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Abstract: Given G = (V,E) a connected undirected graph and a positive in-

teger β(|V |), the vertex separator problem is to find a partition of V into three

nonempty subsets A, B, C such that (i) there is no edge between the nodes

of A and those of B, (ii) max{|A|, |B|} ≤ β(|V |) and (iii) |C| is minimum.

In this paper, we consider the problem from a polyhedral point of view. We

first propose a new integer programming formulation for the problem. Then

we provide several valid inequalities for the polytope which generalize those

introduced by Balas and De Souza [1], and give conditions under which these

inequalities define facets.
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1 Introduction

Let G = (V,E) be a connected undirected graph and β(n) a positive in-

teger, where n = |V |. The vertex separator problem (VSP for short) is, given

G and β(n), to find a partition of V into three nonempty sets A, B, C such that

1. there is no edge between the nodes of A and those of B;

2. 1 ≤ |A| ≤ β(n) and 1 ≤ |B| ≤ β(n);

3. |C| is minimum (or |A|+ |B| is maximum).

The subset C is called a separator. For convenience, we will alternatively call a

separator either a partition {A,B,C} of V satisfying conditions 1) and 2), or

the pair (A,B). Note that in this latter definition, the node set C is given by

C = V \ (A ∪B).

The VSP is NP-hard [5] and appears in a wide range of applications, in-

cluding telecommunications network protection, graph theory algorithmic and

differential equation systems. When β(n) = n− k, for some positive constant
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k, the problem reduces to computing a particular matching in a bipartite graph,

which can be done in polynomial time (see [1]). When β(n) = 1, the VSP is

trivial and can be solved in polynomial time when β(n) ≥ n− 1. Despite the

fact that the VSP has been the subject of extensive research, the first polyhe-

dral approach was done only in 2005 by Balas and De Souza [1, 6]. In 2007,

Cavalcante et De Souza [2] proposed an algorithm that combines Lagrangian

relaxation with cutting plane techniques. In 2011, Didi Biha and Meurs [4] in-

troduced new classes of valid inaqualities. Cornaz and al. [3] studied a variant

of the VSP in which we are look for a minimum size node set C whose removal

partions the node set into k subsets V1, ..., Vk, for some k ≥ 2, and such that

δ(Vi, Vj) = ∅, for every i, j ∈ {1, ..., k}. In particular, they introduced two

integer programming formulations and devised a Branch-and-Cut and a Branch-

and-Price algorithms for this problem.

In this paper, we consider the VSP from a polyhedral point of view. We

present two integer programming formulations for the problem. The first for-

mulation, called basic formumation, is known from the literature. The second

formulation, called distance-based formulation, is, to the best of our knowledge,

new. Then, we investigate the polytope associated with the problem and in-

troduce several class of valid inequalities. We also discuss the conditions under

which they define facets. Finally, we devise a Branch-and-Cut algorithm using

the inequalities we have introduced and present some computational results.

The paper is organized as follows. In Section 2, we present the basic and

distance-based integer programming formulations for the VSP. In Section 3, we

investigate the polytope associated with the basic formulation, present several

classes of valid inequalities and conditions for these inequalities to define facets.

Then, in Section ??, we present our Branch-and-Cut algorithm for the VSP.

The computational results are given in Section ??. Finally, we give some con-

cluding remarks in Section 4. The remainder of this section is devoted to the

main definitions and notations we use in the paper.

The graphs we consider are finite, undirected and connected. We denote

a graph by G = (V,E), where V is the node set and E the edge set. Let

n = |V | and m = |E|. If e is an edge with end-nodes u and v, then we

write e = uv. If S and T are disjoint subsets of V , then δ(S, T ) denotes the

set of edges of G which have one node in S and the other one in T , that is

δ(S, T ) = {uv ∈ E for all u ∈ S, v ∈ T}. For a node set S ⊆ V with

∅ 6= S 6= V , δ(S) = δ(S, V \ S) is the cut induced by S. When S = {u},
we alternatively denote by δ(u) the cut induced by S = {u}. For a node set

S ⊆ V with |S| ≥ 2, we denote by E(S) the set of edges having both end-

nodes in S, that is E(S) = {uv ∈ E : u, v ∈ S}, and by G(S) = (S,E(S))
the subgraph of G induced by S. Also, for an edge set F ⊆ E, we denote by
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V (F ) the set of nodes incident to the edges of F , and by G(F ) = (V (F ), F )
the subgraph of G induced by the edge set F .

For a node set S ⊆ V such that ∅ 6= S 6= V , N(S) is the set of neighboors

of S, that is the set of nodes of V \S that are incident to a node of S. Namely,

N(S) = {u ∈ V \ S such that uv ∈ E, for some v ∈ S}. When S = {u},
we alternatively denote N(S) = N({u}) by N(u). For every node u ∈ V , we

call degree of u, denoted by d(u), the number of neighboors of u in G, that is

d(u) = |N(u)| = |δ(u)|.

A graph G = (V,E) is said to be complete if there exists an edge between

every pair of nodes of G, and is said empty if E = ∅. A node set S ⊆ V is a

stable set of G if G(S) is empty. A node set Q ⊆ V is a clique of G if G(Q)
is complete. A graph is connected if there exists a path between all the pairs of

nodes of G. A set S is said to be connected if the subgraph G(S) is connected.

When G is connected, a node u ∈ V is an articulation point (or cut vertex) if

and only if its removal from G disconnects the graph.

Let u, v ∈ V be two nonadjacent nodes of G. We denote by αuv the

maximum number of node-disjoint paths between u and v. We also let α∗ =
min{αuv : u, v ∈ V, uv /∈ E}. The graph G is called α-connected if there are

α node-disjoint paths between all pairs of nodes in the graph. By convention, if

G is complete, α∗ = n. If α ≥ 1, G is connected. Let S ⊆ V be a subset of V
and αS = min{αSuv : u, v ∈ S, uv /∈ E}, where αSuv is the maximum number

of node-disjoint paths between u and v in G(S). G(S) is α-connected if there

are α node-disjoint paths between every pair of nodes in the graph G(S). By

convention, if S is a clique, αS = |S|.

Note that there is a separator (A,B) in G only if G is not complete.

Thereafter, we will write β instead of β(n), and call a β-separator of G, a

separator (A,B) of G such that max{|A|, |B|} ≤ β.

2 Definitions and Preliminary Results

In this section, we present two integer programming formulations for the

VSP.The first one, called basic formulation, has been introduced by Balas and

De Souza [1]. The second one, called distance-based formulation, to the best

of our knowledge, is new and is presented for the first time in this paper.

