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We study 1 regularized least squares optimization problem in a separable Hilbert space. We show that the iterative soft-thresholding algorithm (ISTA) converges linearly, without making any assumption on the linear operator into play or on the problem. The result is obtained combining two key concepts: the notion of extended support, a finite set containing the support, and the notion of conditioning over finite dimensional sets. We prove that ISTA identifies the solution extended support after a finite number of iterations, and we derive linear convergence from the conditioning property, which is always satisfied for 1 regularized least squares problems. Our analysis extends to the the entire class of thresholding gradient algorithms, for which we provide a conceptually new proof of strong convergence, as well as convergence rates.

INTRODUCTION

Recent works show that, for many problems of interest, favorable geometry can greatly improve theoretical results with respect to more general, worst-case perspective [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF][START_REF] Drusvyatskiy | Error bounds, quadratic growth, and linear convergence of proximal methods[END_REF][START_REF] Blanchet | A family of functional inequalities: lojasiewicz inequalities and displacement convex functions[END_REF][START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF]. In this paper, we follow this perspective to analyze the convergence properties of threshold gradient methods in separable Hilbert spaces. Our starting point is the now classic iterative soft thresholding algorithm (ISTA) to solve the problem [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF] f (x) =

x 1 + 1 2 Ax -y 2 ,
defined by an operator A on 2 (N) and where • 1 is the 1 norm.

From the seminal work [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF], it is known that ISTA converges strongly in 2 (N). This result is generalized in [START_REF] Combettes | Proximal Thresholding Algorithm for Minimization over Orthonormal Bases[END_REF] to a wider class of algorithms, the so-called thresholding gradient methods, noting that these are special instances of the Forward-Backward algorithm, where the proximal step reduces to a thresholding step onto an orthonormal basis (Section 2). Typically, strong convergence in Hilbert spaces is the consequence of a particular structure of the considered problem. Classic examples being even functions, functions for which the set of minimizers has a nonempty interior, or strongly convex functions [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF]. Further examples are uniformly convex functions, or functions presenting a favorable geometry around their minimizers, like conditioned functions or Lojasiewicz functions, see e.g. [START_REF] Bauschke | Convex analysis and monotone operator theory[END_REF][START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF]. Whether the properties of ISTA, and more generally threshold gradient methods, can be explained from this perspective is not apparent from the analysis in [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF][START_REF] Combettes | Proximal Thresholding Algorithm for Minimization over Orthonormal Bases[END_REF].

Our first contribution is revisiting these results providing such an explanation: for these algorithms, the whole sequence of iterates is fully contained in a specific finite-dimensional subspace, ensuring automatically strong convergence. The key argument in our analysis is that after a finite number of iterations, the iterates identify the so called extended support of their limit. This set coincides with the active constraints at the solution of the dual problem, and reduces to the support, if some qualification condition is satisfied. Going further, we tackle the question of convergence rates, providing a unifying treatment of finite and infinite dimensional settings. In finite dimensions, it is clear that if A is injective, then f becomes a strongly convex function, which guarantees a linear convergence rate. In [START_REF] Hale | Fixed-Point Continuation for 1 -Minimization: Methodology and Convergence[END_REF], it is shown, still in a finite dimensional setting, that the linear rates hold just assuming A to be injective on the extended support of the problem. This result is generalized in [START_REF] Bredies | Linear convergence of iterative soft-thresholding[END_REF] to a Hilbert space setting, assuming A to be injective on any subspace of finite support. Linear convergence is also obtained by assuming the limit solution to satisfy some nondegeneracy condition [START_REF] Bredies | Linear convergence of iterative soft-thresholding[END_REF][START_REF] Liang | Local linear convergence of Forward-Backward under partial smoothness[END_REF]. In fact, it was shown recently in [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF] that, in finite dimension, no assumption at all is needed to guarantee linear rates. Using a key result in [START_REF] Li | Global error bounds for piecewise convex polynomials[END_REF], the function f was shown to be 2-conditioned on its sublevel sets, and 2-conditioning is sufficient for linear rates [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF]. Our identification result, mentioned above, allows to easily bridge the gap between the finite and infinite dimensional settings. Indeed, we show that in any separable Hilbert space, linear rates of convergence always hold for the soft-thresholding gradient algorithm under no further assumptions. Once again, the key argument to obtain linear rates is the fact that the iterates generated by the algorithm identify, in finite time, a set on which we know the function to have a favorable geometry.

The paper is organized as follows. In Section 2 we describe our setting and introduce the thresholding gradient method. We introduce the notion of extended support in Section 3, in which we show that the thresholding gradient algorithm identifies this extended support after a finite number of iterations (Theorem 3.9). In Section 4 we present some consequences of this result on the convergence of the algorithm. We first derive in Section 4.1 the strong convergence of the iterates, together with a general framework to guarantee rates. We then specify our analysis to the function (1) in Section 4.2, and show the linear convergence of ISTA (Theorem 4.8). We also consider in Section 4.3 an elastic-net modification of (1), by adding an p regularization term, and provide rates as well, depending on the value of p ∈]1, +∞[.

THRESHOLDING GRADIENT METHODS

Notation.

We introduce some notation we will use throughout this paper. N is a subset of N. Throughout the paper, X is a separable Hilbert space endowed with the scalar product •, • , and (e k ) k∈N is an orthonormal basis of X. Given x ∈ X, we set

x k = x, e k . The support of x is supp(x) = {k ∈ N | x k = 0}. Analogously, given C ⊂ X, C k = {
x, e k : x ∈ C}. Given J ⊂ N, the subspace supported by J is denoted by X J = {x ∈ X | supp(x) ⊂ J} and the subset of finitely supported vectors c 00 = {x ∈ X : supp(x) is finite }. Given a collection of intervals {I k } k∈N of the real line, with a slight abuse of notation, we define, for every k ∈ N ,

B ∞,I = k∈N I k = {x ∈ X : x = ∑ k∈N t k e k , with t k ∈ I k for every k ∈ N }.
Note that k∈N I k is a subspace of X. Therefore, the components of each element of k∈N I k must be square summable. The closed ball of center x ∈ X and radius δ ∈ ]0, +∞[ is denoted by B X (x, δ). Let C ⊂ X be a closed convex set. Its indicator and support functions are denoted δ C and σ C , respectively, and the projection onto C is proj C . Moreover, int C, bd C, ri C, and qri C will denote respectively the interior, the boundary, the relative interior, and the quasi relative interior of C [4, Section 6.2]. The set of proper convex lower semi-continuous functions from

X to R ∪ {+∞} is denoted by Γ 0 (X). Let f ∈ Γ 0 (X) and let r ∈ ]0, +∞[. The sublevel set of f is S f (r) = {x ∈ X | f (x) -inf f < r}.
The proximity operator of f is defined as

(∀λ ∈ ]0, +∞[) prox λ f (x) = argmin {y ∈ X | f (y) + 1 2λ y -x 2 }.
Let I ⊂ R be a closed interval. Then, prox σ I = soft I , where

(∀t ∈ R) soft I (t) =      t -inf I if t < inf I 0 if t ∈ I t -sup I if t > sup I,
is the soft-thresholder corresponding to I.

