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Transonic limit of traveling waves of the

Euler-Korteweg system

Marc-Antoine Vassenet ∗

December 5, 2022

Abstract

We prove the convergence in the transonic limit of two-dimensional
traveling waves of the E-K system, up to rescaling, toward a ground state
of the Kadomtsev-Petviashvili Equation. Similarly, in dimension one we
prove the convergence in the transonic limit of solitons toward the soliton
of the Korteweg de Vries equation.
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∗Université Paris Dauphine, PSL Research University, Ceremade, Umr Cnrs 7534, Place
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A Soliton in the one dimensional case 34

1 Introduction

The Euler Korteweg system, in dimension d, reads
∂tρ+ div(ρu) = 0,

∂tu+ u.∇u+∇g(ρ) = ∇
(
K(ρ)∆ρ+

1

2
K ′(ρ)|∇ρ|2

)
, t ∈ R, x ∈ Rd,

(E-K)
where ρ > 0 is the density of the fluid, u ∈ Rd is its velocity field, the right hand
side of the second line is the capillary tensor. The functions K, g are defined on
R+
∗ and smooth, the function K is positive. When the velocity is irrotational

i.e u = ∇φ for some φ that cancels at infinity, the momentum equation rewrites

∂tφ+
|∇φ|2

2
+ g(ρ) = K(ρ)∆ρ+

1

2
K ′(ρ)|∇ρ|2.

There is a formally conserved energy

E(ρ, φ) =

∫
Rd

K(ρ)|∇ρ|2 + ρ|∇φ|2

2
+G(ρ)dx, (1.1)

where G is a primitive of g with a later specified integration constant. Moreover
we have a momentum

P (ρ, φ) =

∫
Rd

(ρ− ρ0)∂1φdx. (1.2)

which makes sense when ρ − ρ0 ∈ L2, ∇φ ∈ L2. The energy makes sense for
(ρ, u) localized near the constant state (ρ0, 0), which will be our framework. We
call traveling wave a solution of (E-K) of the form

(ρ(x.n− ct, x⊥), u(x · n− ct, x⊥)), x⊥ = (x1, x2, ..., xd)− x · n,

where c is the speed of propagation and n the direction of the speed. The
direction of the speed does not matter, thus we let n = e1. A traveling wave
solves 

− c∂1ρ+ div(ρ∇φ) = 0,

− c∂1φ+ g(ρ)−K(ρ)∆(ρ) +
|∇φ|2

2
−K ′(ρ)

|∇ρ|2

2
= 0.

(1.3)

In [1], Audiard proves the existence of traveling waves in dimension two, local-
ized near the constant state (ρ0, 0) with g(ρ0) = 0, g′(ρ0) > 0. Their speed is
close but less than the speed of sound that we define now. When neglecting the
capilary tensor and linearizing this system near (ρ0, 0) i.e. ρ = ρ0 +r, we obtain
the Euler equation {

∂tr + ρ0div(u) = 0,

∂tu+ g′(ρ0)∇r = 0.
(1.4)
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The speed of sound is
cs =

√
ρ0g′(ρ0).

For simplification, we use the following rescaling

(ρ, φ) =

(
ρ0ρr

(√
g′(ρ0)

ρ0
x

)
, φr

(√
g′(ρ0)

ρ0
x

))
, Kr(ρr) =

K(ρ0ρr)

ρ0
,

gr(ρr) =
g(ρ0ρr)

g′(ρ0)ρ0
, cr =

c√
ρ0g′(ρ0)

.

Then (1.3) becomes
− cr∂1ρr + div(ρr∇φr) = 0,

− cr∂1φr + gr(ρr)−Kr(ρr)∆(ρr) +
|∇φr|2

2
−K ′(ρr)

|∇ρr|2

2
= 0.

(1.5)

In this system the constant state is 1, gr(1) = 0, g′r(1) = 1 and the speed of
sound is

√
1g′(1) = 1. We will forget the subscript r and focus on the rescaled

system, i.e. we will assume through the rest of the paper that

g(1) = 0, g′(1) = 1 and cs = 1. (1.6)

Solutions of (1.5) with speed near the speed of sound are known to exist, the
precise existence statement of [1] is the following:

Theorem 1. ([1] Theorem 1.1, proposition 3.3 and proposition 2.3) In dimen-
sion two, under the assumption Γ := 3 + g′′(1) 6= 0, there exists p0 > 0 such
that for any 0 ≤ p ≤ p0 we have (ρp, φp) ∈ ∩j≥0

(
1 + Hj

)
× Ḣj+1, solution of

(1.5) for some cp > 0, with P (ρp, φp) = p.
Moreover there exists α, β, C > 0 such that, for any 0 ≤ p ≤ p0

p− βp3 ≤ E(ρp, φp) ≤ p− αp3, (1.7)

1− βp2 ≤ cp ≤ 1− αp2, (1.8)

||ρp − 1||∞ ≤ C
√
E(ρp, φp) for p� 1. (1.9)

||ρp − 1||∞ ≥ Cp2 for p� 1. (1.10)

Remark 1.1. As has been proven for the Schrödinger equation (see [14]), it is
possible that such solitons exist in higher dimensions.

To construct the traveling waves of theorem 1 the author in [1] solves a

minimization problem. On the space H =
{

(ρ, φ) ∈ (1 +H1)× Ḣ1
}

the mo-

mentum is well-defined, however the energy (1.1) does not make sense. For
example the term ρ|∇φ|2 is not necessarily integrable. The solution is to work

with a modified energy Ẽ which has nice coercive properties and such that
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Ẽ = E if |ρ− 1| � 1. Then the author finds (ρ, φ) solution of the minimization
problem

inf
{
Ẽ(ρ, φ), (ρ, φ) ∈ H : P (ρ, φ) = p

}
, (1.11)

for small p, such that the minimizer is smooth and satisfies |ρ− 1| � 1.
Our aim is to describe the asymptotic behaviour, as p→ 0, of the traveling waves
(ρp, φp). It is instructive to compare our problem to the extensive litterature
studying the nonlinear Schrödinger equation. Indeed in the case K = κ/ρ, with
κ a positive constant, up to a rescaling there exists a formal correspondance
with the nonlinear Schrödinger equation

i∂tΨ + ∆Ψ = g
(
|Ψ|2)Ψ, (NLS)

using the Madelung transform
(
ρ,∇φ

)
7→ Ψ :=

√
ρeiφ (see [8] for more details).

In the case g(ρ) = ρ− 1 (NLS) is called the Gross-Pitaevskii equation

i∂tΨ + ∆Ψ = Ψ(|Ψ|2 − 1) on Rd × R. (GP)

The counterpart of (1.1) is

E(Ψ) =

∫
Rd
|∇Ψ|2 +

1

2

∫
Rd

(
1− |Ψ|2

)2
, (1.12)

and that of (1.2) is

P (Ψ) =
1

2

∫
Rd

Re
(
i∇Ψ(Ψ− 1)

)
. (1.13)

We also call traveling wave a solution of (GP) of the form

Ψ(x, t) = v(x1 − ct, x⊥), x⊥ = (x2, ..., xd),

where c is the speed of propagation. The traveling waves play an important role
in the long time dynamics of (GP) (see e.g [10, 7, 23, 16, 14]). The profile v
solves the equation

− ic∂1v + ∆v + v(1− |v|2) = 0. (TWc)

Using the Madelung transform, the associated speed of sound for (GP), around
the constant solution ψ = 1, is

√
2 (a rescaling changes the quantity

√
1g′(1) into

1). The transonic limit was first studied by physicists (see [24, 25]). In the one-
dimensional case, equation (TWc) is integrable with elementary computations.
Solutions to (TWc) are related to the soliton of the Korteweg-de Vries equation

∂tψ + ψ∂1ψ + ∂31ψ = 0. (KdV)

Indeed in the transonic limit c →
√

2, the traveling waves converge, up to
rescaling, to the (KdV) soliton (see [2, 9]). A similar result exists in the two-
dimensional case: for any p > 0, there exists a non-constant finite energy so-
lution vp to (TWc) with P (vp) = 1

2

∫
Rd Re

(
i∇Ψ(Ψ− 1)

)
= p (see [4] theorem
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1 and the survey [2] for properties of traveling waves). The convergence, in
the transonic limit, of those minimizing traveling waves for the two-dimensional
Gross-Pitaevskii equation towards a ground state of the Kadomtsev-Petviashvili
equation was obtained by Bethuel-Gravejat-Saut (see [3]). The Kadomtsev-
Petviashvili equation

∂tψ + ψ∂1ψ + ∂31ψ − ∂−11

(
∂22ψ

)
= 0, (KPI)

is a higher dimensional generalization of the Korteweg de Vries equation with
energy

EKP (ψ) =
1

2

∫
R2

(∂1ψ)2 +
1

2

∫
R2

(∂−11 (∂2ψ))2 − 1

6

∫
R2

(ψ)3. (1.14)

It is a well-known asymptotic model for the propagation of weakly transverse
dispersive waves [26]. Solitary waves are localized solutions to (KPI) of the form
ψ(x, t) = ω(x1−σt, x2), where ω belongs to the energy space for (KPI), i.e. the
space Y (R2) (see [19]) defined as the closure of ∂1C∞c (R2) for the norm

‖∂1f‖Y (R2) = (‖∇f‖2L2(R2) + ‖∂21f‖2L2(R2))
1
2 .

