(ū, δ), then ḡJ is automatically p′-conditioned on BRm(ū, δ), see for instance [20,
Proposition 3.3]. Assume then that v ∈ BRm(ū, δ), and use [10, Proposition A.9] to obtain the
existence of γ ∈ ]0,+∞[ such that

(∀u ∈ BRm(ū, δ))(∀i ∈ {1, ..., m}) γ

p′
|ui − vi|p

′
ď

1
p
|ui|p −

1
p
|vi|p − (ui − vi)sgn(vi)|vi|p−1.

Summing the above inequality over i, and using the fact that ‖ · ‖p′
2 ď max{1, m(p−2)/2}‖ · ‖p′

p′ ,

we derive by taking γ′ = γ max{1, m(p−2)/2}−1 that for all u ∈ BRm(ū, δ):

(16)
γ′

p′
dist (u, argmin ḡJ)

p′ ď

m

∑
i=1

1
p
|ui|p −

1
p
|vi|p − (ui − vi)sgn(vi)|vi|p−1.

Introduce the following constant: ωi = sup Iki if `i > sup Iki , ωi = |`i| if `i ∈ Iki , and wi =
− inf Iki if `i < inf Iki . By making use of the first order condition at v = argmin ḡJ , it can be
verified that

(∀i ∈ {1, ..., m}) |vi|p−1 = |`i| −ωi, sgn(vi) = sgn(`i) and σIki
(vi) = ωi|vi|.

So we can deduce that
1
p
|ui|p −

1
p
|vi|p − (ui − vi)sgn(vi)|vi|p−1

=
1
p
|ui|p −

1
p
|vi|p − (ui − vi)(`i − sgn(vi)ωi)

=
1
p
|ui|p −

1
p
|vi|p − ui`i + vi`i − σIki

(vi) + uisgn(`i)ωi.

This, combined with (16), leads to

γ′

p′
dist (u, argmin ḡJ)

p′ ď ḡJ(u)− inf ḡJ +
m

∑
i=1
−σIki

(ui) + uisgn(`i)ωi ď ḡJ(u)− inf ḡJ ,

where the last inequality comes from the fact that sgn(`i)ωi ∈ Iki . So we proved that ḡJ is
p′-conditioned on BRm(ū, δ). Theorem A.7 then yields that f J is p′-conditioned on BRm(ū, δ).
We conclude the proof applying Lemma 4.6. �

Combining Theorem 4.5 and Proposition 4.10, be obtain rates for the corresponding thresh-
olding gradient method.

Theorem 4.11. Under the assumptions of Proposition 4.10, let (xn)n∈N be the sequence generated by
the forward-backward algorithm applied to f . Then (xn)n∈N converges strongly to some x̄ ∈ argmin f .
If p ∈]1, 2[, there exists two constants ε ∈ ]0, 1[ and C ∈ ]0,+∞[, depending on (λ, L, x0, I , A, y, p),
such that

(∀n ě 1) f (xn)− inf f ď εn( f (x0)− inf f ) and ‖xn+1 − x̄‖ ď C
√

ε
n.

If p ∈]2,+∞[, there exists two constants (C1, C2) ∈]0,+∞[2, depending on (λ, L, x0, I , A, y, p), such
that

(∀n ě 1) f (xn)− inf f ď C1n−
p

p−2 and ‖xn+1 − x∞‖ ď C2n−
1

p−2 .
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5. CONCLUSION AND PERSPECTIVES

In this paper we study and highlight the importance of the notion of extended support for
minimization problems with sparsity inducing separable penalties. An identification result,
together with uniform conditioning on finite dimensional sets, allow us to generalize and re-
visit classic convergence results for thresholding gradient methods, from a novel and different
perspective, while further providing new convergence rates.

An interesting direction for future research would be to go beyond separable penalties, in
particular extending our results to regularizers promoting structured sparsity [27], such as
group lasso. A reasonable approach would be to extend the primal-dual arguments in [18] to
the infinite-dimensional setting. A more challenging research direction seems the extension of
our results to gridless problems [17]. Indeed, our analysis relies on the fact that the variables
(signals) we consider are supported on a grid (indexed by N ⊂ N), which allows to use
finite-dimensional arguments. Such an extension would require to work on Banach spaces of
functions or of measures, and seems an interesting venue for future research.
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APPENDIX A. ANNEX

A.1. Closure, interior, boundary.

Proposition A.1. Let C ⊂ X be a closed convex set. Then:
(i) ∂σC(0) = C.

(ii) For all d ∈ X \ {0}, ∂σC(d) ⊂ bd C.
Assume moreover that int C 6= ∅.

(iii) int C = qri C.