Problem and main hypotheses. We consider the general optimization problem

(P) min x∈X f (x), f = g + h,
where typically h will play the role of a smooth data fidelity term, and g will be a nonsmooth sparsity promoting regularizer. More precisely, we will make the following assumption:

(H)                      h ∈ Γ 0 (X) is bounded from below, h is differentiable, and ∇h is L-Lipschitz continuous on X, L ∈ ]0, +∞[, g = ∑ k∈N g k ( •, e k ), with g k = ψ k + σ I k
, where:

• for all k ∈ N , I k is a proper closed interval of R, and

I = {I k } k∈N , • for all k ∈ N , (∃ω > 0) [-ω, ω] ⊂ I k , • for all k ∈ N , ψ k ∈ Γ 0 (R) is differentiable at 0 with ψ k (0) = 0 and ψ k (0) = 0.
As stated in the above assumption, in this paper we focus on a specific class of functions g. They are given by the sum of a weighted 1 norm and a positive smooth function minimized at the origin, namely:

• 1,I = ∑ k∈N σ I k , ψ = ∑ k∈N ψ k .
In [START_REF] Combettes | Proximal Thresholding Algorithm for Minimization over Orthonormal Bases[END_REF] the following characterization has been proved: the proximity operators of such functions g are the monotone operators T : X → X such that for all x ∈ X, T(x) = (T k (x k )) k∈N , for some T k : R → R which satisfies

(∀k ∈ N ) T k (x k ) = 0 ⇐⇒ x k ∈ I k .
A few examples of such, so called, thresholding operators are shown in Figure 1, and a more in-depth analysis can be found in [START_REF] Combettes | Proximal Thresholding Algorithm for Minimization over Orthonormal Bases[END_REF]. Observe that here the range of prox g is equal to the domain of ∂ψ.

A well-known approach to approximate solutions of (P) is the Forward-Backward algorithm [START_REF] Bauschke | Convex analysis and monotone operator theory[END_REF] (FB)

x 0 ∈ X, λ ∈]0, 2L -1 [, x n+1 = prox λg (x n -λ∇h(x n )).
In our setting, (FB) is well-defined and specializes to a thresholding gradient method. The Proposition below gathers some basic properties of g and f following from assumption (H). admits a unique solution ū ∈ X, and for all x ∈ argmin f , ū = -∇h( x). (vi) for all x ∈ X and all λ > 0, the proximal operator of g can be expressed as

prox λg (x) = ∑ k∈N prox λψ k (soft λI k (x k )) e k .
Proof. (i): see Proposition A.5(ii).

(ii): see Proposition A.5(iii).

(iii): see Proposition A.5(ii).

(iv): it is a consequence of the coercivity of g and the fact that both h and g are bounded from below.

(v): the smoothness of h implies the strong convexity of h * , and the existence and uniqueness of ū, see [START_REF] Bauschke | Convex analysis and monotone operator theory[END_REF]Theorems 15.13 and 18.15]. The equality ū = -∇h( x) follows from [4, Proposition 26.1(iv)(b)].

(vi): it follows from A.5(iv) together with [9, Proposition 3.6].

EXTENDED SUPPORT AND FINITE IDENTIFICATION

3.1. Definition and basic properties. We introduce the notion of extended support of a vector and prove some basic properties of the support of solutions of problem (P).

Definition 3.1. Let x ∈ X. The extended support of x is esupp(x) = supp(x) ∪ {k ∈ N | -∇h(x) k ∈ bd I k }.
It is worth noting that the notion of extended support depends on the problem (P), since its definition involves h (see Remark 3.4 for more details). It appears without a name in [START_REF] Hale | Fixed-Point Continuation for 1 -Minimization: Methodology and Convergence[END_REF], and also in [START_REF] Degraux | Sparse Support Recovery with Non-smooth Loss Functions[END_REF][START_REF]A necessary and sufficient condition for exact recovery by l1 minimization[END_REF][START_REF] Duval | Sparse Spikes Super-resolution on Thin Grids I: the LASSO[END_REF] for regularized least squares problems. Below we gather some results about the support and the extended support. Proposition 3.2. Let x ∈ dom ∂ f , then supp(x) and esupp(x) are finite.

Proof. Let x ∈ dom ∂ f = dom ∂g, and let u ∈ ∂g(x) and let us start by verifying that supp(x) is finite. Let x * ∈ ∂g(x), and let y = x + x * . Proposition 2.1(vi) implies that for all k ∈ supp(x), prox ψ k • soft I k (y k ) = 0. Lemma A.4 and the definition of soft I k imply that y k / ∈ I k , and in particular that |y k | ě ω for all k ∈ supp(x). Then we derive that

|supp(x)| = ω -2 ∑ k∈supp(x) ω 2 ď ω -2 ∑ k∈supp(x) |y k | 2 ď ω -2 y 2 < +∞.
Next, we have to verify that J is finite, where J = {k ∈ N | -∇h(x) k ∈ bd I k }. If N is finite, this is trivial. Otherwise, we observe that (∇h(x) k ) k∈N ∈ 2 (N ), which both implies that ∇h(x) k tends to 0 when k → +∞ in N . Since [-ω, ω] ⊂ I k , we deduce that J must be finite.

The following proposition clarifies the relationship between the support and the extended support for minimizers.

Proposition 3.3. Let x ∈ argmin f . (i) If 0 ∈ qri ∂ f ( x) then esupp( x) = supp( x). Assume that ψ k is differentiable on dom ∂ψ k , for all k ∈ N . Then (ii) esupp( x) = supp( x) ⇔ 0 ∈ qri ∂ f ( x). Assume moreover that ψ ≡ 0. Then (iii) esupp( x) = {k ∈ N | -∇h( x) k ∈ bd I k }. (iv) There exists J ⊂ N such that J = esupp( x) for every x ∈ argmin f . (v) esupp( x) = ∪{supp(x) | x ∈ argmin f } ⇔ (∃x ∈ argmin f ) 0 ∈ qri ∂ f (x). Proof of Proposition 3.3. Since x ∈ argmin f ⊂ dom ∂g, it follows from Proposition 3.2 that supp( x) is finite. Moreau-Rockafellar's sum rule [29, Theorem 3.30], Proposition A.5(iii), Proposition A.1(i) then yield (2) ∂ f ( x) k = ∇h( x) k + ∂ψ k ( xk ) + ∂σ I k ( xk ) if k ∈ supp( x) I k if k / ∈ supp( x).
Since supp( x) is finite and

∂ψ k ( xk ) + ∂σ I k ( xk ) is a closed interval of R, Proposition A.3 and Proposition A.1(iii) imply (3) (∀k ∈ N ) (qri ∂ f ( x)) k = ∇h( x) k + ri (∂ψ k ( xk ) + ∂σ I k ( xk )) if k ∈ supp( x) int I k if k / ∈ supp( x). (i): observe that 0 ∈ qri ∂ f ( x) ⇒ (∀k / ∈ supp( x)) -∇h( x) k ∈ int I k (4) ⇔ {k ∈ N | x k = 0 and -∇h( x) k ∈ bd I k } = ∅ ⇔ esupp( x) = supp( x).
(ii): note that from 0 ∈ ∂ f ( x) and ( 2), we have -∇h( 

