
HAL Id: hal-03885537
https://hal.science/hal-03885537v1

Preprint submitted on 5 Dec 2022 (v1), last revised 21 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective models for generalized Newtonian fluids
through a thin porous media following the Carreau law

María Anguiano, Matthieu Bonnivard, Francisco J. Suárez-Grau

To cite this version:
María Anguiano, Matthieu Bonnivard, Francisco J. Suárez-Grau. Effective models for generalized
Newtonian fluids through a thin porous media following the Carreau law. 2022. �hal-03885537v1�

https://hal.science/hal-03885537v1
https://hal.archives-ouvertes.fr


Effective models for generalized Newtonian fluids through a thin

porous media following the Carreau law

Maŕıa ANGUIANO1, Matthieu BONNIVARD2 and Francisco J. SUÁREZ-GRAU3

Abstract

We consider the flow of generalized Newtonian fluid through a thin porous media Ωε of thickness ε which
is perforated by periodically distribute solid cylinders of size ε. Generalizing (Anguiano et al., Q. J. Mech.
Math., 75(1), 2022, 1-27) we do a new and complete study on the fluid described by the 3D incompressible
Stokes system with non-linear viscosity, following the Carreau law of flow index 1 < r < +∞, which is scaled
by a factor εγ , where γ ∈ R. Depending of γ and the flow index r, using homogenization techniques, we
derive different effective linear and non-linear lower-dimensional Darcy’s laws.

AMS classification numbers: 76-10, 76A05, 76M50, 76A20, 76S05, 35B27, 35Q35.

Keywords: Homogenization, non-Newtonian fluid, Carreau law, thin porous media.

1 Introduction

The incompressible generalized Newtonian fluids is a type of non-Newtonian fluids which are characterized by
the viscosity depending on the principal invariants of the symmetric stretching tensor D[u]. If u is the velocity, p
the pressure and Du the gradient velocity tensor, D[u] = (Du+Dtu)/2 denotes the symmetric stretching tensor
and σ the stress tensor given by σ = −pI + 2ηrD[u]. The viscosity ηr is constant for a Newtonian fluid but
dependent on the shear rate, i.e. ηr = ηr(D[u]), for viscous generalized Newtonian fluids. The deviatoric stress
tensor τ , i.e. the part of the total stress tensor that is zero at equilibrium, is then a nonlinear function of the
shear rate D[u], i.e. τ = ηr(D[u])D[u] (see Barnes et al. [19], Bird et al. [20] and Mikelić [32] for more details).

A commonly used viscosity formula ηr used for describing generalized Newtonian fluids is the power law or
Ostwald-de Waele model (Ostwald, 1925; de Waele, 1923), which is defined by

ηr(D[u]) = µ|D[u]|r−2, 1 < r < +∞, µ > 0, (1)

where µ > 0 is the consistency of the fluid and r is the flow index. The matrix norm |·| is defined by |ξ|2 = Tr(ξξt)
with ξ ∈ R3. We recall that the generalized Newtonian fluids are classified in two main categories (see Saramito
[34, Chapter 2] for more details):

– Pseudoplastic or shear thinning fluids, where the viscosity decreases with the shear rate, which correspond
to the case of flow index 1 < r < 2.

– Dilatant or shear thickening fluids, where the viscosity increases with the shear rate, which correspond to
the case of flow index r > 2.
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We also recall that the case r = 2 corresponds to the case of Newtonian fluids.

Power law model describes correctly the behavior of polymers at high shear rates, offering the advantage
of allowing analytical calculations in simple geometries. However, it has the disadvantage of not describing a
Newtonian plateau and even predicts an infinite viscosity as the shear rate goes to zero and 1 < r < 2 (see
Agassant et al. [2], p. 49), whereas for real fluids it tends to some constant value η0 called the zero-shear-rate
viscosity. For that reason, other viscosity models are used, which describe better the real behavior of the fluids
but are more difficult to analyze mathematically.

An important model among these ones is the well-known Carreau law, which will be considered in this paper
and is defined by

ηr(D[u]) = (η0 − η∞)(1 + λ|D[u]|2)
r
2−1 + η∞, 1 < r < +∞, η0 > η∞ > 0, λ > 0, (2)

where η∞ is the high-shear-rate limit of the viscosity, the parameter λ is a time constant and r − 1 is describes
the slope in the power law region.

Related to the generalized Newtonian fluids, the interest in their behavior through thin porous media has
been increasing recently, mainly because of its importance in many industrial processes (see Prat and Agaësse [33]
for more details). For instance, we refer to recent studies by Anguiano and Suárez-Grau [11, 14, 16], Frabricius
et al. [28], Bunoiu and Timofte [24], Jouybari and T. S. Lundström [29], and Yeghiazarian et al. [38], where
the behavior of Newtonian or power law fluids through thin porous media has been considered. However, the
literature on Carreau fluid flows in this type of domains is far less complete, although these problems have now
become of great practical relevance to Chemical Industry and Rheology, for instance in injection moulding of
melted polymers, flow of oils, muds, etc.

In this paper, we consider a thin porous media Ωε = ωε× (0, ε) ⊂ R3 of small height ε which is perforated by
periodically distributed solid cylinders of diameter of size ε. Here, the bottom of the domain without perforations
ω ⊂ R2 is made of two parts, the fluid part ωε and the solid part ω \ ωε. Assuming that the flow is sufficiently
slow to neglect inertial effects, we consider the following stationary Stokes system with a non-linear viscosity
following the Carreau law (2) that we scale by a factor εγ , where γ ∈ R, in the thin porous media:

−εγdiv (ηr(D[uε])D[uε]) +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε.

(3)

Vey recently, this problem has been considered in Anguiano et al. [8] in the particular case of pseudoplastic
fluids (1 < r < 2) and γ = 1. By using homogenization techniques, when ε tends to zero, it was proved that the
mean global filtration velocity as a function of the pressure gradient is given by a non-linear 2D Darcy law of
Carreau type  V ′(x′) = U (f ′(x′)−∇x′p(x′)) , V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

(4)

where n is the outward normal to ∂ω, V ′ = (V1, V2), x′ = (x1, x2), and the permeability function U : R2 → R2

is defined through the solutions of 3D local non-Newtonian Stokes problems with non-linear viscosity following
the Carreau law (2) and posed in a reference cell.

In this paper, we obtain a new and complete study on the asymptotic behavior of Carreau fluids, given by
(3), depending on the type of fluid and the value of γ. We generalize the results obtained in [8] by considering
system (3) not only for pseudoplastic fluids, but also for dilatant fluids and Newtonian fluids, and moreover,
we consider the case γ ∈ R. Starting from problem (3), by using homogenization techniques when ε tends to
zero, we derive different effective problems depending on the type of fluid and the value of γ. To do this, we
use an adaptation of the unfolding method to define the unfolded velocity and pressure (ûε, P̂ε) which take into
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account the microstructure of the domain. For instance, in the pseudoplastic case, it holds that (ûε, P̂ε) satisfies
the following variational formulation (see (75) for more details)

(η0 − η∞)

∫
ω×Y

(1 + λε2(1−γ)|Dy[ϕ]|2)
r
2−1Dy[ϕ] : Dy[ϕ− εγ−2ûε] dx

′dy

+ η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− εγ−2ûε]dx
′dy

−
∫
ω×Y

P̂ε divx′(ϕ
′ − εγ−2û′ε) dx

′dy ≥
∫
ω×Y

f ′ · (ϕ′ − εγ−2û′ε) dx
′dy +Oε,

and that (εγ−2ûε, P̂ε) converges, as ε tends to zero, in appropriate Sobolev spaces to a pair of functions called
(û, P̃ ). Then, we observe that if γ < 1, then 2(1 − γ) > 0 and so, λε2(1−γ)|Dy[ϕ]|2 tends to zero, and if γ > 1,
then 2(1 − γ) < 0 and so, (1 + λε2(1−γ)|Dy[ϕ]|2)

r
2−1 tends to zero. As consequence, the two first terms of the

previous formulation converge to the linear term

η

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û]dx′dy,

with η = η0 if γ < 1 and η = η∞ if γ > 1. In the case γ = 1, the critical case that couples the nonlinear term
and the linear one, they converge to

(η0 − η∞)

∫
ω×Y

(1 + λ|Dy[ϕ]|2)
r
2−1Dy[ϕ] : Dy[ϕ− û] dx′dy + η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û]dx′dy.

Thus, we obtain three different asymptotic behaviors depending on whether the value of γ is smaller, equal or
greater than 1. For dilatant fluids, there exist three different convergences of the unfolding velocity depending
on the value of γ and, as consequence, three different homogenized models are derived. In summary, we have
the following asymptotic behaviors of Carreau fluids depending on the type of fluid and the value of γ:

(i) For pseudoplastic fluids, we obtain the following asymptotic behaviors depending on the value of γ:

– If γ 6= 1, then the effective problem is a linear 2D Darcy law
V ′(x′) =

1

η
A (f ′(x′)−∇x′p(x′)) , V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

where the permeability tensor A ∈ R2×2 is obtained by solving 3D local Newtonian Stokes local
problems posed in a reference cell which contains the information of the geometry of the obstacles.
The viscosity η is equal to η0 if γ < 1 and equal to η∞ if γ > 1.

– If γ = 1, then the effective problem is the non-linear 2D Darcy law of Carreau type (4), which is
obtained in [8].

(ii) For dilatant fluids, we obtain three different asymptotic behaviors depending on the value of γ:

– If γ < 1, then the filtration velocity is zero.

– If γ > 1, then the effective problem is a non-linear 2D Darcy law of power law type
V ′(x′) =

λ
2−r
2

η0 − η∞
U (f ′(x′)−∇x′p(x′)) , V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

where the permeability function U : R2 → R2 is defined through the solutions of 3D local non-
Newtonian Stokes problems with non-linear viscosity following the power law (1) and posed in a
reference cell.
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– If γ = 1, then the effective problem is a non-linear 2D Darcy law of Carreau type as in the case of
pseudoplastic fluids.

(iii) For Newtonian fluids, we obtain that, for γ ∈ R, the effective problem is a linear 2D Darcy law
V ′(x′) =

1

η0
A (f ′(x′)−∇x′p(x′)) , V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

where the permeability tensor A ∈ R2×2 is obtained by solving 3D local Newtonian Stokes local problems
posed in a reference cell which contains the information of the geometry of the obstacles.

In Table 1, we summarize every asymptotic behavior of the Carreau fluid governing by (3) depending on the
type of fluid and the value of γ:

1 < r < 2 r = 2 r > 2

γ < 1 Linear 2D Darcy’s law (viscosity η0) Linear Zero filtration velocity

γ = 1 Non-linear 2D Darcy’s law (Carreau type) 2D Darcy’s law Non-linear 2D Darcy’s law (Carreau type)

γ > 1 Linear 2D Darcy’s law (viscosity η∞) (viscosity η0) Non-linear 2D Darcy’s law (power law type)

Table 1: Asymptotic behaviors of Carreau fluids depending on the values of r and γ.

