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Generalized TLM Block Meshing Scheme Based on N-port Network
Representation
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Abstract — This article revisits the ideal transformer model
used at the interface between different sub-grids in non-structured
TLM meshes. The derivation of the voltage-exchange equations
between two subdomains with an arbitrary meshing ratio and
connection topology is presented. The voltage-exchange process is
then generalized as a scattering-matrix of an N-port network that
processes all desired properties for a perfect interface. This S-
matrix is derived directly for its properties and no concrete
physical representation is required. Moreover, the necessary
conditions that ensure stability of such connection will be
presented in the final submission.

Index Terms — Block meshing, C-matrix, N-port network, S-
matrix, time-domain methods, Transmission-Line Matrix method.

I. INTRODUCTION

Meshing per blocks in the Transmission-Line Matrix (TLM)
method is a powerful discretization scheme to handle multiscale
electromagnetic (EM) problems [1] [2]. This technique allows
for adequate geometrical representation of the fine details
locally, without exhausting the computational resources [3].
Moreover, the scheme based on the ideal transformer was
shown to be stable, lossless and accurate when a global time-
step (At) is used. The latter corresponds to the smallest CFL
limit in the entire computational domain (usually inside the fine
region). However, even with a global time-step this meshing
scheme can expedite the TLM simulations many-folds as
compared to uniform fine-meshing or structured irregular-
meshing schemes.

In the original work of [1], two connection topologies were
proposed namely, the current-based and the voltage-based
connections. The later was shown to be unstable when fields
rapidly change inside the fine grid (e.g., a punctual current
source in the fine grid) [3]. The ideal transformer model works
equally for SCN or HSCN based TLM nodes. However, and
without loss of generality, we consider only cubic SCN nodes
in this article [3]. Note that the SCN node has some very
attractive features as compared to other ones. For instance, the
characteristic impedance of the arms is always the one of the
free-space (1207 1). Moreover, media presence is taken into
consideration at cell centers via stubs [2] in simple media, or
filtering process for general linear media. Furthermore, the
analogy between the TLM and circuit theory and the previously
mentioned two features, allows one to model lumped elements
in a straightforward manner.

The objective of this article is three-folds, firstly, to present a
methodology to derive the voltage-exchanges equations for a

generalized/arbitrary connection topology. Secondly, to model
the voltage-exchanges as N-port network with an S-matrix that
processes all desired features. Finally, to investigate the
necessary conditions that guarantee stability when global time-
step is used.

II. MATHEMATICAL MODEL

Consider a computational domain discretized by using block
meshing (Cartesian non-conformal local refinement). The
interface between to sub-grids is shown in fig. 1.
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Fig. 1. The physical interface between a coarse and a fine subdomains
(one large cells is adjacent to N2 small cells).

Any voltage/current signal in the TLM mesh (including
interfaces) can be decomposed into incident V;}“ and reflected
Vi,rff voltages [2]:
Vi = Vg v (2
_ 1 i f
L= (V3 =V} (1.5)
where Z, is the free-space characteristic impedance.

A. Current-Based Connection Topology

As a starting point, we consider the connection topology
shown in fig.2, namely, the current-based topology [1]. By
applying the KCL, KVL Kirchhoff's laws and (1), one obtains
a linear system involving reflected and incident voltages. After
some mathematical manipulations, one can obtain the voltages
exchange model [1]:

Vil = - D2 - vise @
fij E

g

Different terms used in (2) are defined in table 1.



TABLE |
DEFINITIONS OF TERMS USED IN (2) [1]
A A
fij = A;Z foo = _A;zz Y= Z
Z]YU/fijz I = ZZ UI:"C I= %
In table I, the summations over i-index are for i =

{0,1,2,---,N;} . The summations over j-index are for =
{1,2,---,Ns} Vi > 0, and consist of one element j = 0 when
i =0.
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Fig. 2. Schematic diagram for the current- based voltages-exchange
topology [1].