∈ supp( x), -∇h( x) k ∈ bd I k , meaning that indeed esupp( x) = {k ∈ N | -∇h( x) k ∈ bd I k }.
(iv): it follows from the uniqueness of ∇h( x), see Proposition 2.1(v). (v): if there is some x ∈ argmin f such that 0 ∈ qri ∂ f (x), we derive from (ii) and (iv) that esupp( x) = supp(x). So, the inclusion esupp( x) ⊂ ∪{supp(x ) | x ∈ argmin f } holds. The reverse inclusion comes directly from the definition of esupp( x) and (iv). For the reverse inclusion, assume that esupp( x) = ∪{supp(x) | x ∈ argmin f } holds, and use the fact that esupp( x) is finite to apply Lemma A.9, and obtain some x ∈ argmin f such that supp(x) = esupp( x). We then conclude that 0 ∈ qri ∂ f (x) using (iv) and (ii). Remark 3.4 (Extended support and active constraints). Assume that ψ = 0. Since g * is the indicator function of B ∞,I , in this case, the dual problem (D) introduced in Proposition 2.1(v) can be rewritten as

(D') min u∈X (∀k∈N ) u k ∈I k h * (-u).
This problem admits a unique solution ū ∈ B ∞,I , and the set of active constraints at ū is

{k ∈ N | ūk ∈ bd I k }.
Since ū = -∇h( x) for any x ∈ argmin f by Proposition 2.1(v), Proposition 3.3(iii) implies that the extended support for the solutions of (P) is in that case nothing but the set of active constraints for the solution of (D').

Remark 3.5 (Maximal support and interior solution)

. If ψ = 0 and the following (weak) qualification condition holds

(w-CQ) (∃x ∈ argmin f ) 0 ∈ qri ∂ f (x),
then, thanks to Lemma A.9 the extended support is the maximal support to be found among the solutions. If for instance h is the least squares loss on a finite dimensional space, it can be shown that the solutions having a maximal support are the ones belonging to the relative interior of the solution set [3, Theorem 2]. However, there are problems for which (w-CQ) does not hold. In such a case Proposition 3.3 implies that the extended support will be strictly larger than the maximal support (see Example 3.7). The gap between the maximal support and the extended support is equivalent to the lack of duality between (P) and (D). 

Finite identification.

A sparse solution x of problem (P) is usually approximated by means of an iterative procedure (x n ) n∈N . To obtain an interpretable approximation, a crucial property is that, after a finite number of iterations, the support of x n stabilizes and is included in the support of x. In that case, we say that the sequence (x n ) n∈N identifies supp( x). The support identification property has been the subject of active research in the last years [START_REF] Hale | Fixed-Point Continuation for 1 -Minimization: Methodology and Convergence[END_REF][START_REF]A necessary and sufficient condition for exact recovery by l1 minimization[END_REF][START_REF] Liang | Local linear convergence of Forward-Backward under partial smoothness[END_REF][START_REF] Fadili | Sensitivity Analysis for Mirror-Stratifiable Convex Functions[END_REF][START_REF] Duval | Sparse Spikes Super-resolution on Thin Grids I: the LASSO[END_REF], and roughly speaking, in finite dimension it is known that support identification holds whenever x satisfies the qualification condition 0 ∈ qri ∂ f ( x). But this assumption is often not satisfied in practice, in particular for noisy inverse problems (see e.g. [START_REF] Fadili | Sensitivity Analysis for Mirror-Stratifiable Convex Functions[END_REF]). In [START_REF] Hale | Fixed-Point Continuation for 1 -Minimization: Methodology and Convergence[END_REF][START_REF] Degraux | Sparse Support Recovery with Non-smooth Loss Functions[END_REF], the case g(x) = x 1 is studied in finite dimension and it is shown that the extended support of x is identified even if the qualification condition does not hold. Thus, the qualification condition 0 ∈ qri ∂ f ( x) is only used to ensure that the extended support coincides with the support (see Proposition 3.3).

In this section we extend these ideas to the setting of thresholding gradient methods in separable Hilbert spaces, and we show in Theorem 3.9 that indeed the extended support is always identified after a finite number of iterations. For this, we need to introduce a quantity, which measures the stability of the dual problem (D). Definition 3.8. We define the function ρ : X -→ R as follows:

(5) (∀u ∈ X) ρ(u) = inf u k ∈int I k dist (u k , bd I k ).
Also, given any x ∈ argmin f , we define ρ sol = ρ(-∇h( x)).

It can be verified that ρ(u) ∈ ]0, +∞[ for all u ∈ X (this is left in the Annex, see Proposition A.2). Moreover, ρ sol is uniquely defined, thanks to Proposition 2.1(v). Theorem 3.9 (Finite identification of the extended support). Let (x n ) n∈N be generated by the Forward-Backward algorithm (FB), and let x be any minimizer of f . Then, the number of iterations for which the support of x n is not included in esupp( x) is finite, and cannot exceed ρ -2 sol λ -2 x 0x 2 . Remark 3.10 (Optimality of the identification result). Theorem 3.9 implies that after some iterations the inclusion supp(x n ) ⊂ esupp( x) holds. Let us verify that it is impossible to improve the result, i.e. that in general we cannot identify a set smaller than esupp( x). In other words, is it true that

(6) (∃x 0 ∈ X)(∃ x ∈ argmin f )(∀n ∈ N) supp(x n ) = esupp( x)?
If (w-CQ) holds, the answer is yes. Indeed, if there is x ∈ argmin f such that 0 ∈ qri ∂ f ( x), we derive from Proposition 3.3(i) that esupp( x) = supp( x). So by taking x 0 = x, and using the fact that it is a fixed point for the Forward-Backward iterations, we conclude that supp(x n ) ≡ esupp( x). If (w-CQ) does not hold, then this argument cannot be used, and it is not clear in general if there always exists an initialization which produces a sequence verifying [START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF]. Consider for instance the function in Example 3.7. Taking x 0 ∈]0, +∞[ and a stepsize λ ∈]0, 1[, the iterates are defined by x n+1 = (1λ)x n , meaning that for all n ∈ N, supp(x n ) ≡ {1}, which is exactly esupp( x). So in that case (6) holds true.

Proof. Let x ∈ argmin f , and let E = X esupp( x) be the finite dimensional subspace of X supported by esupp( x). First define the "gradient step" operator

T λh = Id -λ∇h,
so that the Forward-Backward iteration can be rewritten as x n+1 = prox λg (T λh (x n )). Proposition 2.1(vi) implies that for all k ∈ N and all n ∈ N * ,

x n k = prox λψ k • soft λI k (T λh (x n-1 ) k ). Since x is a fixed point for the forward-backward iteration [4, Proposition 26.1(iv)], we also have [START_REF] Bredies | Linear convergence of iterative soft-thresholding[END_REF] xk

= prox λψ k • soft λI k (T λh ( x) k ).
Using the fact that prox λψ k is nonexpansive, and that soft λI k is firmly non-expansive [4, Proposition 12.28], we derive

x n -x 2 = ∑ k∈N |x n k -xk | 2 ď ∑ k∈N |soft λI k (T λh (x n-1 ) k ) -soft λI k (T λh ( x) k )| 2 ď ∑ k∈N |T λh (x n-1 ) k -T λh ( x) k | 2 -|(Id -soft λI k )(T λh (x n-1 ) k ) -(Id -soft λI k )(T λh ( x) k )| 2 ď T λh (x n-1 ) -T λh ( x) 2 -σ 2 n,k , where σ n,k = |(Id -soft λI k )(T λh (x n-1 ) k ) -(Id -soft λI k )(T λh ( x) k )|.
Moreover, the gradient step operator T G is non-expansive since λ ∈ 0, 2L -1 (see e.g. [24, Lemma 3.2]), so we end up with [START_REF] Combettes | Proximal Thresholding Algorithm for Minimization over Orthonormal Bases[END_REF] (∀n