We finish the introduction with a list of references of other recent studies concerning thin porous media.
Some stationary models for different fluids are obtained in Anguiano and Suárez-Grau [12, 13, 15] and Zhengan
and Hongxing [39], and some non-stationary models are developed in Anguiano [3, 4, 5, 6, 7]. The case of a
Bingham flow is considered in Anguiano and Bunoiu [9, 10] and the case of micropolar fluids in Suárez-Grau
[36, 37]. The two-phase flow problem in thin porous media domains of Brinkman type has been considered in
Armiti-Juber [17] and an approach for effective heat transport in thin porous media has been derived by Scholz
and Bringedal [35].

The structure of the paper is as follows. In Section 2 we introduce the domain, make the statement of the
problem and give the main results (Theorems 2.1, 2.3 and 2.5). The proofs of the main results are provided in
Section 3. We finish the paper with a list of references.

2 Setting of the problem and main result

Geometrical setting. The periodic porous medium is defined by a domain ω and an associated microstructure,
or periodic cell Y ′ = (−1/2, 1/2)2, which is made of two complementary parts: the fluid part Y ′f , and the solid
part T ′ (Y ′f

⋃
T ′ = Y ′ and Y ′f

⋂
T ′ = ∅). More precisely, we assume that ω is a smooth, bounded, connected set

in R2 with smooth enough boundary ∂ω, that n is the outward normal to ∂ω, and that T ′ is an open connected
subset of Y ′ with a smooth boundary ∂T ′, such that T̄ ′ is strictly included in Y ′.

The microscale of a porous medium is a small positive number ε. The domain ω is covered by a regular mesh
of square of size ε: for k′ ∈ Z2, each cell Y ′k′,ε = εk′ + εY ′ is divided in a fluid part Y ′fk′ ,ε and a solid part T ′k′,ε,

i.e. is similar to the unit cell Y ′ rescaled to size ε. We define Y = Y ′ × (0, 1) ⊂ R3, which is divided in a fluid
part Yf = Y ′f × (0, 1) and a solid part T = T ′ × (0, 1), and consequently Yk′,ε = Y ′k′,ε × (0, 1) ⊂ R3, which is also
divided in a fluid part Yfk′ ,ε and a solid part Tk′,ε (see Figures 1 and 2).

We denote by τ(T
′
k′,ε) the set of all translated images of T

′
k′,ε. The set τ(T

′
k′,ε) represents the obstacles in

R2.
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Figure 1: View of the 3D reference cells Y (left) and the 2D reference cell Y ′ (right).
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Y 0
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Figure 2: View of the 3D reference cells Yk′,ε (left) and the 2D reference cell Y ′k′,ε (right).

The fluid part of the bottom ωε ⊂ R2 of a porous medium is defined by ωε = ω\⋃k′∈Kε T̄ ′k′,ε, where

Kε = {k′ ∈ Z2 : Y ′k′,ε ∩ ω 6= ∅}. The whole fluid part Ωε ⊂ R3 in the thin porous medium is defined by (see
Figure 3)

Ωε = {(x1, x2, x3) ∈ ωε × R : 0 < x3 < ε}. (5)

We assume that the obstacles τ(T
′
k′,ε) do not intersect the boundary ∂ω and we denote by Sε the set of the solid

cylinders contained in Ωε, i.e. Sε =
⋃
k′∈Kε T

′
k′,ε × (0, ε).

"

"

"

"

Figure 3: View of the thin porous media Ωε (left) and domain without perforations Qε (right).

We define
Ω̃ε = ωε × (0, 1), Ω = ω × (0, 1), Qε = ω × (0, ε). (6)

We observe that Ω̃ε = Ω\⋃k′∈Kε T̄k′,ε, and we define Tε =
⋃
k′∈Kε Tk′,ε as the set of the solid cylinders contained

in Ω̃ε.

To finish, we introduce some notation that will be useful along the paper. The points x ∈ R3 will be
decomposed as x = (x′, x3) with x′ = (x1, x2) ∈ R2, x3 ∈ R. We also use the notation x′ to denote a generic
vector of R2. Let C∞# (Y ) be the space of infinitely differentiable functions in R3 that are Y ′-periodic. By Lq#(Y )

(resp. W 1,q
# (Y )), 1 < q < +∞, we denote its completion in the norm Lq(Y ) (resp. W 1,q(Y )) and by Lq0,#(Y )

the space of functions in Lq#(Y ) with zero mean value.

Statement of the problem. Let us consider the following stationary Stokes system with the non-linear
viscosity following the Carreau law (2) in Ωε, with a Dirichlet boundary condition on the exterior boundary ∂Qε
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and the cylinders ∂Sε, 
−εγdiv (ηr(D[uε])D[uε]) +∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Qε ∪ ∂Sε,
(7)

where the second member f is of the form

f(x) = (f ′(x′), 0) with f ′ ∈ L∞(ω)2. (8)

We remark that the assumptions of neglecting the vertical component of the exterior force and the independence
of the vertical variable are usual when dealing with fluids in through thin domains (see [21] for more details).

Under previous assumptions, the classical theory (see for instance [21, 22, 30]), gives the existence of a unique
weak solution (uε, pε) ∈ H1

0 (Ωε)
3×L2

0(Ωε), for 1 < r ≤ 2, and (uε, pε) ∈W 1,r
0 (Ωε)

3×Lr′0 (Ωε) with 1/r+1/r′ = 1,

for r > 2, where L2
0 (respectively Lr

′
0 ) is the space of functions of L2 (respectively Lr

′
) with zero mean value.

Our goal is to study the asymptotic behavior of uε and pε when ε tends to zero. For this purpose, we use the
dilatation in the variable x3 as follows

y3 =
x3

ε
, (9)

in order to have the functions defined in the open set with fixed height Ω̃ε. Namely, we define ũε and p̃ε by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x′, y3) ∈ Ω̃ε.

Let us introduce some notation which will be useful in the following. For a vectorial function v = (v′, v3) and
a scalar function w, we will denote Dx′ [v] = 1

2 (Dx′v + Dt
x′v) and ∂y3 [v] = 1

2 (∂y3v + ∂ty3v), where we denote

∂y3 = (0, 0, ∂
∂y3

)t. Moreover, associated to the change of variables (9), we introduce the operators: Dε, Dε, divε
and ∇ε, by

Dε [v] =
1

2

(
Dεv +Dt

εv
)
,

(Dεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2, (Dεv)i,3 = ε−1∂y3vi for i = 1, 2, 3,

divεv = divx′v
′ + ε−1∂y3v3, ∇εw = (∇x′w, ε−1∂y3w)t.

Using the transformation (9), system (7) can be rewritten as
−εγdivε (ηr(Dε[ũε])Dε [ũε]) +∇εp̃ε = f in Ω̃ε,

divεũε = 0 in Ω̃ε,

ũε = 0 on ∂Ω ∪ ∂Tε.
(10)

Our goal then is to describe the asymptotic behavior of this new sequence (ũε, p̃ε). The sequences of solutions

(ũε, p̃ε) is not defined in a fixed domain independent of ε but rather in a varying set Ω̃ε. In order to pass the
limit if ε tends to zero, convergences in fixed Sobolev spaces (defined in Ω) are used which requires first that (ũε,

p̃ε) be extended to the whole domain Ω. Then, an extension (ũε, P̃ε) ∈ W 1,q
0 (Ω)3 × Lq

′

0 (Ω) is defined on Ω and

coincides with (ũε, p̃ε) on Ω̃ε (we will use the same notation, ũε, for the velocity in Ω̃ε and its continuation in
Ω).

Our main results referred to the asymptotic behavior of the solution of (10) is given by the following theorems.

Theorem 2.1 (Pseudoplastic fluids). Consider 1 < r < 2 and γ ∈ R. Then, there exist ũ ∈ H1
0 (0, 1;L2(ω)3) with

ũ3 = 0 and P̃ ∈ L2
0(ω), such that the extension (ũε, P̃ε) of the solution of (10) satisfies the following convergences

εγ−2ũε ⇀ ũ weakly in H1(0, 1;L2(ω)3), P̃ε → P̃ strongly in L2(Ω).

Moreover, defining V (x′) =
∫ 1

0
ũ(x′, y3) dy3, it holds that (V, P̃ ) ∈ L2(ω)3×(L2

0(ω)∩H1(ω)) is the unique solution
of a lower-dimensional effective Darcy’s law depending on the value of γ. More precisely:
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– If γ 6= 1, then (V, P̃ ) is the unique solution of the linear 2D Darcy’s law
V ′(x′) =

1

η
A
(
f ′(x′)−∇x′ P̃ (x′)

)
, V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

(11)

where

η =

{
η0 if γ < 1,
η∞ if γ > 1,

and the permeability tensor A ∈ R2×2 is defined by its entries

Aij =

∫
Yf

(wij)
′(y) dy, i, j = 1, 2, (12)

with (wi, πi) ∈ H1
0,#(Yf )3 × L2

0,#(Yf ), i = 1, 2, the unique solution of the local Stokes system

−∆yw
i +∇yπi = ei in Yf ,

divyw
i = 0 in Yf ,

wi = 0 on ∂T,

y → wi, πi Y − periodic,

(13)

and {ei}i=1,2,3 being the canonical basis of R3.

– If γ = 1, then (V, P̃ ) is the unique solution of the non-linear 2D Darcy’s law of Carreau type
V ′(x′) = U

(
f ′(x′)−∇x′ P̃ (x′)

)
, V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

(14)

where the permeability function U : R2 → R2 is defined by

U(ξ′) =

∫
Yf

w′ξ′(y) dy, ∀ ξ′ ∈ R2, (15)

with (wξ′ , πξ′) ∈ H1
0,#(Yf )3 × L2

0,#(Yf ), for every ξ′ ∈ R2, the unique solution of the local Stokes system
−divy(ηr(Dy[wξ′ ])Dy[wξ′ ]) +∇yπξ′ = ξ′ in Yf ,

divywξ′ = 0 in Yf ,

wξ′ = 0 on ∂T,

(16)

and the nonlinear viscosity ηr is given by the Carreau law (2).

Remark 2.2. According to [1, Theorem 1.1], the permeability tensor A is symmetric and definite positive.

Theorem 2.3 (Dilatant fluids). Consider r > 2 and γ ∈ R. We divide the theorem depending on the value of γ:

(i) If γ < 1, then it holds there exist ũ ∈ W 1,r
0 (0, 1;Lr(ω)3) and P̃ ∈ Lr′0 (ω), such that the extension (ũε, P̃ε)

of the solution of (10) satisfies the following convergences

ε−1+ 2
r (γ−1)ũε ⇀ ũ weakly in W 1,r(0, 1;Lr(ω)3), P̃ε → P̃ strongly in Lr

′
(Ω).

