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1. Introduction 1.1. The Benjamin-Ono equation. The Benjamin-Ono equation was introduced by Benjamin [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] (see also , Ono [START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF]) to model long, one-way internal gravity waves in a two-layer fluid. It reads [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] ∂ t u = ∂ x (|D|u -u 2 ) .

Here u = u(t, x) denotes a real valued function. There is a vast literature about this equation, and we refer to the book by Klein and Saut [START_REF] Klein | Nonlinear dispersive equations, Inverse scattering and PDE methods[END_REF] for a recent survey. We consider both the case of periodic boundary conditions u(t, x + 2π) = u(t, x), which we refer as x ∈ T, and the case where u(t, x) cancels as x tends to ±∞, which we refer as x ∈ R. In both cases, we will restrict ourselves to sufficiently smooth solutions, which can be proved to exist globally by a combination of standard quasilinear scheme and appropriate conservation laws. More precisely, if we denote by H 2 r the Sobolev space of real valued functions with two derivatives in L 2 , one can prove the following result.

Theorem 1 (Saut, 1979 [16]). For every u 0 ∈ H 2 r , there exists a unique solution u ∈ C(R, H 2 r ) of (1) with u(0) = u 0 . Our goal in this paper is to provide an explicit formula of the solution u(t) in terms of the initial datum u 0 .

For this, we need to introduce the Lax pair structure for (1). We denote by Π the orthogonal projector from

L 2 onto L 2 + . Remarkable operators on L 2 + are Toeplitz operators, associated to functions b ∈ L ∞ by the formula ∀f ∈ L 2 + , T b f = Π(bf ) . For every u ∈ L 2
r , we denote by L u the semi-bounded selfadjoint operator defined on

L 2 + by Dom(L u ) = H 1 + := H 1 ∩ L 2 + , L u f = Df -T u f , D := 1 i d dx .
We also consider, for u ∈ H 2 r , the bounded antiselfadjoint operator defined by

B u = i(T |D|u -T 2 u
) . Then one can check the following identity (see e.g. [START_REF] Fokas | Inverse scattering transform for the Benjamin-Ono equation: A pivot to multidimensional problems[END_REF], [START_REF] Wu | Simplicity and finiteness of discrete spectrum of the Benjamin-Ono scattering operator[END_REF], [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], [START_REF] Gérard | The Lax pair structure for the spin Benjamin-Ono equation[END_REF]).

Theorem 2. Under the conditions of Theorem 1, we have

∀t ∈ R , d dt L u(t) = [B u(t) , L u(t) ] .
1.3. The explicit formula on the torus. Let us mention some more properties of the Hardy space on the torus. The Hardy space L 2 + (T) is equipped with the shift operator S := T e ix and with its adjoint S * = T e -ix . With this notation, our main result on the torus reads as follows.

Theorem 3. Let u ∈ C(R, H 2 r (T)) be the solution of the Benjamin-Ono equation on the torus T with u(0) = u 0 . Then u(t) = Πu(t) + Πu(t) -u 0 |1 , with ∀z ∈ D , Πu(t, z) = (Id -ze it e 2itLu 0 S * ) -1 Πu 0 |1 . Remark 1. The above formula can be equivalently stated as a characterization of Fourier coefficients of the solution u,

∀k ≥ 0 , û(t, k) = (e it e 2itLu 0 S * ) k Πu 0 |1 = Πu 0 |(Se -it e -2itLu 0 ) k 1 .
Under this form, it extends to much more singular data, for which the flow of the Benjamin-Ono has been proved to extend continuously. According to [START_REF] Gérard | Sharp wellposedness results of the Benjamin-Ono equation on H s (T, R) and qualitative properties of its solutions[END_REF], this is the case if u 0 belongs to the Sobolev space H s r (T) for every s > -1/2. Indeed, in this case, L u 0 is selfadjoint, semibounded, and the domain of the square root of L u 0 +KId, for K big enough, is the space H 1/2 + (T). Consequently, the operator Se -it e -2itLu 0 acts on H 1/2 + (T), so that the inner product in the second line above is well defined.

