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Abstract:  

Quantifying the impact of associative groups aggregation on the mechanical properties of dense 

supramolecular networks remains a challenging problem. To address this question, we carry out 

coarse-grained molecular dynamics simulations of triblock copolymers consisting of a linear 

succession of hard-(crystallizable) and soft-(amorphous) segments. This molecular architecture 

offers the opportunity to increase the volume fraction of crystallites, serving as supramolecular 

aggregates, in a progressive and controlled fashion, allowing to study its impact on the plateau 

modulus of the corresponding thermoplastic elastomers. By unifying these simulations with a 

recent mechanistic model and experimental data, we provide new quantitative insights into the 

microscopic origin of the mechanical reinforcement. Enhancement of the plateau modulus 

originates from the network’s topology at low crystallites content (< 8 vol.%) while it is 

dominated by the dynamical slowdown of hardened soft segments, which jointly with the hard 

phase, form a hybrid percolated network above this threshold. 
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1. Introduction 

Supramolecular polymers consisting of linear macromolecules carrying associative moieties have 

been thoroughly studied in the last three decades, largely promoted by the attribution of the 

Nobel Prize in Chemistry to Cram, Lehn and Pedersen in 1987. Since then, major advances in 

chemistry have led to the development of a wide variety of systems relying on hydrogen bonds, 

π-π interactions, ionic aggregation and metal-ligand complexation1–5, often targeting self-healing 

properties6. From a physical point of view, the incorporation of associative groups (“stickers”) 

within the chains enables to decorrelate their segmental and terminal relaxations, respectively 

driving their glass transition temperature (  ) and their flow properties. Concretely, active 

stickers can dramatically slow down the chain diffusion while keeping the glass transition barely 

unchanged, providing (low   ) supramolecular networks with an apparent thermoplastic-

elastomer-like mechanical behavior. Beyond quantitative decorrelation, many rheological 

studies have evidenced qualitative differences regarding the temperature dependence of the two 

processes: while segmental motions obeys William-Landel-Ferry (WLF) dynamics, 

supramolecular chains diffusion are well-described by Arrhenius profiles, as expected from non-

cooperative physical bonds dissociation7,8. 

The description of the rheological behavior of supramolecular polymers was notably addressed 

by Leibler, Colby and Rubinstein in their seminal paper introducing the Sticky-Rouse and Sticky-

Reptation models9, in which the phenomenology was convincingly captured. By assuming 

isolated stickers, they provided a well-known expression for the shear plateau modulus (  
     

 , 

directly derived from the entropic elasticity theory and the affine network model10 as follows 

 
  
     

      
 

  
 

 

  
   

(1) 

Here,   is the molar number density of monomers (or Kuhn segments),   is the perfect gas 

constant,   is the temperature,   is the probability for a sticker to be active that depends on the 

temperature,    is the number of Kuhn segments between successive stickers along a chain and 
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   is the mean number of Kuhn segments between two consequent entanglements. In this paper, 

the authors focused on the case of      , i.e, supramolecular networks formed by chains 

carrying a low number of stickers, which allowed them to make the hypothesis of non-perturbed 

chain conformation and absence of phase separation.  

 

However, the development of supramolecular materials has generated a myriad of systems based 

on dense-supramolecular networks in which the hypothesis of isolated dimer-based stickers (i.e., 

with a functionality of 4) does not hold true anymore. Among the vast list of examples, a recent 

study by the group of E. Van Ruymbeke have notably evidenced the massive aggregation of 

terpyridine-ions moieties in metal-ligand based supramolecular network, resulting in a strong 

impact on the rheological properties11. The same (unexpected) effect was also evidenced on 

similar (albeit denser) systems by some of us 7. Interestingly, while the aggregation of stickers 

might be seen as an undesired effect, researchers have also tried to control it to tune the 

properties of materials. This philosophy was notably adopted by the group of B. Olsen, where a 

given number of stickers were progressively concentrated at the chains extremities to generate 

longer terminal relaxation time12,13. In the same vein, the group of R. Colby has developed co- 

ionomers in which both phase separation and ionic groups aggregation were desired to provide 

the material with  higher mechanical properties14. A comprehensive review of the field was 

published recently by the group of Seiffert15 pointing the effect of stickers aggregation on various 

properties of supramolecular polymers. Some of the above-mentioned examples are gathered in 

Figure 1 to illustrate the shift from isolated stickers towards clusters and super-structures such 

as ribbon-like assemblies emerging from both associative groups aggregation or hard-segments 

crystallization.  
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Figure 1: Schematic representation of various supramolecular systems highlighting the 

presence of stickers aggregates relying on different types of moieties. a) Metal-ligand associative 

groups gather into tridimensional aggregates, adapted from ref11. b) The concentration of 

histidine stickers at the polymer ends (resulting in a triblock copolymer configuration) enhances 

their aggregation (left) while the material’s structure is homogeneous when stickers are spread 

regularly along the backbone (right). White and blue dots represent non-active and active 

stickers respectively, adapted from ref13. c) The aggregation of supramolecular UPy moieties 

results into the formation of ribbon-like crystallites (“nano fibers”), adapted from ref16. 

 

In spite of an abundant literature and numerous examples of “heterogeneous” supramolecular 

polymers, it seems however that no general formalism has emerged to link the plateau modulus 

and the degree of aggregation of the stickers in dense polymer networks (theoretical works are 

available for some solutions and gels17,18). As a matter of fact, Eq. 1 fails to predict the extra-
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reinforcement generated by the stickers aggregation and must therefore be adapted, while 

(ideally) keeping its “universal” character, i.e., being applicable regardless of the chemical nature 

of the network.  