Moreover, defining V (x′) =
∫ 1

0
ũ(x′, y3) dy3, it holds that

V (x′) = 0 in ω. (17)

7
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(ii) If γ > 1, then there exist ũ ∈ W 1,r
0 (0, 1;Lr(ω)3) with ũ3 = 0 and P̃ ∈ Lr

′
0 (ω), such that the extension

(ũε, P̃ε) of the solution of (10) satisfies the following convergences

ε
γ−r
r−1 ũε ⇀ ũ weakly in W 1,r(0, 1;Lr(ω)3), P̃ε → P̃ strongly in Lr

′
(Ω).

Moreover, defining V (x′) =
∫ 1

0
ũ(x′, y3) dy3, it holds that (V, P̃ ) ∈ Lr(ω)3 × (Lr

′
0 (ω) ∩ W 1,r′(ω)) is the

unique solution of the lower-dimensional effective non-linear Darcy’s law
V ′(x′) =

λ
2−r
2

η0 − η∞
U
(
f ′(x′)−∇x′ P̃ (x′)

)
, V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

(18)

where the permeability function U : R2 → R2 is defined by (15) with wξ′ , for every ξ′ ∈ R2, the unique
solution of the local Stokes system (16) with nonlinear viscosity of type power law given by ηr(Dy[wξ′ ]) =
|Dy[wξ′ ]|r−2.

(iii) If γ = 1, then there exist ũ ∈ W 1,r
0 (0, 1;Lr(ω)3) with ũ3 = 0 and P̃ ∈ Lr

′
0 (ω), such that the extension

(ũε, P̃ε) of the solution of (10) satisfies the following convergences

ε−1ũε ⇀ ũ weakly in W 1,r(0, 1;Lr(ω)3), P̃ε → P̃ strongly in Lr
′
(Ω).

Moreover, defining V (x′) =
∫ 1

0
ũ(x′, y3) dy3, it holds that (V, P̃ ) ∈ Lr(ω)3 × (Lr

′
0 (ω) ∩ W 1,r′(ω)) is the

unique solution of the lower-dimensional effective non-linear 2D Darcy’s law of Carreau type (14), where
the permeability function U : R2 → R2 is defined by (15) with (wξ′ , πξ′) ∈W 1,r

0,#(Yf )3 ×Lr′0,#(Yf ), for every

ξ′ ∈ R2, the unique solution of the local Stokes system (16) with nonlinear viscosity given by the Carreau
law (2).

Remark 2.4. According to [23, Lemma 2], the permeability function U is coercive and strictly monotone.

Theorem 2.5 (Newtonian fluids). Consider r = 2 and γ ∈ R. Then, there exist ũ ∈ H1
0 (0, 1;L2(ω)3) with ũ3 = 0

and P̃ ∈ L2
0(ω), such that the extension (ũε, P̃ε) of the solution of (10) satisfies the following convergences

εγ−2ũε ⇀ ũ weakly in H1(0, 1;L2(ω)3), P̃ε → P̃ strongly in L2(Ω).

Moreover, defining V (x′) =
∫ 1

0
ũ(x′, y3) dy3, it holds that (V, P̃ ) ∈ L2(ω)3×(L2

0(ω)∩H1(ω)) is the unique solution
of the linear 2D Darcy’s law

V ′(x′) =
1

η0
A
(
f ′(x′)−∇x′ P̃ (x′)

)
, V3(x′) = 0 in ω,

divx′V
′(x′) = 0 in ω, V ′(x′) · n = 0 on ∂ω,

(19)

where the permeability tensor A ∈ R2×2 is defined by its entries

Aij =

∫
Yf

(wij)
′(y) dy, i, j = 1, 2, (20)

with (wi, πi) ∈ H1
0,#(Yf )3 × L2

0,#(Yf ), i = 1, 2, the unique solution of the local Stokes system

−∆yw
i +∇yπi = ei in Yf ,

divyw
i = 0 in Yf ,

wi = 0 on ∂T,

y → wi, πi Y − periodic,

(21)

and {ei}i=1,2,3 being the canonical basis of R3.

Remark 2.6. According to [1, Theorem 1.1], the permeability tensor A is symmetric and definite positive.
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3 Proof of the main results

In this section we provide the proof of the main results (Theorems 2.1, 2.3 and 2.5). To to this, first we establish
some a priori estimates of the solution of (10) and we define the extension of the solution. Second, we introduce
the version of the unfolding method depending on ε. Next, a compactness result, which is the main key when
we will pass to the limit later, is addressed and finally, the proofs of Theorems 2.1, 2.3 and 2.5 are given.

3.1 A priori estimates.

In this subsection, we establish sharp a priori estimates of the dilated solution in Ω̃ε. To do this, we first need
the Poincaré and Korn inequalities in Ω̃ε, which can be found in [11].

Lemma 3.1 (Remark 4.3-(i) in [11]). We have the following two estimates in thin domains:

(i) For every ṽ ∈W 1,q
0 (Ω̃ε)

3, 1 ≤ q < +∞, there exists a positive constant C, independent of ε, such that

‖ṽ‖Lq(Ω̃ε)3 ≤ Cε‖Dεṽ‖Lq(Ω̃ε)3×3 , (Poincaré’s inequality). (22)

(ii) For every ṽ ∈W 1,q
0 (Ω̃ε)

3, 1 < q < +∞, there exists a positive constant C, independent of ε, such that

‖Dεṽ‖Lq(Ω̃ε)3×3 ≤ C‖Dε[ṽ]‖Lq(Ω̃ε)3×3 , (Korn’s inequality). (23)

Using the previous estimates, we give a priori estimates for velocity ũε in Ω̃ε.

Lemma 3.2. Let ũε the velocity solution of (10). Then, we have the following estimates:

(i) (Pseudoplastic fluid and Newtonian fluid) Consider 1 < r ≤ 2. There exists a positive constant C, inde-
pendent of ε, such that, for every value of γ, we have

‖ũε‖L2(Ω̃ε)3
≤ Cε2−γ , ‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε1−γ , ‖Dε[ũε]‖L2(Ω̃ε)3×3 ≤ Cε1−γ . (24)

(ii) (Dilatant fluid) Consider r > 2. There exists a positive constant C, independent of ε, such that estimates
(24) hold and also, depending on the value of γ, we have

– If γ < 1, it holds

‖ũε‖Lr(Ω̃ε)3
≤ Cε− 2

r (γ−1)+1, ‖Dεũε‖Lr(Ω̃ε)3×3 ≤ Cε−
2
r (γ−1), ‖Dε[ũε]‖Lr(Ω̃ε)3×3 ≤ Cε−

2
r (γ−1) , (25)

– If γ > 1, it holds

‖ũε‖Lr(Ω̃ε)3
≤ Cε− γ−1

r−1 +1, ‖Dεũε‖Lr(Ω̃ε)3×3 ≤ Cε−
γ−1
r−1 , ‖Dε[ũε]‖Lr(Ω̃ε)3×3 ≤ Cε−

γ−1
r−1 . (26)

– If γ = 1, it holds

‖ũε‖Lr(Ω̃ε)3
≤ Cε, ‖Dεũε‖Lr(Ω̃ε)3×3 ≤ C, ‖Dε[ũε]‖Lr(Ω̃ε)3×3 ≤ C . (27)

Proof. Multiplying (10) by ũε and integrating over Ω̃ε, we get

εγ(η0 − η∞)

∫
Ω̃ε

(
1 + λ|Dε[ũε]|2

) r
2−1 |Dε[ũε]|2dx′dy3 + εγη∞

∫
Ω̃ε

|Dε[ũε]|2dx′dy3 =

∫
Ω̃ε

f ′ · ũ′ε dx′dy3. (28)

We divide the proof in two steps. First, we derive estimates (24) for every r > 1 and then, for r > 2 we establish
estimates (25)-(27) depending on the value of γ.

9
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Step 1. We consider r > 1. Taking into account that η0 > η∞, and λ > 0, we have

εγ(η0 − η∞)

∫
Ω̃ε

(
1 + λ|Dε[ũε]|2

) r
2−1 |Dε[ũε]|2dx′dy3 ≥ 0,

and then, from Cauchy-Schwarz’s inequality and the assumption on f ′ given in (8), we get from (28) that

εγη∞‖Dε[ũε]‖2L2(Ω̃ε)3×3 ≤ C‖ũε‖L2(Ω̃ε)3
.

Applying Poincaré’s inequality (22) and Korn’s inequality (23) in the right-hand side, we have

‖Dε[ũε]‖2L2(Ω̃ε)3×3 ≤ Cε1−γ‖Dε[ũε]‖L2(Ω̃ε)3×3 ,

which gives (24)3. Finally, applying again (22) and (23), we obtain (24)1 and (24)2.

Step 2. For r > 2, since

εγη∞

∫
Ω̃ε

|Dε[ũε]|2dx′dy3 ≥ 0,

from (28) and Cauchy-Schwarz’s inequality, we get

εγ(η0 − η∞)

∫
Ω̃ε

(
1 + λ|Dε[ũε]|2

) r
2−1 |Dε[ũε]|2dx′dy3 ≤ C‖ũε‖L2(Ω̃ε)3

. (29)

Since it holds

εγλ
r−2
2 (η0 − η∞)

∫
Ω̃ε

|Dε[ũε]|rdx′dy3 ≤ εγ(η0 − η∞)

∫
Ω̃ε

(
1 + λ|Dε[ũε]|2

) r
2−1 |Dε[ũε]|2dx′dy3,

then, applying this and also Poincaré’s inequality (22) and Korn’s inequality (23) in the right-hand side in (29),
we get

‖Dε[ũε]‖rLr(Ω̃ε)3×3 ≤ Cε1−γ‖Dε[ũε]‖L2(Ω̃ε)3×3 . (30)

On the one hand, applying estimate (24)3, we get

‖Dε[ũε]‖Lr(Ω̃ε)3×3 ≤ Cε−
2
r (γ−1).

On the other hand, from the continuity of embedding Lr(Ω̃ε) ↪→ L2(Ω̃ε) in (30), we also have

‖Dε[ũε]‖rLr(Ω̃ε)3×3 ≤ Cε1−γ‖Dε[ũε]‖Lr(Ω̃ε)3×3 ,

which gives

‖Dε[ũε]‖Lr(Ω̃ε)3×3 ≤ Cε−
γ−1
r−1 .

Then, we have two estimates of Dε[ũε] in Lr(Ω̃ε)
3×3 and we have to compare them in order to consider the more

accurate estimate depending on the value of γ. Since − 2
r (γ−1) > −γ−1

r−1 if γ < 1 and − 2
r (γ−1) < −γ−1

r−1 if γ > 1,
then we have estimates (25)3 and (26)3. In the case γ = 1, both estimates give (27)3. Finally, from Poincaré’s
inequality (22) and Korn’s inequality (23) we derive the rest of estimates in (25), (26) and (27).