2.1 Basic formulation

The formulation below is given by Balas and De Souza [1] and has been

improved by Didi Biha and Meurs [4]. Let (A,B) be a β-separator of G. and

x, y ∈ RV two 0-1 vectors such that xv = 1 (resp. yv = 1) if v ∈ A (resp.
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v ∈ B) and 0 otherwise, for every v ∈ V . The VSP can is equivalent to the

following integer linear program, called F basic

Max
∑
v∈V

(xv + yv)

s.t.

xu + yv ≤ 1
xv + yu ≤ 1

}
, for all edge uv ∈ E, (1)

xv + yv ≤ 1, for all v ∈ V, (2)
1 ≤

∑
v∈V

xv ≤ β, (3)

1 ≤
∑
v∈V

yv ≤ β, (4)

xv ≥ 0, yv ≥ 0, for all v ∈ V, (5)
xv ∈ {0, 1}, for all v ∈ V. (6)

From a solution of F basic, we obtain a separator (A,B) defined by A =
{v ∈ V such that xv = 1} and B = {v ∈ V such that yv = 1}. Constraints

(1) ensure that there is no edge between A and B, while Constraints (2) ensure

that A∩B = ∅. Constraint (3) and (4) guarantee that both A and B are not

empty and contains at most β nodes. Notice that in this formulation, only the

variables xv are restricted to be integer.

Didi Biha and Meurs [4] improved this formulation by observing that αV =
α∗ gives a lower bound of the cardinality of any separator C of G. Using

this, they proposed to reinforce formulation F basic by adding the inequality (7)

below. ∑
v∈V

(xv + yv) ≤ n− α∗. (7)

Inequality (7) indicates that at most n− α∗ nodes are in A ∪B.

In order to avoid issues related to symetries in the VSP, one can impose

that |A| ≤ |B| in a separator. Thus, the following inequality is valid for the

VSP ∑
v∈V

xv ≤
∑
v∈V

yv. (8)

By combining inequalities (7) and (8) using Chvatal-Gomory procedure, one

can easily show that Inequality (9) below is valid for the VSP.

∑
v∈V

xv ≤ b
n− α∗

2 c. (9)
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In our objective, we can add a different cost cv associated to
each node v, see [6].

2.2 Distance-based formulation

This formulation is based on distance variables between all pairs of nodes: if

the distance is null, then the two nodes are in the same set (A or B). A dummy

node a (respectively b) is added to G and is placed in the set A (respectively

B). We define the variables dav = 1 if the node v is not in A, 0 otherwise;

and dbv = 1 if the node v is not in B, 0 otherwise. duv = 1 if the nodes u
and v are not in the same set (A or B), 0 otherwise. We obtain the following

formulation:

[Fdist] max
∑
v∈V

(2− dav − dbv),

s.t. dau + dbv ≥ 1, dav + dbu ≥ 1, for all edge uv ∈ E,(10)
dav + dbv ≥ 1, for all v ∈ V, (11)

1 ≤
∑
v∈V

(1− dav) ≤ min
{
β,

⌊
n− α∗

2

⌋}
, (12)

1 ≤
∑
v∈V

(1− dbv) ≤ β, (13)

∑
v∈V

(2− dav − dbv) ≤ n− α∗, (14)

∑
v∈V

dav ≥
∑
v∈V

dbv, (15)

duv ≥ |dau + dbu − dav − dbv|, for all edge uv ∈ E,(16)
duv + dau + dbu + dav + dbv ≤ 4, for all u, v ∈ V, (17)

duw ≤ duv + dvw, for all u, v, w ∈ V, (18)
dav, dbv, duv ∈ {0, 1}, for all u < v ∈ V (19)

dab = 1. (20)

Constraints (10-15) have the same signification that the constraints (1-

9). Constraints (16) imply that if u and v are in the same set, then there is

impossible that one node is in A and the other is in B. Constraints (17) impose

for each pair of nodes that either at least one of the two nodes is in A or B, nor

they are in the same set. Constraints (18) come from the triangular inequality:

if u and w are not together, then v can not be with u and w. Notice that

for each pair of nodes u, v, dav and duv can be relaxed. To impose coherence

between the distances for nonadjacent nodes, we can add the inequalities:

duv + dav + dbv ≥ 1, ∀uv /∈ E.

These inequalities are redundant for adjacent nodes.
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2.3 Comparisons

Let (d̂av, d̂bv, d̂uv) be a feasible solution of Fdist. By setting x̂v = 1− d̂av
and ŷv = 1− d̂bv for each node v of V , we obtain a feasible solution of Fbasic.

Hence, all feasibles solutions of Fdist are feasibles for Fbasic.

Conversely, let x̂v and ŷv be a feasible solution of Fbasic. By setting for

each node v ∈ V , d̂av = 1 − x̂v, d̂bv = 1 − ŷv and for each pair of nodes

u, v ∈ V , d̂uv = |x̂u + ŷu − x̂v − ŷv|, we obtain a feasible solution of Fdist.

At first, note that d̂uv ≤ 1 et d̂uv ≥ 0 because 0 ≤ |x̂u + ŷu − x̂v − ŷv| ≤ 1.

Indeed, the constraints (10-15) are obviously satisfied. Then, the constraints

(16) is satisfied by definition of d̂uv. The constraints (17) are satisfied because:

4− d̂uv = 4− |x̂u + ŷu − x̂v − ŷv|
≥ 1− |x̂u|+ 1− |ŷu|+ 1− |x̂v|+ 1− |ŷv| = d̂au + d̂bu + d̂av + d̂bv

Endly, the constraints (18) are satisfied because:

d̂uw = |x̂u + ŷu − x̂w − ŷw| = |x̂u + ŷu − x̂v − ŷv + x̂v + ŷv − x̂w − ŷw|
≤ |x̂u + ŷu − x̂v − ŷv|+ |x̂v + ŷv − x̂w − ŷw| = d̂uv + d̂vw

Hence, all feasibles solutions of Fbasic are feasibles for Fdist and finally the

both formulations are equivalent. In the next section, we only consider inequal-

ities for Fbasic.

3 Valid Inequalities and Facets

In this section, we consider the basic formulation for the VSP. We denote by

P (G, β) the polytope associated with the problem that P (G, β) is the convex

hull of the incidence vectors of β-separators of G. By Section 2.1, we have that

P (G, β) = conv{(x, y) ∈ RV×V such that (x, y)
satisfies (1)− (5)and x ∈ ZV }.

In the remainder of this section, we present several classes of valid inequali-

ties for P (G, β) and investigate the conditions under which they define facets.

3.1 The dimension of P (G, β)
Here we discuss the dimension of P (G, β) and present, in particular, condi-

tions under which the polytope is full dimensional. We first make the following

observations which can be seen from [1].

• P (G, β) = ∅ if G is complete.
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• When β = 1, Inequalities (3) and (4) become equations x(V ) = y(V ) =
1 which implies that P (G, β) is not full dimensional. Moreover, the VSP

in this case reduces to computing α∗, which can be done in polynomial

time.

• When β ≥ n − 1, the VSP is polynomially solvable, and as we will see

below, P (G, β) may be full dimensional in this case.

In the following, we assume that the graph G is not complete and is connected,

and that 2 ≤ β ≤ n− 2.