The equation of a solitary wave ω of speed σ = 1 is given by

∂1ω − ω∂1ω − ∂31ω + ∂−11

(
∂22ω

)
= 0. (SW)

Given any σ > 0, the scale change
∼
ω(x, y) = σω

(
x
√
σ, yσ

)
transforms any so-

lution of equation (SW) into a solitary wave
∼
ω of speed σ. The strategy in

[3] is to rewrite (GP) as an hydrodynamical system using Madelung transform,
then rewrite the new equationss as a Kadomtsev-Petviashvili equation with
some remainder. This transonic limit convergence result has been generalized
in dimension two and three by Chiron and Mariş in [13] for a large class of
nonlinearities.
In the same spirit, it is proved in [12] that solutions of (E-K) with well-prepared
initial data converge, in a long wave asymptotic regime, to a solution of the
Kadomtsev-Petviashvili (Korteweg de Vries in the one-dimensional case) equa-
tion (See also [6, 5, 17, 11]).

The main focus of this paper is the convergence in the transonic limit of the
Euler Korteweg two dimensional traveling waves to a ground state of (KPI).
We also obtain with a more elementary argument, in dimension one, the conver-
gence of the Euler-Korteweg soliton toward the soliton to the Korteweg-de-Vries
equation.

Heuristic Let us do the following formal computation. We let ρp(x1, x2) =

1+ε2pηp(z1, z2), φp = εpθp(z1, z2), with z1 = εpx1, z2 = ε2px2 and cp =
√

1− ε2p.
Then the first line of (1.5) rewrites

−cp∂1ηp + ∂21θp + ε2p
(
∂22θp + ηp∂

2
1θp + ∂1ηp∂1θp

)
= O(ε4p),
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furthermore, by Taylor expansion we have g = ε2pηp + g′′(1)ε4p
η2p
2 + O(ε4p), then

the second lines of (1.5) rewrites

−cp∂1θp + ηp + ε2p

(
g′′(1)η2p + (∂1θp)

2

2
−K(1)∂21ηp

)
= O(ε4p).

At first order we have ∂1θp = ηp + O(ε2p), so that these functions should have
the same limit. Then, multiplying the first equation by cp and applying the
operator ∂1 to the second equation, we obtain

∂1ηp + ∂22∂
−1
1 ηp + (3 + g′′(1))ηp∂1ηp −K(1)∂31ηp = O(ε2p).

Finally, we let

ηp = − 1

3 + g′′(1)
Np

(
x1√
K(1)

,
x2√
K(1)

)
.

Then Np is an (approximate) solution to (SW).

Main result Let (ρp, φp) be the solution given by theorem 1, we consider

ηp(x1, x2) = ρp(x1, x2)− 1, (1.15)

and the rescaled functions
θp(x1, x2) = − 1

γεp
√
K(1)

φp

(√
K(1)x1
εp

,

√
K(1)x2
ε2p

)
,

Np(x1, x2) = − 1

γε2p
ηp

(√
K(1)x1
εp

,

√
K(1)x2
ε2p

)
.

(1.16)

where

εp =
√

1− c2p and γ =
1

g′′(1) + 3
. (1.17)

Our main theorem is

Theorem 2. Under the assumption Γ := 3 + g′′(1) 6= 0, let (pn)n∈N such that,
pn → 0. Then, there exists a ground state N0 of (KPI), such that, up to a
subsequence, we have

Npn → N0 in W k,q(R2),when n→∞. (1.18)

and
∂1θpn → N0 in W k,q(R2),when n→∞. (1.19)

for any k ∈ N and any 1 < q ≤ ∞.

Remark 1.2. The proof in the manuscript follows the same lines of [3], but
is more involved at a technical level because of the extension to arbitrary non-
linearities g and K. It provides an extension of recent results on the nonlinear
Schrödinger equations with non-zero condition at infinity towards the wider, but
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still physically relevant, class of the Euler-Korteweg systems. See [15] for the
existence of smooth branch of travelling waves for the Euler-Korteweg equation
converging to the first lump in the transonic limit. It is not known that the
solitons of Theorem 1 are the same as those in [15], thus the result of theorem
2 is not contained in [15] (and conversely) . To obtain the convergence of the
full sequence, it is sufficient that the limit N0 is unique but it is a difficult and
open problem (see [28]).

Remark 1.3. A condition similar to Γ 6= 0 is highlighted in [14] for the
Schrödinger equation. As has been proven for the Schrödinger equation (see
[13]), it is possible that a similar result exist in dimension three. Let us recall
that the existence of solitons in dimension 3 is an open problem for Euler-
Korteweg.

We will also prove a similar result in the one-dimensional case. That is, the
(E-K) solitons converge, up to rescaling, to the (KdV) soliton, in the transonic
limit (see the appendix A for a precise statement). Moreover as the computation
are simpler in dimension 1 we are able to compute the transonic limit for Γ = 0
and a new nondegeneracy condition (see proposition 1.6). In this case, the limit
is not a solution of (KdV) but of (gKdV).

Proposition 1.4. Under the conditions

g(1) = 0, g′(1) = 1, Γ 6= 0.

there exists (ρ, u) global solution of
− cρ′ + (ρu)′ = 0, (1)

cu′ +

(
u2

2

)′
+ g′ =

(
K(ρ)ρ′′ +

1

2
K ′(ρ)ρ′2

)′
(2), x ∈ R,

(E-K)

with ‖ρ− 1‖L∞ →
ε→0

0. Moreover if we let

ρ− 1 = −ε2γrε
(

εx√
K(1)

)
, (1.20)

then for any k ∈ N
‖r(k)ε −N (k)‖L∞(R) −→

ε→0
0,

where

N(x) =
3

ch2(x2 )
, (1.21)

is the classical soliton to the Korteweg-de-Vries equation

− ψ′ + ψψ′ + ψ′′′ = 0. (KdV)

Remark 1.5. The argument proposed in [9] for the Schrödinger equation should
extend to our framework, nevertheless we propose an alternative proof in section
A.
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It is also possible to describe the case Γ = 0:

Proposition 1.6. Under the conditions

g(1) = 0, g′(1) = 1, Γ = 0, Γ′ := g′′′(1)− 12 < 0,

There exists (ρ±, u±) global solution of (E-K) with ‖ρ±−1‖L∞ →
ε→0

0 . Moreover

if we let

ρ± − 1 = εγ′r±ε

(
εx√
K(1)

)
,

with γ′ = 1√
12−g′′′(1)

then for any k ∈ N

‖r±(k)ε − (w±(k))‖L∞(R) −→
ε→0

0.

where w±(x) = ±
√
12

ch(x) are the two opposite soliton of the focusing modified

Korteweg de Vries equation

ψ′ − 1

2
ψ2ψ′ = ψ′′′. (mKdV)

Organization of the article In section 2 we introduce the notations and
recall the properties of solitary waves solutions to (KPI). In section 3 we prove
that Np and ∂1θp converge and have the same limit. In section 4, we prove
that Sobolev bounds for Np give bound for θp. In section 5, using the Taylor
expansion in (1.5) with respect to ε we obtain the (SW) equation with some
remainder. Using Fourier transform we obtain Sobolev bounds for Np and ∂1θp,
in section 6 and 7. Finally, we end the proof of theorem 2 in section 8.

2 Notations, functional spaces and properties of
solution to (KPI)

Functional spaces Let p ∈ [1,+∞], k ∈ N, 0 < α < 1 and Ω be an smooth
open subset of Rd. We denote by Wm,p(Ω), Hm(Ω) = Wm,2(Ω) the usual
Sobolev spaces. For s ≥ 0, we define

Hs(Rd) =

{
u ∈ L2(Rd)

∣∣∣∣‖u‖2Hs(Rd) =

∫
Rd

(1 + |ξ|2)s|û(ξ)|2dξ <∞
}
.

We define

Ḣs(Rd) =

{
u

∣∣∣∣ û ∈ L1
loc(Rd),

∫
Rd
|ξ|2s|û(ξ)|2dξ <∞

}
.