1.4. The explicit formula on the line. On L 2 + (R), the shift operator S must be replaced by the Lax-Beurling semi-group (S(η)) η≥0 of isometries defined as

∀f ∈ L 2 + (R) , S(η)f (x) = e iηx f (x)
. We denote by G the adjoint of the operator of multiplication by x on L 2 + (R). Notice that -iG is the infinitesimal generator of the adjoint semi-group of contractions (S(η) * ) η≥0 , so that

∀η ≥ 0 , S(η) * = e -iηG .
It is easy to check that the domain of G consists of those functions f ∈ L 2 + (R) such that the restriction of f to the half-line (0, +∞) belongs to the Sobolev space H 1 (0, +∞), and that

Gf (ξ) = i d dξ [ f (ξ)] 1 ξ>0 .
As a consequence, for every f ∈ Dom(G), one may define

I + (f ) := f (0 + ) .
This definition can be extended to any f ∈ L 2 + such that the restriction of f to some interval (0, δ) belongs to the Sobolev space H 1 (0, δ) for some δ > 0, and we shall use it as well. With this notation, our main result on the line reads as follows.

Theorem 4. Let u ∈ C(R, H 2 r (R)) be the solution of the Benjamin- Ono equation on the line R with u(0) = u 0 . Then u(t) = Πu(t) + Πu(t), with ∀z ∈ C + , Πu(t, z) = 1 2iπ I + [(G -2tL u 0 -zId) -1 Πu 0 ] .
Notice that, in the above formula, the function

f z,t := (G -2tL u 0 -zId) -1 Πu 0
belongs to the domain of G -2tL u 0 -see the end of section 3 for more detail -, and therefore its Fourier transform satisfies f ∈ H 1 (0, δ) for every finite δ > 0, hence one can define I + (f z,t ).

Remark 2. At this time, the wellposedness theory for (1) on the line is slightly less advanced than on the torus, see [START_REF] Molinet | The Cauchy problem for the Benjamin-Ono equation in L 2 revisited[END_REF] for a detailed account of this, with extension of the flow map to L 2 r (R). However, one can easily prove -see section 3 below -that the above formula makes sense for u 0 in the space L ∞ (R) ∩ L 2 r (R). 1.5. Organization of the paper. Sections 2 and 3 are respectively devoted to the proofs of Theorems 3 and 4. The main idea is to take advantage of commutation identities between the operators of the shift structure of the Hardy space and the operators L u and B u of the Lax pair, in the spirit of what was done in [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF] for the cubic Szegő equation on the torus. At the end of Section 3, we also provide a short discussion of the meaning of the formula, leading to an extension to initial data in L ∞ (R) ∩ L 2 r (R). Section 4 briefly draws possible applications and extensions to other equations.

Proof of the explicit formula on the torus

The proof is based on the following lemma.

Lemma 1. For every u ∈ H 2 r (T), [S * , B u ] = i((L u + Id) 2 S * -S * L 2 u
) . Let us postpone the proof of Lemma 1 and complete the proof of Theorem 3. Since u(t) is real valued, we have the identity

u(t) = Πu(t) + Πu(t) -u(t)|1 ,
and u(t)|1 = u 0 |1 because of the equation. It remains to identify Πu(t) as a holomorphic function on the disc. For this, we proceed as in [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF], where a similar formula was established for the cubic Szegő equation. We have, for every z ∈ D,

Πu(t, z) = ∞ n=0 z n Πu(t), e inx = (Id -zS * ) -1 Πu(t)|1 .
We denote by U = U(t) the solution of the linear initial value problem in

L (L 2 + (T)), U ′ (t) = B u(t) U(t) , U(0) = Id . Since B u(t) is anti-selfadjoint, U(t)
is unitary, and we can write