Now give some definitions, which can be found in [1], and then discuss the

conditions for P (G, β) to be full dimensional.

Definition 1. A vertex u ∈ V is called regular if there exists a separator
S ⊂ V \ {u} such that S ∪ {u} is also a separator. A vertex that is not
regular is called irregular.

Definition 2. A vertex u is universal if it is adjacent to every v ∈
V \ {u}. Such a node is obviously irregular.

Definition 3. If G has two nonadjacent vertices u and v such that
N(u) = N(v) = V \ {u, v}, then u and v are irregular and they form a
polar pair of irregular vertices.

In [1], Balas and De Souza proved that P (G, β) is full dimensional when

all the nodes of G are regular. They also presented some cases in which the

graph G contains irregular vertices.

One can also observe that when G contains a universal vertex or a polar

pair of irregular vertices, the polytope P (G, β) is not full dimensional. Indeed,

if u is universal, for some u ∈ V , then xu = yu = 0, for every solution

(x, y) ∈ P (G, β). In the case of a polar pair of irregular vertices (u, v), we

have that xu+yu = xv+yv = 1, for every solution (x, y) ∈ P (G, β). Clearly,

P (G, β) is not full dimensional in both cases.

Definition 4. A graph having a universal vertex or a polar pair of
irregular vertices is called degenerate.

In [1], Balas and De Souza stated that in a nondegenerate graph, P (G, β)
is full dimensional if and only if

⋂
k∈I

N(k) is not a clique, where I is the set of

irregular vertices of G. In fact, this result is not well stated. First,
one can see that

⋂
k∈I

N(k) is never a clique, for all nondegenerate

graphs. In fact, if
⋂
k∈I

N(k) is a clique, then each vertex of⋂
k∈I

N(k) is universal, which is not possible for a nondegenerate
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graph. Thus, stating in the theorem that
⋂
k∈I

N(k) is not a clique

is not necessary. Also, in the proof of their result, Balas and De Souza

do not consider the case where
⋂
k∈I

N(k) = ∅. In fact, one can find a counter-

example of their result, that is a graph in which
⋂
k∈I

N(k) = ∅ but the polytope

P (G, β) is not full dimensional. Figure 1 illustrates such a counter-example.

1

2

3
4

5
6

Figure 1: Counter-example: P (G, β) is not full dimensional

We can easily observe that the graph G is nondegenerate and that vertices

1, 2 are irregular whereas vertices 3, 4, 5, 6 are regular. Hence I = {1, 2}
and

⋂
k∈I

N(k) is empty. To prove that P (G, β) is not full dimensional for this

graph, it is sufficient to observe that x(I) + y(I) = 1, for every incidence

vector (x, y) of a β−separator (A,B). Indeed, if x(I) + y(I) = 0 or 2, it is

not possible to find β−separator in the remained graph. Consequently, in this

nondegenerate graph, P (G, β) is not full dimensional whereas
⋂
k∈I

N(k) is not

a clique.

Another counter-example can be obtained by considering a graph G =
(V,E) where V = {u0} ∪ U , G(U) is complete and u is incident to all the

nodes of U . It is not hard to see that
⋂
k∈I

N(k) is not a clique and P (G, β) is

not full dimensional.

In Theorem 3.1, we give the correct statement of the result
of Balas and De Souza [1]. We do not give an explicit proof of
that theorem as it relies on that given by Balas and De Souza
[1].

Theorem 3.1. Assume that the graph G = (V,E) is nondegenerate and
let I ⊆ V be the set of irregular vertices of G. Then, P (G, β) is full
dimensional if and only if

1. I = ∅ or
2. I 6= ∅ and

⋂
k∈I

N(k) 6= ∅.



9

One can notice that the conditions of Theorem 3.1 are met
when d(u) ≤ n− 3, for every u ∈ V . We prove it in Lemma 3.2.

Lemma 3.2. If d(u) ≤ n− 3, for all u ∈ V , then all the nodes of G are
regular.

Proof. Suppose that the condition holds in G and consider a node u ∈ V .
Since d(u) ≤ n−3, there exists a node v ∈ V \{u} which is not incident to
u. Also, as by assumption, d(v) ≤ n−3, there exists a node w ∈ V \{u, v}
which is not incident to v. Now, it is not hard to see that the pair of
node sets ({u,w}, {v}) and ({w}, {v}) are β-separators of G. Thus, u is
regular.

Notice that the condition of Lemma 3.2 also implies that
the set of irregular vertices is empty. Thus, a consequence of
Lemma 3.2 is that P (G, β) is full dimensional when d(u) ≤ n− 3,
for every u ∈ V .

Corollary 3.3. The polytope P (G, β) is full dimensional when d(u) ≤
n− 3, for all u ∈ V .

It should be noticed that if the graph G contains a node u ∈ V such that

d(u) ≥ n − 2, the VSP in G reduces to solving the VSP in the graph G′

obtained by removing u from G. Indeed, consider a minimum size β-separator

C of G, and suppose first that d(u) = n − 1. In this case, as u is incident

to all the nodes of V \ {u}, we have that u ∈ C. It is not hard to see that

C ′ = C \ {u} is a β-separator of G′ whose size is minimum. Now, in the case

where d(u) = n− 2, there is a node v ∈ V \ {u} which is not incident to u. If

u /∈ C, then it is not hard to see that |C| = 1 + min{β, n− d(v)}. If u /∈ C,

as in the previous case, C = C ′ ∪{u} where C ′ is a minimum size β-separator

for G′.

Consequently, solving the VSP in G is equivalent to solving the VSP in G′

where G′ is obtained by iteratively removing from G the nodes u for which

d(u) ≥ n−2. Obviously, G′ can be built in polynomial time, and all the nodes

of G′ are of degree at most n − 3. From here and until the remainder of the

paper, unless the contrary is mentionned, we assume that d(u) ≤ n − 3, for

every u ∈ V , and hence, all the nodes of G are regular and P (G, β) is full

dimensional.

3.2 Facets of P (G, β)
This section examines valid inequalities for P (G, β) under assumption ??

and the conditions under which they are facet defining. For convenience, we will

say that a β−separator (A,B) belongs to a face F of P (G, β) if its incidence

vectors (x, y) belongs to F . A valid inequality aTx + bT y ≤ γ of P (G, β) is

symmetric if the coefficients a and b are equal, with a, b ∈ Rn and γ ∈ R.
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Proposition 3.4. Let F be a non empty face induced by a symmetric
inequality: F = {(x, y) ∈ P (G, β) : dT (x+y) = δ} where d ∈ Rn and δ ∈
R. Assume that F is in the facet F̃ = {(x, y) ∈ P (G, β) : aTx+bT y = γ}
with a, b ∈ Rn and γ ∈ R. Let R(a, b) be a unary relation by the element
(a, b) of F̃ . Thus, the relation R(b, a) is also satisfied.