C0,α(Ω) is the space of bounded α-Hölder continuous function on Ω. We define

Ck0 (Rd) = {u ∈ Ck(Rd) : lim
|x|→∞

|∂αu(x)| = 0, ∀α ∈ Nd, |α| ≤ k},

with the norm
||u||Ck0 (Rd) =

∑
|α|≤k

sup
Rd
|∂αu|.
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Sobolev embedding We recall the Sobolev embeddings,

∀ kq1 < d, W k,q1(Rd) ↪→ Lq2(Rd), q2 =
dq1

d− kq1
, (2.1)

∀ d < q <∞, W 1,q(Ω) ↪→ C0,1− dq (Ω). (2.2)

∀(k − k′)q > d, W k,q(Rd) ↪→ Ck
′

0 (Rd). (2.3)

Moreover if Ω is bounded the embedding

W 1,q(Ω) ↪→ C0,1− d
α (Ω), d < α < q, (2.4)

is compact. In particular

H
d
2 (Rd) ↪→ Lq(Rd), 2 ≤ q <∞, (2.5)

∀ 0 ≤ s < d

2
, Hs(Rd) ↪→ Lq(Rd), 2 ≤ q ≤ 2d

d− 2s
, (2.6)

∀s > d

2
+ k, Hs(Rd) ↪→ Ck0 (Rd). (2.7)

Basic convolution results let (f, g) ∈ Hs(Rd)× L1(Rd), we have

||f ∗ g||Hs(Rd) ≤ ||f ||Hs(Rd)||g||L1(Rd). (2.8)

We recall a result on Fourier multipliers due to Lizorkin.

Theorem 3. ([29]). Let K̂ be a bounded function in C2(R2\{0}) and assume
that

ξk11 ξk22 ∂k11 ∂k22 K̂(ξ) ∈ L∞(R2),

for any integer 0 ≤ k1, k2 ≤ 1 such that k1 + k2 ≤ 2. Then, K̂ is a multiplier
from Lq(R2) to Lq(R2) for any 1 < q < ∞, i.e. there exists a constant C(q),
depending only on q, such that

||K ∗ f ||Lq(R2) ≤ C(q)M(K̂)||f ||Lq(R2), ∀f ∈ Lq(R2).

where we denote

M(K̂) = sup{|ξ1|k1 |ξ2|k2 |∂k11 ∂k22 K̂(ξ)|, ξ ∈ R2, 0 ≤ k1 ≤ 1, 0 ≤ k2 ≤ 1, 0 ≤ k1+k2 ≤ 2}.

Existence and properties of solitary wave solutions to (KPI) We recall
some results on the Kadomtsev-Petviashvili Equation. A ground state is a
solitary wave that minimizes the action

S(ω) = EKP (ω) +
σ

2

∫
R2

ω2,

9



among all non-constant solitary waves of speed σ. The constant SKP denotes
the action S(ω) of the ground states ω of speed σ = 1. We will denote by Gσ the
set of the ground state of speed σ. The ground states solutions are characterized
as minimizers of energy constrained by constant L2-norm. Let µ > 0, then the
minimization problem

EKP (µ) = inf

{
EKP (ω), ω ∈ Y (R2),

∫
R2

|ω|2 = µ

}
, (PKP (µ))

has at least one solution. Moreover there exists σ such that the set of minima
EKP (µ) is exactly equal to Gσ (see De Bouard and Saut [18]). For σ = 1 we
have µ = µ∗ = 3SKP . Since it was proved by making use of the concentration-
compactness principle of P.L. Lions (see [27]), we have the compactness of min-
imizing sequences.

Theorem 4. ([18]) Let µ > 0, and let (ωn)n∈N be a minimizing sequence to
(PKP (µ)) in Y (R2). Then, there exists some points (an)n∈N and a function
N ∈ Y (R2) such that up to some subsequence,

ωn(.− an)→ N in Y (R2), as n→∞.

N is solution to the minimization problem (PKP (µ)) and thus is a ground state
for (KPI).

Using a scaling argument it is possible to compute EKP .

Lemma 2.1. ([3]) Let N ∈ Y (R2). Given any σ > 0, the function Nσ(x1, x2) =
σN(
√
σx1, σx2) is a minimizer for EKP (

√
σµ∗) if and only if N is a minimizer

for EKP (µ∗). In particular we have

EKP (µ) = − µ3

54S2
KP

, ∀µ > 0.

Moreover, Nσ and N are ground states for (KPI) , with respective speed σ, and

1. We have the relation σ = µ2

(µ∗)2 .

Finally, in our proof, we will have sequences (ωn)n∈N which are not mini-
mizing sequences for (PKP (µ)) but satisfy

EKP (ωn)→ EKP (µ), and

∫
R2

ω2
n → µ, as n→∞, (2.9)

for some positive number µ.

Proposition 2.2. ([3]) Let µ > 0, and (ωn)n∈N denote a sequence of functions
in Y (R2) satisfying (2.9) for µ. Then, there exists some sequence (an)n∈N and a

ground state solution N , with speed σ = µ2

(µ∗)2 such that, up to some subsequence,

ωn(.− an)→ N in Y (R2), as n→∞. (2.10)
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Reformulation In [20], the authors use a new formulation for the solitary
wave equation. Applying operator ∂1 to (SW) we have

∂41ω −∆ω +
1

2
∂21(ω2) = 0.

Let

K̂0(ξ) =
ξ21

|ξ|2 + ξ41
, ξ ∈ R2. (2.11)

and ω ∈ Y (R2). Then, ω is a solution to (SW) if and only if

ω =
1

2
K0 ∗ ω2. (2.12)

3 Weak convergence in L2

The aim of this section is to prove that Np and ∂1θp have the same limit, and
compute the convergence speed of Np − ∂1θp towards 0.

3.1 Rescaling and energy

Let (ρp, φp) the solutions given by theorem 1. As in [3], we consider rescaled
functions and use anisotropic space variables. let

εp =
√

1− c2p and γ =
1

g′′(1) + 3
, (3.1)

θp(x1, x2) = − 1

γεp
√
K(1)

φp

(√
K(1)x1
εp

,

√
K(1)x2
ε2p

)
, (3.2)

and

Np(x1, x2) = − 1

γε2p
ηp

(√
K(1)x1
εp

,

√
K(1)x2
ε2p

)
. (3.3)

We can assume, up to a translation, using (1.10)

∃C > 0, Np(0) > C, ∀p0 > p > 0. (3.4)

Proposition 3.1. Let (pn)n∈N a sequence such that pn → 0. Then, there exists
N0 ∈ L2(R2) such that, up to a subsequence,

Npn ⇀ N0 in L2(R2) (3.5)

∂1θpn ⇀ N0 in L2(R2) (3.6)

Moreover there exists some positive constant C, not depending on p, such that∫
R2

(Np − ∂1θp)2dx ≤ Cε
1
2
p . (3.7)

11



Remark 3.2. In section 7, we will prove that N0 is a ground state of (KPI).

Proof of (3.5) an (3.6). Since G′′(1) = g′(1) = 1, G′(1) = g(1) = G(1) = 0,

there exists δ > 0 such that G(ρ) ≥ (ρ−1)2
3 for any ρ ∈]1 + δ, 1− δ[. Then for p

small enough, using (1.9) and the definition (1.1), we have∫
R2

(ηp
(
x1, x2

)
)2dx ≤ME(ρp, φp). (3.8)

Thus, we deduce from (1.7) and (1.17) that∫
R2

(Np)
2 =

1

γ2ε4p

∫
R2

(
ηp

(√
K(1)x1
εp

,

√
K(1)x2
ε2p

))2

≤ 1

K(1)γ2εp

∫
R2

(ηp
(
x1, x2

)
)2

≤ 1

εp
CE(ρp, φp)

≤ C.

(3.9)

Then, using Banach-Alaoglu theorem, there exists a function N0 ∈ L2(R2) such
that, up to some subsequence

Npn ⇀ N0 in L2(R2). (3.10)

The convergence of ∂1θpn is a consequence of (3.7). In order to complete the
proof of proposition 3.1, it only remains to prove (3.7). This requires to use
rescaled energy and Pohozaev estimates, so that (3.7) is postponed to section
3.3.

Lemma 3.3. The energy can be expressed in terms of the new functions as

E(ρp, φp) =
K(1)γ2εp

2

(
E0(Np, θp) + ε2p(E2(Np, θp))) + ε4p(E4(Np, θp))

)
,

with

E0(Np, θp) =

∫
R2

N2
p + (∂1θp)

2,

E2(Np, θp) = 2

(∫
R2

(∂1Np(x))2

2
+

(∂2θp(x))2

2
− γ

6

(
3Np(∂1θp)

2 + g′′(1)N3
p )dx

)
,

E4(Np, θp) =

∫
R2

K

(
1− γε2pNp(x)

)
1√
K(1)

2 (∂2Np(x))2 − γNp(x)(∂2θp(x))2

+Np(x)jp(x)

(
(∂1Np(x))2 + (εp)

2(∂2Np(x))2
)

+ γ4N4
p (x)lp(x)dx,

12



with jp and lp some functions smooth and bounded in L∞ uniformly in p. For
the momentum we have

p = εpγ
2K(1)

∫
R2

Np(x)∂1θp(x)dx.

Proof. Since Np ' ∂1θp, then passing to the limit in p we have E0(Np, θp) '
2
∫
R2 N

2
0 and E2(Np, θp) ' 2EKP (N0). Later, to prove that the weak limit

N0 is a solution to (SW), we will use (PKP (µ)). This is a direct but tedious
computation. The functions jp and lp are given by

G(1 + x) = G(1) +G′(1)x+G′′(1)
x2

2
+ x3l(x)

=
x2

2
+ x3l(x).