Proof. (i): see [4, Example 16.34].
(ii): see [4, Proposition 7.3 & Theorem 7.4].
(iii): see [4, Fact 6.14]. �

Proposition A.2. Let I = (Ik)k∈N be a collection of closed proper intervals of R, and suppose
that [−ω, ω] ⊂ Ik for all k ∈ N . For every x ∈ X, let

(17) ρ(x) = inf
xk∈int Ik

dist (xk, bd Ik).

Then the following hold
(i) For every x ∈ X, ρ(x) ∈ ]0,+∞[;

(ii) int (
⊕

k∈N Ik) =
⊕

k∈N int Ik;

Proof. (i) Let x ∈ X. If N is finite the statement follows immediately. If N is infinite, since
|xk| tends to 0 when k → +∞, there exists K ∈ N such that for all k ě K, |uk| ď ω/2. Now,
consider the following subsets of N

J = {k ∈ N | uk ∈ int Ik}, JF = J ∩ {0, . . . , K− 1}, J∞ = J \ JF,

which are defined in such a way that ρ(x) = infk∈J dist (uk, bd Ik) and J = JF t J∞. Observe
that ρ(x) ď dist (xK, bd IK) < +∞ since bd IK 6= ∅, so we only need to show that ρ(x) > 0.
Since JF is finite and xk ∈ int Ik for all k ∈ JF, we have dist (xk, bd Ik) > 0 for all k ∈ JF. So we
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deduce that infk∈JF dist (xk, bd Ik) > 0. On the other hand, for any k ∈ J∞, we have |uk| ď ω/2,
while [−ω, ω] ⊂ Ik, therefore dist (xk, bd Ik) ě ω/2, and ρ(x) = infk∈J dist (xk, bd Ik) > 0 .

(ii): let x ∈ int
⊕

k∈N Ik. We are going to show that xk ∈ int Ik for all k ∈ N . By assumption,
there exists δ ∈ ]0,+∞[ such that BX(x, δ) ⊂ ⊕

k∈N Ik. Let k ∈ N , and let us show that
[xk − δ, xk + δ] ⊂ Ik. Let yk ∈ [xk − δ, xk + δ], and define x̄ ∈ X such that x̄k = yk and x̄i = xi
for every i 6= k. Then we derive ‖x − x̄‖ = |xk − yk| = δ, whence x̄ ∈ B(x, δ) ⊂ ⊕

k∈N Ik.
This implies that yk ∈ Ik, which proves that xk ∈ int Ik. Now, we let x ∈ ⊕k∈N int Ik, and we
show that x ∈ int (

⊕
k∈N Ik). By (i), ρ(x) > 0 and, for every k ∈ N , xk ∈ int Ik by assumption.

Let η ∈ ]0, ρ[. Since dist (xk, bd Ik) ě ρ(x), we derive [xk − η, xk + η] ⊂ Ik. On the other hand,
the non-expansiveness of the projection implies that ‖xk − pk‖ ď ‖xk − yk‖ ď η < ρ, which
leads to a contradiction. Therefore BX(x, η) ⊂ ⊕

k∈N [xk − η, xk + η] ⊂ ⊕
k∈N Ik. This yields

x ∈ int
⊕

k∈N Ik. �

Proposition A.3 (Quasi relative interior of infinite products). Let I = (Ik)k∈N be a collection of
closed intervals of R. Let J ⊂ N be a finite set, and suppose that [−ω, ω] ⊂ Ik for all k ∈ N \ J.
Then

qri
⊕
k∈N

Ik =
⊕
k∈N

ri Ik.

Proof. Assume N is infinite and set J∞ = N \ J. We can then write

qri
⊕
k∈N

Ik = qri
(
(
⊕
k∈J∞

Ik)⊕ (
⊕
k∈J

Ik)

)
because J is finite,

= qri (
⊕
k∈J∞

Ik)⊕ (
⊕
k∈J

qri Ik) by [7, Proposition 2.5],

= (
⊕
k∈J∞

int Ik)⊕ (
⊕
k∈J

qri Ik) by Proposition A.2,

=
⊕
k∈N

ri Ik by Proposition A.1(iii).

�

A.2. Functions.

Lemma A.4. Let ψ ∈ Γ0(X) be differentiable at 0 ∈ argmin ψ and let x ∈ X. Then

x = 0⇔ proxψ(x) = 0.

Proof. proxψ(x) = 0⇔ (Id + ∂ψ)−1(x) = 0⇔ x ∈ 0 + ∂ψ(0)⇔ x = ∇ψ(0)⇔ x = 0. �

Proposition A.5. Let gk ∈ Γ0(R) with inf gk = gk(0) = 0 for all k ∈ N . Define g : X →
R∪ {+∞} : x 7→ ∑k∈N gk(xk). Then:

(i) g ∈ Γ0(X).
(ii) dom ∂g = {x ∈ X | ⊕k∈N ∂gk(xk) 6= ∅}.