∈ N * )(∀k ∈ N ) x n -x 2 ď x n-1 -x 2 -σ 2 n,k .
The key point of the proof is to get a nonnegative lower bound for σ n,k which is independent of n, when x n / ∈ E. Assume that there is some n ∈ N * such that x n / ∈ E. This means that there exists k ∈ N \ esupp( x) such that x n k = 0. Also, since supp( x) ⊂ esupp( x), we must have xk = 0, meaning that T λh ( x) k = -λ∇h( x) k . We deduce from ( 7), [START_REF] Bredies | Linear convergence of iterative soft-thresholding[END_REF], and Lemma A.4, that [START_REF] Combettes | Consistency of Regularized Learning Schemes in Banach Spaces[END_REF] T λh (x n-1 ) k / ∈ λI k and T λh ( x) k ∈ int λI k .

Since Idsoft λI k is the projection on λI k , we derive from (10) that

σ n,k = |proj λI k (T λh (x n-1 ) k ) -T λh ( x) k |.
Moreover proj λI k (T λh (x n-1 ) k ) ∈ bd I k , therefore by Definition 3.8 and (10), we obtain that

σ n,k ě λdist (λ -1 T λh ( x) k , bd I k ) ě λρ(λ -1 T λh ( x) k ) = λρ(-∇h( x) k ) = λρ sol .
Plugging this into (9), we obtain [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] ∀n

∈ N * , x n / ∈ E ⇒ x n -x 2 ď x n-1 -x 2 -ρ 2 sol λ 2 .
Next note that the sequence (x n ) n∈N is Féjer monotone with respect to the minimizers of f (see e.g. [20, Theorem 2.2]) -meaning that ( x nx ) n∈N is a decreasing sequence. Therefore the inequality [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF] cannot hold an infinite number of times. More precisely, x n / ∈ E can hold for at most λ -2 ρ -2 sol x 0x 2 iterations.

STRONG CONVERGENCE AND RATES

4.1. General results for thresholding gradient methods. Strong convergence of the iterates for the thresholding gradient algorithm was first stated in [11, Section 3.2] for g = • 1 , and then generalized to general thresholding gradient methods in [9, Theorem 4.5]. We provide a new and simple proof for this result, exploiting the "finite-dimensionality" provided by the identification result in Theorem 3.9.

Corollary 4.1 (Finite dimensionality for thresholding gradient methods). Let (x n ) n∈N be generated by a thresholding gradient algorithm. Then: (i) There exists a finite set J ⊂ N such that x n ∈ X J for all n ∈ N * .

(ii) x n converges strongly to some x ∈ argmin f .

Proof. (i): let x ∈ argmin f and let

J = esupp(x) {supp(x n ) | n ∈ N * , x n / ∈ X esupp(x) },
and observe that it is finite, as a finite union of finite sets (see Proposition 3.2 and Theorem 3.9).

(ii): it is well known that argmin f = ∅ implies that (x n ) n∈N converges weakly towards some x ∈ argmin f (see e.g. [20, Theorem 2.2]). In particular, (x n ) n∈N is a bounded sequence in X. Moreover, (i) implies that (x n ) n∈N * belongs to X J , which is finite dimensional. This two facts imply that (x n ) n∈N * is contained in a compact set of X with respect to the strong topology, and thus converges strongly.

Next we discuss the rate of convergence for the thresholding gradient methods. Beforehand, we briefly recall how the geometry of a function around its minimizers is related to the rates of convergence of the Forward-Backward algorithm.

Definition 4.2. Let p ∈ [2, +∞[ and Ω ⊂ X. We say that φ ∈ Γ 0 (X) is p-conditioned on Ω if (∃γ φ,Ω > 0)(∀x ∈ Ω) γ φ,Ω p dist (x, argmin φ) p ď φ(x) -inf φ.
A p-conditioned function is a function which somehow behaves like dist (•, argmin φ) p on a set. For instance, strongly convex functions are 2-conditioned on Ω = X, and the constant γ φ,X is nothing but the constant of strong convexity. But the notion of p-conditioning is more general and also describes the geometry of functions having more than one minimizer. For instance in finite dimension, any positive quadratic function is 2-conditioned on Ω = X, in which case the constant γ φ,X is the smallest nonzero eigenvalue of the hessian. This notion is interesting since it allows to get precise convergence rates for some algorithms (including the Forward-Backward one) [2]:

• sublinear rates if p > 2,

• linear rates if p = 2. For more examples, related notions and references, we refer the interested reader to [START_REF] Drusvyatskiy | Error bounds, quadratic growth, and linear convergence of proximal methods[END_REF][START_REF] Blanchet | A family of functional inequalities: lojasiewicz inequalities and displacement convex functions[END_REF][START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF].

Corollary 4.1 highlights the fact that the behavior of the thresholding gradient method essentially depends on the conditioning of f on finitely supported subspaces. It is then natural to introduce the following notion of finite uniform conditioning. Definition 4.3. Let p ∈ [2, +∞[. We say that a function φ ∈ Γ 0 (X) satisfies the finite uniform conditioning property of order p if, for every finite

J ⊂ N , ∀ x ∈ argmin φ, ∀(δ, r) ∈]0, +∞[ 2 , φ is p-conditioned on X J ∩ B X ( x, δ) ∩ S φ (r).
Remark 4.4. In this definition, we only need information about φ over supports J satisfying argmin φ ∩ X J = ∅. Indeed, if argmin φ ∩ X J = ∅, then φ is p-conditioned on X J ∩ B X ( x, δ) ∩ S φ (r) for any (δ, r) and for all p ∈ [2, +∞[ according to [START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF]Proposition 3.4].

In the following theorem, we illustrate how finite uniform conditioning guarantees global rates of convergence for the threshold gradient methods: linear rates if p = 2, and sublinear rates for p > 2. Note that these sublinear rates are better than the O(n -1 ) rate guaranteed in the worst case. Theorem 4.5 (Convergence rates for threshold gradient methods). Let (x n ) n∈N be generated by the Forward-Backward algorithm (FB), and let x ∈ argmin f be its (weak) limit. Then the following hold.

(i) If f satisfies the finite uniform conditioning property of order 2, then there exist ε ∈ ]0, 1[ and C ∈ ]0, +∞[, depending on (λ, f , x 0 ), such that

(∀n ě 1) f (x n ) -inf f ď ε n ( f (x 0 ) -inf f ) and x n+1 -x ď C √ ε n .
(ii) If f satisfies the finite uniform conditioning property of order p > 2, then there exist (C 1 , C 2 ) ∈ ]0, +∞[ 2 , depending on (λ, f , x 0 ), such that

(∀n ě 1) f (x n ) -inf f ď C 1 n -p p-2 and x n+1 -x ∞ ď C 2 n -1 p-2 .
Proof. According to Corollary 4.1, there exists a finite set J ⊂ N such that for all n ě 1, x n ∈ X J , and x n converges strongly to x ∈ argmin f . Also, the decreasing and Féjer properties of the Forward-Backward algorithm (see e.g. [20, Theorem 2.2]) tells us that for all n ∈ N, x n ∈ B X ( x, δ) ∩ S f (r), by taking δ = x 0x and r = f (x 0 )inf f . Therefore, thanks to the finite uniform conditioning assumption, we can apply [START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF]Theorem 4.2] to the sequence

(x n+1 ) n∈N ⊂ Ω = X J ∩ B X ( x, δ) ∩ S f ( 
r) and conclude.