Remark 3.3. We extend the velocity ũε by zero in Ω \ Ω̃ε (this is compatible with the homogeneous boundary
condition on ∂Ω ∪ ∂Tε), and denote the extension by same symbol. Obviously, estimates given in Lemma 3.2
remain valid and the extension ũε is divergence free too.

In order to extend the pressure p̃ε to the whole domain Ω and obtain a priori estimates, we recall a result
in which is concerned with the extension of the pressure pε to the whole domain Qε, which define a restriction
operator Rεq from W 1,q

0 (Qε)
3 into W 1,q

0 (Ωε)
3, 1 < q < +∞, introduced in [11].
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Lemma 3.4 (Lemma 4.5-(i) in [11]). There exists a (restriction) operator Rεq acting from W 1,q
0 (Qε)

3 into

W 1,q
0 (Ωε)

3, 1 < q < +∞, such that

1. Rεqv = v, if v ∈W 1,q
0 (Ωε)

3 (elements of W 1,q
0 (Ωε) are extended by 0 to Qε).

2. divRεqv = 0 in Ωε, if div v = 0 on Qε.

3. For every v ∈W 1,q
0 (Qε)

3, there exists a positive constant C, independent of v and ε, such that

‖Rεqv‖Lq(Ωε)3 + ε‖DRεqv‖Lq(Ωε)3×3 ≤ C
(
‖v‖Lq(Qε)3 + ε‖Dv‖Lq(Qε)3×3

)
. (31)

In the next result, by using the restriction operator defined in Lemma 3.4, we extend the gradient of the
pressure by duality in W−1,q′(Qε)

3 and then, by means of the dilatation, we extend p̃ε to Ω. Finally, we derive
estimates of the extension of the pressure.

Lemma 3.5. Let p̃ε the pressure solution of (10). Then:

(i) (Pseudoplastic fluid and Newtonian fluid) Consider 1 < r ≤ 2. There exist an extension P̃ε ∈ L2
0(Ω) of

pressure p̃ε and a positive constant C independent of ε, such that

‖P̃ε‖L2(Ω) ≤ C , ‖∇εP̃ε‖H−1(Ω)3 ≤ C. (32)

(ii) (Dilatant fluid) Consider r > 2. There exist an extension P̃ε ∈ Lr
′

0 (Ω) of pressure p̃ε and a positive constant
C independent of ε, such that

‖P̃ε‖Lr′ (Ω) ≤ C , ‖∇εP̃ε‖W−1,r′ (Ω)3 ≤ C, (33)

where r′ is the conjugate exponent of r.

Proof. We divide the proof in three steps. First, we extend the pressure in all the cases, next we obtain the
estimates in the case of pseudoplastic fluids and Newtonian fluis, and finally, we get the estimates in the case of
dilatant fluids.

Step 1. Extension of the pressure. Using the restriction operator with q = max{2, r} given in Lemma 3.4, i.e.
Rεq, we introduce Fε in W−1,q′(Qε)

3, where q′ is the conjugate exponent of q, in the following way

〈Fε, v〉W−1,q′ (Qε)3,W
1,q
0 (Qε)3

= 〈∇pε, Rεqv〉W−1,q′ (Ωε)3,W
1,q
0 (Ωε)3

, for any v ∈W 1,q
0 (Qε)

3 , (34)

and calculate the right hand side of (34) by using the variational formulation of problem (7), which gives

〈Fε, v〉W−1,q′ (Qε)3,W
1,q
0 (Qε)3

= −εγ(η0 − η∞)

∫
Ωε

(1 + λ|D[uε]|2)
r
2−1D[uε] : DRεqv dx

−εγη∞
∫

Ωε

D[uε] : DRεqv dx+

∫
Ωε

f ′ · (Rεqv)′ dx .
(35)

Using Lemma 3.2 for fixed ε, we see that it is a bounded functional on W 1,q
0 (Qε) (see Steps 2 and 3 below), and

in fact Fε ∈W−1,q′(Qε)
3. Moreover, div v = 0 implies 〈Fε, v〉 = 0 , and the DeRham theorem gives the existence

of Pε in Lq
′

0 (Qε) with Fε = ∇Pε.
Next, we get for every ṽ ∈W 1,q

0 (Ω)3 where ṽ(x′, y3) = v(x′, εy3), using the change of variables (9), that

〈∇εP̃ε, ṽ〉W−1,q′ (Ω)3,W 1,q
0 (Ω)3 = −

∫
Ω

P̃ε divε ṽ dx
′dy3 = −ε−1

∫
Qε

Pε div v dx = ε−1〈∇Pε, v〉W−1,q′ (Qε)3,W
1,q
0 (Qε)3

.

11
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Using the identification (35) of Fε, we have

〈∇εP̃ε, ṽ〉W−1,q′ (Ω)3,W 1,q
0 (Ω)3 = ε−1

(
−εγ(η0 − η∞)

∫
Ωε

(1 + λ|D[uε]|2)
r
2−1D[uε] : DRεqv dx

−εγη∞
∫

Ωε

D[uε] : DRεqv dx+

∫
Ωε

f ′ · (Rεqv)′ dx

)
,

and applying the change of variables (9), we obtain

〈∇εP̃ε, ṽ〉W−1,q′ (Ω)3,W 1,q
0 (Ω)3 = −εγ(η0 − η∞)

∫
Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] : DεR̃

ε
q ṽ dx

′dy3

−εγη∞
∫

Ω̃ε

Dε[ũε] : DεR̃
ε
q ṽ dx

′dy3 +

∫
Ω̃ε

f ′(x′) · (R̃εq ṽ)′ dx′dy3 ,
(36)

where R̃εq ṽ = Rεqv for any ṽ ∈W 1,q
0 (Ω)3.

Step 2. Estimates of the extended pressure for pseudoplastic fluids and Newtonian fluids. Applying the
dilatation in (31) for q = 2, we have that R̃ε2ṽ satisfies the following estimate

‖R̃ε2ṽ‖L2(Ω̃ε)3
+ ε‖DεR̃

ε
2ṽ‖L2(Ω̃ε)3×3 ≤ C

(
‖ṽ‖L2(Ω)3 + ε‖Dεṽ‖L2(Ω)3×3

)
, (37)

and since ε� 1, we have

‖R̃ε2ṽ‖L2(Ω̃ε)3
≤ C‖ṽ‖H1

0 (Ω)3 , ‖DεR̃
ε
2ṽ‖L2(Ω̃ε)3×3 ≤

C

ε
‖ṽ‖H1

0 (Ω)3 . (38)

Taking into account that 1 < r ≤ 2, we have that

(1 + λ|Dε[ũε]|2)
r
2−1 ≤ 1,

and then, from Cauchy-Schwarz’s inequality, we deduce∣∣∣∣∫
Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] : DεR̃

ε
2ṽ dx

′dy3

∣∣∣∣ ≤ ∫
Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1|Dε[ũε]| : |DεR̃

ε
2ṽ| dx′dy3

≤
∫

Ω̃ε

|Dε[ũε]| : |DεR̃
ε
2ṽ| dx′dy3 ≤ ‖Dε[ũε]‖L2(Ω̃ε)3×3‖DεR̃

ε
2ṽ‖L2(Ω̃ε)3×3 .

Using the last estimate in (24) and the last estimate of the dilated restricted operator given in (38), we obtain∣∣∣∣εγ(η0 − η∞)

∫
Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] : DεR̃

ε
2ṽ dx

′dy3

∣∣∣∣ ≤ C‖ṽ‖H1
0 (Ω)3 . (39)

Moreover, from Cauchy-Schwarz’s inequality, the last estimate in (24), the assumption of f ′ given in (8) and
estimates of the dilated restricted operator given in (38), we obtain∣∣∣∣εγη∞ ∫

Ω̃ε

Dε[ũε] : DεR̃
ε
2ṽ dx

′dy3

∣∣∣∣ ≤ Cεγ‖Dε[ũε]‖L2(Ω̃ε)3×3‖DεR̃
ε
2ṽ‖L2(Ω̃ε)3×3 ≤ C‖ṽ‖H1

0 (Ω)3 , (40)

∣∣∣∣∫
Ω̃ε

f ′ · (R̃ε2ṽ)′ dx′dy3

∣∣∣∣ ≤ C‖R̃ε2ṽ‖L2(Ω̃ε)3
≤ C‖ṽ‖H1

0 (Ω)3 . (41)
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Then, taking into account (39)-(41) in (36), we get the second estimate in (32) and finally, using the Nečas
inequality, there exists a representative P̃ε ∈ L2

0(Ω) such that

‖P̃ε‖L2(Ω) ≤ C‖∇P̃ε‖H−1(Ω)3 ≤ C‖∇εP̃ε‖H−1(Ω)3 ,

which implies the first estimate in (32).

Step 3. Estimates of the extended pressure for dilatant fluids. Applying the dilatation in (31) for q = r, we
have that R̃εrṽ satisfies the following estimate

‖R̃εrṽ‖Lr(Ω̃ε)3
+ ε‖DεR̃

ε
rṽ‖Lr(Ω̃ε)3×3 ≤ C

(
‖ṽ‖Lr(Ω)3 + ε‖Dεṽ‖Lr(Ω)3×3

)
, (42)

and since ε� 1, we have

‖R̃εrṽ‖Lr(Ω̃ε)3
≤ C‖ṽ‖W 1,r

0 (Ω)3 , ‖DεR̃
ε
rṽ‖Lr(Ω̃ε)3×3 ≤

C

ε
‖ṽ‖W 1,r

0 (Ω)3 . (43)

Taking into account that r > 2, we have the continuous embedding Lr(Ω̃ε) ↪→ L2(Ω̃ε), and from Hölder’s
inequality, we can deduce∫

Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] : DεR̃

ε
rṽ dx

′dy3

≤
∫

Ω̃ε

Dε[ũε] : DεR̃
ε
rṽ dx

′dy3 + λ
r
2−1

∫
Ω̃ε

|Dε[ũε]|r−2Dε[ũε] : DεR̃
ε
rṽ dx

′dy3

≤ ‖Dε[ũε]‖L2(Ω̃ε)3×3‖DεR̃
ε
rṽ‖L2(Ω̃ε)3×3 + C‖Dε[ũε]‖r−1

Lr(Ω̃ε)3×3
‖DεR̃

ε
rṽ‖Lr(Ω̃ε)3×3

≤ ‖Dε[ũε]‖L2(Ω̃ε)3×3‖DεR̃
ε
rṽ‖Lr(Ω̃ε)3×3 + C‖Dε[ũε]‖r−1

Lr(Ω̃ε)3×3
‖DεR̃

ε
rṽ‖Lr(Ω̃ε)3×3 .