Proof. If (A,B) is a β-separator of F , then (B,A) is also a β-separator
of F . Hence, by symmetry, R(a, b)⇒ R(b, a).

The facet conditions are mainly based on the relationship between separators

and dominators. We first give some definitions.

3.2.1 Definitions

A node set D ⊆ V is a dominating set, also called dominator, of G if

D ∪N(D) = V . We say that D is a connected dominator if D is a dominator

and G[D] is connected.

A node set D ⊆ V is called ν-dominator of G if all the nodes of V \D
are incident to at least ν nodes of D. A dominator D is a ν-dominator with

ν = 1. We denote by νD the dominance of the set D for the graph G.

Let S ⊆ V be a subset of V such that ∅ 6= S 6= V . A node set D ⊆ S is

called a νS-dominant of G[S] if all nodes of S \D are incident to at least

νS nodes of D (see figure 2).

Note that in the case where V \S = ∅, D is a ν-dominating set for G. We

denote by νD,S the dominance of the set D for the graph G[S]. We say that

the vertices of the set D are ν-dominated by D if every vertex is adjacent to ν
vertices of D.

D ...

S

...

S

...

Figure 2: Bi-partition of the graph G into two sets S and S with D ⊂ S a dominator
of G[S]

Let D ⊆ V be a dominator of G. We denote by P (u) the set of vertices
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of V \D only dominated by the vertex u ∈ D such that

P (u) = {v ∈ V \D : ND(v) = {u}}, ∀u ∈ D. (21)

P (u) is the set of pendent vertices of u.

Let D ⊆ V be a dominator of G. The vertex u ∈ D is called self-
dominating vertex if the set D \ {u} is a dominator of G[V \ {u}] but is

not a dominator of G.

In [1], Balas and De Souza characterize the self-dominating vertices of a

minimal dominator.

Lemma 3.5. [1]
Let D ⊆ V be a minimal dominator of G. A vertex u ∈ D is self-
dominator if and only if P (u) = ∅.

Lemma 3.5 implies that, if D ⊆ V is a minimal dominator, then each vertex

u ∈ D is either self-dominator (i.e. P (u) = ∅), or adjacent to at least one

pendent vertex (i.e. P (u) 6= ∅).

3.2.2 The basic inequalities

Now we study the conditions under which the inequalities (1)-(5) define

facets. We first give

Theorem 3.6. For each vertex u ∈ V , the inequalities xu ≥ 0 and
yu ≥ 0 are facets defining.

Proof. We establish the proof for inequality xu ≥ 0. For yu ≥ 0, the
proof follows the same lines by symmetry.

Let u ∈ V and Fu be the face induced by xu ≥ 0 that is

Fu = {(x, y) ∈ P (G, β) : xu = 0}.

First, we show that Fu 6= ∅ which imples that Fu is proper face of
P (G, β). To see this, note that as, by assumption, all the nodes of G
are regular, there exists a β-separator (A,B) of G such that u is in
V \ (A ∪ B). This implies that the incidence vector of (A,B) satisfies
xu ≥ 0 with equality. Thus, Fu 6= ∅ and is a proper face of P (G, β).

Now we show that Fu is a facet of P (G, β). Let aTx+ bT y ≤ γ be a
facet-defining inequality for P (G, β) and suppose that

Fu ⊆ F̃ = {(x, y) ∈ P (G, β) : aTx+ bT y = γ}.
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To prove that Fu is a facet, it suffices to show that bv = 0, for all v ∈ V ,
av = 0, for all v ∈ V \ {u}, au > 0. Let v0 ∈ V . As d(v) ≤ n− 3, for all
v ∈ V , there exist two distinct nodes w,w′ ∈ V \{v0} such that v0w /∈ E
and ww′ /∈ E. Clearly, the pair of subsets ({w}, {v0, w

′}) and ({w}, {w′})
are β-separators of G and their incidence vectors are in Fu ⊆ F̃ . Thus,
we have that bv0 = 0, for all v0 ∈ V .

Now let v ∈ V \ {u} and suppose first that uv /∈ E. As d(u) ≤ n− 3,
there exists a node w ∈ V \ {u, v} such that uw /∈ E. As before, the
pairs ({v, w}, {u}) and ({w}, {u}) are β-separators of G whose incidence
vectors are in Fu, which implies that av = 0, for all v ∈ V \ {u}. Now if
uv ∈ E, we distinguish two cases.

Case 1.

• Let v ∈ V . As all vertices are regular, there exist w,w′ ∈ V \ {v},
w 6= w′, such that vw /∈ E and ww′ /∈ E. So, the β-separators
({w}, {v, w′}) et ({w}, {w′}) belong to the face Fu, thus bv = 0.
• Let v ∈ V \ {u} such that uv /∈ E. As d(u) < |V | − 2, there exists
w ∈ V \{u, v} such that uw /∈ E. So, the β-separators ({v, w}, {u})
and ({w}, {u}) belong to the face Fu, thus av = 0.
• Let v ∈ V \ {u} such that uv ∈ E. As d(v) < |V | − 2, there exist
w1, w2 ∈ V \ {u, v} such that vw1 /∈ E and vw2 /∈ E.

– The β-separator ({v}, {w1}) belongs to the face Fu, thus av = γ
(bw1 = 0); and by symmetry, aw1 = γ.

– The β-separators ({v}, {w1, w2}) and ({v}, {w2}) belong to the
face Fu, thus aw1 = 0.

Consequently, av = γ = 0.

Thus, Fu is a facet.

Theorem 3.7. For each vertex u ∈ V , the inequality xu+yu ≤ 1 induces
a facet different from the trivial inequalities if and only if for all v ∈
N(u), the node set {u, v} is not a dominator of G.

Proof. Let u ∈ V and Fu be the face induced by xu + yu ≤ 1, that is

Fu = {(x, y) ∈ P (G, β) : xu + yu = 1}.

Note that the solutions of Fu corresponds to those β-separators (A,B)
of G such that u ∈ A ∪ B. Since all the nodes of G are assumed to be
regular, there exists a β-separator (A,B) of G with u ∈ A ∪ B. Thus,
Fu 6= ∅ and is a proper face of P (G, β).
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Necessity. Assume that there exists a node v ∈ N(u) such that {u, v} is a
dominator of G. Let (x, y) ∈ Fu and denote by (A,B) the corresponding
β-separator. Recall that u ∈ A ∪ B. As {u, v} is a dominator of G and
u ∈ A ∪ B, the node v is neither in A nor in B, which implies that
xv + yv = 0, that is xv = yv = 0, for every solution (x, y) ∈ Fu. Thus,
Fu cannot induce a facet different from those induced by the trivial in-
equalities.

