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Abstract 11 

In a seasonal environment, variation in larval phenotype and developmental plasticity allow 12 

crustacean larvae to maximise survival by lengthening or shortening their development. The 13 

aim of this study is to investigate the effects of temperature, laying season and their interaction 14 

on larval developmental pathways (larval instars and larval stages). We monitored the different 15 

larval stages and calculated the number of larval instars reached during the development of 16 

winter and summer larvae of Palaemon serratus incubated at 12, 16 or 20°C. We observed a 17 

great variability in the larval development (6 to 13 larval instars and 6 to 11 larval stages). A 18 

higher temperature decreases the development time and the number of larval instars. At a given 19 

temperature, the development time of winter and summer larvae was not different. Two larval 20 

stages were considered supernumerary (zoea 4 and 6), as they were more frequent at low 21 

temperatures. At higher temperatures, some larvae started to develop pleopods as early as the 22 

third instar, larval stage which had never been described (named here zoea 3'). This 23 

phenomenon was more common in winter larvae than in summer larvae. These results provide 24 

new insights into the expression of developmental plasticity in decapod larvae. 25 
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1. Introduction  28 

Ecological Developmental Biology (Eco-Devo) approaches focus on the interactions between 29 

organisms and their environment, and their ability to optimise their growth and development 30 

(Gilbert, 2001). For Eco-Devo studies, marine decapod crustaceans represent interesting 31 

biological models because their complex life cycle is generally biphasic (for a review see Anger 32 

2006), divided between a pelagic larval phase and a benthic adult life. Given the seasonal or 33 

spatial variability of the pelagic environment (e.g. food availability and quality, temperature), 34 

decapods may therefore exhibit a high degree of developmental plasticity (i.e. the capacity of a 35 

genotype to produce alternative developmental pathways; West-Eberhard 2003), allowing their 36 

larvae to cope with variable or even sub-optimal conditions (Anger, 2001). Several authors have 37 

studied the effects of environmental parameters on the larval development of marine decapods. 38 

Among abiotic parameters, temperature affects intermoult time, growth rate and number of 39 

larval moults achieved (Linck 1995, read in Giménez 2006; O’Connor et al. 2007; Oliphant et 40 

al. 2013). The amount of food ingested by the larvae determines the number of larval moult 41 

cycles and the rate of morphogenesis between them (Anger, 1987; González-Ortegón and 42 

Giménez, 2014). Thence, prolonged development has frequently been observed under poor 43 

zootechnical conditions (Críales and Anger, 1986; Giménez and Anger, 2003; González-44 

Ortegón et al., 2013; González-Ortegón and Giménez, 2014; Knowlton, 1974; Oliphant et al., 45 

2013; Ostrensky et al., 1997). Conversely, abbreviated developments have been encountered 46 

under optimal conditions such as the thermal preference (Críales and Anger, 1986; Oliphant et 47 

al., 2013; Oliphant and Thatje, 2013). It is these different plastic responses to environmental 48 

conditions that lead to different developmental pathways (Críales and Anger, 1986). 49 

In other way, few authors have studied the interactions of environmental conditions and the 50 

offspring phenotype on the developmental plasticity of decapods (Linck 1995, read in Giménez 51 

2006; Hancock 1998; Oliphant & Thatje 2013; González-Ortegón & Giménez 2014; Oliphant 52 
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et al. 2014). The larval size is highly correlated with the nutritional reserves transferred per egg 53 

by the females during oogenesis (Giménez and Anger, 2001; Giménez and Torres, 2002; 54 

Hancock, 1998; Moland et al., 2010). This increases their fitness by allowing them to better 55 

resist starvation and achieve a shorter development (Giménez et al., 2004; Giménez and Anger, 56 

2003; González-Ortegón and Giménez, 2014; Hancock, 1998; Oliphant et al., 2014; Oliphant 57 

and Thatje, 2013). The larval phenotype is therefore determined by maternal investment, in line 58 

with environmental variations. The largest larvae correspond to the most difficult 59 

environmental conditions, such as the beginning of the season (González-Ortegón et al., 2018; 60 

Paschke, 1998; Paschke et al., 2004; Urzúa and Anger, 2013). Thus, decapods living in 61 

seasonally variable environments and reproducing several times during the year show a 62 

seasonal pattern in the “fertility x offspring size trade-off” (Bas et al., 2007; Boddeke, 1982; 63 

Vázquez et al., 2013). The developmental pathways of the larvae of these species should be 64 

seasonally different, linked to the difference in larval size between the seasons. 65 