1 regularized least squares.

Let A : X → Y be a linear operator from X to a separable Hilbert space Y, and let y ∈ Y. In this section, we discuss the particular case when h(x) = 1 2 Axy 2 Y and ψ ≡ 0. The function in (P) then becomes

X x → f (x) = x 1,I + 1 2
Axy 2 Y , and the Forward-Backward algorithm specializes to the iterative soft-thresholding algorithm (ISTA). In this special case, linear convergence rates have been studied under additional assumptions on the operator A. A common one is injectivity of A or, more generally, the so-called Finite Basis Injectivity property (FBI) [START_REF] Bredies | Linear convergence of iterative soft-thresholding[END_REF]. The FBI requires A to be injective once restricted to X J , for any finite J ⊂ N . It is clear that the FBI property implies that h is a strongly convex function once restricted to each X J , meaning that the finite uniform conditioning of order 2 holds. So, the linear rates obtained in [START_REF] Bredies | Linear convergence of iterative soft-thresholding[END_REF]Theorem 1] under the FBI assumption can be directly derived from Theorem 4.5. However, as can be seen in Theorem 4.5 , strong convexity is not necessary to get linear rates, and the finite uniform 2-conditioning is a sufficient condition (and it is actually necessary, see [START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF]Proposition 4.18]). By using Li's Theorem on convex piecewise polynomials [START_REF] Li | Global error bounds for piecewise convex polynomials[END_REF]Corollary 3.6], we show in Proposition 4.7 below that f satisfies a finite uniform conditioning of order 2 on finitely supported subsets, without doing any assumption on the problem. First, we need a technical Lemma which establishes the link between the conditioning of a function on a finitely supported space and the conditioning of its restriction to this space. Lemma 4.6. Let φ ∈ Γ 0 (X), let m ∈ N * and let J = {k 1 , . . . , k m } ⊂ N . Suppose that x ∈ argmin φ ∩ X J . Let Ξ : R m → X J : (u 1 , ..., u m ) → ∑ m i=1 u i e k i . Assume that, for every (δ,

r) ∈ ]0, +∞[ 2 , φ J = φ • Ξ ∈ Γ 0 (R m ) is p-conditioned on B R m (Ξ -1 ( x), δ) ∩ S φ J (r) Then φ is p-conditioned on X J .
Proof. Assume without loss of generality that k 1 < ... < k m . Also, observe that x ∈ X J ∩ argmin φ implies that ū = Ξ -1 ( x) is well-defined. By definition, inf φ ď inf φ J , and [START_REF] Davis | Convergence rate analysis of several splitting schemes[END_REF] (∀u [START_REF] Davis | Convergence rate analysis of several splitting schemes[END_REF]. Since Ξ = 1, it is easy to see that xx ď δ and φ(x)inf φ < r. So we can rewrite [START_REF] Davis | Convergence rate analysis of several splitting schemes[END_REF] as:

inf φ = φ( x) = φ • Ξ( ū) = φ J ( ū) ě inf φ J , which implies inf φ = φ J . Also, we have x ∈ Ξ(argmin φ J ) ⇔ x = Ξ(u) and φ J (u) = inf φ J ⇔ x ∈ X J and φ(x) = inf φ, meaning that Ξ(argmin φ J ) = argmin φ ∩ X J . Let (δ, r) ∈ ]0, +∞[ 2 , and let Ω = X J ∩ B X ( x, δ) ∩ S φ (r). Since φ J is p-conditioned on B R m (Ξ -1 ( x), δ) ∩ S φ J (r) there exists γ ∈ ]0, +∞[ such that
∈ B R m ( ū, δ) ∩ S φ J (r)) γ p dist (u, argmin φ J ) p ď φ J (u) -inf φ J . Let x = Ξ(u) in
(∀x ∈ Ω) γ p dist (Ξ -1 x, argmin φ J ) p ď φ(x) -inf φ. It follows from Ξ(argmin φ J ) = argmin φ ∩ X J that (∀x ∈ Ω) φ(x) -inf φ ě γ p dist (x, argmin φ ∩ X J ) p ě γ p dist (x, argmin f ) p .
Therefore φ is p-conditioned on Ω.

Proposition 4.7 (Conditioning of 1 regularized least squares). Let (Y, • Y ) be a separable Hilbert space, let y ∈ Y and let A : X → Y be a bounded linear operator. In assumption (H) suppose that for every k ∈ N ,

I k ∈ I is bounded. Then X x → f (x) = x 1,I + 1 2 Ax -y 2 Y
has a finite uniform conditioning of order 2.

Proof. Let J ⊂ N , J = {k 1 , . . . , k m }, with k 1 < . . . < k m , and suppose that argmin f ∩ X J = ∅. Define, using the same notation as in Lemma 4.6

h J : R m → R : u → 1 2 AΞu -y 2 Y .
Define A J = AΞ : R m → Y, and let S J = (A * J A J ) 1/2 , which verifies R(S * J ) = R(A * J ). Thus, there exists y J ∈ R m such that A * J y = S * J y J , so that we can rewrite

(13) h J (u) = 1 2 A J u 2 R m + 1 2 y 2 Y -A J u, y Y = 1 2 S J u -y J 2 R m + 1 2 ( y 2 Y -y J 2 R m ). Set s k = S J e k ∈ Y. Then, (13) yields f J (u) = m ∑ i=1 σ I k i (u i ) + 1 2 m ∑ i,j=1 s k i , s k j Y u i u j - m ∑ i=1 (S * J y J ) i u i + 1 2 y 2 Y .
Since the intervals I k are bounded, their support functions are finite valued and piecewise linear, so f J is a piecewise polynomial of degree two in R m . We then apply [START_REF] Li | Global error bounds for piecewise convex polynomials[END_REF]Corollary 3.6] to derive that f J is 2-conditioned on S f J (r), for any r ∈ ]0, +∞[. We conclude by using Lemma 4.6.

Combining Theorem 4.5 and Proposition 4.7, we can now state our main result concerning the linear rates of ISTA. Theorem 4.8 (Linear convergence for the iterative soft thresholding). Under the assumptions of Proposition 4.7, let (x n ) n∈N be the sequence generated by the forward-backward algorithm applied to f . Then (x n ) n∈N converges strongly to some x ∈ argmin f , and there exists two constants ε ∈ ]0, 1[ and C ∈ ]0, +∞[, depending on (λ, L, x 0 , I, A, y), such that

(∀n ě 1) f (x n ) -inf f ď ε n ( f (x 0 ) -inf f ) and x n+1 -x ď C √ ε n .
Remark 4.9 (On the linear rates). The convergence rate for the iterative soft-thresholding has been a subject of interest since years, and have been obtained only under additional assumptions on A [START_REF] Bredies | Linear convergence of iterative soft-thresholding[END_REF]. Theorem 4.8 closes the question about the linear rates, by proving that they always hold. However, there are still several open problems, related to the estimation of the constant appearing in these linear rates. This is related to the estimation of the constant γ f ,Ω in Definition 4.2, when Ω = S f (r) ∩ X J for some finite J ⊂ N . Up to now, the only available result is based on Hoffman's lemma, which doesn't allow for explicit lower bounds on γ f ,Ω [START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF][START_REF] Bolte | From error bounds to the complexity of first-order descent methods for convex functions[END_REF]. Having a tight lower bound for γ f ,Ω , depending on A restricted to X J , would be of interest to go in this direction.