To address this challenge, we propose in this article to consider the case of tri- and multiblock 

copolymers [(B-A)n-B], both denoted MBCs hereafter, by combining experimental, theoretical 

and numerical simulations approaches. Actually, simulations concern triblock copolymers only, 

experimental data come from multiblock copolymers including triblock copolymers, and the 

analytical modeling is developed for any crystallizable block copolymer with    . These 

materials, which are widely used in the industry as thermoplastic elastomers, rely on the phase 

separation of soft-(A) and hard-(B) segments possibly followed by the crystallization of the latter 

at low temperature19,20. They present the great advantage to cover a wide range of crystallites 

volume fraction (  , representing here a tunable fraction of stickers aggregates. By adjusting the 

content in hard-segments (HS) within the chain through their density numbers or their length, 

we therefore have the opportunity to investigate the reinforcement     in a systematic way that 

we define as 

 
  

  
   

  
    

(2) 

where   
    and    

   are the plateau modulus of the block copolymer and the neat matrix made 

of soft-segments (SS), respectively. Importantly, the present work supports and enhances our 

recent mechanistic model21 that we further use here in parallel to Coarse-Grained Molecular 

Dynamics  (CGMD) simulations to capture a physical understanding of the reinforcement 

observed in supramolecular polymers in the presence of stickers aggregates.  

 

The article is organized as follows: Section 2 is devoted to a reminder of our analytical model 

developed for MBCs (2.1) and to the description of technical aspects regarding CGMD 

simulations (2.2). Section 3 presents simulated mechanical properties of a wide variety of 
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triblock copolymers and compare these results to previously published experimental data and 

predictions of our analytical model (3.1). We then focus on the dynamical slowdown of the soft 

phase in presence of large aggregates to rationalize the reinforcement upturn generally observed 

at high concentration of supramolecular moieties (3.2). 

 

2. Materials and Methods 

2.1 Analytical description 

The semi-empirical mechanistic model we use to rationalize the modulus enhancement of 

multiblock copolymers with increasing the fraction in HS, and corresponding crystallites volume 

fraction, is detailed in previous works 21,22. It stems from the entropic elasticity theory and 

consist of counting the number of additional topological links generated by the HSs association 

into crystallites. Its ability to describe successfully a wide set of experimental data has been 

demonstrated in ref23. Below, we briefly remind the model ingredients and its prediction for low 

and high degrees of crystallinity (aggregation). 

Low degree of aggregation 

In a homogeneous entangled polymer melt, the density of topological nodes (i.e., entanglements) 

per chain is      , where   is the tube diameter. A sphere of diameter   contains    

entanglements that however belong to different chains, i.e., do not interact with each other at the 

length scale relevant for entropic elasticity. In the case of MBCs, we proposed that the 

association of HSs enables the cooperation of these    entanglements by connecting physically 

the chains they belong to at a lengthscale smaller than  . This approach, illustrated in Figure 2 

below, results in a density of topological links per chain being      
   , where     is the number 

of HSs included in the volume defined by the intersection of a ribbon-like crystallite and the 

sphere of diameter  . A naïve mechanical analogy consists of imagining that pulling one of the    
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strands connected to the crystallite results in solicitating     other strands at the tube diameter 

length scale. 

Beyond its link with the crystallites’ geometry,     further describes the density of the topological 

network in the sense that it quantifies the number of strands being connected to each other at 

the tube diameter lengthscale. From this point of view, a wider crystallite is necessarily 

synonymous of a higher network density, making     an indicator of the “chains connectivity”. 

    can be easily calculated from the width of the crystallite ( ) and its cell parameters in the 

plane (           orthogonal to the chain axis (       ), or alternatively, from the distance 

between the central axes of adjacent crystallites    and their volume fraction   accessible 

experimentally, 

 
      

  

    
    

    

    
    

(3) 

Here,   is a geometrical parameter that depends on the arrangement of the crystallites (=1, 

isotropic or 3, aligned)24, and   is the crystallites thickness, corresponding to the length of the 

HS. Note that in the case of      , corresponding to the case of a wide lamellar geometry 

instead of a thin ribbon, we assumed        
 

 
 
 
.  

Taking then the total density of topological links (    ) as the weighted sum of contributions 

coming from the soft and hard phases leads to 

                                                      (4) 

where     is the density of topological links in the soft phase. Assuming that the HSs 

crystallization has no significant impact on the average conformation nor dynamics of the SSs 

(which is very likely at low  ), the reinforcement      is then simply the ratio between      and 
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   , giving a straightforward relationship between the MBC modulus, the volume fraction in 

crystallites and the inter-crystallites distance 

 
     

    
   

   
    

    
    

(5) 

 

Figure 2: Schematic representation of the local environment of a crystallite and the topological 

consequences it has on the polymer network. a) Neat soft polymer. b) Multiblock copolymer 

where   ,    and    are the aggregation numbers in the three principal directions    ,      and       

(by construction    is always equal to 1), adapted from 21. 

 

In this context, the elastic modulus only stems from entropic considerations assuming that the 

temperature is far above the glass transition temperature of the SS (close to -60 °C 

experimentally and 0.46       in simulations, see below). For the sake of simplicity, non-

associated HSs possibly impacting slightly the dynamics of the amorphous phase 23, are 
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voluntarily not considered. Note finally that Eq. 5 above, in which all the geometrical parameters 

appear, can be rewritten in a shorter way, as a function of     that is directly accessible in our 

CGMD simulations. 

                  (6) 

High degree of aggregation 

The hardening of the soft phase caused by the presence of crystallites is defined as  

 
  

  
    

  
    

(7) 

where   
   and   

     are respectively the rubbery modulus of the neat-SS matrix and the one 

corresponding to its hardened version, i.e., where the confined SSs exhibit dynamical slowing 

down in presence of crystallites. Following the classic picture of entropic elasticity and assuming 

that    remains constant, one can then rewrite   as a function of the apparent densities of 

topological links (    and corresponding tube diameters (    such that  

 
  

     

   
  

 

  
 
 

  
(8) 

Note that while     and   can be measured independently from the neat soft matrix,       and    

are respectively the apparent topological link density and tube diameter characterizing the 

confined soft phase. Both are used as intermediate (non-measurable) parameters in our model. 