So

G(ρp(x)) = γ2
1

2
ε4pN

2
p (x′)− γ3ε6p

g′′(1)N3
p (x′)

6
+ γ4ε8pN

4
p (x′)l(−ε2γNp(x′)),

where l is the third order remainder of Taylor expansion and

x′ =

(
εpx1√
K(1)

,
ε2px2√
K(1)

)
.

In view of (1.9), the function l(−ε2pγNp(x′)) = l(ρp(x)−1) is bounded indepen-
dently of p. To simplify we write

G(ρp(x)) = γ2
1

2
ε4pN

2
p (x′)− γ3ε6p

g′′(1)N3
p (x′)

6
+ γ4ε8pN

4
p (x′)lp(x

′).

Similarly, we write

K

(
1− γε2pNp(x′)

)
= K(1)− ε2pNp(x′)jp(x′).

3.2 Pohozaev’s identities

We estimate now derivative terms in the energy using Pohozaev’s identities.

Lemma 3.4. ∣∣∣∣∫
R2

(∂2φp)
2 + (∂2ρp)

2 + (∂1ρp)
2dx

∣∣∣∣ ≤ Cε3p, (3.11)

and ∣∣∣∣∫
R2

ηp(∂1φp)
2dx

∣∣∣∣ ≤ Cε 3
2
p ,

∣∣∣∣∫
R2

ηp(∂2φp)
2dx

∣∣∣∣ ≤ Cε 7
2
p . (3.12)
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Proof. Thanks to (1.7), we have

|E(ρp, φp)− P (ρp, φp)| < CP (ρp, φp)
3.

We recall Pohozaev’s identities obtained in [1] proposition 5.1

E(ρp, φp) =

∫
R2

ρp(∂2φp)
2 +K(ρp)(∂2ρp)

2dx+ cpP (ρp, φp), (3.13)

E(ρp, φp) =

∫
R2

ρp(∂1φp)
2 +K(ρp)(∂1ρp)

2dx. (3.14)

Moreover we have

cpP (ρp, φp) =

∫
R2

ρp(∇φp)2dx. (3.15)

It follows from (1.7) and (1.17) that∣∣∣∣∫
R2

ρp(∂2φp)
2 +K(∂2ρp)

2dx

∣∣∣∣ = |E(ρp, φp)− cP (ρp, φp)|

= |E(ρp, φp)− P (ρp, φp) + (1−
√

1− ε2p)P (ρp, φp)|

≤ |E(ρp, φp)− P (ρp, φp)|+ ε2p

∣∣∣∣∣∣
1−

√
1− ε2p
ε2p

P (ρp, φp)

∣∣∣∣∣∣
≤ CP (ρp, φp)

3,

and therefore using ||ρp − 1||∞ → 0 when p→ 0 we get∣∣∣∣∫
R2

(∂2φp)
2 + (∂2ρp)

2dx

∣∣∣∣ ≤ CP (ρp, φp)
3. (3.16)

In view of (3.14) and (3.15) we obtain

∣∣∣∣∫
R2

K(ρp)(∂1ρp)
2dx

∣∣∣∣ =

∣∣∣∣∫ ρp(∂2φp)
2dx+ E(ρp, φp)− cP (ρp, φp)

∣∣∣∣ ,
and then ∣∣∣∣∫

R2

(∂1ρp)
2dx

∣∣∣∣ ≤ CP (ρp, φp)
3. (3.17)

Finally combining (3.17) and (3.16) we have∣∣∣∣∫
R2

(∂2φp)
2 + (∂2ρp)

2 + (∂1ρp)
2dx

∣∣∣∣ ≤ CP (ρp, φp)
3. (3.18)

Moreover by (3.14)

E(ρp, φp) =

∫
R2

ρp(∂1φp)
2 +K(ρp)(∂1ρp)

2dx, (3.19)
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thus ∫
R2

(∂1φp)
2dx ≤ CE(ρp, φp).

Combining (3.19) with (1.9), we obtain∣∣∣∣∫
R2

ηp(∂1φp)
2dx

∣∣∣∣ ≤ Cε 3
2
p . (3.20)

Similarly ∣∣∣∣∫
R2

ηp(∂2φp)
2dx

∣∣∣∣ ≤ Cε 7
2
p , (3.21)

this ends the proof of lemma 3.4.

3.3 Energy estimates

We are now in position to conclude the proof of proposition 3.1.

End of proof of proposition 3.1. First we have∫
R2

(
∂1Np

)2
=

1

γ2ε3p

∫
R2

(∂1ρp)
2,

∫
R2

(
∂2θp

)2
=

1

K(1)γ2ε3p

∫
R2

(∂2φp)
2,∫

R2

(
∂2Np

)2
=

1

γ2ε5p

∫
R2

(∂2ρp)
2,

∫
R2

Np(∂1θp)
2 = − 1

K(1)γ3ε3p

∫
ηp(∂1φp)

2,∫
R2

N3
p = − 1

γ3K(1)ε3p

∫
R2

η3p,

∫
R2

Np(∂2θp)
2 = − 1

γ3ε5pK(1)

∫
R2

ηp(∂2φp)
2.

Using (3.18) and (1.17), we have∫
R2

(
∂2θp

)2
+
(
∂1Np

)2 ≤ C. (3.22)

Then with (1.9), (3.8) and (3.20) we obtain

E2(Np, θp) ≤
C

ε
3
2
p

. (3.23)

Similarly, using (3.21), (3.18), (1.9) and by definition of E4, we have

E4(Np, θp) ≤
C

ε3p
. (3.24)

We deduce that∣∣∣∣E(ρp, φp)−
γ2εpK(1)

2
E0(ρp, φp)

∣∣∣∣ =

∣∣∣∣E(ρp, φp)−
γ2εpK(1)

2

∫
R2

(Np)
2 + (∂1θp)

2

∣∣∣∣
≤ Cε

3
2
p .

(3.25)
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Thus, by (1.7) we have∫
R2

(Np − ∂1θp)2 = E0(Np, θp)− 2

∫
R2

Np∂1θp

≤ 2E(ρp, φp)

γ2K(1)εp
− 2

εpγ2K(1)
p+ Cε

1
2
p

≤ C1ε
1
2
p .

This completes the proof of estimate (3.7) and Proposition 3.1.

4 Elliptic estimates on θp

In the present section, we aim to prove that Np bounds θp in Sobolev spaces.
More precisely, we prove the following proposition:

Proposition 4.1. Let 1 < q <∞ there exists a constant C(q) depending on q,
but not on p, such that

||∂1θp||Lq(R2) + εp||∂2θp||Lq(R2) ≤ C(q)||Np||Lq(R2), (4.1)

for p small enough. Moreover for any α ∈ N2 let

Γp(q, α) = ||∂α∂1θp||Lq(R2) + εp||∂α∂2θp||Lq(R2),

then there exists C(q, α) such that

Γp(q, α) ≤ C(q, α)

(
||∂αNp||Lq(R2) + ε2p

∑
0≤β<α

||∂βNp||L∞(R2)Γp(q, α− β)

)
.

(4.2)

First of all in view of theorem 1 and lemma 4.2 in [1] we have:

Lemma 4.2. For any k ∈ N, q ∈ [2,∞[ we have

(ηp,∇φp) ∈W k,q(R2) ∩ C∞(R2). (4.3)

Moreover for any α ∈ N2, there exists C(α) > 0 not depending on p such that

||(∂αηp, ∂α∇φp)||L∞(R2) ≤ C(α). (4.4)

Later, using Lizorkin theorem, we will have Np, ∂1θp and ∂2θp in W k,q(R2),
for any 1 < q < 2 and k ∈ N. Thus the quantity Γp(q, α) is finite for any
1 < q <∞, α ∈ N2. This is the reason why in proposition 4.1, we let 1 < q <∞.

Proof of proposition 4.1. We have

− cp∂1ρp = −div(ρp∇φp), (4.5)
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then
∆φp = cp∂1ηp − div(ηp∇φp),

and for any α ∈ N2

∆(∂αφp) = cp∂1∂
αηp − div(∂α(ηp∇φp)).

Thus, using elliptic estimates (see [21]), there exists some constant C(q) such
that

||∇(∂αφp)||Lq(R2) ≤ C(q)
(
||∂αηp||Lq(R2) + ||∂α(ηp∇φp)||Lq(R2)). (4.6)

Using (1.9) we have C(q)‖ηp∇φp‖Lq(R2) ≤ 1
2‖∇φp‖Lq(R2) so that from (4.6) we

have
||∇φp||Lq(R2) ≤ C(q)||ηp||Lq(R2). (4.7)

Next using Leibniz formula we obtain

||∂α(ηp∇φp)||Lq(R2) ≤ C(q, α)

(
||∂αηp||Lq(R2)||∇φp||L∞(R2)

+
∑

0≤β<α

||∂βηp||L∞(R2)||∂α−β(∇φp)||Lq(R2)

)
.