Model (2) can be expressed in a more compact form as [4][5]:

yref = [=“7inr: (3)

where V"¢ is the vector of reflected voltages from the
interface:

_ ref ref ref ref T
yrel = [% o Vi1 Vg Vg (4.2)
For simplicity, this vector can be indexed as:
_ T
jref — [Viref‘ Vzref‘ V3ref‘ V]::f] (4.b)

where the N,, number of ports N;* + 1, and T is the matrix
transpose operator. Similarly for the incident voltage vector:

Vinr: — [er: Vzmr: mc'_ 'Vl\i,:C]T (4C)

The Scattering matrix A is a square matrix of size (N2 + 1)
defined as:

A=A- IN (5.a)
IN 1s the identity matrix of size Ny, and the matrix A is defined
as:
1 . . .
= if j=1, 2<i<N,
1 , . ,
I if i=1 2<j<N,

~(A) +Z,
Ng. Ng

_ (1)2
\ Ng/

(5.b)
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where |-] is the largest integer (floor) operator.

B. Voltage-Based Connection Topology

Similarly, the voltage-based connection topology is shown in
fig.3 below;
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Fig. 3. Schematic diagram for the voltage-based voltages-exchange
topology [1].

One can obtain the corresponding scattering matrix A for the
connection in fig.3 as:

A=A+1y, (6.2)
where the matrix A is defined as:
0, if i=j=1
1
N’ if Jj=1, 2<i<N,
- if 1 2<j<N
- —, i i=1, <
Aij =1 NS / P
(1)2 2 i—2 J 2<ji<n,
N/ TN, it
12 i—2 ]—
— <N
(m)‘ ‘
(6.b)

In both (5) and (6) one can notice that the scattering matrices
are not matched (diagonal elements are not zeros).

C. Generalized Voltage-Exchange Scattering-Matrix

Consider the generic Np-port network shown in fig.4. Again, as
in (3), the voltage-exchanges are governed by a scattering
matrix A.

t v =viie+ vy
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Fig. 4. The interface between two subdomains with a subgridding ratio
N; as Np-port network.

An ideal matrix A for our purpose should have the following
features [4]-[7]:

L Lossless property
The scattering matrix A should be unitary:
T (7.2)

=
>II



where H is the matrix Hermitian operator. Note that since A is
a real matrix, its transpose is equivalent to its Hermitian.
Furthermore, if A fulfills (7.a) then all its eigenvalues are on the
unit circle.

11 Matched network
To guarantee reflection-less ports, elements on the main
diagonal of the scattering matrix A should equal to zero.

Ay =0 (7.b)
111 Reciprocal
Reciprocity, can be viewed mathematically as the symmetry of

the matrix A.

g
Il
=

(7.¢)

1. Power divider/combiner
Signal coming at port 1 is equally divided into the remaining

N, —1 ports, while signals coming through ports
{2 to Np} are combined at port 1.
= 1 ,
A1j=N—S, V2<j<N, (7.d)
= 1 .
Ay = . V2<i<N, (7.e)

The objective is to build a scattering matrix A that has all
characteristics (7). Finding a general solution for all possible A
and for any subgridding ratio N; might be outside the scope of
this study. However, in literature one finds a family of matrices
-known as the C-matrices- that fulfills (7), as shown in fig.5.
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Fig. 5. (a) C-matrix of size 10, (b) C-matrix of size 50, (c) first
solution for the C-matrix 26, (d) second solution of C-matrix 26.

These matrices come with specific sizes (e.g., 6, 10, 26, 50
...etc.). Only some sizes fit our requirements, for instance N, =

10 = 3%+ 1 (for Ny = 3), and N, = 50 = 7> + 1 (for N, =
7). Fig. 5a and fig. 5b show the structure of this matrix for the
cases N, =10 and N, =50. In fig. 5¢ and fig. 5d, two
different solutions for the C-matrix for the case N, = 26 =
52+ 1 (for Ny =5) are displayed. Note that, C-matrices
belong to a more general family of matrices known as the
Weighing Matrices. A C-matrix of size n is a W-matrix (n,n —
1) [8].

An ideal C-matrix represents a lossless and matched network;
signal entering any port will split among other ports with no
reflections. To avoid any dissipation losses within the system,
the network must contain ideal transformers only and no
resistances. Moreover, since the C-matrix is real, no inductors
or capacitors can exist in the corresponding network.