Then, following the same logic as above (low  ), where the number of topological links within 

the hard-phase was expressed as     
  , we can define the same quantity in MBCs containing a 

confined soft phase as       
    . Assuming that the total density of topological links (      ) is 

the volume weighted average of the hardened soft phase (made of SSs) and the hard phase 

(made of HSs), one obtains 
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                        . (9) 

Note that our analytical model considers here that the whole soft phase is slowed down (i.e., 

hardened) in a homogeneous way, i.e., that a unique value of   stands for all the SSs regardless 

of their position 21. Refinements of this description are provided below by using CGMD 

simulations. 

Then, because crystallites are expected to widen with increasing   24,25 and that     , it is 

reasonable to assume that      (which is confirmed by analyzing quantitatively our 

simulation boxes), leading to a simplification of Eq. 3 resulting in  

 
       

  
 
 
 

  
(10) 

where    depends only on the confined soft phase characteristics and the cell parameters. By 

isolating    in Eq. 8, inserting it into Eq. 10 and replacing the corresponding expression of        

in Eq. 9, we finally obtain the reinforcement in presence of a hardened soft phase 

 
      

      

   
      

 

 
 
 

      
(11) 

Importantly, although we evidence below that the slowing down of the SSs is not homogeneous, 

i.e., that it depends on their position with respect to the crystallites, we believe that Eq. 11 is 

applicable as long as hardened SSs and HSs form a percolated network. In this case, the value of  

  is the one characterizing the most hardened SSs bridges located in-between crystallites while 

the rest of the SSs, acting in parallel, is considered too soft to play any significant role on the 

reinforcement. 

 

2.2. Coarse-grained molecular dynamics simulations 
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Our recent CGMD model26, where polymer chains consist of “beads” representing a few 

structural units, is adapted to simulate polybutylene terephthalate / polytetrahydrofuran 

(PBT/PTHF) MBCs by matching physical characteristics of PBT and PTHF chemical units like 

chain rigidity and density27. In the past, we used this model to study the impact of the molecular 

weight distribution28,29 on the crystallization of homopolymers and the effect of the block-

length27 on the crystallization of tri- and penta-block copolymers. This CGMD model26 is based 

on two potentials, where energy, length, and time units are given by      , and   , respectively, 

with         
     where    is the mass unit. Intrachain interactions of bonded beads 

corresponding to covalent bonds are given by a FENE potential: 

 
                

       
 

  
 
 

      
  
 
 
  

  
  
 
 
 

  
(12) 

with          
 ,          ,            and        . All other weak interactions between 

two beads of different chains or between two nonbonded beads of the same chain are modeled by 

a Lennard-Jones potential: 

 
           

 

 
 
  

  
 

 
 
 

      
 

  
 
  

  
 

  
 
 

  
(13) 

where,           is the cutoff radius and the value of           has been optimized to make 

possible the crystallization. 

 

Here, we focus on simulating “triblock" copolymers (HS-SS-HS), containing                

beads per chain, where     and     are respectively the number of beads per hard and soft 

segments as illustrated in Figure 3a. Series of molten copolymers named    , where        , 

as well as their neat hard and soft polymer counterpart, respectively named “neat-HS" and “neat-

SS", are built by using the radical-like polymerization algorithm30 at          .     varies 

from 6 to 20 while     is adjusted so that the ratio      in the MBC melt is kept constant, with 
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   being the number of beads per entangled strand that we evaluate through the Z1 code31. The 

whole list of numerical samples is provided in Table 1 together with their main structural 

parameters.  

 

 

Figure 3: a) Schematic representation of a simulated triblock copolymer that would correspond 

to    . b) Different types of HS and SS beads present in the simulation boxes. The dashed line 

H S

H
S

S
S

grafted SSbound SS

free SScrystal HS

non-crystal HS

a)

b)

c)
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represents the distance      from the interface. c) Sectional view of a crystallite obtained in the 

HS20 system by molecular dynamics. The color code is the same as in b) and the free-SS beads 

are not represented. The discrimination between the various types of SS beads is at the heart of 

the calculation of the amorphous phase hardening. No chain bending is observed. 

TABLE I. Architecture of MBCs, variables are defined in the text. Chains are generated at 

          (molten state) with the constraint to satisfy           . The antepenultimate and 

the penultimate columns are the volume fraction of HS crystallites (   and the percentage of HS 

beads that effectively crystallize at               (    . We also give respectively the mean 

square end to end distance of the neat SS and neat HS at          ,     
             

  and 

    
             

 , and the number of beads per entanglement of the neat SS at            , 

  
       . 

System 
   1 

- 

   2 

- 

 3 

- 

   4 

% 

  5 

- 

     

- 

 6 

vol.% 

   7 

% 

Percolation 

- 

Neat SS 0 212 212 0.0 44.0 4.8 0.0 0.0 No 

HS6 6 194 206 5.8 42.7 4.8 0.0 0.0 No 

HS8 8 188 204 7.8 42.3 4.8 1.1 14.3 No 

HS9 9 185 203 8.9 42.1 4.8 3.1 35.1 Bound 

HS10 10 182 202 9.9 41.8 4.8 4.2 42.0 Bound 

HS11 11 179 201 10.9 41.6 4.8 4.7 43.3 Bound 

HS12 12 176 200 12.0 41.4 4.8 5.5 46.1 Bound 

HS13 13 172 198 13.1 41.1 4.8 6.7 50.8 Bound 

HS14 14 169 197 14.2 40.9 4.8 7.6 53.5 Bound 

HS15 15 166 196 15.3 40.7 4.8 8.7 57.0 Bound 

HS17 17 160 194 17.5 40.8 4.8 10.9 62.4 Bound 

HS20 20 150 190 21.1 39.4 4.8 14.3 67.8 Grafted 
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Neat HS 100 0 100 100 23.2 4.3 61.4 61.4 - 

1. Number of beads in (monodisperse) HS 

2. Number of beads in (monodisperse) SS 

3. Number of beads per chain 

4. Mass fraction of HS beads in the simulation box (soft- and hard-beads have a different mass) 

5. Average number of beads between entanglements (Kroger) 

6. Volume fraction in HS crystallites determined from the number of beads belonging to 

crystallites. Amorphous and crystalline phases densities are not significantly different in the 

simulations (both are around            beads per unit volume). 