Sufficiency. Now assume that {u, v} is not a dominator of G, for every
v ∈ N(u), and suppose that Fu ⊆ F̃ where F̃ is a facet of P (G, β) in-
duced by an inequality ax+ by ≤ γ. We show that Fu = F̃ . To do this,
we will show that av = bv = 0, for all v ∈ V \ {u}, and that au = bu = γ.
Thus, let v ∈ V \ {u} and suppose first that uv /∈ E. As d(u) ≤ n − 3,
there exists a node w ∈ V \ {u, v} such that uw /∈ E. Thus, the pairs
({v, w}, {u}) and ({w}, {u}) are β-separators of G whose incidence vec-
tors are in Fu ⊆ F̃ . This implies that av + aw + bu = aw + bu = γ, and
hence, av = 0. By symmetry, we also have that bv = 0.

If uv /∈ E, since {u, v} is not a dominator of G, there exists a node
w ∈ V \ {u, v} such that uw /∈ E and vw /∈ E. Thus, the pairs
({u, v}, {w}) and ({u}, {w}) are β-separators of G whose incidence vec-
tors are in Fu ⊆ F̃ . As before, this implies that av = 0, and by symmetry,
bv = 0.
Thus, av = bv = 0, for all v ∈ V \ {u}.

Now, we show that au = bu = γ. For this, let (A,B) be a β-separator
of G whose incidence vector (xA, yB) is in Fu ⊆ F̃ . W.l.o.g., we assume
that u ∈ A. Since, as shown before, av = bv = 0, for all v ∈ V \ {u},
(xA, yB) ∈ Fu implies that au = γ. Also, by symmetry, we get bu = γ.

Consequently, Fu = F̃ and hence Fu is a facet of P (G, β).

Theorem 3.8. For each edge uv ∈ E, the inequalities xu + yv ≤ 1
and xv + yu ≤ 1 define facets different from those induced by the trivial
inequalities if and only if

1) {u, v} is not a dominator of G,
2) for all w ∈ N(u), {v, w} is not a dominator of G,
3) for all w ∈ N(v), {u,w} is not a dominator of G.

Proof. Let uv ∈ E and Fuv be the face induced by xu + yv ≤ 1, that is

Fuv = {(x, y) ∈ P (G, β) : xu + yv = 1}.

As u is regular and uv ∈ E, there exists a β-separator (A,B) of G
such that u ∈ A and v /∈ B. Thus, Fuv 6= ∅ and is a proper face of
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P (G, β).

Necessity.
1) Assume first that {u, v} is a dominator of G and let (A,B) be a β-
separator of G whose incidence vector (xA, xB) is in Fuv. As {u, v} is a
dominator of G, we have that |{u, v} ∩ (A ∪ B)| = 1. W.l.o.g., we will
assume that u ∈ A and, hence, v /∈ (A ∪ B). This implies that (xA, xB)
satisfies both equations xu + yv = 1 and yu = xv = 0. Consequently, Fuv
cannot define a facet different from those induced by the trivial inequal-
ities.

2) Assume that there exists a node w ∈ N(u) such that {v, w} is a domi-
nator of G. Let (A,B) be a β-separator whose incidence vector is in Fuv,
that is |{u, v} ∩ (A ∪B)| = 1. We distinguish two cases. If u ∈ A, then,
as uw ∈ E, we obtain that w ∈ V /∈ (A ∪B). Now if v ∈ B, as {v, w} is
a dominator of G, we still obtain that w /∈ (A∪B). Thus, the incidence
vector of (A,B) also satisfies yw = 0. Thus, Fuv does not define a facet
different from those induced by the trivial inequalities.

3) Similar to 2).

Sufficiency. Assume that conditions 1), 2) and 3) hold. We will show that
Fuv is a facet of P (G, β). Assume that Fuv ⊆ F̃ where F̃ defines a facet
of P (G, β) induced by an inequality ax+ by ≤ γ, that is

Fuv ⊆ F̃ = {(x, y) ∈ P (G, β) : aTx+ bT y = γ}.

We are going to show that Fuv = F̃ . First notice that by condition 1),
{u, v} is not a dominator of G. Thus, there exists a node w0 ∈ V \{u, v}
such that uw /∈ E and vw /∈ E. Thus, the pairs ({u, v}, {w0}) and
({u}, {w0}) are β-separators whose incidence vectors are in Fuv ⊆ F̃ .
This implies that au + av + bw0 = au + aw0 = γ, and hence, av = 0. Sim-
ilarly, by considering the pairs ({w}, {u, v}) and ({w0}, {v}), we show
that bu = 0.

Now let w ∈ V \ {u, v}. We distinguish two cases. If w /∈ N(v), as
d(v) ≤ |V | − 3, there exists a node w′ /∈ V \ {u, v, w} such that vw′ /∈ E.
Clearly, the pairs ({w,w′}, {v}) and ({w′}, {v}) are β-separators of G
whose incidence vectors are in Fuv ⊆ F̃ . Hence, aw = 0. Now if
w ∈ N(v), as by condition 3), {u,w} is not a dominator of G, there
exists a node w′ /∈ V \ {u, v, w} such that uw′ /∈ E and ww′ /∈ E. Then,
clearly, the pairs ({u,w}, {w′}) and ({u}, {w′}) are β-separators of G
whose incidence vectors are in Fuv ⊆ F̃ , which implies that aw = 0.
Thus, aw = 0, for all w ∈ V \ {u, v}. Using similar arguments, we also
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show that bw = 0, for all w ∈ V \ {u, v}.

Finally, by considering the separators ({u}, {w0}) and ({w0}, {v})
together with the above result, we obtain au = bv = γ. Consequently,
Fuv = F̃ and Fuv defines a facet of P (G, β).

Theorem 3.9. The inequalities
∑
u∈V

xu ≥ 1 and
∑
u∈V

yu ≥ 1 define facets

of P (G, β).

Proof. Let F be the face induced by
∑
u∈V

xu ≥ 1, that is

F = {(x, y) ∈ P (G, β) :
∑
u∈V

xu = 1}.

Note that the solutions of F corresponds to those separators (A,B)
such that |A| = 1. As d(u) ≤ n− 3, for all u ∈ V , one can easily exhibit
a separator ({u}, B), for some u ∈ V , which implies that F 6= ∅.

Assume that F ⊆ F̃ where

F ⊆ F̃ = {(x, y) ∈ P (G, β) : aTx+ bT y = γ}

is a facet of P (G, β) induced by an inequality ax+ by ≥ γ. We are going
to show that F = F̃ . Let u ∈ V . As d(u) ≤ n − 3, there exists two
distinct nodes v, w ∈ V \ {u}, such that uv /∈ E and vw /∈ E. Clearly,
the pairs ({v}, {u,w}) and ({v}, {w}) are β-separators whose incidence
vectors are in F ⊆ F̃ . This implies that av + bu + bw = av + bw = γ, and
hence bu = 0, for all u ∈ V .

Now we show that au = γ, for all u ∈ V . Let u ∈ V . As u is not a
universal vertex, there exists v ∈ V \ {u} such that uv /∈ E. Thus, the
pair ({u}, {v}) is a β-separator of G whose incidence vector is in F ⊆ F̃ .
Hence, we have au + bv = γ. Since, by the above result, bv = 0, we get
au = γ.