III. RESULTS AND DISCUSSIONS

In this section, we discuss two experiments; firstly, we study
the properties of the scattering matrix A. Then, we implement it
in the TLM algorithm to test its performance.

A.  Eigenvalues Distribution of the Voltages-Exchange A
Matrix (case Ns=3)

For instance, the scattering matrix (C-matrix of size 10) that
fulfills the conditions (7), (see fig.5a) is:
1 1

1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
0 -1 1 -1 1 1 -1 -1
-1 0 -1 1 -1 1 1 -1

1 -1 0 -1 -1 -1 1 1
-1 1 -1 0 1 -1 -1 1
1 -1 -1 1 0 1 -1 1
1 1 -1 -1 1 0 1 -1
-1 1 1 -1 -1 1 0 1
-1 -1 1 1 1 -1 1 0
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The eigenvalues of Aare 4; = —1for1 <i <5,and A; = +1
for6 <i <10.

For comparison, the A matrix corresponding to the current-
based connection topology (5) is:

0 3 3 3 3 3 3 3 3 3

3 4 5 5 -1 -1 -1 -1 -1 -1

3 5 -4 5 -1 -1 -1 -1 -1 -1

3 5 5 -4 -1 1 -1 -1 -1 -1
-3 -1-1 -1 -4 5 5 -1 -1 -1
93 -1 -1 -1 5 -4 5 -1 -1 -1

3 -1 -1 -1 5 5 —4 1 -1 -1

3 -1 -1 -1 -1 -1 1 -4 5 5

3 -1 -1 -1 -1 -1 -1 5 -4 5

3 -1 -1 -1 -1 -1 -1 5 5 —4

One can observe that the matrix is not matched; however, it is
lossless and is eigenvalues are 4; = —1 for 1 <i <7, and
A, =4+1for8 <i<10.

Finally, the A matrix corresponding to the voltage-based
connection topology (6) is:



0 3 3 3 3 3 3 3 3 3

3 4 -5 -5 1 1 1 1 1 1

3 -5 4 -5 1 1 1 1 1 1

3 -5 -5 4 1 1 1 1 1 1

i3 1 11 4 -5-5 1 1 1

913 1 1 1 -5 4 -5 1 1 1

3 1 1 1 -5 -5 4 1 1 1

3 1 1 1 1 1 1 4 -5 -5

3 1 1 1 1 1 1 -5 4 -5

3 1 1 1 1 1 1 -5 -5 4
Again, one can notice that this matrix is not matched; however,
it is lossless and is eigenvalues are 4; = —1for1 <i < 3, and

A =+1for4 <i<10.

B. Fundamental Resonant Mode in a Rectangular Cavity

The air-filled cubic cavity (shown in fig.6) is excited by a
narrow band modulated Gaussian-pulse centered on the
fundamental resonant frequency (f, = 10.61 GHz). Perfect
Electric Conducting (PEC) walls cover the cavity. Its top half
is discretized into cubic cells 4 mm of mesh-size, the bottom
half is discretized into cubic cells of Ax = 1.333 mm. the
subgridding ratio Ny = 3. In this experiment, we use the
scattering matrices shown in the previous experiment to model
the voltage-exchange between both two subdomains. The goal
1s to test for stability for the different scattering matrices, as
well as the accuracy of results.

(b)

Fig. 6. (a) air-filled cubic cavity of side length 2 cm discretized using
block meshing (Ns=3), (b) cross section of the cavity (frontal plane).

In fig.7, the fields’ distributions for different fields’
components of the fundamental TE resonant mode are shown
for the different connection schemes. The error in computing
the resonant frequency of this mode for the three schemes was
less than 1.0%. Moreover, simulations were stable for the
different connection schemes for 500 thousands iterations, with
no sign of instability observed.
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Fig. 7, fields’ distributions for the dominant transverse electric
mode, interface using three approaches mentioned in example A.

VI. CONCLUSION

This article, presents an alternative approach to derive the
scattering matrix that governs the voltage exchange in non-
conformal TLM meshing. No specific concrete physical model
(e.g., ideal transformer) at the interface between coarse and fine
cells is required.
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