Observe that if γ < 1, taking into account that − 2
r (γ − 1) > − γ−1

(r−1) , using the last estimates in (24) and (25),

and the last estimate of the dilated restricted operator given in (43), we obtain∣∣∣∣εγ(η0 − η∞)

∫
Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] : DεR̃

ε
rṽ dx

′dy3

∣∣∣∣
≤ εγ(η0 − η∞)

(
ε1−γε−1 + ε−

2
r (γ−1)(r−1)ε−1

)
‖ṽ‖W 1,r

0 (Ω̃ε)3

≤ εγ(η0 − η∞)
(
ε1−γε−1 + ε−

γ−1
r−1 (r−1)ε−1

)
‖ṽ‖W 1,r

0 (Ω̃ε)3

≤ C‖ṽ‖W 1,r
0 (Ω̃ε)3

.

If γ ≥ 1, using the last estimates in (24), (26) for γ > 1 and (27) for γ = 1, and the last estimate of the dilated
restricted operator given in (43), we obtain∣∣∣∣εγ(η0 − η∞)

∫
Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] : DεR̃

ε
rṽ dx

′dy3

∣∣∣∣
≤ εγ(η0 − η∞)

(
ε1−γε−1 + ε−

γ−1
r−1 (r−1)ε−1

)
‖ṽ‖W 1,r

0 (Ω̃ε)3

≤ C‖ṽ‖W 1,r
0 (Ω̃ε)3

.

In summary, we obtain for all γ:∣∣∣∣εγ(η0 − η∞)

∫
Ω̃ε

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] : DεR̃

ε
rṽ dx

′dy3

∣∣∣∣ ≤ C‖ṽ‖W 1,r
0 (Ω)3 . (44)
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Moreover, from Cauchy-Schwarz’s inequality, the last estimate in (24), the continuous embedding Lr(Ω̃ε) ↪→
L2(Ω̃ε), the assumption of f ′ given in (8) and estimates of the dilated restricted operator given in (43), we
obtain ∣∣∣∣εγη∞ ∫

Ω̃ε

Dε[ũε] : DεR̃
ε
rṽ dx

′dy3

∣∣∣∣ ≤ Cεγ‖Dε[ũε]‖L2(Ω̃ε)3×3‖DεR̃
ε
rṽ‖Lr(Ω̃ε)3×3 ≤ C‖ṽ‖W 1,r

0 (Ω)3 , (45)

∣∣∣∣∫
Ω̃ε

f ′ · (R̃εrṽ)′ dx′dy3

∣∣∣∣ ≤ C‖R̃εrṽ‖L2(Ω̃ε)3
≤ C‖R̃εrṽ‖Lr(Ω̃ε)3

≤ C‖ṽ‖W 1,r
0 (Ω)3 . (46)

Then, taking into account (44)-(46) in (36), we get∣∣∣〈∇εP̃ε, ṽ〉W−1,r′ (Ω)3,W 1,r
0 (Ω)3

∣∣∣ ≤ C‖ṽ‖W 1,r
0 (Ω)3 .

This implies the second estimate in (33) and then, using the Nec̆as inequality, there exists a representative
P̃ε ∈ Lr

′
0 (Ω) such that

‖P̃ε‖Lr′ (Ω) ≤ C‖∇P̃ε‖W−1,r′ (Ω)3 ≤ C‖∇εP̃ε‖W−1,r′ (Ω)3 ,

which implies the first estimate in (33).

3.2 Adaptation of the unfolding method.

The change of variables (9) does not provide the information we need about the behavior of ũε in the microstruc-

ture associated to Ω̃ε. To solve this difficulty, we use an adaptation introduced in [11] of the unfolding method
from [25].

Let us recall that this adaptation of the unfolding method divides the domain Ω̃ε in cubes of lateral length

ε and vertical length 1. Thus, given (ϕ̃ε, ψ̃ε) ∈ W 1,q
0 (Ω)3 × Lq

′

0 (Ω), 1 < q < +∞ and 1/q + 1/q′ = 1, we define

(ϕ̂ε, ψ̂ε) by

ϕ̂ε(x
′, y) = ϕ̃ε

(
εκ

(
x′

ε

)
+ εy′, y3

)
, ψ̂ε(x

′, y) = ψ̃ε

(
εκ

(
x′

ε

)
+ εy′, y3

)
, a.e. (x′, y) ∈ ω × Y, (47)

assuming ϕ̃ε and ψ̃ε are extended by zero outside ω, where the function κ : R2 → Z2 is defined by

κ(x′) = k′ ⇐⇒ x′ ∈ Y ′k′,1, ∀ k′ ∈ Z2.

Remark 3.6. We make the following comments:

- The function κ is well defined up to a set of zero measure in R2 (the set ∪k′∈Z2∂Y ′k′,1). Moreover, for every
ε > 0, we have

κ

(
x′

ε

)
= k′ ⇐⇒ x′ ∈ Y ′k′,ε.

- For k′ ∈ Kε, the restrictions of (ûε, P̂ε) to Y ′k′,ε × Y does not depend on x′, whereas as a function of y it

is obtained from (ũε, P̃ε) by using the change of variables y′ =
x′ − εk′

ε
, which transforms Yk′,ε into Y .

Following the proof of [11, Lemma 4.9], we have the following estimates relating (ϕ̂ε, ψ̂ε) and (ϕ̃ε, ψ̃ε).
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Lemma 3.7. The sequence (ϕ̂ε, ψ̂ε) defined by (47) satisfies the following estimates:

‖ϕ̂ε‖Lq(ω×Y )3 ≤ ‖ϕ̃ε‖Lq(Ω)3 ,

‖Dy′ ϕ̂ε‖Lq(ω×Y )3×2 ≤ ε‖Dx′ ϕ̃ε‖Lq(Ω)3×2 , ‖∂y3 ϕ̂ε‖Lq(ω×Y )3 ≤ ‖∂y3 ϕ̃ε‖Lq(Ω)3 ,

‖Dy′ [ϕ̂ε]‖Lq(ω×Y )3×2 ≤ ε‖Dx′ [ϕ̃ε]‖Lq(Ω)3×2 , ‖∂y3 [ûε]‖Lq(ω×Y )3 ≤ ‖∂y3 [ϕ̃ε]‖Lq(Ω)3 ,

‖ψ̂ε‖Lq′ (ω×Y ) ≤ ‖ψ̃ε‖Lq′ (Ω).

(48)

Definition 3.8 (Unfolded velocity and pressure). Let us define the unfolded velocity and pressure (ûε, P̂ε) from
(ũε, P̃ε) depending on the type of fluid:

– (Pseudoplastic fluids and Newtonian fluids) From (ũε, P̃ε) ∈ H1
0 (Ω)3 × L2

0(Ω), we define (ûε, P̂ε) by using
(47) with ϕ̃ε = ũε, ψ̃ε = P̃ε and q = 2.

– (Dilatant fluids) From (ũε, P̃ε) ∈W 1,r
0 (Ω)3×Lr′0 (Ω), we define (ûε, P̂ε) by using (47) with ϕ̃ε = ũε, ψ̃ε = P̃ε

and q = r.

Now, from estimates of the extended velocity (24)-(27) and pressure (32)-(33) together with Lemma 3.7, we
have the following estimates for (ûε, P̂ε).

Lemma 3.9. We have the following estimates for the unfolded functions (ûε, P̂ε) depending on the type of fluid:

(i) (Pseudoplastic fluids and Newtonian fluids) Consider 1 < r ≤ 2. There exists a constant C > 0 independent
of ε, such that, for every value of γ, we have

‖ûε‖L2(ω×Y )3 ≤ Cε2−γ , ‖Dyûε‖L2(ω×Y )3×3 ≤ Cε2−γ , ‖Dy[ûε]‖L2(ω×Y )3×3 ≤ Cε2−γ , (49)

‖P̂ε‖L2(ω×Y ) ≤ C. (50)

(ii) (Dilatant fluids) Consider r > 2. There exists a constant C > 0 independent of ε, such that estimates (49)
hold and also, depending on the value of γ, we have

– If γ < 1, it holds

‖ûε‖Lr(ω×Y )3 ≤ Cε−
2
r (γ−1)+1, ‖Dyûε‖Lr(ω×Y )3×3 ≤ Cε− 2

r (γ−1)+1,

‖Dy[ûε]‖Lr(ω×Y )3×3 ≤ Cε− 2
r (γ−1)+1.

(51)

– If γ > 1, it holds

‖ûε‖Lr(ω×Y )3 ≤ Cε−
γ−1
r−1 +1, ‖Dyûε‖Lr(ω×Y )3×3 ≤ Cε− γ−1

r−1 +1,

‖Dy[ûε]‖Lr(ω×Y )3×3 ≤ Cε− γ−1
r−1 +1.

(52)

– If γ = 1, it holds
‖ûε‖Lr(ω×Y )3 ≤ Cε, ‖Dyûε‖Lr(ω×Y )3×3 ≤ Cε,

‖Dy[ûε]‖Lr(ω×Y )3×3 ≤ Cε.
(53)

Moreover, we have the following estimate for the pressure

‖P̂ε‖Lr′ (ω×Y ) ≤ C, (54)

where r′ is the conjugate exponent of r.
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3.3 Compactness results.

We analyze the asymptotic behavior of sequences of the extension of (ũε, P̃ε) and (ûε, P̂ε), when ε tends to zero.

Lemma 3.10. We have the following convergences results for the velocity:

(i) (Pseudoplastic fluids and Newtonian fluids) Consider 1 < r ≤ 2. There exist ũ ∈ H1
0 (0, 1;L2(ω)3) where

ũ3 = 0, û ∈ L2(ω;H1
0,#(Y )3), with û = 0 on ω × T such that

∫
Y
û(x′, y) dy =

∫ 1

0
ũ(x′, y3) dy3 with∫

Y
û3(x′, y) dy = 0, such that, up to a subsequence,

εγ−2ũε ⇀ (ũ′, 0) weakly in H1(0, 1;L2(ω)3), (55)

εγ−2ûε ⇀ û weakly in L2(ω;H1(Y )3). (56)

(ii) (Dilatant fluids) Consider r > 2. There exist ũ ∈ W 1,r
0 (0, 1;Lr(ω)3) where ũ3 = 0, û ∈ Lr(ω;W 1,r

0,#(Y )3),

with û = 0 on ω × T such that
∫
Y
û(x′, y) dy =

∫ 1

0
ũ(x′, y3) dy3 with

∫
Y
û3(x′, y) dy = 0, such that, up to a

subsequence,

– if γ < 1, it holds
ε−1+ 2

r (γ−1)ũε ⇀ (ũ′, 0) weakly in W 1,r(0, 1;Lr(ω)3), (57)

ε−1+ 2
r (γ−1)ûε ⇀ û weakly in Lr(ω;W 1,r(Y )3), (58)

– if γ > 1, it holds

ε
γ−r
r−1 ũε ⇀ (ũ′, 0) weakly in W 1,r(0, 1;Lr(ω)3), (59)

ε
γ−r
r−1 ûε ⇀ û weakly in Lr(ω;W 1,r(Y )3). (60)

– if γ = 1, it holds
ε−1ũε ⇀ (ũ′, 0) weakly in W 1,r(0, 1;Lr(ω)3), (61)

ε−1ûε ⇀ û weakly in Lr(ω;W 1,r(Y )3). (62)

Moreover, ũ and û satisfy the following divergence conditions in both cases

divx′

(∫ 1

0

ũ′(x′, y3) dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3) dy3

)
· n = 0 in ∂ω, (63)

divy û(x′, y) = 0 in ω × Yf , divx′

(∫
Yf

û′(x′, y) dy

)
= 0 in ω,

(∫
Yf

û′(x′, y) dy

)
· n = 0 on ∂ω. (64)

Proof. Arguing as in [11, Lemma 5.2.-(i)], we obtain convergence (55) (resp. (57), (59) and (61)) and divergence
condition (63). Moreover, proceeding similarly as in [11, Lemma 5.4.-(i)] we deduce convergence (56) (resp. (58),
(60) and (62)) and divergence conditions (64).