(4.8)

Then, using (4.4) and (4.6), we have

||∂α(∇φp)||Lq(R2) ≤ C(q, α)
(
||∂αηp||Lq(R2)

+
∑

0≤β<α

||∂βηp||L∞(R2)||∂α−β(∇φp)||Lq(R2)

)
.

(4.9)

We observe that (as a direct consequence of the rescaling (3.2), (3.3)) there
exists some positive constants C1(q, α), C2(q, α) and C3(q, α), such that

||∂αNp||Lq(R2) =
C1(q, α)

ε
2+α1+2α2− 3

q
p

||∂αηp||Lq(R2),

||∂α∂1θp||Lq(R2) =
C2(q, α)

ε
2+α1+2α2− 3

q
p

||∂α∂1φp||Lq(R2),

||∂α∂2θp||Lq(R2) =
C3(q, α)

ε
3+α1+2α2− 3

q
p

||∂α∂2φp||Lq(R2).

Combining with (4.7) and (4.9), we obtain (4.1) and (4.2).

Remark 4.3. Assuming we have bounds for Np in W k,q for any k ∈ N, 1 <
q ≤ ∞ then, by induction using proposition 4.1 and Sobolev embedding, we can
bound θp in W k,q for any k ∈ N, 1 < q ≤ ∞.

17



5 Convolution equation

5.1 Reformulation

The aim of this section is to rewrite equation (E-K) as a convolution equation
for Np, similar to (2.12). The first two lemmas are direct computations.

Lemma 5.1. We have

∂1Np − ∂21θp = ε2p(L1(Np, θp) +R(Np, θp)), (5.1)

with

L1(Np, θp) =
1

ε2p
(1− cp)∂1Np + ∂22θp,

R(Np, θp) = −γ∂1 (Np∂1θp)− γε2p∂2(Np∂2θp).

Lemma 5.2. The function Np and θp satisfy

Np(x)− cp∂1(θp(x)) = + ε2p

[
γg′′(1)

2
N2
p − ε2pγ2N3

p l1

+K

(
1− γε2pNp(x)

)(
∂21Np
K(1)

+ ε2p
∂22Np
K(1)

)
+ γ

(∂1θp)
2

2
+ γ

ε2p(∂2θp)
2

2

− γ
K ′
(

1− γε2pNp(x)

)
2K(1)

(
ε2p
(
∂1Np

)2
+ ε4p

(
∂2Np)

2
)]
,

(5.2)

where l1 is defined by

g(ρp(x)) = −γε2pNp(x′) + ε4p
g′′(1)

2
γ2N2

p (x′)− γ3ε6pN3
p (x′)l1(−ε2pγNp(x′)).

Remark 5.3. We recall that

x′ =

(
εpx1√
K(1)

,
ε2px2√
K(1)

)
.

In view of (1.9), the function l1(−ε2pγNp(x′)) = l1(ρp(x) − 1) is smooth and
bounded in L∞ independently of p. To simplify we write

g(ρp(x)) = −γε2pNp(x′) + ε4p
g′′(1)

2
γ2N2

p (x′)− γ3ε6pN3
p (x′)l1(x′).

Now we combine these two lemmas to obtain a Kadomtsev-Petviashvili equa-
tion with some remainder.
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Proposition 5.4.

∂41Np −∆Np − L(Np, θp) =− ∂21fp
− ε2p

∑
i+j=2

∂i1∂
j
2R

i,j
εp ,

(5.3)

with
L(Np, θp) = −(2ε2p∂

2
1∂

2
2Np + ε4p∂

4
2Np), (5.4)

1

γ
R2,0
εp (Np, θp) =

(
cp − 1

ε2p
Np∂1θp − γN3

p l1 +
1

2
(∂2θp)

2 − K ′(ρp)

K(1)
(∂1Np)

2

)
− ε2p

(
K ′(ρp)

K(1)

(
∂2Np)

2

)
− h1
γε4p

h2,

(5.5)

1

γ
R0,2
εp (Np, θp) =

(
g′′(1)

2
N2
p +

(
∂1θp

)2
2

)
+ ε2p

[
− γN3

p l1 +
(∂2θp)

2

2
− K ′(ρp)(∂1Np)

2

2K(1)

]
− ε4p

K ′(ρp)(∂2Np)
2

2K(1)
− 1

γε2p
h1h2,

(5.6)

1

γ
R1,1
εp (Np, θp) = cpNp∂2θp, (5.7)

fp = γ

(
Np∂1θp +

g′′(1)

2
N2
p +

1

2
(∂1θp)

2

)
. (5.8)

Where h1 and h2 are some functions defined later.

Remark 5.5. We observe that

γ

(
1 +

g′′(1)

2
+

1

2

)
= γ

(
3 + g′′(1)

2

)
=

1

2
. (5.9)

Then passing, formally in (5.3), to the limit in p we have

∂41N0 −∆N0 +
1

2
∂21(N2

0 ) = 0, (5.10)

i.e. N0 is a solution of (KPI).

Proof. Let

1

K(1)
h1(x) =

1

K
(
1− γε2pNp(x)

) − 1

K(1)
= h3(−ε2pγNp(x))ε2pNp(x), (5.11)

and

h2 = Np − cp∂1θp − ε2p
[
γ
g′′(1)

2
N2
p − γ2ε2pN3

p l +
γ(∂1θp)

2

2
+ γ

ε2p(∂2θp)
2

2

− γ
K ′
(

1− ε2pNp
)

2K(1)

(
ε2p
(
∂1Np

)2
+ ε4p

(
∂2Np)

2
)]
.

(5.12)
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First of all, multiplying (5.2) by K(1)

(
1

K(1) + 1

K
(
1−γε2pNp

) − 1
K(1)

)
we obtain

Np − cp∂1θp = +ε2p

[
γ
g′′(1)

2
N2
p − γ2ε2pN3

p l +

(
∂21Np + ε2p∂

2
2Np

)
+ γ

(∂1θp)
2

2
+ γ

ε2p(∂2θp)
2

2

− γ
K ′
(

1− γε2pNp
)

2K(1)

(
ε2p
(
∂1Np

)2
+ ε4p

(
∂2Np)

2
)]

− h1h2.

(5.13)

We have computing −(∂21 + ε2p∂
2
2)(5.13) + c∂1(5.1)

∂41Np −∆Np =− ∂21
[
γ

(
Np∂1θp +

g′′(1)

2
N2
p +

1

2
(∂1θp)

2

)]
+ L(Np, θp)− ε2p

∑
i+j=2

∂i1∂
j
2R

i,j
εp ,

(5.14)

this completes the proof of Claim (5.3).

We now recast (5.3) as a convolution equation.

Proposition 5.6. Let

K̂i,j
εp (ξ) =

ξi1ξ
j
2

|ξ|2 + ξ41 + 2ε2pξ
2
1ξ

2
2 + ε4pξ

4
2

, (5.15)

we have
Np = K2,0

εp ∗ fp +
∑
i+j=2

ε2pK
i,j
εp ∗R

i,j
εp . (5.16)

Proof. It is a direct computation.

Next we define

Q(ξ) = |ξ|2 + ξ41 + 2ε2pξ
2
1ξ

2
2 + ε4pξ

4
2 . (5.17)

We need to etablish that the remainder term Rεp are small enough in some
Sobolev spaces.

Proposition 5.7. There exists some positive constant C, not depending on p,
such that ∫

R2

|R1,1
εp | ≤ C,

∫
R2

|fp| ≤ C, (5.18)

∫
R2

|R0,2
εp | ≤ C,

∫
R2

|R2,0
εp | ≤

C

ε2p
. (5.19)
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Proof. Proposition 5.7 is a direct consequence of (1.9), identities in subsection
3.3, estimates in subsection 3.2, (3.9) and Hölder’s inequality. For example we
have ∫

R2

(
∂2θp

)2
=

1

K(1)γ2ε3p

∫
R2

(∂2φp)
2 ≤ C,

thus ∫
R2

|R1,1
εp | ≤ C‖Np‖L2(R2)‖∂2θp‖L2(R2) ≤ C.

Similarly we obtain the estimate on fp and (5.19).

5.2 Kernel estimates

In order to use (5.16) we need to control Ki,j
εp . In this section we use computa-

tions of [3] section 5.

Proposition 5.8. ([3] lemma 5.1) Let 0 ≤ s < 1, there exists a constant C(s)
depending possibly on s, but not on p, such that

||K2,0
εp ||Ḣs(R2) ≤ C(s)(1 + ε

1
2−2s
p ), ||K1,1

εp ||Ḣs(R2) ≤ C(s)(1 + ε
− 1

2−2s
p ), (5.20)

||K0,2
εp ||Ḣs(R2) ≤ C(s)(1 + ε

− 3
2−2s

p ). (5.21)

Thus we have

||K2,0
εp ||Hs(R2) + εp||K1,1

εp ||Hs(R2) + ε2p||K0,2
εp ||Hs(R2) ≤ C(s), (5.22)

for any 0 ≤ s ≤ 1
4 .