7. Fraction of crystallized HSs 

8. Detection of percolation. No : no percolation. Bound : Percolation occurs in at least two 

directions by considering crystallites, grafted-SS, and bound-SS. Grafted : Percolation occurs 

in at least two directions by considering crystallites and grafted-SS only (See Section 3.2). 

 

All simulations are performed in the NPT ensemble with Nosé-Hoover thermostat and barostat, 

using periodic boundary conditions. Newton's equations of motion are integrated with the 

velocity Verlet method with the time step             . Pressure is fixed at            
 . All 

molten copolymers are relaxed at           for           and are subsequently cooled down 

to             at a cooling rate of                   and relaxed again at this temperature for  

            ensuring strong and negligible crystallization of HS and SS respectively.   

         , is slightly above the glass transition temperature of HS, close to            , and 

well above that of SS, close to             . No independent amorphous HS domain is 

observed at this temperature.  All simulations are performed in three dimensions using the 

open-source code LAMMPS32 and images are generated with OVITO33. All triblock copolymers 

are seen to crystallize except HS6 that remains fully amorphous. The fraction and morphology of 

the crystalline phase are extracted with a hierarchical clustering method26, explained in detail in 

Supplementary Information (SI Section 1). A direct comparison of          with experimental 

data from twelve different multiblock systems is also provided in SI Section 1 to evidence the 

relevancy of our simulations. Importantly, HS-folding was never observed (whatever the HS 
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length) as emphasized Figure 3c. This confirms that our triblock copolymers can be seen as 

supramolecular polymers in the sense that a given sticker cannot associate with itself, which 

further ensures that crystallites connect      distinct elastically active strands, as hypothesized in 

the topological model (see e.g., Eq.3 and Figure 2).    

To rationalize the reinforcement at high   involving the hardening of the soft phase, different 

categories of beads are defined according to their type and environment: crystalline HSs, non-

crystalline HSs, crystalline SSs and non-crystalline SSs (see Figure 3b-c). The latter includes 

three sub-ensembles. (i) “Grafted” SS beads are the ones whose chemical distance from a bead 

belonging to a crystalline-HS is not further than five covalent bonds. (ii) “Bound” SS beads are 

located at a spatial distance shorter than 4.0    from any crystalline-HS bead, excluding 

“grafted” beads. (iii) “Free" SS beads include all other non-crystalline SS beads located further 

from the interface with the HS crystallites.  

Note that because in our simulations the extreme majority (if not all) of the HSs are gathered 

into crystallites, the fraction of non-crystalline HS beads does not impact the value of    , nor, 

consequently, the topological reinforcement (Eq. 6 and Section 3.1). In addition, although they 

certainly participate to the mechanical response of the materials because of their sluggish 

dynamics, they cannot bridge crystallites alone because of covalently connected SS. In other 

words, they never “percolate” making them irrelevant in our Eq. 11 in which   quantifies the 

hardening of the softest type of percolating beads (See Section 3.2). For these two reasons, non-

crystalline HS beads are not considered in the following. 

 

3. Results and Discussion 

3.1. Topological considerations. 
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Figure 4 shows the relaxation shear modulus as a function of time      computed using the 

Green-Kubo method (GK)34 and averaged over the three principal directions for various HS 

contents such as 

 
     

 

   
                  

(14) 

where   si the simulation box volume,    is the Boltzmann’s constant and     represents the    

(shear) stress component of the stress tensor   . 

 

 

Figure 4: Relaxation shear modulus of MBC with growing content in HS. The dashed-dotted 

green line is a fit to the neat SS data based on Eq. 17. Some data are not displayed for clarity, the 

whole data set is reported in SI section 2. 

 

At short time, the modulus appears to be almost independent of the MBC composition because it 

is dominated by the fast relaxation modes of the SSs. However, at time longer than the 

entanglement time   , i.e., the Rouse relaxation time of an entanglement strand, the growing 

content of HS within the chain results in a strong reinforcement manifested by large plateau 
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values. According to the GK calculations, the neat soft matrix (denoted neat-SS) exhibit    

      , corresponding to the beginning of its rubbery plateau. This result is in good agreement 

with the Rouse scaling law    =       
         with          being the Kuhn segment 

relaxation time and      
  

  
    , where         represents the number of beads per Kuhn 

segment. Note that    can be estimated from our simulations by calculating first          

   
      , corresponding to ca. 5   

  (see Figure 6f), and reporting the value on the          

plot (see Figure 6f). Alternatively, one can approximate     
         

 , where            is 

the SS Kuhn length (see Section 3.2). 