Consequently, F = F̃ and is a facet of P (G, β).

3.2.3 Inequalities associated with connected sets

Didi Biha and Meurs [4] have presented a class of valid inequalities for the

VSP polytope based on the connectivity of node sets of V .

Theorem 3.10. [4] Let S ⊆ V be a α-connected non empty set. The
inequality

x(S) + y(S) ≤ max{|S| − α, β}, (22)
is valid for P (G, β).
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The interpretation of inequality (22) relates the number of nodes in A∪B,

for a β-separator {A,B,C}, with |S| and the node-connectivity α of G(S). It

is particularly relevant when G(S) is connected and |S| > β. As |S| > β, we

have that A∩S 6= S 6= B ∩S, that is S is not neither a subset of A nor of B.

If S ⊆ A ∪ C (resp. S ⊆ B ∪ C), then |A ∩ S|+ |B ∩ S| = |A ∩ S| ≤ β ≤
max{β, |S|−α} (resp. |A∩S|+ |B∩S| = |B∩S| ≤ β ≤ max{β, |S|−α}).

Now if A ∩ S 6= ∅ 6= B ∩ S, then let u and v be two nodes of A ∩ S and

B ∩ S respectively with uv /∈ E. As uv /∈ E, each uv-path in G(S) has

least one node in C, which implies that |C ∩ S| ≥ αuv ≥ α. Therefore,

|A ∩ S|+ |B ∩ S| ≤ |S| − α ≤ max{|S| − α, β}.

One can notice that when the inequality (22) induced by a
node set S and a connectivity α does not induce a facet when
α 6= α∗S. Indeed, this latter inequality is redundant w.r.t. an
inequality (22) induced by S and considering α∗S. Thus, there-
after, we consider that α = α∗S. We can also remark that (22)
may define a facet depending on the relation between |S|, α∗S
and β. In particular, we give the following necessary conditions
for inequalities (22) to define facets.

Theorem 3.11. An inequality (27) induced by a node set S ⊆ V induces
a facet of P (G, β) only if |S|+ 1 ≤ β ≤ 2β − α∗S − 1 and

1. if β + 1 ≤ |S| ≤ β + α∗S, then for all S′ ) S, |S′| > β + α∗S′.
2. if β+α∗S + 1 ≤ |S|, then for all S′ ( S, α∗S > α∗S′ or |S′| ≤ β+α∗S.

Proof. First, we show that (22) defines a facet only if |S|+1 ≤ β ≤ 2β−
α∗S − 1. For this, consider the contrary, that is |S| ≤ β or |S| ≥ 2β+α∗S .
It is not hard to see that, in this case, (22) is redundant w.r.t. (2) and
(3)-(4).

Now, we show 1). Suppose that β + 1 ≤ |S| ≤ β + α∗S , and, on
the contrary, there exists a node set S′ ) S such that |S′| ≤ β + α∗S′ .
Remark, in this case, the inequality (22) induced by S and S′ are written
as

x(S) + y(S) ≤ β, (23)
x(S′) + y(S′) ≤ β (24)

Since S′ ) S, we have that x(S) + y(S) = x(S′) + y(S′) + x(S \ S′) +
y(S \ S′). Thus, (23) can be obtained by adding (24) with inequalities
x(u) ≥ 0 and y(u) ≥ 0, for all u ∈ S \S′, which implies that (23) cannot
define a facet.
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Finally, we show 2) in the same way as above. Suppose that β +
α∗S + 1 ≤ |S| and assume that there exists a node set S′ ( S such that
α∗S ≤ α∗S′ and β + α∗S + 1 ≤ |S′|. In this case, both inequalities (22)
induced by S and S′ are written as

x(S) + y(S) ≤ |S| − α∗S , (25)
x(S′) + y(S′) ≤ |S′| − α∗S′ (26)

As α∗S ≤ α∗S′ , we have

x(S) + y(S) = x(S′) + y(S′) + x(S \ S′) + y(S \ S′)
≤ |S′| − α∗S′ + |S \ S′| = |S| − α∗S′ ≤ |S| − α∗S .

Thus, (25) is redundant w.r.t. to (26), (2) and x(u) ≥ 0 and y(u) ≥ 0,
for all u ∈ S \ S′.

In the remaining, we consider the inequalities (22) induced by a node set

S ⊆ V such that |S| = β + α∗S . The next theorem gives conditions for in-

equalities (22) to define a facet when S ⊆ V is such that α∗S = 1.

Theorem 3.12. Let S ⊆ V be a set of vertices such that |S| = β + α∗S
and α∗S = 1, G[S] is connected and S is not a dominator of the graph G.
Hence the inequality

x(S) + y(S) ≤ β (27)

is facet defining if and only if for all u ∈ V \ S, G[S ∪ {u}] is not
2-connected.

Proof. Let S be a set of vertices satisfying the conditions stated in the
theorem and F be the face induced by the inequality (27) associated
with S, that is

F = {(x, y) ∈ P (G, β) : x(S) + y(S) = β}.

We first have that F 6= ∅. Indeed, as S is not a dominator of G, there
exists v ∈ V \ S non dominated by S. Hence, for all S′ ( S such that
|S′| = β, the pair of subsets (S′, {v}) induces a β-separator of G whose
incidence vector is in F , which implies that F 6= ∅.

Necessity. Assume that there exists a vertex u ∈ V \ S such that the
graph G[S′], where S′ = S∪{u}, is 2-connected. Note that since αS = 1,
αS′ = 2. Consequently, the inequality (22) induced by S′ = S ∪ {u} is

x(S′) + y(S′) = x(S) + y(S) + xu + yu ≤ max{|S|+ 1− 2, β} = β. (28)
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Now let (x, y) ∈ F , that is x(S) + y(S) = β. As inequality (28) is
valid for P (G, β), it is also satisfied by (x, y). This implies that

x(S′) + x(S′) = x(S) + x(S) + xu + yu = β + xu + yu ≤ β.

Thus, xu = yu = 0, for all (x, y) ∈ F . Thus, F cannot define a facet
different from those induced by the trivial inequalities.

Sufficiency. Suppose that S satisfies the conditions of the theorem, that
is |S| = β + 1, αS = 1, S is not a dominator of G, and for all u ∈ V \ S,
G[S ∪ {u}] is not 2-connected. Also, assume that F ⊆ F̃ where F̃ is a
facet of P (G, β) induced by an inequality ax+ by ≤ γ, that is

F ⊆ F̃ = {(x, y) ∈ P (G, β) : aTx+ bT y = γ}.