4.3. 1 + p regularized least squares. We are now interested in 1 + p -regularizers, i.e. when

g(x) = x 1,I + 1 p x p , with x p = ∑ k∈N |x k | p , p > 1.
The case p = 2 is also known as elastic net regularization and has been proposed in [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. The elasitc-net penalty has been studied by the statistical machine learning community as an alternative to the 1 regularization in variable selection problems where there are highly correlated features and all the relavant ones have to be identified [START_REF] De Mol | Elastic-net regularization in learning theory[END_REF]. See also [START_REF] Combettes | Consistency of Regularized Learning Schemes in Banach Spaces[END_REF] for the case p < 2. Note that the proximal operator of such g can be computed explicitly when p ∈ {4/3, 3/2, 2, 3, 4} (see [START_REF] Combettes | Proximal Thresholding Algorithm for Minimization over Orthonormal Bases[END_REF]).

Proposition 4.10 (Geometry of ( 1 + p ) regularized least squares). Let p ∈]1, +∞[, let (Y, • Y ) be a separable Hilbert space, let y ∈ Y and let A : X → Y be a bounded linear operator. In assumption (H) suppose that for every k ∈ N ,

I k ∈ I is bounded. Then f : X → R : x → x 1,I + 1 p x p p + 1 2 Ax -y 2
Y has a finite uniform conditioning of order max{2, p}.

Proof. Let J ⊂ N , m = |J| and p = max{p, 2}. We define, by using the same notation as in Lemma 4.6,

g J (u) = m ∑ i=1 σ I k i (u i ) + 1 p |u i | p and h J (u) = 1 2 AΞu -y 2 Y .
We are going to prove that f J = g J + h J is p -conditioned on B R m ( ū, δ), for any δ > 0. To do so, we will apply to f J the sum rule in Theorem A.7, which requires two hypotheses. We must verify that the functions g J and h J are conditioned up to linear perturbations (see equation ( 18)), and that the qualification condition in [START_REF] Frankel | Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates[END_REF] holds, namely (since R m is finite dimensional the strong relative interior coincides with the relative interior):

(14) 0 ∈ ri ∂g * J (-∇h J ( ū)) -∂h * J (∇h J ( ū)) . According to [START_REF] De Mol | Elastic-net regularization in learning theory[END_REF], ∂h * J (∇h J ( ū)) = ū + ker S J . Also, according to [4, Proposition 13.30 & Example 13.27(iii)], we have, for every v ∈ R m , g * J (v) = ∑ m i=1 1

q dist (v i , I k i ) q , with q = p/(p -1). Since t → |t| q is continuously differentiable on R, [START_REF] Bauschke | Convex analysis and monotone operator theory[END_REF]Example 17.33 and Proposition 17.31(ii)]) imply that g * J is Gâteaux differetiable on R m . This, together with the fact that ri ker S J = ker S J , means that ( 14) is equivalent to [START_REF]A necessary and sufficient condition for exact recovery by l1 minimization[END_REF] 0 ∈ ri ∇g * J (-∇h J ( ū))ū + ker S J = ∇g * J (-∇h J ( ū))ū + ker S J .

The latter inclusion holds true, since ū ∈ argmin f J is equivalent to ū ∈ ∇g * J (-∇h J ( ū)). Thus, it only remains to prove that hJ = h J -, • and ḡJ = g J -, • are respectively 2 and pconditioned on B R m ( ū, δ), for being respectively in R(∇h J ) and R(∂g J ).

Let us start with hJ . According to [START_REF] De Mol | Elastic-net regularization in learning theory[END_REF], hJ is a positive quadratic function being bounded from below, so it is 2-conditioned on R m , with γh J ,R m being the smallest nonzero eigenvalue of S J . Next, ∈ R(∂g J ) implies that there exists v ∈ X such that ∈ ∂ ḡJ (v). Then, 0 ∈ ∂ ḡJ ((v)), and this implies that v is a minimizer of ḡJ . It is also unique since g j is strictly convex. If v / ∈ B R m ( ū, δ), then ḡJ is automatically p -conditioned on B R m ( ū, δ), see for instance [START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF]Proposition 3.3]. Assume then that v ∈ B R m ( ū, δ), and use [START_REF] Combettes | Consistency of Regularized Learning Schemes in Banach Spaces[END_REF]Proposition A.9] to obtain the existence of γ ∈ ]0, +∞[ such that

(∀u ∈ B R m ( ū, δ))(∀i ∈ {1, ..., m}) γ p |u i -v i | p ď 1 p |u i | p - 1 p |v i | p -(u i -v i )sgn(v i )|v i | p-1 .
Summing the above inequality over i, and using the fact that • p 2 ď max{1, m (p-2)/2 } • p p , we derive by taking γ = γ max{1, m (p-2)/2 } -1 that for all u ∈ B R m ( ū, δ):

(16) γ p dist (u, argmin ḡJ ) p ď m ∑ i=1 1 p |u i | p - 1 p |v i | p -(u i -v i )sgn(v i )|v i | p-1 .
Introduce the following constant:

ω i = sup I k i if i > sup I k i , ω i = | i | if i ∈ I k i , and 
w i = -inf I k i if i < inf I k i .
By making use of the first order condition at v = argmin ḡJ , it can be verified that

(∀ i ∈ {1, ..., m}) |v i | p-1 = | i | -ω i , sgn(v i ) = sgn( i ) and σ I k i (v i ) = ω i |v i |.
So we can deduce that

1 p |u i | p - 1 p |v i | p -(u i -v i )sgn(v i )|v i | p-1 = 1 p |u i | p - 1 p |v i | p -(u i -v i )( i -sgn(v i )ω i ) = 1 p |u i | p - 1 p |v i | p -u i i + v i i -σ I k i (v i ) + u i sgn( i )ω i .
This, combined with ( 16), leads to

γ p dist (u, argmin ḡJ ) p ď ḡJ (u) -inf ḡJ + m ∑ i=1 -σ I k i (u i ) + u i sgn( i )ω i ď ḡJ (u) -inf ḡJ ,
where the last inequality comes from the fact that sgn( i )ω i ∈ I k i . So we proved that ḡJ is p -conditioned on B R m ( ū, δ). Theorem A.7 then yields that f J is p -conditioned on B R m ( ū, δ). We conclude the proof applying Lemma 4.6.

Combining Theorem 4.5 and Proposition 4.10, be obtain rates for the corresponding thresholding gradient method. Theorem 4.11. Under the assumptions of Proposition 4.10, let (x n ) n∈N be the sequence generated by the forward-backward algorithm applied to f . Then (x n ) n∈N converges strongly to some x ∈ argmin f . If p ∈]1, 2[, there exists two constants ε ∈ ]0, 1[ and C ∈ ]0, +∞[, depending on (λ, L, x 0 , I, A, y, p), such that

(∀n ě 1) f (x n ) -inf f ď ε n ( f (x 0 ) -inf f ) and x n+1 -x ď C √ ε n .
If p ∈]2, +∞[, there exists two constants (C 1 , C 2 ) ∈]0, +∞[ 2 , depending on (λ, L, x 0 , I, A, y, p), such that

(∀n ě 1) f (x n ) -inf f ď C 1 n -p p-2 and x n+1 -x ∞ ď C 2 n -1 p-2 .