The larval developmental pathway is therefore the result of the interaction between larval 66 

genotype, environmental conditions during development and the environment or phenotype of 67 

the mother (i.e. maternal effects, Marshall et al., 2008). In order to study the developmental 68 

plasticity response to this interaction, it is necessary to define the developmental pathways 69 

taken. Decapod larvae develop through a succession of moults with morphological, ecological 70 

and behavioural changes, which are generally called "Larval Stages" (Anger, 2001). However, 71 

in caridean shrimps that develop anamorphically in particular (i.e. through a gradual pattern of 72 

development, Møller et al. 2020), the degree of morphological changes between moults is 73 

variable (Anger, 2001; for a review see Quinn, 2016). Additional larval stages may be 74 

“intercalated” into the developmental sequence, often called “supernumerary stages”, 75 

displaying intermediate morphology (Knowlton, 1974; Little, 1969). Each larval stage can also 76 

be “repeated”, without showing any significant change (Rothlisberg, 1980; Walsh, 1993; 77 
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Wehrtmann and Albornoz, 1998). We thus explain that the larvae of a species do not necessarily 78 

develop through a fixed number of moults. Therefore, the neutral term "Larval Instar" is 79 

preferred to refer to the successive moult cycles during larval development, without describing 80 

them (Martin et al., 2014; Phillips and Sastry, 1980). 81 

It seems necessary to describe the number of larval instars reached and the different successive 82 

larval stages to accurately characterise the larval developmental pathway. Some authors have 83 

study the developmental plasticity of caridean shrimp larvae in response to environmental 84 

factors by focusing on larval stages, larval instars or both. Hancock (1998) described the larval 85 

stages of Paratya australiensis encountered during development at 2 temperatures. Oliphant et 86 

al. (2014) counted the number of larval instars achieved by Palaemonetes varians in relation to 87 

food availability. González-Ortegón and Giménez (2014) carried out the same type of 88 

experiment on P. serratus larvae adding the effects of temperature and salinity. Oliphant et al. 89 

(2013) monitored both the larval stages and larval instars of P. varians during development at 90 

3 temperatures. Críales and Anger (1986) described the developmental pathways (larval stages 91 

and instars) of Crangon crangon and C. allmanni according to rearing temperature. Linck 92 

(1995, read in Giménez, 2006) is the only author to have studied the effects of the interaction 93 

between temperature and laying season on larval development pathways (C. crangon). 94 

To investigate the effects of the interaction between temperature and seasonal variations in 95 

larval size on the variability of larval developmental pathways, we chose to work with the 96 

caridean shrimp, Palaemon serratus (Pennant, 1777). This species is abundant in European 97 

coastal environments and has a life span of 3 to 5 years (Campillo, 1979). Its reproductive cycle 98 

consists of two annual clutches (commonly called "winter laying" and "summer laying"), 99 

characterised by larger eggs, and thus larvae, in the first clutch (Campillo, 1979; González-100 

Ortegón et al., 2018). This species is known to carry out larval development with a variable 101 

number of instars; mostly 6 to 9 but ranging from 6 to 22 in the laboratory (Campillo, 1979; 102 
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Fincham and Figueras, 1986; Kelly et al., 2012; Reeve, 1969a). This developmental plasticity 103 

is mainly temperature-mediated, with the larvae of this species performing fewer instars in 104 

warm water than in cold water (González-Ortegón and Giménez, 2014). However, variations 105 

in developmental pathways due to temperature-mediated plasticity have not been investigated 106 

in P. serratus (larval stages and instars). The effects of seasonal variation in the size of the 107 

larvae of this species on their development have also not been studied, although this should also 108 

influence their developmental pathways (González-Ortegón et al., 2018). We hypothesise the 109 

following two scenarios. Large winter larvae develop faster than small summer larvae at the 110 

same temperature, completing fewer larval instars. Furthermore, the interaction between 111 

temperature and laying season has synergistic effects on developmental pathways. To test these 112 

hypotheses, we monitor the different stages and calculate the number of instars reached during 113 

the development of larvae from winter and summer females of P. serratus incubated at 3 114 

temperatures, 12, 16 and 20°C. 115 

 116 

2. Material and methods 117 

2.1 Collection and maintenance of females 118 

To study the larval development of the winter and summer laying, ovigerous P. serratus 119 

females (6 per seasons ; Fig.1) were respectively sampled between 29/04/2021 and 12/05/2021, 120 

and between 23/06/2021 and 28/06/2021 by hand-netting on Saint-Jouin-Bruneval foreshore 121 

(Seine-Maritime, France). Only the specimens carrying eggs at the end of development were 122 

selected for the study. The length of the cephalothorax was constant for both seasons, measured 123 

respectively 40.8 mm (± 1) for winter females and 39.8 mm (± 1.1) for summer females, in 124 

mean (± S.E.). The shrimps were transferred to the laboratory of the University of Le Havre 125 