(2) Πu(t, z) = (Id -zU(t) * S * U(t)) -1 U(t) * Πu(t)|U(t) * 1 . Let us calculate d dt U(t) * 1 = -U(t) * B u(t) 1 = -iU(t) * [(T |D|u(t) -T 2 u(t) )(1)] = -iU(t) * [DΠu(t) -T u(t) Πu(t)] = -iU(t) * L u(t) Πu(t) = iU(t) * L 2 u(t) (1) = iL 2 u 0 U(t) * 1 , from which we conclude U(t) * 1 = e itL 2 u 0 (1) . Consequently, U(t) * Πu(t) = -U(t) * L u(t) (1) = -L u 0 U(t) * (1) = -L u 0 e itL 2 u 0 (1) = e itL 2 u 0 (1)Πu 0 . Finally, using Lemma 1, d dt U(t) * S * U(t) = U(t) * [S * , B u(t) ]U(t) = U(t) * [i((L u(t) + Id) 2 S * -S * L 2 u(t) ]U(t) = i(L u 0 + Id) 2 U(t) * S * U(t) -iU(t) * S * U(t)L 2
u 0 . from which we infer U(t) * S * U(t) = e it(Lu 0 +Id) 2 S * e -itL 2 u 0 . Plugging the previous identites into (1), we conclude Πu(t, z) = (Id -ze it(Lu 0 +Id) 2 S * e -itL 2 u 0 ) -1 e itL 2 u 0 (1)Πu 0 |e itL 2 u 0 (1) = (Id -ze -itL 2 u 0 e it(Lu 0 +Id) 2 S * ) -1 Πu 0 |1 which yields the claimed formula.

Finally, let us prove Lemma 1. First of all, it easy to check the following commutation identity with the Toeplitz operators,

∀b ∈ L ∞ (T), [T b , S * ] = . |1 S * Πb .
We infer, using the adjoint Leibniz formula

S * D = DS * + S * , [S * , B u ] = i([S * , T |D|u ] -T u [S * , T u ] -[S * , T u ]T u ) = i( . |1 S * DΠu -T u . |1 S * Πu -. |1 S * ΠuT u ) = i( . |1 (DS * Πu -T u S * Πu + S * Πu) -. |T u 1 S * Πu) = i( . |1 (L u S * Πu + S * Πu) + . |L u 1 S * Πu) = i((L u + Id) . |1 S * Πu + ( . |1 S * Πu)L u ) = i((L u + Id)((L u + Id)S * -S * L u ) + ((L u + Id)S * -S * L u )L u ) = i((L u + Id) 2 S * -S * L 2 u
) . The proof of Theorem 3 is complete.

Proof of the explicit formula on the line

We start with the inverse Fourier transform for every f ∈ L 2 + (R), which we can write in the upper-half plane, as an absolutely convergent integral,

∀z ∈ C + , f (z) = 1 2π ∞ 0 e izξ f (ξ) dξ ,
while, in view of the Plancherel theorem, we have, in L 2 (0, +∞),

f (ξ) = lim ε→0 R e -ixξ f (x) 1 + iεx dx = lim ε→0 S(ξ) * f |χ ε ,
where χ ε denotes the following function in L 2 + (R),

χ ε (x) := 1 1 -iεx .
Plugging the second formula into the first one, we infer

f (z) = lim ε→0 1 2π ∞ 0 e izξ S(ξ) * f |χ ε dξ = lim ε→0 1 2π ∞ 0 e izξ e -iξG f |χ ε dξ = lim ε→0 1 2iπ (G -zId) -1 f |χ ε = 1 2iπ I + [(G -zId) -1 f ] .
Since u(t) is real valued, we can write u(t) = Πu(t) + Πu(t), and it remains to characterize Πu(t, z) for z ∈ C + . We are going to proceed as in the previous paragraph, using the family U(t) of unitary operators defined by the linear initial value problem in

L (L 2 + (R)), U ′ (t) = B u(t) U(t) , U(0) = Id .
For every z ∈ C + , we have

Πu(t, z) = lim ε→0 1 2iπ U(t) * (G -zId) -1 Πu(t)|U(t) * χ ε = lim ε→0 1 2iπ (U(t) * GU(t) -zId) -1 U(t) * Πu(t)|U(t) * χ ε .
We have the following lemma.