(iii) For all x ∈ dom ∂g, ∂g(x) =
⊕

k∈N ∂gk(xk).
(iv) For all x ∈ X, proxg(x) = ∑k∈N proxgk

(xk)ek.

Proof. (i): g is convex by definition. It is proper because g(0) = 0 and g ě 0. Fatou’s lemma
implies that g is lower semicontinuous.

(ii)-(iii): follow directly from the fact that

(∀(x∗, x) ∈ X2) x∗ ∈ ∂g(x) ⇔ (∀y ∈ X) g(y)− g(x)− 〈x∗, y− x〉 ě 0

⇔ (∀y ∈ X) ∑
k∈N

gk(yk)− gk(xk)− 〈x∗k , yk − xk〉 ě 0

⇔ (∀k ∈ N ) x∗k ∈ ∂gk(xk),

where the last equivalence holds by taking for all k ∈ N yi = xi if i 6= k.
14



(iv): let (x, p) ∈ X2. It follows from (iii) that

p = proxg(x) ⇐⇒ p− x ∈ ∂g(p)

=⇒ (∀k ∈ N ) pk − xk ∈ ∂gk(pk)

⇐⇒ (∀k ∈ N ) pk = proxgk
(xk).

�

Proposition A.6. Let I = (Ik)k∈N is a family of proper closed interval of R. Let, for every
x ∈ X, g(x) = ∑k∈N σIk(xk). Then the following hold.

(i) g is coercive if and only if 0 ∈ int Ik for all k ∈ N .
Assume moreover that there exists ω > 0 such that [−ω, ω] ⊂ Ik for all k ∈ N . Then

(ii) g ∈ Γ0(X) is coercive and g is the support function of B∞,I =
⊕

k∈N Ik,
(iii) dom ∂g = c00 and dom ∂g∗ = B∞,I ,
(iv) for every x ∈ X, and for every λ > 0, proxλg(x) =

(
xk − λprojIk

(λ−1xk)
)

k∈N
.

Proof. (i): observe that

g is coercive ⇔ (∀k ∈ N ) σIk is coercive (take xk = 0 except for one index k)
⇔ (∀k ∈ N ) 0 ∈ int dom σ∗Ik

by [4, Proposition 14.16]

⇔ (∀k ∈ N ) 0 ∈ int Ik since σ∗Ik
= δIk .

(ii): assume thatN is infinite. Item (i) implies that g ∈ Γ0(X) and is coercive. To prove that g is
the support function of B∞,I , we will show that g∗ is its indicator function. Let x∗ ∈ X. Then

g∗(x∗) = sup
x∈X
〈x∗, x〉 − g(x) = sup

x∈X
∑

k∈N
〈x∗k , xk〉 − σIk(xk)

ď ∑
k∈N

sup
xk∈Xk

〈x∗k , xk〉 − σIk(xk) = ∑
k∈N

σ∗Ik
(x∗k ) = δB∞,I (x∗)

To prove the converse inequality, since x∗ ∈ X, there exists some K ∈ N such that for all k ě K,
‖x∗k‖ < ω, meaning that x∗k ∈ Ik, and therefore δIk(x∗k ) = 0. Let JK = {0, . . . , K − 1}. Since we
deal with a finite sum,

δB∞,I (x∗) = ∑
k∈JK

δIk(x∗k ) = ∑
k∈JK

sup
xk∈R

〈x∗k , xk〉 − σIk(xk) = sup
x∈XJK

∑
k∈JK

〈x∗k , xk〉 − σIk(xk).

Moreover, setting J∞ = N \ JK:

sup
x∈XJ∞

∑
k∈J∞

〈x∗k , xk〉 − σIk(xk) ě 0,

and this yields

δB∞,I (x∗) ď sup
x∈XJK

∑
k∈JK

〈x∗k , xk〉 − σIk(xk) + sup
x∈XJ∞

∑
k∈J∞

〈x∗k , xk〉 − σIk(xk) = g∗(x∗).

(iii): assume that N is infinite. The equality dom ∂g∗ = B∞,I follows from (ii). It remains to
show that dom ∂g = c00. Let x ∈ dom ∂g. By Proposition A.5(ii) there exists x∗ ∈ ⊕k∈N ∂σIk(xk).
For all k ∈ N , Proposition A.1(i)-(ii) yields that ∂σIk(xk) = Ik if xk = 0, and ∂σIk(xk) ⊂ bd Ik
if xk 6= 0. Assume by contradiction that x /∈ c00, i.e. there exists kn → +∞ such that xkn 6= 0
for all n ∈ N. Then, it follows that x∗kn

∈ bd Ikn for all n ∈N, and therefore ‖x∗kn
‖ ě ω, which

contradicts the fact that x∗ ∈ X. Now, let x ∈ c00 and let K ∈ N be such that xk = 0 for all
k ě K and let NK = N ∩ {0, . . . , K}. By Proposition A.1(i) ∂σIk(xk) = Ik 3 0 for all k ě K,
therefore

∅ 6=
⊕

k∈NK

∂σIk(xk) ⊂ ∂g(x).