Lemma 3.11. We have the following convergences results for the pressure:

(i) (Pseudoplastic fluids and Newtonian fluids) Consider 1 < r ≤ 2. There exists P̃ ∈ L2
0(ω) such that

P̃ε → P̃ strongly in L2(Ω), (65)

P̂ε → P̃ strongly in L2(ω × Y ). (66)
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(ii) (Dilatant fluids) Consider r > 2. There exists P̃ ∈ L2
0(ω) such that

P̃ε → P̃ strongly in Lr
′
(Ω), (67)

P̂ε → P̃ strongly in Lr
′
(ω × Y ), (68)

where r′ is the conjugate exponent of r.

Proof. We give some remarks concerning the case (i) (proceed similarly for the case (ii)). The first estimate in
(32) implies, up to a subsequence, the existence of P̃ ∈ L2

0(Ω) such that

P̃ε ⇀ P̃ weakly in L2(Ω). (69)

Also, from the second estimate in (32), by noting that ∂y3 P̃ε/ε also converges weakly in H−1(Ω), we obtain

∂y3 P̃ = 0 and so P̃ is independent of y3. Moreover, if we argue as in [22, Lemma 4.4], we have that the

convergence (69) of the pressure P̃ε is in fact strong. Since P̃ε has null mean value in Ω, then P̃ has null mean
value in ω, which concludes the proof of (65). Finally, the strong convergence of P̂ε given in (66) follows from
[27, Proposition 1.9-(ii)] and the strong convergence of P̃ε given in (65).

3.4 Proof of Theorems 2.1, 2.3 and 2.5.

By using monotonicity arguments together with Minty’s lemma, let us derive the variational inequality will be
useful in the proofs.

We choose a test function v(x′, y) ∈ D(ω;C∞# (Y )3) with v(x′, y) = 0 in ω × T . Multiplying (10) by

v(x′, x′/ε, y3), integrating by parts, and taking into account the extension of ũε and P̃ε, we have

εγ(η0 − η∞)

∫
Ω

(1 + λ|Dε[ũε]|2)
r
2−1Dε[ũε] :

(
Dx′ [v] + ε−1Dy[v]

)
dx′dy3

+εγη∞

∫
Ω

Dε[ũε] :
(
Dx′ [v] + ε−1Dy[v]

)
dx′dy3

−
∫

Ω

P̃ε
(
divx′v

′ + ε−1divyv
)
dx′dy3 =

∫
Ω

f ′ · v′ dx′dy +Oε,

where Oε is a generic real sequence depending on ε that can change from line to line.

By the change of variables given in Remark 3.6, we obtain

εγ−1(η0 − η∞)

∫
ω×Y

(1 + λ|ε−1Dy[ûε]|2)
r
2−1

(
ε−1Dy[ûε]

)
: Dy[v] dx′dy

+εγ−1η∞

∫
ω×Y

ε−1Dy[ûε] : Dy[v] dx′dy

−
∫
ω×Y

P̂ε divx′v
′ dx′dy − ε−1

∫
ω×Y

P̂ε divyv dx
′dy =

∫
ω×Y

f ′ · v′ dx′dy +Oε,

(70)

with |Oε| ≤ Cε for every γ ∈ R.

Now, let us define the functional Jr by

Jr(v) =
η0 − η∞
rλ

∫
ω×Y

(1 + λ|Dy[v]|2)
r
2 dx′dy +

η∞
2

∫
ω×Y

|Dy[v]|2dx′dy.
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Observe that Jr is convex and Gateaux differentiable on Lq(ω;W 1,q
# (Y )3) with q = max{2, r}, (see [18, Propo-

sition 2.1 and Section 3] for more details) and Ar = J ′r is given by

(Ar(w), v) = (η0 − η∞)

∫
ω×Y

(1 + λ|Dy[w]|2)
r
2−1Dy[w] : Dy[v]dx′dy + η∞

∫
ω×Y

Dy[w] : Dy[v]dx′dy.

Applying [30, Proposition 1.1., p.158], in particular, we have that Ar is monotone, i.e.

(Ar(w)−Ar(v), w − v) ≥ 0, ∀w, v ∈ Lq(ω;W 1,q
# (Y )3). (71)

On the other hand, for all ϕ ∈ D(ω;C∞# (Y )3) with ϕ = 0 in ω × T , satisfying the divergence conditions

divx′
∫
Y
ϕ′ dy = 0 in ω,

∫
Yf
ϕ(x′, y) dy · n = 0 on ∂ω, and divyϕ = 0 in ω × Y , we choose vε defined by

vε = ϕ− ε−1ûε,

as a test function in (70).

Taking into account that divεũε = 0, we get that ε−1divyûε = 0, and then we obtain

εγ−1(Ar(ε
−1ûε), vε)−

∫
ω×Y

P̂ε divx′v
′
ε dx

′dy =

∫
ω×Y

f ′ · v′ε dx′dy +Oε,

which is equivalent to

εγ−1(Ar(ϕ)−Ar(ε−1ûε), vε)− εγ−1(Ar(ϕ), vε) +

∫
ω×Y

P̂ε divx′v
′
ε dx

′dy = −
∫
ω×Y

f ′ · v′ε dx′dy +Oε.

Due to (71), we can deduce

εγ−1(Ar(ϕ), vε)−
∫
ω×Y

P̂ε divx′v
′
ε dx

′dy ≥
∫
ω×Y

f ′ · v′ε dx′dy +Oε,

i.e.

εγ−1(η0 − η∞)

∫
ω×Y

(1 + λ|Dy[ϕ]|2)
r
2−1Dy[ϕ] : Dy[vε]dx

′dy + εγ−1η∞

∫
ω×Y

Dy[ϕ] : Dy[vε]dx
′dy

−
∫
ω×Y

P̂ε divx′v
′
ε dx

′dy ≥
∫
ω×Y

f ′ · v′ε dx′dy +Oε.
(72)

Here, in the case 1 < r ≤ 2, it holds |Oε| ≤ Cεα with α = 1 if γ ≤ 1 and α = 2− γ if γ > 1. In the case r > 2,
it holds |Oε| ≤ Cεα with α = γ + 2

r (1− γ) if γ ≤ 1 and α = 1− γ−1
r−1 if γ > 1.

Proof of Theorem 2.1. We recall that 1 < r < 2. The case γ = 1 is developed in [8], so we omit it. As con-
sequence, in the rest of the proof we consider that γ 6= 1. The proof will be divided in two steps. In the first
step, we obtain the homogenized behavior given by a coupled system, with a constant macroviscosity, and in the
second step we decouple it to obtain the macroscopic law.

Step 1. From Lemmas 3.10 and 3.11, we prove that the sequence (εγ−2ûε, P̃ε) converges to (û, P̃ ) ∈
L2(ω;H1

#(Yf )3) × (L2
0(ω) ∩ H1(ω)), which are the unique solutions of the following two-pressures Newtonian
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Stokes problem with the linear viscosity η equal to η0 if γ < 1 and η∞ if γ > 1:

−η divyDy[û] +∇yπ̂ = f ′ −∇x′ P̃ in ω × Yf ,
divyû = 0 in ω × Yf ,

divx′

(∫
Yf

û′ dy

)
= 0 in ω,

(∫
Yf

û′ dy

)
· n = 0 on ∂ω,

û = 0 in ω × T,
π̂ ∈ L2(ω;L2

0,#(Yf )).

(73)

Divergence conditions (73)2,3,4 and condition (73)5 follow from Lemma 3.10. To prove that (û, P̃ ) satisfies the
momentum equation given in (73), we follows the lines of the proof to obtain (72) but choosing now vε and ϕ
such that vε = ε1−γϕ− ε−1ûε with ϕ ∈ D(ω;C∞# (Y )3) with ϕ = 0 in ω×T , satisfying the divergence conditions

divx′
∫
Y
ϕ′ dy = 0 in ω,

∫
Y
ϕ′ dy · n = 0 on ∂ω, and divyϕ = 0 in ω × Y . Then, we get

ε1−γ(η0 − η∞)

∫
ω×Y

(1 + λε2(1−γ)|Dy[ϕ]|2)
r
2−1Dy[ϕ] : Dy[ϕ− εγ−2ûε] dx

′dy

+ε1−γη∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− εγ−2ûε]dx
′dy

−ε1−γ
∫
ω×Y

P̂ε divx′(ϕ
′ − εγ−2û′ε) dx

′dy ≥ ε1−γ
∫
ω×Y

f ′ · (ϕ′ − εγ−2û′ε) dx
′dy +Oε,

(74)

where |Oε| ≤ Cε2−γ . Dividing by ε1−γ , we have

(η0 − η∞)

∫
ω×Y

(1 + λε2(1−γ)|Dy[ϕ]|2)
r
2−1Dy[ϕ] : Dy[ϕ− εγ−2ûε] dx

′dy

+ η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− εγ−2ûε]dx
′dy

−
∫
ω×Y

P̂ε divx′(ϕ
′ − εγ−2û′ε) dx

′dy ≥
∫
ω×Y

f ′ · (ϕ′ − εγ−2û′ε) dx
′dy +Oε,

(75)

where |Oε| ≤ Cε, which tends to zero when ε→ 0. Now, we can pass to the limit depending on the value of γ:

- If γ < 1, then 2(1− γ) > 0 and so, λε2(1−γ)|Dy[ϕ]|2 tends to zero. From convergence (56), passing to the
limit when ε tends to zero in (75), we have that the first and second terms converge to

η0

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û] dx′dy.

From convergences (56) and (66), the third term converges to∫
ω×Y

P̃ divx′(ϕ
′ − û′) dx′dy.