Proposition 5.9. ([3] lemma 5.2) let 1 < q <∞ and 0 ≤ i, j ≤ 4 integers such
that 2 ≤ i+ j ≤ 4 we denote by

κi,j = max {i+ 2j − 4, 0} .

Then there exists a constant C(q), depending possibly on q, but not on p such
that

||Ki,j
εp ∗ f ||Lq(R2) ≤

C(q)

ε
κi,j
p
||f ||Lq(R2),

for any f ∈ Lq(R2) and εp > 0.

Remark 5.10. As a consequence Np and all its derivatives, belong to Lq(R2)
for any 1 < q < 2. Indeed, we have

Np = K2,0
εp ∗ fp +

∑
i+j=2

ε2pK
i,j
εp ∗R

i,j
εp . (5.23)
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Thus, using lemma 4.2 we obtain

∂αNp = K2,0
εp ∗ ∂

αfp +
∑
i+j=2

ε2pK
i,j
εp ∗ ∂

αRi,jεp .

Then, combining the definition of Ri,jεp , lemma 4.2 with the proposition above,
we have ∂αNp ∈ Lq for any 1 < q < 2. Therefore using (4.1), ∂1θp and ∂2θp
belong to Lq(R2) for any 1 < q < 2. Finally (5.2) and (5.1) give, respectively,
∂1θp ∈W k,q and ∂2θp ∈W k,q for any k ∈ N.

6 Bounds in Sobolev spaces

This section is devoted to the proof by induction of the following proposition:

Proposition 6.1. There exists p0 > 0 such that for any 0 ≤ p ≤ p0, α ∈ N2

and 1 < q <∞, there exists C(q, α) such that

||∂αNp||Lq(R2) + ||∂1∂αNp||Lq(R2) + ||∂2∂αNp||Lq(R2)

+||∂21∂αNp||Lq(R2) + εp||∂1∂2∂αNp||Lq(R2) + ε2p||∂22∂αNp||Lq(R2) ≤ C(q, α).

(6.1)

We have the following consequence.

Theorem 5. There exists p0 > 0 such that for any 0 ≤ p ≤ p0, k ∈ N and
1 < q ≤ ∞ there exists C(k, q) such that

||Np||Wk,q(R2) + ||∂1θp||Wk,q(R2) + εp||∂2θp||Wk,q(R2) ≤ C(k, q). (6.2)

Proof of theorem 5 assuming proposition 6.1. By proposition 6.1, we have for
any k ∈ N, 1 < q <∞, there exists a constant C(k, q) not depending on p such
that

||Np||Wk,q(R2) ≤ C(k, q). (6.3)

Thus using Sobolev embedding (2.7), we obtain

∀k ∈ N, ||Np||Ck0 (R2) ≤ C(k, q). (6.4)

By proposition 4.1 we have

Γp(q, α) ≤ C(q, α)

(
1 + ε2p

∑
0≤β<α

Γp(q, α− β)

)
. (6.5)

Combining (4.1) and (6.3) , the term Γp(q, (0, 0)) is bounded independently of
p. Then by induction and (6.5) the quantity Γp(q, α) is bounded independently
of p, for any 1 < q < ∞, α ∈ N2. Finally, using Sobolev embedding (2.7) this
result is also true for q =∞.
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Preliminary We begin the proof of proposition 6.1. First of all, we have:

Lemma 6.2. For any 1 < q <∞, there exists a constant C(q), independent of
p, such that

||Np(∂1θp)2||Lq(R2) + ε2p||Np(∂2θp)2||Lq(R2) ≤ C(q)||Np||3L3q(R2), (6.6)

and

||(∂1θp)2||Lq(R2) + εp||Np∂2θp||Lq(R2) + ε2p||(∂2θp)2||Lq(R2) + ||Np∂1θp||Lq(R2)

≤ C(q)||Np||2L2q(R2).

(6.7)

Proof. Hölder inequality and (4.1) leads to

||Np(∂1θp)2||Lq(R2) + ε2p||Np(∂2θp)2||Lq(R2)

≤ C(q)||Np||L3q(R2)

(
||∂1θp||2L3q(R2) + ε2p||∂2θp||2L3q(R2)

)
≤ C(q)||Np||3L3q(R2),

a similar computations gives us (6.7).

Lemma 6.3. For any 1 < q <∞, there exists a constant C(q), such that∣∣∣∣∣∣∣∣h1h2ε2p

∣∣∣∣∣∣∣∣
Lq(R2)

≤ C(q)

(
||Np||2L2q(R2) + ε2p||Np||3L3q(R2)

+ ε4p||Np||L∞(R2)||∂1Np||2L2q(R2)

+ ε6p||Np||L∞(R2)||∂2Np||2L2q(R2)

)
,

(6.8)

||fp||Lq(R2) + εp||R1,1
εp ||Lq(R2) ≤ C(q)||Np||2L2q(R2), (6.9)

||R2,0
εp ||Lq(R2) ≤

C(q)

ε2p

(
||Np||2L2q + ε2p||Np||3L3q

+ ε2p||∂1Np||2L2q

+ ε4p||∂2Np||2L2q +

∣∣∣∣∣∣∣∣h1(x)h2(x)

ε2p

∣∣∣∣∣∣∣∣
Lq(R2)

)
,

(6.10)

||R0,2
εp ||Lq(R2) ≤ C(q)

(
||Np||2L2q(R2) + ε2p||Np||3L3q(R2)

+ ε2p||∂1Np||2L2q(R2)

+ ε4p||∂2Np||2L2q(R2) +

∣∣∣∣∣∣∣∣h1(x)h2(x)

ε2p

∣∣∣∣∣∣∣∣
Lq(R2)

)
.

(6.11)

Where h1, h2 are defined in proposition 5.4.
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Proof. The proof is a direct computation combined with lemma 6.2, estimate
(1.9) and observing that∣∣∣∣∣∣∣∣ (h1h2)

ε2p

∣∣∣∣∣∣∣∣
Lq(R2)

≤ C(q)

(
‖N2

p‖Lq(R2) + ‖Np∂1θp‖Lq(R2)

+ ε2p‖N3
p‖Lq(R2) + ε2p‖Np(∂1θp)2‖Lq(R2)

+ ε4p‖N4
p‖Lq(R2) + ε4p‖(∂2θp)2Np‖Lq(R2)

+ ε4p‖(∂1Np)2Np‖Lq(R2)

+ ε6p‖(∂2Np)2Np‖Lq(R2)

)
.

Lemma 6.4. For any 1 < q <∞, there exists a constant C(q), such that

||Np||Lq(R2) + ||∂1Np||Lq(R2) + ||∂2Np||Lq(R2)

+||∂21Np||Lq(R2) + εp||∂1∂2Np||Lq(R2) + ε2p||∂22Np||Lq(R2)

≤ C(q)

(
||Np||2L2q(R2) + ε2p||Np||3L3q(R2) + ε2p||∂1Np||2L2q(R2)

+ ε4p||∂2Np||2L2q(R2) + ε4p||∂1Np||2L2q(R2)||Np||L∞(R2)

+ ε6p||∂2Np||2L2q(R2)||Np||L∞(R2)

)
.

(6.12)

Proof. First we observe that

∂αKj,k
εp = ıα1+α2Kj+α1,k+α2

εp , (6.13)

for any |α| ≤ 2. Applying the operator ∂α to (5.16) we obtain

||∂αNp||Lq(R2) ≤ ||∂αK2,0
εp ∗ fp||Lq(R2) + ε2p

∑
i+j=2

||∂αKi,j
εp ∗R

i,j
εp ||Lq(R2), (6.14)

then, with proposition 5.9, we deduce

||Np||Lq(R2) ≤ ||K2,0
εp ∗ fp||Lq(R2) +

∑
i+j=2

ε2p||Ki,j
εp ∗R

i,j
εp ||Lq(R2)

≤ C(q)

(
||fp||Lq(R2) + ε2p

∑
i+j=2

||Ri,jεp ||Lq(R2)

)
,

||∂1Np||Lq(R2) ≤ ||∂1K2,0
εp ∗ fp||Lq(R2) +

∑
i+j=2

ε2p||∂1Ki,j
εp ∗R

i,j
εp ||Lq(R2)

≤ C(q)

(
||fp||Lq(R2) + ε2p

(
||R2,0

εp ||Lq(R2) + ||R1,1
εp ||Lq(R2)

)
+ εp||R0,2

εp ||Lq(R2)

)
.
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Similar estimates hold for ∂2Np, ∂
2
1Np, ∂1∂2Np and ∂22Np. Finally using lemma

6.3, we obtain lemma 6.4.

Lemma 6.5. Let 2 ≤ q ≤ ∞, there exists a positive constant C(q), depending
possibly on q, but not on p, such that

||∂1Np||Lq(R2) + εp||∂2Np||Lq(R2) ≤ C(q)ε
6
q−3
p , (6.15)

and

||Np||Lq(R2) ≤ C(q), ∀2 ≤ q ≤ 8

3
. (6.16)

Moreover, for 8
3 < q < 8, there exists C(q) such that the following bound holds.