CONCLUSION AND PERSPECTIVES

In this paper we study and highlight the importance of the notion of extended support for minimization problems with sparsity inducing separable penalties. An identification result, together with uniform conditioning on finite dimensional sets, allow us to generalize and revisit classic convergence results for thresholding gradient methods, from a novel and different perspective, while further providing new convergence rates.

An interesting direction for future research would be to go beyond separable penalties, in particular extending our results to regularizers promoting structured sparsity [START_REF] Mosci | Villa Solving Structured Sparsity Regularization with Proximal Methods[END_REF], such as group lasso. A reasonable approach would be to extend the primal-dual arguments in [START_REF] Fadili | Sensitivity Analysis for Mirror-Stratifiable Convex Functions[END_REF] to the infinite-dimensional setting. A more challenging research direction seems the extension of our results to gridless problems [START_REF] Duval | Sparse Spikes Super-resolution on Thin Grids I: the LASSO[END_REF]. Indeed, our analysis relies on the fact that the variables (signals) we consider are supported on a grid (indexed by N ⊂ N), which allows to use finite-dimensional arguments. Such an extension would require to work on Banach spaces of functions or of measures, and seems an interesting venue for future research. deduce that inf k∈J F dist (x k , bd I k ) > 0. On the other hand, for any k ∈ J ∞ , we have |u k | ď ω/2, while [-ω, ω] ⊂ I k , therefore dist (x k , bd I k ) ě ω/2, and ρ(x) = inf k∈J dist (x k , bd I k ) > 0 .

(ii): let x ∈ int k∈N I k . We are going to show that x k ∈ int I k for all k ∈ N . By assumption, there exists δ ∈ ]0, +∞[ such that B X (x, δ) ⊂ k∈N I k . Let k ∈ N , and let us show that

[x k -δ, x k + δ] ⊂ I k . Let y k ∈ [x k -δ, x k + δ],
and define x ∈ X such that xk = y k and xi = x i for every i = k. Then we derive xx = |x ky k | = δ, whence x ∈ B(x, δ) ⊂ k∈N I k . This implies that y k ∈ I k , which proves that x k ∈ int I k . Now, we let x ∈ k∈N int I k , and we show that x ∈ int ( k∈N I k ). By (i), ρ(x) > 0 and, for every k ∈ N , x k ∈ int I k by assumption. Let η ∈ ]0, ρ[. Since dist (x k , bd I k ) ě ρ(x), we derive [x kη, x k + η] ⊂ I k . On the other hand, the non-expansiveness of the projection implies that x kp k ď x ky k ď η < ρ, which leads to a contradiction. Therefore B Proof. Assume N is infinite and set J ∞ = N \ J. We can then write A.2. Functions.

X (x, η) ⊂ k∈N [x k -η, x k + η] ⊂ k∈N I k . This yields x ∈ int k∈N I k .
qri k∈N I k = qri ( k∈J ∞ I k ) ⊕ ( k∈J I k ) because J is finite, = qri ( k∈J ∞ I k ) ⊕ ( k∈J qri I k ) by [7, Proposition 2.5], = ( k∈J ∞ int I k ) ⊕ (
Lemma A.4. Let ψ ∈ Γ 0 (X) be differentiable at 0 ∈ argmin ψ and let x ∈ X. Then

x = 0 ⇔ prox ψ (x) = 0. Proof. prox ψ (x) = 0 ⇔ (Id + ∂ψ) -1 (x) = 0 ⇔ x ∈ 0 + ∂ψ(0) ⇔ x = ∇ψ(0) ⇔ x = 0.
Proposition A.5. Let g k ∈ Γ 0 (R) with inf g k = g k (0) = 0 for all k ∈ N . Define g : X → R ∪ {+∞} : x → ∑ k∈N g k (x k ). Then: (i) g ∈ Γ 0 (X).

(ii) dom ∂g = {x ∈ X | k∈N ∂g k (x k ) = ∅}.

(iii) For all x ∈ dom ∂g, ∂g(x) = k∈N ∂g k (x k ).

(iv) For all x ∈ X, prox g (x) = ∑ k∈N prox g k (x k )e k .

Proof. (i): g is convex by definition. It is proper because g(0) = 0 and g ě 0. Fatou's lemma implies that g is lower semicontinuous.

(ii)-(iii): follow directly from the fact that (∀(x * , x) ∈ X 2 ) x * ∈ ∂g(x) ⇔ (∀y ∈ X) g(y)g(x)x * , yx ě 0

⇔ (∀y ∈ X) ∑ k∈N g k (y k ) -g k (x k ) -x * k , y k -x k ě 0 ⇔ (∀k ∈ N ) x * k ∈ ∂g k (x k )
, where the last equivalence holds by taking for all k ∈ N y i = x i if i = k.

(iv): let (x, p) ∈ X 2 . It follows from (iii) that p = prox g (x) ⇐⇒ px ∈ ∂g(p) =⇒ (∀k ∈ N ) p kx k ∈ ∂g k (p k ) ⇐⇒ (∀k ∈ N ) p k = prox g k (x k ).

Proposition A.6. Let I = (I k ) k∈N is a family of proper closed interval of R. Let, for every x ∈ X, g(x) = ∑ k∈N σ I k (x k ). Then the following hold.

(i) g is coercive if and only if 0 ∈ int I k for all k ∈ N . Assume moreover that there exists ω > 0 such that [-ω, ω] ⊂ I k for all k ∈ N . Then (ii) g ∈ Γ 0 (X) is coercive and g is the support function of B ∞,I = k∈N I k , (iii) dom ∂g = c 00 and dom ∂g * = B ∞,I , (iv) for every x ∈ X, and for every λ > 0, prox λg (x) = x kλproj I k (λ -1 x k ) ⇔ (∀k ∈ N ) 0 ∈ int I k since σ * I k = δ I k . (ii): assume that N is infinite. Item (i) implies that g ∈ Γ 0 (X) and is coercive. To prove that g is the support function of B ∞,I , we will show that g * is its indicator function. Let x * ∈ X. Then

g * (x * ) = sup x∈X x * , x -g(x) = sup x∈X ∑ k∈N x * k , x k -σ I k (x k ) ď ∑ k∈N sup x k ∈X k x * k , x k -σ I k (x k ) = ∑ k∈N σ * I k (x * k ) = δ B ∞,I (x * )
To prove the converse inequality, since x * ∈ X, there exists some K ∈ N such that for all k ě K, x * k < ω, meaning that x * k ∈ I k , and therefore δ I k (x * k ) = 0. Let J K = {0, . . . , K -1}. Since we deal with a finite sum,