We are going to show that F = F̃ . For this, we show first that
au = bu = 0 for every u ∈ V \ S. Let u ∈ V \ S. Note that by assump-
tion, G[S ∪ {u}] is not 2-connected. Thus, G[S ∪ {u}] has at least one
articulation node, say v ∈ S ∪ {u}. Note that, as αS = 1, we have that
v 6= u. Let C1, . . . , Ck be the connected components of G[(S∪{u})\{v}].
Without lost of generality, we assume that u ∈ C1. Also, notice that, as
|S| = β + 1, we have that |C1| ≥ 1 and |

⋃k
i=2Ci| ≤ β. Thus, the pairs

of subsets (C1,
⋃k
i=2Ci) and (C1 \{u},

⋃k
i=2Ci) induce β-separators of G

whose incidence vectors are in F . Thus, au = 0. By symmetry, we also
have that bu = 0.

Now we show that au = bu = γ
β for every u ∈ S. First, let u, v ∈ S

with u 6= v. As S is not a dominator of G, there exists a vertex w ∈ V \S
non adjacent to any vertex of S. Thus, ({w}, S \ {u}) and ({w}, S \ {v})
are β-separators whose incidence vectors are in F , which implies that
bu = bv for every pair of vertices u, v ∈ S. Moreover, as the β-separator
({w}, S\{u}) belongs to F , we have

∑
i∈S\{u} bi = (|S|−1)bu = βbu = γ,

for some u ∈ S, and thus bu = γ
β , for every u ∈ S. By symmetry, we also

have au = γ
β , for every u ∈ S. Finally, we have that au = bu = γ

β , for all
u ∈ S.

Consequently, we have F = F̃ .

3.2.4 Inequalities associated with connected dominators

Balas and De Souza [1] have given a family of valid inequalities based on

connected dominators.

Theorem 3.13. Let D be a non empty connected dominator of G. Then
the following inequality is valid for P (G, β):

x(D) + y(D) ≤ |D| − 1. (29)
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Balas and De Souza [1] have also provided conditions for inequalities (29)

to define facets of P (G, β). In the following, we propose a generalization of

these inequalities to the case of connected dominators of an induced subgraph.

Theorem 3.14. Let D ⊆ V be a non empty set such that G[D] is α-
connected, with α ≥ 1. Let S ⊆ V be a set of vertices such that D ⊆ S
and D is a ν-dominator of G[S] with 0 ≤ ν ≤ α. Then the inequality

x(D) + y(D) ≤ |D|+ ν
(
x(V \ S) + y(V \ S)− 1

)
(30)

is valid for P (G, β).

Proof. Let D ⊆ V such that G[D] is α-connected and (A,B) a β-
separator where (x, y) is its incidence vector. Let S be a set of ver-
tices which is ν-dominated by D. If |(V \ S) ∩ (A ∪ B)| ≥ 1 (i.e.
x(V \ S) + y(V \ S) ≥ 1), then the inequality (30) is satisfied by (x, y).
Assume now that |(V \ S)∩ (A∪B)| = 0 (i.e. x(V \ S) + y(V \ S) = 0).
Thus, we have A ∪B ⊆ S. We distinguish two cases.

Case 1. |D ∩ A| ≥ 1 and |D ∩ B| ≥ 1. In this case, there exists
u, v ∈ D such that u ∈ A and v ∈ B. However, as G[D] is α-connected,
|D \ (A ∪B)| ≥ α. Hence, |D ∩ (A ∪B)| ≤ |D| − α ≤ |D| − ν.

Case 2. |D ∩ A| = 0 or |D ∩ B| = 0. In this case, we have that
A ⊆ S \ D or B ⊆ S \ D. Without lost of generality, assume that
A ⊆ S \D. Thus, there exists v ∈ S \D such that v ∈ A. This implies
that ND(v) ⊆ D \ (A∪B). As D is a ν-dominator of G[S], we also have
|ND(v) \ (A ∪B)| ≥ ν. Hence, |D ∩ (A ∪B)| ≤ |D| − ν.

The inequality (30) indicates that for any β-separator (A,B), if (V \ S)∩
(A ∪ B) = ∅, then |(V \ (A ∪ B)) ∩ D| ≥ ν. Note that each vertex of D
is adjacent to α vertices of D as G[D] is α-connected (the vertices of D are

α-dominated by D).

We can observe that

• if α = ν = 1 and S = V , then the inequality (30) induced by D and S
corresponds the inequality (29) given by Balas and De Souza [1].

• if S = V and α 6= 1 or ν 6= 1, then D is a α-connected set and is a

ν-dominator of G. Thus, the inequality (30) associated with D and S is

x(D) + y(D) ≤ |D| − ν. (31)

This inequality does not define a facet when D is not a α-connected set

and a minimal ν-dominator of G. Moreover, inequality (31) dominates

the inequality (29), given by Balas and De Souza [1]. Indeed, let D be
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a α-connected set and a ν-dominator of G. Thus, for every u ∈ D, the

set D \ {u} is at least a (α− 1)-connected set and a (ν − 1)-dominator

of G. Thus, for every S ⊂ D such that |S| = ν − 1, the set D \ S is a

connected dominator of G, which yields the inequality

x(D \ S) + y(D \ S) ≤ |D \ S| − 1 = |D| − ν.

Therefore, inequality (29) is dominated by (31).

• It is possible to adjust the coefficients of the inequality (30) by considering

the inequality (31). Let α ≥ 1 be a positive integer, D be a α-connected

set and S be a set of vertices which is ν-dominated by D. Now, let ν∗ be

a positive integer such that D is ν∗-dominator of G. Then the following

inequality is valid for P (G, β)

x(D) + y(D) ≤ |D| − ν∗ + (ν − ν∗)
(
x(V \ S) + y(V \ S)− 1

)
. (32)

Note that this inequality is dominated by the inequality (22) if |D|−ν ≥ β.

3.2.5 Inequalities associated with dominators

Before starting this section, we notice that all the inequalities we present

here have their symmetric versions. Thus, for each type of inequality, we will

establish the proofs only for one version.

Balas and De Souza [1] have given a family of valid inequalities based on

the dominators.

Theorem 3.15. [1]
Let D be a non empty dominator of the graph G. Then, the following
inequality is valid for the polyhedra P (G, β)

x(D) ≤ |D| − 1. (33)

Balas and De Souza [1] have defined three necessary and sufficient condi-

tions of facets for the inequality (33). They have also proposed lifting proce-

dures on these inequalities for the case where these conditions are not satisfied.

Here, we propose a generalization of these inequalities. For this, we define

inequalities associated with subgraphs of G which induce dominators of G.