 On the other hand, the end of the plateau is assigned to the terminal relaxation time   , close to 

       in Figure 3. This value, albeit lower, is in fair agreement with the reptation scaling law 

given by    
    

 

    
           , where    is the number of Kuhn segments per chain. As 

expected, the decay of the modulus at        is not visible in strongly associated systems where 

the chains diffusion is suppressed. In between these two limits, one can see that      of the neat 

soft polymer does not exhibit a true plateau but rather a slowly decreasing profile, as it is mostly 

observed experimentally in polymer melts because of contour length fluctuation and constraint 

release effects35. In order to extract a plateau modulus value for each HS content, we fit the      

curves with a decreasing exponential function above        (see the dash-dot grey line in Figure 

4) as follows 

               
         (15) 

 

Beyond the satisfying qualitative trend of the mechanical properties showing both the expected 

gelation and reinforcement effects, we focus on the quantitative aspect of the latter parameter in 

Figure 5. Here, CGMD results (hollow blue squares) are confronted to former experimental data 

measured from different MBCs23 (black symbols) emphasizing a good agreement between 
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physical and numerical experiments, further evidenced by exponential fits (     ) providing 

similar parameters:   =18.38  and 19.57, respectively. This remarkable agreement, spanning the 

whole   range, suggests therefore that a meticulous analysis of the structure of simulated 

systems (accessible in a straightforward way) is likely to provide decisive information about the 

origin of the reinforcement, allowing therefore to challenge our mechanistic model, i.e., our 

fundamental understanding of the reinforcement. Following this logic, we fed Eq. 6 with the 

average value of     directly accessible from the simulated systems to calculate their “theoretical 

reinforcement”. These predictions are displayed in Figure 5 as red circles. Strikingly, restricting 

the comparison to           shows that beyond the success of our approach to rationalize the 

reinforcement from DSC ( ) and SAXS (  ) experiments (see refs. 21,23), our model is also able to 

predict satisfyingly the reinforcement observed in simulation boxes based on their structure. 

This important result supports therefore the prominent role of the     parameter in the 

mechanism of reinforcement enabling to progress on the understanding of the physics of 

relatively loose (           ) associative polymers (here represented by a loose network of 

crystallites).  

 

Figure 5: Reinforcement as a function of the HS crystallites volume fraction in simulated MBCs. 

Blue squares represent the GK calculations. Red circles are calculated from the mechanistic 
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model (Eq. 6) applied on the simulation boxes. Orange hollow and full stars are calculated from 

Eq. 11 where the hardening parameter   is estimated in Section 3.2 assuming the percolation of 

grafted- plus bound-SS and sole grafted-SS respectively. The blue solid and the black dashed 

lines are respectively exponential fits of GK simulated data and experimental data, reproduced 

from 21. The arrow emphasizes the effect of SS dynamical slowdown on the reinforcement in 

HS20. Black data correspond to experimental measurements performed on various MBCs from 

the literature: ◊ 36,   21,24,25,   37,   38,   39,   40 and   41. 

 

While topological links dominate the plateau modulus of MBCs at low  , the situation is 

expected to become more intricate upon increasing the crystallites content. In particular, 

because the average distance between crystallites’ walls (  ) becomes smaller than the average 

equilibrium end-to-end distance of neat SS       
      

 

 ) (see Figure 6a for simulated MBCs), 

the latter’s average conformation must be significantly impacted. Our simulations enable to 

illustrate this effect by plotting the SS elongation ratio of MBCs with respect to the neat soft 

matrix (       
      

 

       
      

 

  ) and by observing its deviation from unity as presented 

in Figure 6b. This representation first reveals in all the systems a growing value of   at low   

indicating that the SSs in immediate vicinity to the crystallites exhibit some degree of stretching 

(up to ≈30 % in HS20). In addition, the maximum value of    appears to grow with the size of the 

HSs (and  , see Table 1), being reminiscent of the Alexander-de Gennes brush theory10. In brief, 

the larger the crystallites, the higher the number of SS connected to them, and the higher the 

average degree of stretching of the SS due to entropic considerations (as evoked in21 ). This 

observation from CGMD simulation, further confirms experimental results on MBCs indicating 

that the section (or width) of the crystallites are expected to grow with the length of the HS 

(enhancing also   25. For higher values of  , a pronounced decrease of   is observed; it can be 
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interpreted as the end of the brush allowing the chain to adopt a conformation closer from a 

Gaussian coil, albeit non-fully equilibrated. Finally,   is almost always observed to re-increase at 

high   indicating the presence of another SS brush configuration coming from the crystallization 

of the HS at the other chain extremity. The important message is therefore that the SS beads 

close to the crystallites are very likely to belong to stretched polymer segments that can be 

elongated up to a factor 1.2-1.3 with respect to the neat SS coils and that this effect is accentuated 

with increasing the length (and the volume fraction) of HSs. 

 

Figure 6: a) Average SSs end-to-end distance and distance between crystallites walls as a 

function of the volume fraction in crystallites. b) Elongation ratio of the SS for various HS length 

(corresponding to various volume fraction in crystallites). 

 

Beyond the quantitative analysis of the chain conformation, their topology is also interesting to 

investigate since it can be related to the fraction of elastically active segments, being of possible 

interest to quantify the reinforcement. In particular, our simulations give us the possibility to 

discriminate the chain segments (accounting for both SS and HS beads) according to three types: 

“loops”, “ties” or “cilia”. Loops correspond to segments being connected at both ends to the same 

crystallites, ties are segments that bridge two distinct crystallites while cilia are connected to a 

single one. In addition,            beads belong to fully amorphous chains. The result of this 
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analysis on the whole set of simulation boxes is presented in Figure 7 where the cumulative 

fraction of each type of segment is represented through a bar diagram.  

A first observation is that under a critical size (HS6), the MBCs are not able to crystallize at 

           , as one may have anticipated from the classic picture of block copolymers in which 

the degree of phase separation (and possible crystallization) strongly depends on the degree of 

segmentation8,20. Above this threshold, the HSs connectivity increases very quickly resulting in 

50 % and 90 % of the beads (i.e., of the chains) being involved into associated structures for HS8 

and HS9, respectively. Note however that a network spanning the whole material only appears 

from HS10 as evidenced in Figure 4 by the non-relaxing      curve at long time. Below this limit, 

one can thus evoke chains aggregate (or possibly rings) that have a finite relaxation time.  