(Seine-Maritime, France), and then maintained under photoperiod 12: 12 (L: D) in 100 L tank 126 
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temperature-controlled at 16°C, filled with filtered aerated natural seawater at 30 ppt (± 4) of 127 

salinity (Fig. 1). Seawater was renewed by half 3 times per week to avoid nitrate increase. Each 128 

specimen was isolated in wire baskets covered with fine mesh and fed individually twice a week 129 

ad libitum with pieces of squid. Larval hatching was checked daily. 130 

 131 

2.2 Larval maintenance 132 

The objective was to incubate larvae from 12 clutches (6 winter and 6 summer) at three 133 

temperature treatments of 12, 16 and 20°C, as shown in Figure 1. On hatching, actively 134 

swimming larvae were separated from females using a pipette. The rostro-telson length of 30 135 

newly hatched larvae from each clutch was measured (Campillo, 1979). For each clutch, 3 136 

groups of 104 larvae were distributed in three conical vessels, with filtered seawater at 30 ppt 137 

of salinity (± 4), at a density of 100 larvae per L (Reeve, 1969b; Torres et al., 2021). The water 138 

was initially at the same temperature as for the maintenance of the females, and then the conical 139 

vessels were distributed to 3 incubators (temperature ± 0.3°C, regulated by a TK700 cooling 140 

unit by TECO), with photoperiod 12: 12 (L: D) and constant thin aeration. This resulted in a 141 

gradual change which allowed time for the larvae to acclimate to the new temperatures 142 

(Richard, 1978). Larvae were fed daily with freshly-hatched Artemia sp. nauplii at a density of 143 

10 nauplii per mL (Reeve, 1969b). The water was changed (100 %), and larval mortality and 144 

development, assessed by identification of stages (see section 2.4), were monitored 3 times a 145 

week. During development, the oxygen saturation was 103 % (± 4), the pH was 8 (± 0.1) and 146 

the ammonium concentration was 1 mg per L (± 0.3), in mean (± S.E.). On moulting to the 147 

juvenile stage, shrimps were removed. 148 

 149 
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2.3 Intermoult time and number of instars 150 

As several successive stages can occur without morphological change, it is necessary to 151 

determine the number of larval instars. Because the larvae are mass-reared, the larval average 152 

intermoult time cannot be individually measured and then need to be calculated. The average 153 

intermoult time of P. serratus larvae is known to be constant in good zootechnical conditions 154 

(González-Ortegón and Giménez, 2014; Reeve, 1969a). We compiled data on the duration of 155 

larval development of P. serratus under controlled temperature conditions available in the 156 

literature. We did not use data concerning larvae exposed to other stresses (salinity, 157 

contaminant, ...). This allows the construction of a function expressing the theoretical 158 

intermoult time of larval as a function of temperature. For each juvenile obtained in the 159 

experiment, its number of instars realised is estimated by dividing its developmental time by 160 

the corresponding theoretical intermoult time. 161 

 162 

2.4 Identification of larval stages 163 

The different larval stages are identified using morphological criteria. In the larvae of European 164 

palaemonidae, the morphological criteria corresponding to the rostrum, caudal region and 165 

pleopods are commonly used to identify the different larval stages (Fincham and Figueras, 166 

1986). Fincham and Figueras (1986) described 9 larval stages for P. serratus, while Campillo 167 

(1979) described 6. Description and terminology for the naming of larval stages differ between 168 

these authors, but it is possible to do correspondences and characterise 10 different larval stages 169 

(Table 1; according to Duflot et al., unpublished). According to these authors, these larval stages 170 

are potentially all observable, but are not obligatory stages through which each larvae must pass 171 

to develop. On the recent recommendations of Møller et al. (2020) regarding the terminology 172 

of caridean shrimp larvae, we call these stages zoea 1 to zoea 10 in chronological order of 173 

morphogenesis. 174 
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 175 

Table 1: Correspondences between the nomenclatures of the larval stages of Palaemon serratus 176 

described Campillo (1979), Fincham & Figueras (1986) and us; according to Duflot et al., 177 

unpublished. The morphological criteria used in this study are outlined. 178 

Authors Zoea Juvenile 

Campillo (1979) 1 2 3  4   5 6   

Fincham and 

Figueras (1986) 

1 2 3 4 5 6 7 8  9 
 

Correspondences 1 2 3 4 5 6 7 8 9 10  

Morphological 

criteria 
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2.5 Statistical analysis 181 