Since P̃ does not depend on y, by using the divergences conditions divx′
∫
Y
ϕ′ dy = 0 and (64)2, we have∫

ω×Y
P̃ divx′(ϕ

′ − û′) dx′dy =

∫
ω

P̃ divx′

(∫
Y

(ϕ′ − û′)dy
)
dx′ = 0.
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Thus, we deduce that the variational inequality (75) converges to the following one

η0

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û] dx′dy ≥
∫
ω×Y

f ′ · (ϕ′ − û′) dx′dy,

which by Minty’s lemma, see [30, Chapter 3, Lemma 1.2], is equivalent to

−η0 divy (Dy[û]) = f ′ in ω × Y.

- If γ > 1, then 2(1−γ) < 0 and so, (1+λε2(1−γ)|Dy[ϕ]|2)
r
2−1 tends to zero. From convergence (56), passing

to the limit when ε tends to zero in (75), we have that the first and second terms converge to

η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û] dx′dy.

From convergences (56) and (66), the third term converges to∫
ω×Y

P̃ divx′(ϕ
′ − û′) dx′dy.

Since P̃ does not depend on y, by using the divergences conditions divx′
∫
Y
ϕ′ dy = 0 and (64)2, we have∫

ω×Y
P̃ divx′(ϕ

′ − û′) dx′dy =

∫
ω

P̃ divx′

(∫
Y

(ϕ′ − û′)dy
)
dx′ = 0.

Thus, we deduce that the variational inequality (75) converges to the following one

η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û] dx′dy ≥
∫
ω×Y

f ′ · (ϕ′ − û′) dx′dy,

which by Minty’s lemma, see [30, Chapter 3, Lemma 1.2], is equivalent to

−η∞ divy (Dy[û]) = f ′ in ω × Y.

In summary, considering η equal to η0 if γ < 1 or η∞ of γ > 1, we have obtained that by density

η

∫
ω×Y

Dy[û] : Dy[v] dx′dy =

∫
ω×Y

f ′ · v′ dx′dy, (76)

holds for every v in the Hilbert space V defined by

V =



v(x′, y) ∈ L2(ω;H1
#(Y )3) such that

divx′

(∫
Yf

v(x′, y) dy

)
= 0 in ω,

(∫
Yf

v(x′, y) dy

)
· n = 0 on ∂ω

divyv(x′, y) = 0 in ω × Yf , v(x′, y) = 0 in ω × T


. (77)

Reasoning as in [1, Lemma 1.5], the orthogonal of V, a subset of L2(ω;H−1
# (Y )3), is made of gradients of the form

∇x′ π̃(x′) +∇yπ̂(x′, y), with π̃(x′) ∈ H1(ω)/R and π̂(x′, y) ∈ L2(ω;L2
#(Yf )/R). Thus, integrating by parts, the

variational formulation (76) is equivalent to the two-pressures Newtonian Stokes problem (73). It remains to prove
that π̃ coincides with pressure P̃ . This can be easily done passing to the limit similarly as above by considering the
test function ϕ, which is divergence-free only in y, and by identifying limits. It holds then that P̃ ∈ L2

0(ω)∩H1(ω).
From [1], problem (73) admits a unique solution (û, π̂, P̃ ) ∈ L2(ω;H1

#(Yf )3)×L2(ω;L2
0,#(Yf ))× (L2

0(ω)∩H1(ω))
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and then, the entire sequence (ûε, P̂ε) converges to (û, P̃ ).

Step 2. To prove (11), it remains to eliminate the microscopic variable y in the effective problem (73). The
procedure is standard and can be viewed for instance in [14], but for reader’s convenience, we give some details
of the proof. From the first equation of (73), the velocity û is computed in terms of the macroscopic forces and
the local velocities

û(x′, y) =
1

η

2∑
i=1

(
fi(x

′)− ∂xi P̃ (x′)
)
wi(y), π̂(x′, y) =

2∑
i=1

(
fi(x

′)− ∂xi P̃ (x′)
)
πi(y).

Integrating this expression on Y and taking into account that V (x′) =
∫ 1

0
ũ(x′, y3)dy3 =

∫
Yf
û(x′, y)dy and∫

Yf
û3 dy = 0, we get the Darcy relationship (11)1 because the matrix A ∈ R2×2 satisfies (12). Combining the

expresion of V with the divergence-free condition on V given by (73)3 yields the lower-dimensional homogenized
Darcy’s law (11)2.

Proof of Theorem 2.3. We recall that in this case r > 2. The proof will be divided in four steps. In the first
step, we obtain the homogenized behavior in the case γ < 1 and as a result, we obtain that the filtration velocity
V = 0 in ω. In the second step, we obtain the homogenized behavior for γ > 1 giving by a coupled system with a
non-linear macroviscosity of power law type, which will be decoupled to obtain the macroscopic law in the third
step. Finally, in the fourth step, we consider the case γ = 1.

Step 1. We consider the case γ < 1. We will prove that the filtration velocity V (x′) =
∫ 1

0
ũ dy3 = 0 in ω.

To do this, we first prove that û does not depend on the variable y and next, taking into account the boundary
conditions on û and the relation of û and ũ, we prove that V = 0.

– We start by proving that û does not depend on y. Reasoning similarly to the case 1 < r < 2 and
considering vε = ε−

2
r (γ−1)ϕ − ε−1ûε with ϕ ∈ D(ω;C∞# (Y )3) with ϕ = 0 in ω × T , satisfying only the

divergence condition divyϕ = 0 in ω × Y , we get

ε(−1+ 4
r )(1−γ)(η0 − η∞)

∫
ω×Y

(1 + λε
4
r (1−γ)|Dy[ϕ]|2)

r
2−1Dy[ϕ] : Dy[ϕ− ε 2

r (γ−1)−1ûε] dx
′dy

+ε(−1+ 4
r )(1−γ)η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− ε 2
r (γ−1)−1ûε] dx

′dy

−ε 2
r (1−γ)

∫
ω×Y

P̂ε divx′(ϕ
′ − ε 2

r (γ−1)−1û′ε) dx
′dy

≥ ε 2
r (1−γ)

∫
ω×Y

f ′ · (ϕ′ − ε 2
r (γ−1)−1û′ε) dx

′dy +Oε,

(78)

where |Oε| ≤ Cεγ+ 4
r (1−γ). Dividing by ε(−1+ 4

r )(1−γ), we have

(η0 − η∞)

∫
ω×Y

(1 + λε
4
r (1−γ)|Dy[ϕ]|2)

r
2−1Dy[ϕ] : Dy[ϕ− ε 2

r (γ−1)−1ûε] dx
′dy

+ η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− ε 2
r (γ−1)−1ûε]dx

′dy

−ε(1− 2
r )(1−γ)

∫
ω×Y

P̂ε divx′(ϕ
′ − ε 2

r (γ−1)−1û′ε) dx
′dy

≥ ε(1− 2
r )(1−γ)

∫
ω×Y

f ′ · (ϕ′ − ε 2
r (γ−1)−1û′ε) dx

′dy +Oε,

(79)
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with |Oε| ≤ Cε1+(1−γ)(1− 2
r ), which tends to zero when ε→ 0, because 1 + (1− 2

r )(1− γ) > 0.

Since γ < 1, then 4
r (1− γ) > 0 and so, λε

4
r (1−γ)|Dy[ϕ]|2 tends to zero. From convergence (58), passing to

the limit when ε tends to zero in (79), we have that the first and second terms converge to

η0

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û] dx′dy.

Since r > 2, then (1− 2
r )(1− γ) > 0. This together with convergences (58) and (68), implies that

ε(1− 2
r )(1−γ)

∫
ω×Y

P̂ε divx′(ϕ
′ − ε 2

r (γ−1)−1û′ε) dx
′dy and ε(1− 2

r )(1−γ)

∫
ω×Y

f ′ · (ϕ′ − ε 2
r (γ−1)−1û′ε) dx

′dy

tend to zero.

Thus, we deduce that the variational inequality (79) converges to the following one

η0

∫
ω×Y

Dy[ϕ] : Dy[ϕ− û] dx′dy ≥ 0,

which by Minty’s lemma, see [30, Chapter 3, Lemma 1.2], implies that

η0

∫
ω×Y

Dy[û] : Dy[v] dx′dy = 0, (80)

holds, by density arguments, for every v in the Banach space V defined by

V =

 v(x′, y) ∈ Lr(ω;W 1,r
# (Y )3) such that

divyv(x′, y) = 0 in ω × Yf , v(x′, y) = 0 in ω × T

 .

Then, there exists π̂(x′, y) ∈ Lr′(ω;Lr
′

#(Yf )/R) such that, integrating by parts, the variational formulation
(80) is equivalent to the Stokes system with respect to the variable y

−η0 divy (Dy[û]) +∇yπ̂ = 0 in ω × Y.

We immediately find (see the boundary conditions with respect to y) that

Dyû = 0 and ∇yπ̂ = 0,

i.e. that û does not depend on y. So, we can not obtain microscopic effects in the limit. Next, we will
derive the macroscopic asymptotic behavior of ũ.

– We prove that the filtration velocity V = 0 in ω. To do this, taking into account that û only depends
on x′ and from the boundary conditions û = 0 on y3 = {0, 1}, we dedue that û = 0 in ω × Y . Finally,

taking into account that û = 0, that the filtration velocity is defined by V (x′) =
∫ 1

0
ũ(x′, y3) dy3 and that∫ 1

0
ũ(x′, y3) dy3 =

∫
Y
û(x′, y) dy (see Lemma 3.10), we then deduce that the filtration velocity V (x′) = 0 in

ω, i.e. (17).

Step 2. We consider the case γ > 1. From Lemmas 3.10 and 3.11, we prove that the sequence (ûε, P̃ε)
converges to (û, P̃ ) ∈ Lr(ω;W 1,r

# (Yf )3) × (Lr
′

0 (ω) ∩W 1,r′(ω)), which are the unique solutions of the following
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two-pressures non-Newtonian Stokes problem with the non-linear power law viscosity

−(η0 − η∞)λ
r−2
2 divy(|Dy[û]|r−2Dy[û]) +∇yπ̂ = f ′ −∇x′ P̃ in ω × Yf ,

divyû = 0 in ω × Yf ,

divx′

(∫
Yf

û′ dy

)
= 0 in ω,

(∫
Yf

û′ dy

)
· n = 0 on ∂ω,

û = 0 in ω × T,
π̂ ∈ Lr′(ω;Lr

′
0,#(Yf )).