Then, following the fraction of beads involved into cilia segments provides a direct quantification 

of the number of triblock chains being connected only once. As expected, increasing the HS 

length (and thus the volume fraction in crystallites) is seen to dramatically reduce the cilia 

fraction, passing from more than 40 % in HS8 to only 10 % in HS14. Interestingly, while the 

fraction of cilia is less than 5 % in HS20, the HS crystallinity is 67.8 % (see Table 1), indicating 

unambiguously that the great majority of chains can be connected from a topological point of 

view with only 2/3 of the HS beads belonging to crystallites. A direct corollary of this observation 

is that the HSs do not crystallize on their whole length, as already evidenced experimentally in a 

number of publications19,25, in spite of their monodisperse nature in our simulations.  

Besides, the fraction of non-elastically active segments per chain can be estimated to       and 

           for free chains and cilia respectively, representing 42 %   3 % and 22 %   2 % of 

the polymer  regardless of the HS content. Then, because loops consist of monodisperse SSs 

satisfying systematically         (Table 1), we estimate that they are all fully elastically active 

similarly as ties. Based on Figure 7, the fraction of non-elastically active segments represents 

therefore 28 % in HS8 before to fall to 14 % in HS9 and 6 % in HS10. At higher HS content, the 
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material can be approximated as fully elastically active (while containing less than 5 vol.% in 

crystallites) in agreement with the assumptions of our analytical model (Eq. 4).  

 

Finally, beyond the expected growth of both ties and loops fractions with increasing the HS 

content, it is worth to observe that tie molecules always dominate, representing up to 65 % of the 

material in HS14 and HS15, before a slight decrease in HS17 and HS20 where the relative 

fraction of loops is seen to progress a little, passing from ca. 16 % (HS15) to 22 % (HS20). We 

speculate that the latter evolution is related to the higher degree of phase separation occurring 

before the crystallization at higher HS content27, promoting local crystallization that reduces the 

degree of SS stretching, in good agreement with Figure 6b (see e.g., the lower          for 

HS20). 

 

 Figure 7: Relative populations of free chains, cilia, loop, tie and crystal segments at    

          . The fractions are calculated based on the number of beads belonging to each type of 

segment (number density). 

 

The key messages to draw from this first series of result is that CGMD simulations well 

reproduce the reinforcement trends observed experimentally from 0 to ca. 15 vol.% in 

crystallites. Remarkably, our analytical model based on the degree of connectivity reproduces 
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successfully both physical and numerical experiments from their own structural features (   ,  ) 

that we extract either from SAXS and DSC21, or numerical analysis. However, our topological 

picture fails above ca.          , which is explained by an out-of-equilibrium conformation of 

the soft phase. The latter is evidenced by numerical simulations that emphasize non-Gaussian 

conformations. Finally, the fraction of non-elastically active segment is found not to exceed ca. 

15 % (from HS9 and above), in fair agreement with the hypothesis of a fully elastically active soft 

phase as considered in our analytical model (above   3 vol.%).  In the next section, we shall 

investigate the dynamical behavior of the “perturbed” soft phase to rationalize the reinforcement 

at high  . 

3.2.  Dynamical considerations. 

Together with conformational perturbations come dynamical ones. Many authors notably 

reported the slowdown of the adsorbed polymer layer in nanocomposites, often termed as 

“immobilized" or “interfacial" layer42,43, including its effect on the (simulated) crystallization 

kinetics44,45. In our case, HS-based crystallites play the role of the rigid phase, being covalently 

connected to the matrix. In terms of mechanical properties, dynamical slowing down is 

equivalent to a hardening, possibly resulting in the formation of a hybrid percolated network 

made of hard fillers bridged by hardened (or “glassy") polymer segments24,46,47. In this case, the 

apparent reinforcement is expected to be far stronger than estimations relying on sole 

topological considerations. The results reported in Figure 5 follow this global trend, clearly 

indicating that, at high  , topological arguments become insufficient to rationalize the 

mechanical properties. In ref.21, this mismatch was actually assigned to the SS hardening, and 

fitted on experimental data with Eq. 11 resulting in   = 2.23. 

In the following, our idea relies on using the      curve of the neat SSs presented in Figure 5 to 

calculate independently the hardening of the soft phase within each MBC. In other words, we 

wonder what would be the      response of the sole soft phase encompassed within an MBC at a 



 

25 
 

given  . To do so, we first calculate the average mean square displacement (MSD) of each sub-

ensemble of beads, namely free, bound and grafted-SSs, that we report in Figure 8a-c. For the 

sake of completeness, we also display in Figure 8d the MSD of HSs that exhibit a plateau at long 

time indicating their association (crystalline and amorphous HS beads have similar dynamics). 

Interestingly, sorting the beads according to these four groups emphasizes that the HS content 

does not significantly impact the dynamics of the beads, regardless of their type (whereas it does 

enhance the fraction of slower bound and grafted SS beads). This can be understood based on 

the local length scale criteria used to classify the beads, limiting cooperation effects. More 

interestingly, Figure 8e reveals however that strong dynamical differences exist between the 

different types of beads. In fact, while the upper line represents the dynamics of neat soft 

polymers, it clearly appears that free, bound and grafted-SS are less and less mobile in this 

order. Associated HSs are of course even less mobile. 

Translating this dynamical slowdown in terms of modulus would then result in a shift of the neat 

SSs      curve towards longer time, synonymous of a higher modulus at a given timescale. 

Applying this philosophy requires nevertheless several ingredients: (I) the appropriate time scale 

to calculate the hardening, (II) the quantification of the dynamical slowing down of each type of 

SS beads in presence of crystallites, and (III) the spatial distribution of each type of beads within 

the materials, allowing to track possible percolation effects. 