Statistical procedures were implemented with R software (R Core Team, 2020). The 182 

relationship between larval intermoult time and temperature (Fig. 3; Eq. 1) was obtained using 183 

the nls function. The difference in larval size between winter and summer laying was tested 184 

using a nonparametric Wilcoxon Rank Sum test. To test the effects of temperature and laying 185 

season on the rate of larval metamorphosis and the development time of the metamorphosed 186 

larvae, we used mixed-effects models to consider the fact that for each of the seasons, the larvae 187 

used in the different temperatures came from the same females. For the rate of larval 188 

metamorphosis, we fitted generalised linear mixed-effects model with a logit link function and 189 

a binomial error distribution (glmer function of the package lme4) and performed deviance 190 

analysis procedure including interaction terms (using the package car). For the development 191 

time of the metamorphosed larvae, we fitted linear mixed-effects model (using the function 192 

lmer of the package lme4) and performed deviance analysis procedure including interaction 193 

terms (using the package car). 194 

 195 

3. Results 196 

3.1 Zootechnical performances during larval development. 197 

The average total length of hatching larvae was significantly higher in winter (3.68 ± 0.07 mm), 198 

than in summer (3.18 ± 0.05 mm) in mean ± S.E. (Wilcoxon Rank Sum test; p < 0.05). 199 

While all females produced juveniles at 16 and 20°C, only 5 winter and 3 summer females 200 

produced juveniles at 12°C. At 12°C, only 18 of the 624 winter larvae and 5 of the 624 summer 201 

larvae metamorphosed (Fig. 2a). At 16 and 20°C respectively, 30 % (± 5) and 41 % (± 7) of the 202 

winter larvae metamorphosed, compared to 43 % (± 7) and 55 % (± 7) of the summer larvae, in 203 

mean (± S.E.). The rate of larval metamorphosis varied significantly with temperature and 204 
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laying season without interaction of these two factors (Deviance analysis, interaction term: 205 

Chisq = 3.18, p = 0.07; temperature: Chisq = 16.19, p < 10-5; season: Chisq = 26.6, p < 10-7; 206 

n = 6 per temperature and season). 207 

The metamorphoses took place between days 65 and 111 at 12°C, between days 30 and 56 at 208 

16°C and between days 19 and 42 at 20°C (Fig. 2b). The development time of the 209 

metamorphosed larvae varied significantly between the three incubation temperatures, but 210 

neither as a function of the laying season nor as a result of the interaction of these two factors 211 

(Deviance analysis, interaction term: Chisq = 0.76, p = 0.4; temperature: Chisq = 138.73, 212 

p < 10-16; season: Chisq = 0.62, p = 0.43; n = 6 per temperature and season). 213 

 214 

3.2 Number of instars achieved by larvae. 215 

The compilation of literature data on the larval development of P. serratus under controlled 216 

temperature conditions allows us to construct a function expressing the theoretical larval 217 

intermoult time versus temperature (Fig. 3; Eq. 1): 218 

𝐿𝐼𝑇 = 147.96 𝑒(−0.25  𝑡𝑒𝑚𝑝) + 2.45       Eq. 1 219 

where LIT is the theoretical larval intermoult time and temp the incubation temperature. 220 

This function allows us to calculate the theoretical intermoult times at 12°C (9.8 days), 16°C 221 

(5.2 days) and 20°C (3.4 days) as well as the number of instars achieved by each juvenile 222 

obtained in this experiment. In all experimental conditions, the larvae that metamorphosed did 223 

so after 6 to 13 larval instars (Fig. 4). Only about 3.7 % of them developed for more than 9 224 

instars, and about 1 % for 6 instars. While about 33 and 45 % of the larvae performed 7 instars 225 

at 16 and 20°C, about 43 and 31 % of them performed 8 instars. At 20°C, larvae 226 

metamorphosing after 7 instars represented about 40 % of the total in winter and 50 % in 227 
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summer. At 16°C, 3 larvae metamorphosed after 6 instars in summer, while none did so in 228 

winter. 229 

 230 

3.3 Succession of larval stages. 231 

Figures 5 to 7 show the number of individuals observed for each larval stage during 232 

development, separating the larvae by clutch and incubation temperature. With the exception 233 

of the first few days of development, the larvae from the same clutch incubated at the same 234 

temperature showed a diversity of larval stages, highlighting different developmental pathways 235 

within the same clutch. This diversity increased during development, so that the time of 236 

observation of a larval stage within the clutch also increased during monitoring. Regardless of 237 

the experimental conditions and the rate of metamorphosis, larval mortality is constant 238 

throughout development. Only the larvae of the females 2, 4 and 9 at 12°C experienced more 239 

than 50 % mortality from the zoea 1 stage (Fig. 5). 240 

All 10 larval stages described were observed at each temperature. However, we observed 241 

differences in the proportions of the different larval stages. At 12, 16 and 20°C, respectively, at 242 

least 15.3, 5.9 and 0.4 % of the larvae passed through the zoea 4 stage, and at least 9.1, 0.6 and 243 