ε
2
3
p ||Np||Lq(R2) ≤ C(q). (6.17)

Proof. Using (4.4), we have

||∂1Np||L∞(R2) ≤
C

ε3p
, and ||∂2Np||L∞(R2) ≤

C

ε4p
. (6.18)

Combining with (3.18) and (3.22) we obtain (6.15) using standard interpolations
inequalities. Applying (2.8) on (5.16) for any 0 ≤ s ≤ 1

4 we obtain

||Np||Hs(R2) ≤||K2,0
εp ||Hs(R2)

(
||fp||L1(R2) + ε2p||R2,0

εp ||L1(R2)

)
+ ε2p||R1,1

εp ||L1(R2)||K1,1
εp ||Hs(R2)

+ ε2p||R0,2
εp ||L1(R2)||K0,2

εp ||Hs(R2).

(6.19)

By proposition 5.7, lemma 6.3 and claim (5.22), we deduce

||Np||Hs(R2) ≤ C(s). (6.20)

Thus, by Sobolev embedding (2.6) we have

||Np||Lq(R2) ≤ C(q), ∀2 ≤ q ≤ 8

3
. (6.21)

Let ν > 0 combining (6.16) and (6.15) there exists a constant C(ν) and q > 2
such that

||Np||W 1,q(R2) ≤ C(ν)

(
1 + ε−1−νp

)
.

Thus, by Sobolev embedding (2.2), we obtain

||Np||L∞(R2) ≤ C(ν)

(
1 + ε−1−νp

)
.

Combining with (6.16) we have (6.17) by interpolation between Lebesgue spaces.

We are now able to prove the first step of our induction.
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The first step Let 1 < q <∞, there exists a constant C(q), such that

||Np||Lq(R2) + ||∂1Np||Lq(R2) + ||∂2Np||Lq(R2)+

||∂21Np||Lq(R2) + εp||∂1∂2Np||Lq(R2) + ε2p||∂22Np||Lq(R2) ≤ C(q).
(6.22)

Proof. First of all for any 1 < q ≤ 4
3 we have, using lemma 6.4, inequalities

(6.17), (6.15) and (6.16),

||Np||Lq(R2) + ||∂1Np||Lq(R2) + ||∂2Np||Lq(R2)+

||∂21Np||Lq(R2) + εp||∂1∂2Np||Lq(R2) + ε2p||∂22Np||Lq(R2) ≤ C(q).
(6.23)

Then, by Sobolev embedding (2.1) and standard interpolations inequalities,

||Np||Lq(R2) + εp||∂1Np||Lq(R2) + ε2p||∂2Np||Lq(R2) ≤ C(q), (6.24)

for any 1 < q ≤ 4. Then, for any 1 < q ≤ 2 by lemma 6.4, we obtain

||Np||Lq(R2) + ||∂1Np||Lq(R2) + ||∂2Np||Lq(R2)+

||∂21Np||Lq(R2) + εp||∂1∂2Np||Lq(R2) + ε2p||∂22Np||Lq(R2) ≤ C(q).
(6.25)

We deduce, by Sobolev embedding (2.1), that

||Np||Lq(R2) + εp||∂1Np||Lq(R2) + ε2p||∂2Np||Lq(R2) ≤ C(q), (6.26)

∀ 1 < q <∞. Finally using lemma 6.4 we obtain claim (6.22).

Inductive step We fix k ∈ N. In this part we assume that (6.1) is true for
any 1 < q < ∞ and any α ∈ N2 such that |α| ≤ k. We will prove that (6.1)
holds for any |α| ≤ k + 1.

Lemma 6.6. There exists p0 > 0 such that for any 0 ≤ p ≤ p0, 1 < q <∞ and
α ∈ N2 such that |α| ≤ k + 1, then there exists a constant C(q, α) such that

||∂α∂1θp||Lq(R2) + εp||∂α∂2θp||Lq(R2) ≤ C(q, α). (6.27)

Proof. Let α ∈ N2, |α| ≤ k+1. Using Sobolev embedding (2.3) and our hypoth-
esis, we have

||Np||Ck0 (R2) ≤ C(k), (6.28)

where C(k) is a constant not depending on p. Then, by (4.2), we obtain

||∂α∂1θp||Lq(R2) + εp||∂α∂2θp||Lq(R2) ≤ C(q, α)

(
||∂αNp||Lq(R2)

+ ε2p
∑

0≤β<α

(
||∂α−β∂1θp||Lq(R2) + εp||∂α−β∂2θp||Lq(R2)

))
.

(6.29)

If we denote

Sqk =
∑

|α|≤k+1

(
||∂α∂1θp||Lq(R2) + εp||∂α∂2θp||Lq(R2)

)
,
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summing the previous inequalities, we obtain

Sqk ≤ C(q, α)

(
ε2pS

q
k +

∑
|α|≤k+1

||∂αNp||Lq(R2)

)
.

We conclude by using (6.1).

Lemma 6.7. There exists a positive constant C(q, α) depending possibly on q
and α, but not on p, such that

||∂αfp||Lq(R2) + ||∂αR0,2
εp ||Lq(R2)

+ εp||∂αR1,1
εp ||Lq(R2) + ε2p||∂αR2,0

εp ||Lq(R2) ≤ C(q, α),
(6.30)

for any 1 ≤ q <∞ , |α| ≤ k + 1.

Proof. We will detail the computation for h1h2 defined in proposition 5.4. First
of all we have using (5.11), (5.12)∣∣∣∣∣∣∣∣∂α(h1h2)

ε2p

∣∣∣∣∣∣∣∣
Lq(R2)

≤ C
(
‖∂α(δN2

p )‖Lq(R2) + ‖∂α(δNp∂1θp)‖Lq(R2)

+ ε2p‖∂α(δN3
p )‖Lq(R2) + ε2p‖∂α(Np(∂1θp)

2δ)‖Lq(R2)

+ ε4p‖∂α(N4
p lδ)‖Lq(R2) + ε4p‖∂α((∂2θp)

2Npδ)‖Lq(R2)

+ ε4p‖∂α((∂1Np)
2NpδK

′)‖Lq(R2)

+ ε6p‖∂α((∂2Np)
2NpδK

′)‖Lq(R2)

)
,

where δ = δ(−ε2pγNp), K ′ = K ′(−ε2pγNp), l = l(−ε2pγNp). Using our hypothesis
and the chain rule we have for any β ∈ N2, |β| ≤ k + 1, 1 < q <∞

‖∂β(K ′(−ε2pγNp))‖Lq(R2)+‖∂β(δ(−ε2pγNp))‖Lq(R2)+‖∂β(l(−ε2pγNp))‖Lq(R2) ≤ C.

Thus using Leibniz formula, our hypothesis and (6.27) we have∣∣∣∣∣∣∣∣∂α(h1h2)

ε2

∣∣∣∣∣∣∣∣
Lq(R2)

≤ C.

Applying the operator ∂α on (5.5), (5.6), (5.7) and using our hypothesis and
(6.27) we obtain claim (6.30).

Finally let |α| ≤ k + 1 using (5.16) we have

∂αNp = K2,0
εp ∗ ∂

αfp +
∑
i+j=2

ε2pK
i,j
εp ∗ ∂

αRi,jεp . (6.31)

Then using proposition 5.9, there exists C(q) such that

||∂αNp||Lq(R2) ≤ C(q)

(
||∂αfp||Lq(R2) +

∑
i+j=2

ε2p||∂αRi,jεp ||Lq(R2),

)
, (6.32)
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||∂α∂1Np||Lq(R2) ≤ C(q)

(
||∂αfp||Lq(R2)

+ ε2p
(
||∂αR2,0

εp ||Lq(R2) + ||∂αR1,1
εp ||Lq(R2)

)
+ εp||∂αR0,2

εp ||Lq(R2)

)
,

(6.33)

and

||∂α∂2Np||Lq(R2) + ||∂α∂21Np||Lq(R2) + εp||∂α∂1∂2Np||Lq(R2) + ε2p||∂α∂22Np||Lq(R2)

≤ C(q)

(
||∂αfp||Lq(R2) + ε2p||∂αR2,0

εp ||Lq(R2) + εp||∂αR1,1
εp ||Lq(R2) + ||∂αR0,2

εp ||Lq(R2)

)
.

(6.34)

We conclude the induction by using (6.30).

Conclusion We have proved proposition 6.1, theorem 5 follows from our dis-
cussion at the beginning of the section.