Theorem 3.16. Let D ⊆ V be a non empty set of vertices of G and let
α = min

u∈D
{dD(u)} + 1. Let S ⊆ V be a set of vertices such that D ⊆ S

and D be a α-dominator of G[S]. Then, the inequalities

x(D) ≤ |D|+ α
(
y(V \ S)− 1

)
(34)

and
y(D) ≤ |D|+ α

(
x(V \ S)− 1

)
(35)

are valid for P (G, β).
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Proof. We establish the proof only for (34). That for (35) is obtained
by symetry. Let D ⊆ V and (A,B) be a β-separator where (x, y) is
its incidence vector. Let S be the set of vertices α-dominated by D. If
|(V \ S) ∩ B| ≥ 1 (i.e. y(V \ S) ≥ 1), then the inequality is satisfied by
the separator (A,B). Assume that |(V \ S)∩B| = 0 (i.e. y(V \ S) = 0),
then B ⊆ S. We have two possible cases: either |(S \ D) ∩ B| ≥ 1, or
|(S \ D) ∩ B| = 0. The first case implies that there exists v ∈ S \ D
such that v ∈ B. Thus (N(v) ∩ D) ∩ A = ∅. Then, by α-dominance,
we have |D ∩ A| ≤ |D| − α. The second case implies that there exists
v ∈ D such that v ∈ B. Thus (ND(v) ∪ {v}) ∩ A = ∅. Then we have
|D ∩A| ≤ |D| − (dD(v) + 1) ≤ |D| − α as α = min

u∈D
{dD(u)}+ 1.

Inequality (34) indicates that for any β-separator (A,B), if none of the

vertex of V \S is in the set B, then there exists at least α vertices of D which

are not in the set A. Note that the vertices in D are α-dominated by D as

α = min
u∈D
{dD(u)}+ 1.

We also make several observations.

• If α = 1 and V \ S = ∅, we obtain the inequality (33), given by Balas

and De Souza [1].

• If V \ S = ∅ and α > 1, the corresponding inequality (34) is

x(D) ≤ |D| − α. (36)

This latter inequality is clearly dominated by (3) when |D| − α ≥ β.

• If α = 1 and V \ S 6= ∅ (i.e. D is a dominator of G[S]), the inequality

(34) becomes

x(D) ≤ |D| − 1 + y(V \ S). (37)

The following theorem gives necessary conditions for inequalities (34) to

define facets.

Theorem 3.17. The inequality (34) induced by two sets D and S defines
a facet only if

1. |D| < β.
2. The set D is a minimal dominator of G[S].

Proof. 1) Suppose on the contrary that |D| ≥ β+1. One can then easily
see that the inequality (34) is dominated by the constraint (3).

2) Suppose that D is not a minimal dominator, i.e. there exists u ∈ D
such that D \ {u} is a dominator of G[S]. Thus, as before, one can see
that inequality (37) with the dominator D\{u} dominates the inequality
(34) induced by D.
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The next theorem give conditions for inequalities (37) to be facet defining.

Theorem 3.18. Let D ⊆ V be a non empty set of vertices such that
|D| < β. Let S ⊂ V be a set of vertices such that D ⊆ S, D be a
minimal dominator of G[S] and |S| is maximal. Then, the inequality
(37) induced by D and S is facet defining if and only if

1. Every vertex of S\D is a pendent vertex of D, that is S \D =
⋃
u∈D

P (u),

2. D contains no self-dominating vertices of G[S],
3. D is a stable set.

Note that imposing the condition that |S| is maximal is not restrictive and

implies that δ(D,V \ S) = ∅. Indeed, for every v ∈ V \ S such that uv ∈ E
and u ∈ D, just put v ∈ S and D remains a minimal dominator of G[S].

Proof. Let F be the face induced by inequality (37), that is

F = {(x, y) ∈ P (G, β) : x(D) = |D| − 1 + y(V \ S)}.

1. Necessity. If any of the three conditions is not satisfied, then the
result is the same as the proof of facet for the inequality (33) in [1]
by setting u /∈ A ∪B (i.e. xu = yu = 0), for every u ∈ V \ S.

2. Sufficiency. To show that the conditions of the theorem implies
that F is a facet we are going to explicit 2|V | solutions of F which
are affinely independent. Let the graph G[S]. Then D is a domina-
tor of G[S], a stable, without self-dominating vertex and such that
S \D =

⋃
u∈D

P (u). Thus, the inequality x(D) ≤ |D| − 1 induces a

facet in G[S], noted FS . It therefore exist 2|S| solutions affinely
independent on the face FS , noted (x̃k, ỹk), ∀k = 1, . . . , 2|S| with
x̃k, ỹk ∈ {0, 1}|S|. From the previous solutions, we build 2|S| solu-
tions affinely independent on the face F . For every k = 1, . . . , 2|S|,
let (xk, yk) be the following solutions, where xk, yk ∈ {0, 1}|V |:

xki =
{
x̃ki si i ∈ S
0 sinon et yki =

{
ỹki si i ∈ S
0 sinon , ∀i ∈ V.

Then these solutions are trivially affinely independent. Moreover,
for every vertex u ∈ V \ S, as there is no edge between D and
V \ S, the β-separator (D, {u}) is in F . Its incidence vector is
affinely independent compared to the previous solutions. So we
obtain a different vector for every vertex u ∈ V \ S. Therefore,
we have built |V \ S| solutions affinely independent between them.
Endly, let v ∈ D be a vertex. Then, for every vertex u ∈ V \ S,
as D is a stable, the β-separator ((D \ {v}) ∪ {u}, {v}) is in F . Its
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incidence vector is affinely independent compared to the previous
ones. So we obtain a different vector for every vertex u ∈ V \ S.
Consequently, we have build |V \ S| solutions, which together with
the previous solutions, form 2|V | solutions of F which are affinely
independent.

Now we will give inequalities from the inequalities (37) when the condition

2 is not satisfied. Let D ⊆ V be a dominator of the graph G[S], where

D ⊆ S ⊆ V . Let Da ⊆ D be the set of self-dominating vertices of D. Then,

the set D \ Da is a dominator of the graph G[S \ Da]. The inequality (37)

applied to the set D \Da therefore gives

x(D\Da) ≤ |D\Da|−1+y((V \S)∪Da) = |D|−1+y(V \S)+(y(Da)−|Da|).

This inequality dominates the inequality (37) applied to D (because x(Da) +
y(Da) ≤ |Da|) and verifies the condition 2.

In particular, if D is a dominator of G, then the following inequality domi-

nates (37) applied to D given by Balas and De Souza (when V \ S = ∅):

x(D \Da) ≤ |D| − |Da| − 1 + y(Da),

where Da ⊂ D is the set of self-dominating vertices of D.

Finally, note that the lifting procedures of Balas and De Souza for the in-

equality (33) can be adapted to the inequality (37). Through these procedures,

the conditions 3 and 1 are satisfied.

4 Concluding remarks

In this paper, we have investigated the polytope associated with the vertex

separator problem. We have introduced several classes of inequalities and given

conditions for these inequalities to define facets. The inequalities introduced

here generalizes those given by Balas and De Souza [1]. It is important to

notice that one objective of this work is to give a more complete description as

possible of the polytope P (G, β). Now, it should interesting to investigate the

efficiency of the various inequalities we have given in terms of computations.

Namely, we have to discuss the separation problem associated with each class

of inequalities and include them in a Branch-and-Cut algorithm for the VSP.

This will be the subject of a future work.
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