0.3 % of the larvae passed through the zoea 6 stage. 244 

Furthermore, during the monitoring of the larval stages presented here, we frequently observed 245 

larvae with 2 rostral spines (criteria for zoea 3) and pleopod buds (criteria for zoea 5). This 246 

larval stage seems to take place instead of the zoea 3 stage, so we called it zoea 3’. This never 247 

described larval stage was not observed at 12°C. At 16 and 20°C, respectively, at least 58.1 and 248 

67.8 % of the winter larvae passed through the zoea 3’ stage, compared to at least 20.8 and 249 

19.9 % of summer larvae. 250 

 251 
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4. Discussion 252 

Regardless of the incubation temperature and the laying season from which the larvae hatched, 253 

we observed a great variability in the larval development of P. serratus (6 to 13 larval instars 254 

and 6 to 11 larval stages). The different developmental pathways observed underline the 255 

developmental plasticity of this species. 256 

In contrast to several authors studying the number of larval instars of decapods during 257 

development (Reeve, 1969a; Dalley, 1980; Linck, 1995, read in Giménez, 2006), we did not 258 

rear the larvae individually. This choice was made in view of the survival rates of P. serratus 259 

larvae in the laboratory available in the literature. While González-Ortegón and Giménez 260 

(2014) and Lassus and Maggi (1980) achieved respectively 40 and 45-70% metamorphosis 261 

when rearing larvae individually, Campillo (1979) and Reeve (1969b) achieved respectively 76 262 

and over 90% metamorphosis with mass-rearing. Furthermore, Reeve (1969a) observed longer 263 

larval development with lower survival when rearing P. serratus individually than when mass-264 

rearing. 265 

We calculated the number of instars made by the larvae from their average intermoult time 266 

according to bibliographic data. Intermoult times obtained for the same temperature may vary 267 

slightly between the 6 sources used (Fig. 3). This can be explained by the differences in 268 

experimental protocol and by maternal effects. The limited information available on this second 269 

factor complicates discussions on this subject. The females used in these 6 experiments came 270 

from populations in Ireland, Wales, Brittany and the Mediterranean (the latter being 271 

phylogenetically distant from the Atlantic populations; Weiss et al., 2018). Only González-272 

Ortegón and Giménez (2014) specify the period of collection of females (autumn) as well as 273 

their size (between 17 and 24 mm from the postorbital margin to the end of carapace, between 274 

18 and 22 mm in our study). According to Reeve (1969a) and González-Ortegón and Giménez 275 

(2014), the intermoult time of P. serratus is constant during larval development under good 276 
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zootechnical conditions. Nevertheless, these authors reared the larvae of this species between 277 

18 and 24°C. It is possible that the intermoult time of P. serratus larvae increases as 278 

development proceeds at lower temperatures, as reported by Kelly et al. (2012) and Lassus and 279 

Maggi (1980) between 10 and 13°C. However, the few individuals that metamorphosed at 12°C 280 

leads us to put the interpretation of the number of instars carried out at this temperature into 281 

perspective. 282 

 283 

4.1 Temperature-mediated developmental plasticity 284 

The larval development of P. serratus is temperature-driven. Here, metamorphosis rates were 285 

temperature dependent (about 2, 36 and 49 % at 12, 16 and 20°C respectively). Campillo (1979) 286 

experienced the highest rates of metamorphosis (85 %) by incubating P. serratus larvae from 287 

Roscoff (France) at 27°C, a temperature above the local maximum. Other authors who studied 288 

the larval development of P. serratus at temperatures between 10 and 13°C observed a mortality 289 

of all individuals between the third and fourth larval instar (Kelly et al., 2012; Lassus and 290 

Maggi, 1980; Yagi and Ceccaldi, 1985). We also observed very low survival rates at 12°C, but 291 

we managed to get some individuals to metamorphosis (< 2%) after 7-13 instars. We chose to 292 

incubate larvae at 12°C because this is the temperature of the sea water in the Bay of Seine 293 

(Normandy) at the beginning of May (Claquin et al., 2018), the date at which the larvae from 294 

the winter spawning are released by females of the same size as those used for this study 295 

(personal observations). Mortality at 12°C was constant during development in the laboratory. 296 

At this temperature, only the larvae from 3 of the 12 females suffered mortality rates above 297 