Lemma 2. For every u ∈ H 2 r (T), [G, B u ] = -2L u + i[L 2 u , G] .
Let us postpone the proof of Lemma 2 and complete the proof of Theorem 4. We calculate

d dt U(t) * GU(t) = U(t) * [G, B u(t) ]U(t) = U(t) * (-2L u(t) + i[L 2 u(t) , G])U(t) = -2L u 0 + i[L 2 u 0 , U(t) * GU(t)] .
Integrating this ODE, we get

U(t) * GU(t) = -2tL u 0 + e itL 2 u 0 Ge -itL 2 u 0 .
Let us determine the other terms in the inner product. We have (see also [START_REF] Sun | Complete integrability of the Benjamin-Ono equation on the multisoliton manifolds[END_REF])

d dt U(t) * Πu(t) = U(t) * (∂ t Πu(t)-B u(t) Πu(t)) = iU(t) * L 2 u(t) Πu(t) = iL 2 u 0 U(t) * Πu(t) ,
from which we infer

U(t) * Πu(t) = e itL 2 u 0 Πu 0 .
Finally, we have

d dt U(t) * χ ε = -U(t) * B u(t) χ ε = -iU(t) * (T |D|u(t) χ ε -T 2 u(t) χ ε )
and the right hand side converges in

L 2 + to -iU(t) * (DΠu(t) -T u(t) Πu(t)) = -iU(t) * L u(t) Πu(t) = -iL u 0 U(t) * Πu(t) = -iL u 0 e itL 2 u 0 Πu 0 = lim ε→0 iL 2 u 0 e itL 2 u 0 χ ε .
By integrating in time, we infer

U(t) * χ ε -e itL 2 u 0 χ ε → 0 in L 2 + .
Plugging these informations into the formula which gives Πu(t, z), we infer

Πu(t, z) = lim ε→0 1 2iπ e itL 2 u 0 Ge -itL 2 u 0 -2tL u 0 -zId -1 e itL 2 u 0 Πu 0 |e itL 2 u 0 χ ε = lim ε→0 1 2iπ (G -2tL u 0 -zId) -1 Πu 0 |χ ε = 1 2iπ I + [(G -2tL u 0 -zId) -1 Πu 0 ] .
It remains to prove Lemma 2. We shall appeal to the following elementary identity, whose proof can be found in [START_REF] Sun | Complete integrability of the Benjamin-Ono equation on the multisoliton manifolds[END_REF], [START_REF] Gérard | The Calogero-Moser derivative nonlinear Schrödinger equation[END_REF].

Lemma 3. For every f ∈ Dom(G), b ∈ H 1 (R), T b f ∈ Dom(G) and [G, T b ]f = i 2π I + (f )Πb .
Using Lemma 3 and the simple observation that [G, D] = iId, we obtain (see also [START_REF] Sun | Complete integrability of the Benjamin-Ono equation on the multisoliton manifolds[END_REF]),

∀f ∈ Dom(G) ∩ Dom(L u ) , [G, L u ]f = if - i 2π I + (f )Πu . We infer, for f ∈ Dom(G) ∩ Dom(L 2 u ), [G, B u ]f = i([G, T |D|u ]f -T u [G, T u ]f -[G, T u ]T u f ) = i 2π (iI + (f )(DΠu -T u Πu) -iI + (T u f )Πu) = i 2π (iI + (f )L u Πu + iI + (L u f )Πu) = i(L u (if -[G, L u ]f ) + iL u f -[G, L u ]L u f ) = -2L u f + i[L 2 u , G]f . The proof of Theorem 4 is complete.
Let us conclude this section by discussing the formula of Theorem 4 for more singular data u 0 . First of all, let us observe that, for every t ∈ R, the operator A t := -i(G -2tL 0 ) is maximally dissipative. Indeed, its expression in the Fourier representation is given by