(iv): is a direct consequence of Proposition A.5(iv) and Moreau’s identity [4, Theorem 14.3.ii].
�
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We recall a sum rule for conditioning, obtained in [20, Theorem 3.1].

Theorem A.7. Let f = g + h, where g ∈ Γ0(X) and h ∈ Γ0(X) is of class C1. Let Ω ⊂ X. Assume
that there exists x̄ ∈ argmin f such that, for v̄ = −∇h(x̄) and (p1, p2) ∈ [1,+∞[2,

(18) g− 〈v̄, ·〉 is p1-conditioned on Ω and h + 〈v̄, ·〉 is p2-conditioned on Ω.

Suppose that

0 ∈ sri(∂g∗(v̄)− ∂h∗(−v̄)),(19)

and let p = max{p1, p2}. Then, for any δ ∈ ]0,+∞[, f is p-conditioned on Ω ∩BX(0, δ).

A.3. Auxiliary results.

Lemma A.8. Let {x1, ..., xN} ⊂ X be a finite family. Then there exists x̄ ∈ co{x1, ..., xN} such
that supp(x̄) = ∪{supp(xi) | i ∈ {1, ..., N}}.

Proof. We proceed by induction. If N = 1 this is trivially true. Let us turn on the N = 2 case, by
considering {x1, x2} in X. If supp(x1) = supp(x2), then it is enough to take x̄ = x1 or x̄ = x2.
Assume that supp(x1) 6= supp(x2). Define

Λ =

{
|x2

k |
|x2

k − x1
k |
| k ∈ N , x1

k x2
k < 0

}
.

Λ is well defined because x1
k x2

k < 0 implies that x2
k − x1

k 6= 0. Moreover, Λ ⊂ ]0, 1[, and is at
most countable. Let λ ∈ ]0, 1[ \ Λ, and define x̄ = λx1 + (1− λ)x2. By definition we have
x̄ ∈ co{x1, x2}, so it remains to check that supp(x̄) = supp(x1) ∪ supp(x2). To prove this, first
assume that k ∈ supp(x̄). If k ∈ supp(x1) it is trivial, so assume that k /∈ supp(x1). In that case
x̄k = λ · 0+ (1− λ)x2

k , where λ 6= 1 and x̄k 6= 0, from which we deduce that k ∈ supp(x2). This
shows that supp(x̄) ⊂ supp(x1) ∪ supp(x2) Now, take k ∈ supp(x1) ∪ supp(x2), and assume
by contradiction that x̄k = 0. Then

x1
k 6= 0, x2

k 6= 0, x1
k = (1− λ−1)x2

k , and λ =
|x2

k |
|x2

k − x1
k |

,

which contradicts the fact that λ /∈ Λ. Therefore supp(x1) ∪ supp(x2) ⊂ supp(x̄). Assume
now that the statement holds for N ě 2, and let us prove it for N + 1. Let {x1, ..., xN , xN+1} ⊂ X
be a finite family. By inductive hypotheses we can find some x̄1 ∈ co{x1, ..., xN} such that
supp(x̄1) = ∪{supp(xi) | i ∈ {1, ..., N}}. Moreover, the inductive hypotheses guarantees
the existence of some x̄ ∈ co{x̄1, xN+1} such that supp(x̄) = supp(x̄1) ∪ supp(xN+1). We
derive from the definition of x̄1 that supp(x̄) = ∪{supp(xi) | i ∈ {1, ..., N + 1}}. Also, x̄1 ∈
co{x1, ..., xN} and x̄ ∈ co{x̄1, xN+1} imply that x̄ ∈ co{x1, ..., xN , xN+1}, which ends the proof.

�

Lemma A.9. Let C ⊂ X be a convex nonempty set, and J = ∪{supp(x) | x ∈ C}. If J is finite,
then there exists x̄ ∈ C such that supp(x̄) = J.

Proof. Since J is finite, there exists a finite family {x1, ..., xN} ⊂ C such that J = ∪{supp(xi) | i ∈
{1, ..., N}}. It suffices then to apply the previous lemma to obtain such x̄ ∈ co{x1, ..., xN} ⊂
C. �
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[26] J. Liang, J. Fadili and G. Peyré, Local linear convergence of Forward–Backward under partial smoothness, in Ad-
vances in Neural Information Processing Systems, pp. 1970–1978, 2014.

[27] S. Mosci , L. Rosasco , M. Santoro , A. Verri and S. Villa Solving Structured Sparsity Regularization with Proximal
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