δ B ∞,I (x * ) = ∑ k∈J K δ I k (x * k ) = ∑ k∈J K sup x k ∈R x * k , x k -σ I k (x k ) = sup x∈X J K ∑ k∈J K x * k , x k -σ I k (x k ).
Moreover, setting J ∞ = N \ J K :

sup x∈X J∞ ∑ k∈J ∞ x * k , x k -σ I k (x k ) ě 0,
and this yields

δ B ∞,I (x * ) ď sup x∈X J K ∑ k∈J K x * k , x k -σ I k (x k ) + sup x∈X J∞ ∑ k∈J ∞ x * k , x k -σ I k (x k ) = g * (x * ).
(iii): assume that N is infinite. The equality dom ∂g * = B ∞,I follows from (ii). It remains to show that dom ∂g = c 00 . Let x ∈ dom ∂g. By Proposition A.5(ii) there exists x * ∈ k∈N ∂σ I k (x k ). For all k ∈ N , Proposition A.1(i)-(ii) yields that ∂σ I k (x k ) = I k if x k = 0, and ∂σ I k (x k ) ⊂ bd I k if x k = 0. Assume by contradiction that x / ∈ c 00 , i.e. there exists k n → +∞ such that x k n = 0 for all n ∈ N. Then, it follows that x * k n ∈ bd I k n for all n ∈ N, and therefore x * k n ě ω, which contradicts the fact that x * ∈ X. Now, let x ∈ c 00 and let K ∈ N be such that x k = 0 for all k ě K and let N K = N ∩ {0, . . . , K}. By Proposition A.1(i) ∂σ I k (x k ) = I k 0 for all k ě K, therefore ∅ = k∈N K ∂σ I k (x k ) ⊂ ∂g(x).

(iv): is a direct consequence of Proposition A.5(iv) and Moreau's identity [START_REF] Bauschke | Convex analysis and monotone operator theory[END_REF]Theorem 14.3.ii].
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 1 FIGURE 1. Some examples of thresholding proximal operators in R. On the left: | • | = σ [-1,1] (blue), | • | + | • | 1.5 (yellow), | • | + | • | 2 (green), | • | + | • | 6 (red). On the right: | • | + δ [-0.5,0.75] (blue), | • | + | • | 1.5 + δ [-1,1] (yellow), and | • |ln(1 -| • |) + δ ]-1,1[ (red).Observe that here the range of prox g is equal to the domain of ∂ψ.
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 36 Let g : R 2 → R : x → x 1 and h : R 2 → R : x → (x 1x 2 -1) 2 . In this case, argmin f = [ x1 , x2 ], where x1 = (0.5, 0) and x2 = (0, -0.5), as can be seen in Figure 2. The solutions x ∈] x1 , x2 [ are the ones having the maximal support, since supp( x) = {1, 2}, and also satisfy 0 ∈ ri ∂ f ( x). Instead, on the relative boundary of argmin f we have supp( xi ) = {i} and 0 / ∈ ri ∂ f ( xi ) for i ∈ {1, 2}. This example is a one for which the extended support is the maximal support among the solutions. Example 3.7. Let g : R → R : x → |x| and h : R → R : x → (x -1) 2 /2. Then argmin f = { x}, with x = 0, as can be seen in Figure 2. The support of x is empty, and 0 / ∈ ri ∂ f ( x) = [-2, 0]. In this case, condition (w-CQ) does not hold. This can also be seen from the dual problem min u∈[-1,1] u 2 /2u, whose unique constraint is active at the solution ū = -∇h( x) = 1, meaning that esupp( x) = {1} = supp( x).

FIGURE 2 .

 2 FIGURE 2. Left and center: respectively level sets and graph of f in Example 3.6, with argmin f in thick. Right: graph of f in Example 3.7.

Proposition A. 3 (

 3 Quasi relative interior of infinite products). Let I = (I k ) k∈N be a collection of closed intervals of R. Let J ⊂ N be a finite set, and suppose that [-ω, ω] ⊂ I k for all k ∈ N \ J. Then qri k∈N I k = k∈N ri I k .

  i): observe that g is coercive ⇔ (∀k ∈ N ) σ I k is coercive (take x k = 0 except for one index k) ⇔ (∀k ∈ N ) 0 ∈ int dom σ * I kby[START_REF] Bauschke | Convex analysis and monotone operator theory[END_REF] Proposition 14.16] 
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Then the following hold (i) For every x ∈ X, ρ(x) ∈ ]0, +∞[; 

which are defined in such a way that ρ(x) = inf k∈J dist (u k , bd I k ) and J = J F J ∞ . Observe that ρ(x) ď dist (x K , bd I K ) < +∞ since bd I K = ∅, so we only need to show that ρ(x) > 0. Since J F is finite and

We recall a sum rule for conditioning, obtained in [START_REF] Garrigos | Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry[END_REF]Theorem 3.1].

Suppose that

and let p = max{p 1 , p 2 }. Then, for any δ ∈ ]0, +∞[, f is p-conditioned on Ω ∩ B X (0, δ).

A.3. Auxiliary results.

Lemma A.8. Let {x 1 , ..., x N } ⊂ X be a finite family. Then there exists x ∈ co{x 1 , ...,

Proof. We proceed by induction. If N = 1 this is trivially true. Let us turn on the N = 2 case, by considering {x 1 , x 2 } in X. If supp(x 1 ) = supp(x 2 ), then it is enough to take x = x 1 or x = x 2 . Assume that supp(x 1 ) = supp(x 2 ). Define

Λ is well defined because

, and is at most countable. Let λ ∈ ]0, 1[ \ Λ, and define x = λx 1 + (1λ)x 2 . By definition we have x ∈ co{x 1 , x 2 }, so it remains to check that supp( x) = supp(x 1 ) ∪ supp(x 2 ). To prove this, first assume that k ∈ supp( x). If k ∈ supp(x 1 ) it is trivial, so assume that k / ∈ supp(x 1 ).

k , where λ = 1 and xk = 0, from which we deduce that k ∈ supp(x 2 ). This shows that supp( x) ⊂ supp(x 1 ) ∪ supp(x 2 ) Now, take k ∈ supp(x 1 ) ∪ supp(x 2 ), and assume by contradiction that xk = 0. Then

, which contradicts the fact that λ / ∈ Λ. Therefore supp(x 1 ) ∪ supp(x 2 ) ⊂ supp( x). Assume now that the statement holds for N ě 2, and let us prove it for N + 1. Let {x 1 , ..., x N , x N+1 } ⊂ X be a finite family. By inductive hypotheses we can find some x1 ∈ co{x 1 , ..., x N } such that supp( x1 ) = ∪{supp(x i ) | i ∈ {1, ..., N}}. Moreover, the inductive hypotheses guarantees the existence of some x ∈ co{ x1 , x N+1 } such that supp( x) = supp( x1 ) ∪ supp(x N+1 ). We derive from the definition of x1 that supp( x) = ∪{supp(x i ) | i ∈ {1, ..., N + 1}}. Also, x1 ∈ co{x 1 , ..., x N } and x ∈ co{ x1 , x N+1 } imply that x ∈ co{x 1 , ..., x N , x N+1 }, which ends the proof. Lemma A.9. Let C ⊂ X be a convex nonempty set, and J = ∪{supp(x) | x ∈ C}. If J is finite, then there exists x ∈ C such that supp( x) = J.

Proof. Since J is finite, there exists a finite family {x 1 , ..., x N } ⊂ C such that J = ∪{supp(x i ) | i ∈ {1, ..., N}}. It suffices then to apply the previous lemma to obtain such x ∈ co{x 1 , ..., x N } ⊂ C.