50 % by the end of the first instar. The mortality rate of the larvae was approximately 52 % 298 

after 30 days of incubation, when most of them were in their fourth instar. The thermal optimum 299 

of crustacean larvae experiences an ontogenic shift (Sastry and McCarthy, 1973). These 300 

variations between larval stages are due to temperature-induced changes in metabolic rates 301 
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(Small et al., 2015). During the month of May, the temperature of the sea water in the Bay of 302 

Seine increases by approximately 3°C (Claquin et al., 2018). A constant temperature of 12°C 303 

in the laboratory negatively affects the survival rates of P. serratus larvae. These effects 304 

probably increase during ontogeny. 305 

In addition to decreasing survival, colder water increases the duration of development. First of 306 

all, as we know from the literature, the intermoult time increases as the temperature decreases 307 

following a negative exponential relationship (Fig.  2). Secondly, larvae tend to go through a 308 

greater number of instars in colder waters (Fig. 4). Although the duration of development is 309 

variable between individuals incubated at the same temperature, this is not so with the value of 310 

the average duration per family (Fig. S1, Supplement). The plastic response to temperature 311 

therefore appears to be the same for larvae produced by different females. However, differences 312 

in survival rates appear between larvae of different families (Fig. S1, Supplement). 313 

Concerning the larval stages, zoea 4 and zoea 6 are more frequent in colder water (Fig. 5 to 7). 314 

These larval stages can be interpreted as supernumerary, or intercalated, stages occurring under 315 

unfavourable conditions such as low temperature. This would explain why Campillo (1979) did 316 

not describe them at 27°C (Table 1). Conversely, at 16 and 20°C, many larvae with zoea 3 317 

criteria (2 rostral spines) and zoea 5 criteria (pleopod buds) were observed (about 39 and 44 % 318 

at 16 and 20°C respectively). This never described stage, which we have called zoea 3’, seems 319 

to replace the zoea 3 stage. This larval stage can be interpreted as a sign of abbreviated 320 

development, occurring under favourable conditions. Caridean shrimps have anamorphic 321 

development, with gradual morphogenesis. Several authors attempt to define and differentiate 322 

terminologies such as repeated instars, supernumerary and intermediate stages. These terms are 323 

the result of the conservative belief in immutable development in decapod crustaceans (Sandifer 324 

and Smith, 1979). The study of the anamorphic development of caridean shrimps allows us to 325 

consider this belief as a zombie idea. The multiple examples of developmental plasticity 326 
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observed in species from different groups of decapods support this view (for a review see 327 

Quinn, 2016). 328 

As stated in the introduction, this temperature-mediated developmental plasticity has already 329 

been demonstrated in caridean shrimps. The larvae follow shorter developmental pathways in 330 

temperatures closer to their thermal optimum (Críales and Anger, 1986; Linck, 1995, read in 331 

Giménez, 2006; Oliphant et al., 2013). Generally, at a given temperature, the more instars the 332 

larvae develop through, the larger the juveniles. This trend has been demonstrated in the larvae 333 

of several decapods including Chasmagnathus granulata (Giménez and Torres, 2002) and 334 

P. varians (Oliphant et al., 2013). Therefore, it would be interesting to compare the 335 

consequences of temperature-mediated developmental plasticity of P. serratus larvae on the 336 

phenotype of juveniles. 337 

These differences in survival between thermal conditions can also be explained by differences 338 

in nutritional requirements. Crustacean larvae require long-chain polyunsaturated fatty acids 339 

(PUFAs) for development, such as eicosapentaenoic acid, or EPA, and docosahexaenoic acid, 340 

or DHA (Anger, 1998; Bergé and Barnathan, 2005). These are generally synthesised by 341 

phytoplankton and transferred into the food chain (Lubzens et al., 1995). PUFAs, DHA in 342 

particular, maintain membrane integrity and viscosity (Estévez and Kanazawa, 1996; Los and 343 

Murata, 2004; Pagliarani et al., 1986), especially in cold waters (Harwood, 1988; Munro and 344 

Thomas, 2004). Like many authors, we fed P. serratus larvae with artemia nauplii (Campillo, 345 

1979; Reeve, 1969b; Wickins, 1972; Yúfera and Rodríguez, 1985). Although these are 346 

traditionally used to feed decapod larvae, they are known to be deficient in PUFAs (Narciso 347 

and Morais, 2001; Navarro et al., 1999). These deficiencies may explain the very low survival 348 

of P. serratus larvae in cold water observed here and by the authors mentioned in the paragraph 349 

above. PUFAs also influence growth, stress and disease resistance in decapods (Anger, 1998; 350 