(81)

Divergence conditions (81)2,3,4 and condition (81)5 follow from Lemma 3.10. To prove that (û, P̃ ) satisfies
the momentum equation given in (81), we follow the lines of the proof of (72) but considering now vε and ϕ

as vε = ε
1−γ
r−1 ϕ − ε−1ûε with ϕ ∈ D(ω;C∞# (Y )3) with ϕ = 0 in ω × T , satisfying the divergence conditions

divx′
∫
Y
ϕ′ dy = 0 in ω,

∫
Y
ϕ′ dy · n = 0 on ∂ω, and divyϕ = 0 in ω × Y . Then, we get

εγ−1+2 1−γ
r−1 (η0 − η∞)

∫
ω×Y

(1 + λε2 1−γ
r−1 |Dy[ϕ]|2)

r
2−1Dy[ϕ] : Dy[ϕ− ε γ−rr−1 ûε] dx

′dy

+εγ−1+2 1−γ
r−1 η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− ε γ−rr−1 ûε] dx
′dy

−ε 1−γ
r−1

∫
ω×Y

P̂ε divx′(ϕ
′ − ε γ−rr−1 û′ε) dx

′dy ≥ ε 1−γ
r−1

∫
ω×Y

f ′ · (ϕ′ − ε γ−rr−1 û′ε) dx
′dy +Oε,

(82)

where |Oε| ≤ Cε1+ 1−γ
r−1 . Dividing by ε

1−γ
r−1 we deduce that

ε(γ−1) r−2
r−1 (η0 − η∞)

∫
ω×Y

(1 + λε2 1−γ
r−1 |Dy[ϕ]|2)

r
2−1Dy[ϕ] : Dy[ϕ− ε γ−rr−1 ûε] dx

′dy

+ε(γ−1) r−2
r−1 η∞

∫
ω×Y

Dy[ϕ] : Dy[ϕ− ε γ−rr−1 ûε] dx
′dy

−
∫
ω×Y

P̂ε divx′(ϕ
′ − ε γ−rr−1 û′ε) dx

′dy ≥
∫
ω×Y

f ′ · (ϕ′ − ε γ−rr−1 û′ε) dx
′dy +Oε,

(83)

with |Oε| ≤ Cε, which tends to zero when ε→ 0.

Since γ > 1 and r > 2, we have that (γ − 1) r−2
r−1 > 0, and from

ε(γ−1) r−2
r−1 (1 + λε2 1−γ

r−1 |Dy[ϕ]|2)
r
2−1 = (ε2 γ−1

r−1 + λ|Dy[ϕ]|2)
r
2−1

and convergences (60) and (68), passing to the limit in (83) when ε tends to zero, we deduce

(η0 − η∞)λ
r−2
2

∫
ω×Y

|Dy[ϕ]|r−2Dy[ϕ] : Dy[ϕ− û] dx′dy

−
∫
ω×Y

P̃ divx′(ϕ
′ − û′) dx′dy ≥

∫
ω×Y

f ′ · (ϕ′ − û′) dx′dy.
(84)
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Since P̃ does not depend on y, by using the divergences conditions divx′
∫
Y
ϕ′ dy = 0 and (81)3, we have∫

ω×Y
P̃ divx′(ϕ

′ − û′) dx′dy =

∫
ω

P̃ divx′

(∫
Y

(ϕ′ − û′)dy
)
dx′ = 0.

Thus, we deduce that the variational inequality (84) reads

(η0 − η∞)λ
r−2
2

∫
ω×Y

|Dy[ϕ]|r−2Dy[ϕ] : Dy[ϕ− û] dx′dy ≥
∫
ω×Y

f ′ · (ϕ′ − û′) dx′dy,

which by Minty’s lemma, see [30, Chapter 3, Lemma 1.2], is equivalent to

−(η0 − η∞)λ
r−2
2 divy

(
|Dy[û]|r−2Dy[û]

)
= f ′ in ω × Y.

Then, by density we have that

(η0 − η∞)λ
r−2
2

∫
ω×Y

|Dy[û]|r−2Dy[û] : Dy[v] dx′dy =

∫
ω×Y

f ′ · v′ dx′dy, (85)

holds for every v in the Banach space V defined by

V =



v(x′, y) ∈ Lr(ω;W 1,r
# (Y )3) such that

divx′

(∫
Yf

v(x′, y) dy

)
= 0 in ω,

(∫
Yf

v(x′, y) dy

)
· n = 0 on ∂ω

divyv(x′, y) = 0 in ω × Yf , v(x′, y) = 0 in ω × T


.

Reasoning as in [1, Lemma 1.5], the orthogonal of V, a subset of Lr(ω;W−1,r′

# (Y )3), is made of gradients

of the form ∇x′ π̃(x′) + ∇yπ̂(x′, y), with π̃(x′) ∈ W 1,r′(ω)/R and π̂(x′, y) ∈ Lr′(ω;Lr
′

#(Yf )/R). Thus, integra-
ting by parts, the variational formulation (85) is equivalent to the two-pressures non-Newtonian Stokes problem
(81). It remains to prove that π̃ coincides with pressure P̃ . This can be easily done passing to the limit
similarly as above by considering the test function ϕ, which is divergence-free only in y, and by identifying
limits. It holds then that P̃ ∈ Lr′0 (ω) ∩W 1,r′(ω). From [22, Theorem 2], problem (81) admits a unique solution
(û, π̂, P̃ ) ∈ Lr(ω;W 1,r

# (Yf )3) × Lr
′
(ω;Lr

′
0,#(Yf )) × (Lr

′
0 (ω) ∩ W 1,r′(ω)) and then, the entire sequence (ûε, P̂ε)

converges to (û, P̃ ).

Step 3. In this step we give an approximation of the model (81), where the macroscopic scale is totally
decoupled from the microscopic one. To do this, we seek a global filtration velocity of the form given in (18), i.e.

V (x′) =
λ

2−r
2

η0 − η∞
U(f ′(x′)−∇x′ P̃ (x′)) in ω, (86)

where U : R2 → R3 is a permeability function, not necessary linear, and V (x′) =
∫ 1

0
ũ(x′, y3) dy3 =

∫
Y
û(x′, y) dy

with divx′V
′ = 0 in ω and V ′ · n = 0 on ∂ω.

Using the idea from [23] to decouple the homogenized problems of power law type, for every ξ′ ∈ R2 we
consider the function U : R2 → R3 given by

U(ξ′) =

∫
Yf

wξ′(y) dy,
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where wξ′ denotes the unique solution of the local Stokes problem given by (16), see [22, Theorem 2]. Thus,
(û, π̂) takes the form

û(x′, y) = wf ′(x′)−∇x′ P̃ (x′)(y), π̂(x′, y) = πf ′(x′)−∇x′ P̃ (x′)(y) in ω × Y,

and then, from the relation V (x′) =
∫
Y
û(x′, y) dy with

∫
Y
û3(x′, y) dy = 0 given in Lemma 3.10, we deduce the

filtration velocity (86), where V3 = 0. Moreover, from second and third conditions given in (81) together with
(86), we deduce

divx′V
′ = 0 in ω, V ′ · n = 0 on ∂ω.

Since V3 = 0, to simplify the notation, we redefine the definition of U by the expression given in (15) and
then, we get U : R2 → R2, which concludes the proof of (18). Finally, from [23, Theorem 1], the macroscopic
problem (18) has a unique solution (V, P̃ ) ∈ Lr(ω)3 × (Lr

′
0 (ω) ∩W 1,r(ω)) and Theorem 2.3 is proved.

Step 4. We consider the case γ = 1. Reasoning as in the Step 2 with γ = 1 and using convergences (62)
and (68), we deduce that the sequence (ûε, P̃ε) converges to (û, P̃ ) ∈ Lr(ω;W 1,r

0,#(Yf )3) × (Lr
′

0 (ω) ∩W 1,r′(ω)),
which are the unique solutions of the following two-pressures non-Newtonian Stokes problem with the non-linear
Carreau viscosity (2) 

−divy(ηr(Dy[û])Dy[û]) +∇yπ̂ = f ′ −∇x′ P̃ in ω × Yf ,
divyû = 0 in ω × Yf ,

divx′

(∫
Yf

û′ dy

)
= 0 in ω,

(∫
Yf

û′ dy

)
· n = 0 on ∂ω,

û = 0 in ω × T,
π̂ ∈ Lr′(ω;Lr

′
0,#(Yf )).

Proceeding as in Step 3, we deduce the non-linear 2D Darcy’s law of Carreau type (14), where the permeability
function U : R2 → R2 is defined by (15) with (wξ′ , πξ′) ∈ W 1,r

0,#(Yf )3 × Lr′0,#(Yf ), for every ξ′ ∈ R2, the unique
solution of the local Stokes system (16) with nonlinear viscosity given by the Carreau law (2).

Proof of Theorem 2.5. We recall that in this case r = 2, the Carreau law (2) reduces to η0. Thus, by the linearity,
the variational formulation (70) can be written as follows

εγ−2η0

∫
ω×Y

Dy[ûε] : Dy[ϕ]dx′dy −
∫
ω×Y

P̂ε divx′ϕ
′ dx′dy =

∫
ω×Y

f ′ · ϕ′ dx′dy +Oε, (87)

for all ϕ ∈ D(ω;C∞# (Y )3) with ϕ = 0 in ω × T , satisfying the divergence conditions divx′
∫
Y
ϕ′ dy = 0 in ω,∫

Y
ϕ′ dy · n = 0 on ∂ω, and divyϕ = 0 in ω × Y .

Passing to the limit in (87) by using convergences (56) and (66), we take into account that the second term
converges to ∫

ω×Y
P̃ divx′ϕ

′ dx′dy.
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Since P̃ does not depend on y, by using the divergences conditions divx′
∫
Y
ϕ′ dy = 0, we have∫

ω×Y
P̃ divx′ϕ

′ dx′dy =

∫
ω

P̃ divx′

(∫
Y

ϕ′dy

)
dx′ = 0.

Thus, we deduce that the variational inequality (87) converges to the following one

η0

∫
ω×Y

Dy[û] : Dy[ϕ]dx′dy =

∫
ω×Y

f ′ · ϕ′ dx′dy,

which by density arguments it holds for every ϕ ∈ V with V given by (77). Proceeding similarly to the end of
Step 1 of the proof of Theorem 2.1, this variational formulation is equivalent to the system (73) with the linear
viscosity η0, which admits a unique solution (û, π̂, P̃ ) ∈ L2(ω;H1

#(Yf )3) × L2(ω;L2
0,#(Yf )) × (L2

0(ω) ∩H1(ω)).
Then, the limits do not depend on the subsequence.

Finally, reasoning as in Step 2 of the proof of Theorem 2.1, we get the linear effective 2D Darcy’s law (19),
which concludes the proof of Theorem 2.5.
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[8] M. Anguiano, M. Bonnivard and F. J. Suárez-Grau, Carreau law for non-Newtonian fluid flow through a
thin porous media, Q. J. Mech. Appl. Math., 75(1), (2022), 1-27.

[9] M. Anguiano and R. Bunoiu, On the flow of a viscoplastic fluid in a thin periodic domain, in Integral
Methods in Science and Engineering (eds. C. Constanda and P. Harris), Birkhäuser, Cham, (2019), 15–24.
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[33] M. Prat and T. Agaësse, Thin Porous Media, in Handbook of Porous Media (ed. Kambiz Vafai), CRC
PressEditors, (2015), 89-112.

[34] P. Saramito, Complex fluids: Modeling and Algorithms, Mathématiques et Applications, Springer, 2016.
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