 

Regarding the relevant time scale (I), one needs to keep in mind that the reinforcement is 

defined from the rubbery plateau of the neat SSs, satisfying            , corresponding roughly 

to                     in Figure 4. In fact, the      profile can be seen as a broken line where 

the plateau extremities correspond respectively to the entangled strand relaxation and chain 

diffusion while the plateau itself is assigned to chain motion at intermediate length scales10. 

Although the latter portion was originally modeled as a true plateau, refinements were made to 

better match experimental observations – indicating systematically a slight negative slope upon 
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increasing time. One could therefore wonder about the most pertinent time (from     to    ) to 

read the “plateau” modulus value. Interestingly, Figure 7 shows strong deviations of the MSD 

when passing from the neat-SSs to SSs included in MBCs, right from the beginning of the plateau 

modulus at         . This observation confirms therefore that the association of HSs not only 

inhibits chains diffusion at long time, (  ) but also constrains the SS motion at a much shorter 

timescales (  ), being therefore relevant to investigate the hardening of the soft phase. 

One then needs to focus on the dynamics of the different groups of SS beads (II), at the relevant 

time scale. Based on the above-mentioned arguments, the slowdown generated by the presence 

of the crystallites ( ) is calculated as 

 
  
  

  
            

  
 

(16) 

where the   superscript refers either to free, bound or grafted beads and the   subscript refers to 

the HS content.       is the mean square displacement of the neat SSs, here determined at   . 

We refer the reader to Figure 8f for the graphical representation of these parameters in HS20 

and to Table 2 for the whole set of   
  values that we determined at 100, 150 and 200    

(corresponding to ca. 1, 1.5 and 2     to highlight the weak dependence of these results around    

since we chose it as the relevant timescale. 

Once the dynamical slowdown of the different groups of SS beads quantified, the next step 

consists of transposing this dynamical variation in terms of modulus. This is performed by using 

the neat-SS curve        presented in Figure 4. Similarly as for the reference timescale, we 

choose         as the reference modulus for the neat soft matrix. Then, the different values of the 

modulus corresponding to each type of SS beads and crystallites contents are determined from 

the dynamical slowdown as follows 

   
           

   (17) 
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that one can directly use to calculate the soft-phase hardening for the various types of SSs and 

MBC compositions as 

 
  
  

  
 

       
    

(18) 
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Figure 8: Mean square displacement as a function of time for the different types of beads: a) 

Free-SS, b) Bound-SS, c) Grafted-SS and d) HSs. For the sake of comparison, neat SS appears in 

black. e) Average MSD of each type of beads emphasizing dynamical heterogeneities in the MBC. 

f) Focus on the case of HS20. The double arrow represents the dynamical slowdown as defined 

in Eq. 16.  

 

Table 2: Dynamical slow down   
 
 extracted from simulations at                      for 

free, bound-, and grafted-SS, for all MBCs in which the percolation of grafted or 

grafted+bound-SS was detected (see SI). 

τ 

 

System 

100   150    200    

 free bound grafted free bound grafted free bound grafted 

HS10 1.48 2.12 7.21 1.53 1.97 10.81 1.57 2.00 10.53 

HS11 1.54 2.01 6.00 1.57 2.39 7.99 1.69 2.63 10.50 

HS12 1.54 2.15 4.50 1.64 2.17 4.33 1.70 2.20 4.62 

HS13 1.57 2.13 5.22 1.78 2.33 6.60 1.75 2.40 6.00 

HS14 1.62 2.18 5.55 1.81 2.60 7.33 1.85 2.30 9.50 

HS15 1.59 2.40 5.90 1.77 2.59 6.49 1.85 2.78 6.73 

HS17 1.72 2.07 4.60 1.77 2.33 5.31 1.70 2.22 7.72 

HS20 1.94 2.84 5.55 2.01 2.87 7.33 1.85 2.68 7.54 

 

Remarkably, the   values obtained for grafted-SSs, i.e., the most constrained SS beads, vary 

from 2.02 to 3.19 according to the MBC composition, reminding the value determined from 

fitting the experimental reinforcement with Eq. 11 in reference21, providing          (assuming 
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a homogeneous hardening of the SSs). This result seems thus to support quantitatively our 

analytical model at high  , indicating that a hardening of the soft phase around 2 is enough to 

“fill the gap” (see the arrow in Figure 5) observed between experimental and numerical 

experiments on one side, and our purely topological approach (Eq. 5) on the other side. The 

transition from   to the reinforcement determination through Eq. 11 further requires to extract 

the values of the tube diameter   and the cell parameter   from the simulations. First, the tube 

diameter of the neat-SS system is evaluated through        
   where         

         is 

the Kuhn length of the SSs. At            , this results in             and           . 

Second, crystalline HSs form a body-centered orthorhombic structure of cell parameters 

             and              26 that we can combine to define a unique cell parameter 

representing the average distance between the nearest chains in the crystallites such as   

  
  

 
 
 
  

  

 
 
 
        .  

 

As evoked at the end of the Section 2.1, the rationalization of the reinforcement through Eq. 11 

lies on the emergence of a percolated network made of crystallites bridged by sluggish SSs. This 

scenario notably explains why the topological approach well describes the reinforcement at low 

  only, and the need to consider the dynamical slowdown of the soft phase at higher  . To verify 

this structural hypothesis, we studied the spatial distribution of each sub-ensemble of SS beads 

for the whole set of MBC compositions (ingredient III), paying a particular attention to the 

possible percolation of hybrid networks (see SI Section 3 for details on the percolation 

detection). Part of this analysis is presented in Figure 9a confirming the presence of well-isolated 

islands made of crystalline HSs surrounded by both grafted- and bound-SS at low   (in HS9) 

while a percolated network built from these core-shell objects emerges from           , as 

presented in Figure 9b for HS17. Besides, the percolation threshold jumps to ca.                
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when the sole grafted-SS are considered, indicating that the “hardest hybrid network”, made of 