Kanazawa et al., 1985; Mourente and Rodríguez, 1997). It would be interesting to study the 351 
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effects of the interaction between temperature and diet quality on the developmental plasticity 352 

of P. serratus. 353 

 354 

4.2 Developmental plasticity induced by laying season and its interaction with temperature 355 

The newly hatched larvae used in this study were larger in winter than in summer. These results 356 

are consistent with González-Ortegón et al. (2018) who observed difference in P. serratus 357 

larval biomass between laying seasons. Because of this difference in phenotype, we 358 

hypothesised that P. serratus larvae from winter females would develop faster than those from 359 

summer females. These effects were not significant in our data analyses. At a given 360 

temperature, summer larvae even appeared to perform fewer larval instars than winter larvae. 361 

These results are in contradiction with those obtained on another caridean shrimp species 362 

(Linck, 1995, read in Giménez, 2006). The author incubated larvae of C. crangon, from large 363 

winter eggs and small summer eggs, at two relatively cold and warm temperatures (12 and 364 

18°C). Regardless of the temperature, summer larvae metamorphosed after a greater number of 365 

larval instars than winter larvae. We need to further investigate the effects of the interaction 366 

between the laying season and environmental conditions on the developmental plasticity of 367 

P. serratus. 368 

The winter larvae were larger than the summer ones. Few authors have studied the effects of 369 

larval size or larval biomass on developmental plasticity of decapod larvae. The number of 370 

larval instars made by larvae decreases with increasing larval size or larval biomass in 371 

C. crangon (Paschke et al., 2004), C. granulata (Giménez et al., 2004), Homarus gammarus 372 

(Moland et al., 2010), P. varians (Oliphant et al., 2014; Oliphant and Thatje, 2013) and 373 

P. australiensis (Hancock, 1998), a phenomenon that is accentuated under adverse conditions. 374 

Although they highlighted the decrease in the number of larval instars with increasing initial 375 
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larval biomass in P. serratus larvae under starvation conditions, González-Ortegón & Giménez 376 

(2014) did not confirm this trend under favourable feeding conditions. This result is consistent 377 

with those presented here. 378 

Although the development time of the larvae in the two laying seasons did not differ, at 16 and 379 

20°C, the zoea 3' stage was observed more often in winter larvae than in summer larvae (Fig. 5 380 

to 7). The morphogenesis of the winter larvae (pleopod buds) was earlier than that of the 381 

summer larvae, at least in the early larval stages. The winter larvae may have received more 382 

available energy resources (transmitted by the mother) than summer larvae and used them 383 

during these early instars. This phenomenon may have been favoured by the choice of females 384 

used. The cephalothorax of the winter females measured on average about 40 mm. These would 385 

be more than two years old, which corresponds to less than 2 % of the female population of 386 

P. serratus (Campillo, 1979). The limited information available on the size of the females and 387 

the date of their sampling in previous publications does not allow comparison of our results. 388 

The lack of description of the zoea 3' stage in previous studies can be explained by the choice 389 

of females used. We need to investigate the effects of female age on maternal investment and 390 

developmental plasticity in P. serratus. 391 

When they hatch, decapod larvae have visible vitelline reserves in the cephalothorax in the form 392 

of yolk droplets (Anger, 1996; Oliphant and Thatje, 2014). These can be used to cope with 393 

starvation conditions during the first larval instars (Anger, 1995a, 1995b; Thessalou-Legaki et 394 

al., 1999), e.g. when larvae are exported from a brackish environment to the marine 395 

environment (Anger and Hayd, 2009; Oliphant and Thatje, 2014). Such yolk droplets are 396 

observed in hatched larvae of P. serratus (personal observation). Narciso and Morais (2001) 397 

measured a decrease in fatty acid content during the first 48 hours of development of P. serratus 398 

larvae under starvation conditions. Their results and ours seem to confirm the use of vitelline 399 

reserves during the first larval instars in P. serratus. Future analyses to compare the quantity 400 
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and quality of resources allocated per offspring, called POI (i.e. per offspring investment; 401 

Oliphant, 2014), as a result of the laying season and their effects on larval development will 402 

provide a better understanding of the developmental plasticity in P. serratus larvae. 403 

In P. serratus, winter larvae are larger than summer larvae. We expected that this phenotypic 404 

difference would allow winter larvae to develop faster than summer larvae at the same 405 

temperature. Although we did not observe this result, we did observe earlier morphogenesis in 406 

winter larvae at the warmest temperatures. As explained in the previous paragraphs (see section 407 

4.2), we believe that this phenomenon is related to the amount of energy allocated per offspring. 408 

This pattern of maternal investment buffers winter larvae from variable early season conditions 409 

(low temperature, Torres et al., 2020; less abundant planktonic food resources, Paschke et al., 410 