A t f (ξ) = d dξ f (ξ) + 2itξ f (ξ) ,
and therefore it is easy to check by explicit calculations that

Dom(A t ) = {f ∈ L 2 + (R) : e itξ 2 f ∈ H 1 (0, ∞)} with ∀f ∈ Dom(A t ) , Re A t f |f ≤ 0, and that A t + izId : Dom(A t ) → L 2
+ (R) is bijective for every z ∈ C + . From standard perturbation theory, we infer that, for every bounded antiselfadjoint operator B on L

2 + (R), A t + B is maximally dissipative. In particular, if u 0 ∈ L ∞ (R) ∩ L 2 r (R), -i(G -2tL u 0 ) = A t -2itT u 0
is maximally dissipative, so that the formula of Theorem 4 still holds. In particular, Theorem 4 provides a formula for the extension of the flow map of the Benjamin-Ono equation to H s r (R) for every s > 1/2 [START_REF] Molinet | The Cauchy problem for the Benjamin-Ono equation in L 2 revisited[END_REF].

Final remarks

In the case of finite gap potentials on the torus [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], or multisolitons on the line [START_REF] Sun | Complete integrability of the Benjamin-Ono equation on the multisoliton manifolds[END_REF], formulae of Theorems 3 and 4 take place in finite dimensional vector spaces, and they reduce to calculations on finite dimensional matrices, as already observed in these references.

We expect Theorems 3 and 4 to be useful for the study of long time behaviour of solutions to the Benjamin-Ono equation. This is particular important on the line, where soliton resolution for generic data is still an open problem (see however [START_REF] Ifrim | Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation[END_REF] for partial results in this direction).

Let us now briefly discuss applications of a similar approach to other integrable equations. First of all, it is clear that Theorems 3 and 4 easily extend to the spin Benjamin-Ono system [START_REF] Berntson | Spin generalizations of the Benjamin-Ono equation[END_REF], [START_REF] Gérard | The Lax pair structure for the spin Benjamin-Ono equation[END_REF]. Furthermore, these formulae could probably be very useful in the study of the small dispersion limits of these equations, in particular the half-wave maps equation [START_REF] Gérard | A Lax pair structure for the half-wave maps equation[END_REF], [START_REF] Berntson | Spin generalizations of the Benjamin-Ono equation[END_REF]. We also expect similar formulae to hold for the recently introduced Calogero-Moser equation [START_REF] Gérard | The Calogero-Moser derivative nonlinear Schrödinger equation[END_REF], since the Lax pair of operators for this equation enjoys similar commutation properties with the shift structure of the Hardy space. Finally, as we already observed, a similar formula is known to hold for the cubic Szegő equation on the torus [START_REF] Gérard | An explicit formula for the cubic Szegő equation[END_REF], and it is possible to adapt the approach with the operator G developed in this paper in order to get an explicit formula for the cubic Szegő equation on the line [START_REF] Gérard | [END_REF]. On the other hand, we have no clue whether such explicit formulae could be extended to KdV, cubic NLS or DNLS equations.

1. 2 . 0 f

 20 The Lax pair. On T or R, we denote by L 2 + the Hardy space corresponding to L 2 functions having a Fourier transform supported in the domain ξ ≥ 0. Recall that both Hardy spaces identify to some spaces of holomorphic functions. The space L 2 + (T) identifies to holomorphic functions f on the unit disc D := {z ∈ C : |z| < 1} such that sup r<1 2π (re ix ) 2 dx < +∞, while L 2 + (R) identifies to holomorphic functions on the upper half plane C + := {z ∈ C : Im(z) > 0} such that sup y>0 R |f (x + iy)| 2 dy < +∞ .