HS crystallites bridged by grafted-SS, only exist in HS20 (Figure 9c). These two situations have 

been formalized in terms of mechanical reinforcement in Figure 5 where we provide predictions 

calculated from Eq. 11 according to the softest type of SS likely to percolate in each MBC. While 

hollow stars represent the reinforcement calculated from       
 

, i.e., in presence of a network 

percolating through both grafted- and bound-SS, the prediction represented by a full star 

(HS20) consider         
 

, i.e., a higher degree of soft-phase hardening. (Note that although free-

SS beads are slightly delayed with respect to the neat-SS dynamics, the corresponding      
 

were 

too close to 1 to justify the calculation of a relevant MBC reinforcement in the case of “non-

percolated MBCs” such as HS8 and HS9. This explains the two missing stars on the left-hand 

side of Figure 5). 

These results illustrate the fact that the hardening of the soft phase growingly impacts the 

reinforcement of the MBC as a function of   and offers a quantitative estimation of this effect. 

They reveal that a significant (albeit modest) dynamical hardening is likely to start from 4.2 

vol.% in crystallites (HS10), where the “dynamical” Eq. 11 provides a slightly higher 

reinforcement than the purely “topological” Eq. 5. Then, increasing progressively the crystallites 

content up to            (HS17) is seen to accentuate constantly the difference between these 

predictions, enabling to estimate the growing weight of the dynamical reinforcement within the 

global response of the material. Finally, at           , the divergence of the reinforcement is 

understood as the percolation of the slowest (grafted-SS) beads, making the topology-originated 

reinforcement accounting for only 1/3 of the total material response. 

 

As a final remark, we wish to remind the reader that in the case of HS20, a SS dynamical slow-

down of      
       

      (see Table 2) was observed to increase the modulus by a factor 3 with 

respect to the pure topological reinforcement (see Figure 5). While in this article we assigned this 
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extra-hardening to the sole dynamical slowing-down of grafted-SS, other authors have suggested 

that the static conformational changes in the immediate vicinity of the hard-domains might 

contribute significantly (or predominantly) to this effect48–50. Interestingly, they notably evoke a 

restriction of the soft-phase bending ability likely to enhance the modulus, that one can imagine 

being particularly relevant in presence of a “hybrid percolated network”. They however do not 

quantify directly the impact of the presence of brushes on the macroscopic modulus of their 

phase-separated telechelic polymers, that they describe through the interfacial layer model 

(ILM)48, 49 or the percolation model50 in which molecular description is not provided (the 

modulus of the interfacial layer is either taken as 1 GPa48 or 100 MPa49, 50 to match the 

experimental data). Although the present article supports the presence of the brush effect and 

partially quantifies it (Figure 6b),  it must face a similar difficulty. In fact, it does not 

discriminate the role of the static conformation (that is ignored at the local lengthscale) from the 

dynamical slowing-down on the macroscopic modulus, which represents therefore a challenge 

for future investigations.   
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Figure 9: Graphical representation of the simulation boxes obtained for a) HS9, b) HS17 and c) 

HS20. The top row makes appear only crystallized HSs revealing no percolation. The middle row 

displays crystallized HS and grafted-SS beads revealing percolation along one axis in HS20 

whereas no percolation in HS17. The bottom row displays crystalline HSs as well as grafted- and 

bound-SS indicating percolation in both HS17 and HS20 while no percolation is detected in HS9. 

Red solid lines highlight the percolated paths. Islands made of central crystallites and 
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surrounding SSs, being grafted and/or bound, are connected only if they are separated by a 

distance lower than   . 

 

4. Conclusions 

 
In conclusion, by combining experiments, simulations and an analytical description, we have 

provided a unifying picture of the microscopic origin of the reinforcement caused by the 

crystallization of hard-segments in multiblock copolymers. We believe that our approach is 

generic and relevant to describe the aggregation of associative groups in a broader class of 

supramolecular polymers. Moreover, while our work is restricted to the case of low and 

intermediate volume fractions in supramolecular aggregates (            ), we believe that 

a similar approach could bring new insights on the reinforcement of denser systems (     

        ) as long as their structure does not become too complex. In fact, the rationalization of 

semi-crystalline polymer containing “well-packed” spherulites and characterized by   

         appears more difficult, to address because of (i) the mechanical percolation of a 

complex crystallites network, and (ii) the absence of “free-SS” or “soft-matrix” serving as a 

reference in our work. 

Of a particular interest, the degree of connectivity of the matrix, denoted     (Eq. 3) in the text, 

has been identified both in physical and numerical experiments as a key topological parameter 

driving the reinforcement at low  . While we determined it through SAXS and DSC in the case of 

physical experiments21, CGMD simulations makes it here straightforward to calculate. Beyond 

topological aspects, the use of CGMD makes it here possible to probe the dynamical slowing 

down of the soft phase in presence of crystallites, well-known to play a major impact on the 

modulus of  semi-crystalline polymers and nanocomposites.  
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An important perspective of these simulations regards the rationalization of the mechanical 

behavior of crystallizable tri- (and possibly multi-) block copolymers under intermediate and 

large deformations. A first challenge resides in following the decrease of     upon uniaxial 

stretching slightly above the linear regime to connect the number of HS-pull out events to the 

loss of modulus observed at the MBCs yield point51–54. More ambitiously, it would also be of great 

interest to monitor both the fraction and the dynamical behavior of each type of SS beads for 

several discrete values of large strain after having reached the equilibrium. These information 

would notably help to clarify the origin of the strain hardening beyond static chain stretching 

considerations. Lastly, isolating the role of the (static) brush effect caused by the aggregation of 

supramolecular moieties on the macroscopic modulus seems to be indispensable to reach a full 

understanding of the structure-properties relationship. 
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