2004). Furthermore, the negative effects of food limitation on larval survival are exacerbated 411 

by unfavourable temperatures (Torres and Giménez, 2020). The few months separating the 412 

hatching of the larvae from the two laying periods of P. serratus result in two cohorts of 413 

juveniles (Campillo, 1979). As these cohorts share the same habitats, they compete for 414 

resources or even cannibalise (Moksnes et al., 1998). The shift in the recruitment periods of 415 

these two cohorts results in a difference in the size of the individuals (P. serratus juveniles of 416 

0.5g which double or triple their weight in 2 months depending on their sex at temperatures 417 

between 18 and 29°C; Rodriguez, 1981). These traits probably favour juveniles from winter 418 

laying over those from summer laying in years when early season conditions are favourable 419 

(Temming et al., 2017). The population structure and dynamics of P. serratus should be studied 420 

to assess the settlement success of winter and summer cohort. This would facilitate 421 

understanding the effects of juvenile recruitment phenology on their interactions. 422 

 423 
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Conclusion 424 

Although larval development of P. serratus is plastic in response to temperature, the interaction 425 

between temperature and laying season does not seem to influence its developmental pathways 426 

as expected. As the development of some groups of decapods is gradual, understanding their 427 

developmental pathways will require consideration of the number of instars and the succession 428 

of larval stages. 429 
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Figure captions 706 

Figure 1: Experimental design to study the effects of temperature and laying season on larval 707 

developmental pathways in Palaemon serratus. For the 12 females (6 per season), the larvae 708 

are distibuted into conical vessels in 3 water baths following the illustrated example of the 709 

larvae of females 1 and 7. The illustrations of the females are modified from the one available 710 

on the Muséum-Aquarium de Nancy website by Marion Arbona. 711 

 712 

Figure 2: (a) Metamorphosis rate (%) and (b) development time (days) of Palaemon serratus 713 

larvae having reached metamorphosis. The ± S.E. correspond to the deviation of the mean of 714 

each family from the overall mean. Larvae are grouped by laying season and incubation 715 

temperature; W12: Winter 12°C, S12: Summer 12°C, W16: Winter 16°C, S16: Summer 16°C, 716 

W20: Winter 20°C and S20: Summer 20°C (n = 104 larvae per female). 717 

 718 

Figure 3: Theoretical larval intermoult time of Palaemon serratus versus rearing temperature, 719 

based on data from bibliography (Reeve, 1969a, squares; Campillo, 1979, filled circles; Lassus 720 

& Maggi, 1980, cross; Yagi & Ceccaldi, 1985, stars; Kelly et al., 2012, filled squares; 721 

González-Ortegón & Giménez, 2014, filled triangle). 722 

 723 

Figure 4: The relative frequency (%) of the total number of larval instars reached by 724 

metamorphosed Palaemon serratus larvae. Larvae are grouped by laying season and incubation 725 

temperature; W12: Winter 12°C (n = 18), S12: Summer 12°C (n = 5), W16: Winter 16°C (n = 726 

186), S16: Summer 16°C (n = 257), W20: Winter 20°C (n = 271) and S20: Summer 20°C (n = 727 

350). 728 
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 729 

Figure 5: Number of Palaemon serratus larvae observed for each larval stage during their 730 

development at 12°C. Larvae are grouped by clutch; 1 to 6: winter females, 7 to 12: summer 731 

females (n = 104 larvae per female). Juveniles are removed at metamorphosis and their 732 

cumulative numbers are shown in black on the graph. Observations stop when there are no more 733 

larvae. 734 

 735 

Figure 6: Number of Palaemon serratus larvae observed for each larval stage during their 736 

development at 16°C. Larvae are grouped by clutch; 1 to 6: winter females, 7 to 12: summer 737 

females (n = 104 larvae per female). Juveniles are removed at metamorphosis and their 738 

cumulative numbers are shown in black on the graph. Observations stop when there are no more 739 

larvae. 740 

 741 

Figure 7: Number of Palaemon serratus larvae observed for each larval stage during their 742 

development at 20°C. Larvae are grouped by clutch; 1 to 6: winter females, 7 to 12: summer 743 

females (n = 104 larvae per female). Juveniles are removed at metamorphosis and their 744 

cumulative numbers are shown in black on the graph. Observations stop when there are no more 745 

larvae. 746 
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Highlights 

• Larval development was plastic in terms of instars and stages. 

• Higher temperature decreased the development time and the number of instars.  

• The seasonal phenotype had no effect on the development time. 

• Supernumerary stages were observed at low temperatures.  

• Early morphogenesis was observed at high temperatures. 
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