7 Strong convergence

7.1 Strong local convergence

Proposition 7.1. Let (pn)n∈N such that pn → 0. Then there exists N0 a non
constant solution of (SW) such that, up to a subsequence,

∀1 < q <∞, ∀k ∈ N, Npn ⇀ N0 in W k,q
(
R2
)
, when n→∞. (7.1)

Thus for any 0 ≤ γ < 1 and any compact subset K, we obtain

Npn → N0 in C0,γ(K), when n→∞. (7.2)

Proof. Combining (6.2) with Banach-Alaoglu theorem, there exists a subse-
quence (pn)n∈N and a function N0 such that Npn ⇀ N0 inW k,q

(
R2
)

for any
1 < q < ∞, k ∈ N. Then (7.2) is a consequence of (7.1) and (2.4). Thus N0 is
non constant using (3.4). We will now prove that N0 is a solution of (SW). We
recall that

fp = γ

(
Np∂1θp +

g′′(1)

2
N2
p +

1

2
(∂1θp)

2

)
, (7.3)

with

γ

(
1 +

g′′(1)

2
+

1

2

)
= γ

(
3 + g′′(1)

2

)
=

1

2
, (7.4)

and

∂41Np −∆Np =− ∂21fp + L(Np, θp)

− ε2p
∑
i+j=2

∂i1∂
j
2R

i,j
εp .

(7.5)
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Using (5.4) and theorem 5 we have

‖L(Np, θp)‖L2(R2) −→
n→∞

0.

Using (5.6) and theorem 5 we have

ε2p||∂21R2,0
εp ||L1(R2) −→

n→∞
0,

then using (6.30) we have

ε2p||∂22R0,2
εp ||L1(R2) + ε2p||∂1∂2R1,1

εp ||L1(R2) −→
n→∞

0.

On the other hand, using (7.2), we have

‖N2
pn −N

2
0 ‖L∞(K) −→

n→∞
0,

for any compact K. Thus

N2
pn −→n→∞ N2

0 in D′(R2).

Combining (3.7) and

||(∂1θp)2 −N2
p ||L1(R2) ≤ ||∂1θp −Np||L2(R2)||∂1θp +Np||L2(R2),

we obtain

||N∂1θp −N2
p ||L1(R2) −→

p→0
0, ||(∂1θp)2 −N2

p ||L1(R2) −→
p→0

0.

Thus, we deduce∣∣∣∣∣∣∣∣12N2
p − fp

∣∣∣∣∣∣∣∣
L1(R2)

≤
(
|γ|||Np∂1θp −N2

p ||L1(R2)

+
|γ|
2
||(∂1θp)2 −N2

p ||L1(R2)

)
−→
p→0

0.

Finally passing to the limit in (7.5) we have

∂41N0 −∆N0 +
1

2
∂21(N2

0 ) = 0. (7.6)

We will now prove the strong global convergence.
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7.2 Strong global convergence

We recall that

E(ρp, φp) =
K(1)γ2εp

2

(
E0(Np, θp) + ε2p(E2(Np, θp))) + ε4p(E4(Np, θp))

)
,

with

E0(Np, θp) =

∫
R2

N2
p + ∂1θ

2
p,

E2(Np, θp) = 2

(∫
R2

(∂1Np(x))2

2
+
|∂2θp(x)|2

2
− γ

6

(
3Np(∂1θp)

2 + g′′(1)N3
p )dx

)
,

E4(Np, θp) =

∫
R2

K

(
1− γε2pNp(x)

)
1√
K(1)

2 |∂2Np(x)|2 − γNp(x)|∂2θp(x)|2

+Np(x)j(x)

(
(∂1Np(x))2 + ε2p(∂2Np(x))2

)
+ γ4N4

p (x)l(x)dx,

and

EKP (∂1θp) =
1

2

∫
R2

(∂21θp)
2 +

1

2

∫
R2

(∂2θp)
2 − 1

6

∫
R2

(∂1θp)
3.

Proposition 7.2. Let (pn)n∈N a sequence which converges to 0 and satisfies
(7.1) and (7.2). Then, up to a subsequence, there exists a positive constant µ0

such that

EKP (∂1θpn)→ EKP (µ0), and

∫
R2

|∂1θpn |2 −→
n→∞

µ0 > 0. (7.7)

See section 2 for the definition of EKP .

First of all, we prove three lemmas.

Lemma 7.3. There exists a constant C, not depending on p, such that

E(ρp, φp)− p ≤
−1

(K(1)γ2)254S2
KP

p3 + Cp4. (7.8)

Proof. Let ω a ground state of (SW) and p > 0. According to [19, 20] ω is
smooth, belongs to Lq(R2) for any q > 1 its first order derivatives are in L2(R2).
There exists v such that ∂1v = ω (see lemma 3.9 [4] and [22]) with v smooth.
Moreover v is in Lq(R2), q > 2 and its gradient belongs to Lq(R2), q > 1. We
let

ρ(x1, x2) = 1− ε2γω
(
ε

x1√
K(1)

, ε2
x2√
K(1)

)
, (7.9)
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φ(x1, x2) = −γ
√
K(1)εv

(
ε

x1√
K(1)

, ε2
x2√
K(1)

)
, (7.10)

where the constant ε is chosen such that

p = K(1)γ2ε

∫
R2

ω2.

We observe that ρ ∈ 1 + H1(R2) and φ ∈ Ḣ1(R2). Thus, by computation, we
have

E(ρ, φ) = K(1)γ2ε

∫
R2

ω2 +K(1)γ2ε3EKP (ω) +
K(1)γ2

2
ε5E4(ω, v).

Then, using lemma 2.1, we obtain

E(ρ, φ)− p ≤ K(1)γ2ε3EKP (ω) + Cε5

≤ K(1)γ2
(

p

K(1)γ2
( ∫

ω2
))3

EKP (ω) + Cp4

≤ p3

(K(1)γ2)2
EKP (ω)

(
∫
ω2)3

+ Cp4

≤ p3

(K(1)γ2)2

(
−1

54S2
KP

)
+ Cp4.

For p� 1, since ω ∈ L∞(R2) we have |ρ− 1| � 1 and |ρp − 1| � 1. Thus using
(1.11) we have

E(ρp, φp)− p = E(ρp, φp)− p
≤ E(ρ, φ)− p
= E(ρ, φ)− p

≤ p3

(K(1)γ2)2

(
−1

54S2
KP

)
+ Cp4.

Lemma 7.4. We have

E(Np, θp)− p = K(1)γ2ε3pEKp
(
∂1θp

)
+ o(ε3p), (7.11)

and

− 1

54S2
KP

(∫
R2

(∂1θp)
2

)3

≤ EKP (∂1θp) ≤ −
1

54S2
KP

(∫
R2

(∂1θp)
2

)3

+ o(1).

(7.12)

Proof. Combining (5.2) and (7.1) we obtain

1

ε2p

∫
R2

(Np − ∂1θp)2 −→
p→0

0, (7.13)
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and
||∂1Np − ∂21θp||L2(R2) ≤Mεp. (7.14)

Then, we have

E(Np, θp)− p =
K(1)γ2εp

2

∫
R2

(
Np − ∂1θp

)2
+K(1)γ2ε3pEKP (∂1θp)

+
K(1)γ2ε3p

2

(∫
R2

(
(∂1Np(x))2 − (∂21θp)

2)dx+

+
γg′′(1)

3
(−N3

p + (∂1θp)
3) + γ

(
−Np(∂1θp)2 + (∂1θp)

3)dx

)
+
K(1)γ2ε5p

2
E4(Np, θp).

Thus
E(Np, θp)− p = K(1)γ2ε3pEKP (∂1θp) + o(ε3p). (7.15)

Using lemma 2.1

EKP (∂1θp) ≥ EKPmin

(∫
R2

(∂1θp)
2

)
= − 1

54S2
KP

(∫
R2

(∂1θp)
2

)3

. (7.16)

Then combining (7.11), lemma 7.3 and (7.13) we obtain

EKP (∂1θp) ≤ −
p3

(K(1)γ2)354S2
KP

1

ε3
+ o(1)

≤ −1

54S2
KP

(∫
R2

Np∂1θp

)3

+ o(1)

≤ −1

54S2
KP

(∫
R2

(∂1θp)
2

)3

+ o(1).

This ends the proof of lemma 7.4.

We are now able to prove proposition 7.2.

Proof of proposition 7.2 . Using (7.1) and (7.13) we have

lim inf
n→∞

∫
R2

(∂1θpn)2 ≥
∫
R2

N2
0 , (7.17)

thus, up to extraction,

lim
n→∞

∫
R2

(∂1θpn)2 → µ0, when n→∞, (7.18)

where

µ0 ≥
∫
R2

N2
0 > 0. (7.19)
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Combining lemma 7.4, (7.18) and lemma 2.1 we obtain

EKP (∂1θpn)→ EKPmin(µ0), and

∫
R2

|∂1θpn |2 → µ0 > 0, whenn→∞.

(7.20)

We can now obtain global convergence thanks to proposition 2.2.

Proposition 7.5. Let (pn)n∈N a sequence which converges to 0. Up to an
extraction, there exists a ground state N0 such that

∂1θpn → N0 in Y (R2), and Npn → N0 in L
2(R2), when n→∞. (7.21)

Proof. Using proposition 7.2 there exists a constant µ0, such that, up to a
subsequence,

EKP (∂1θpn)→ EKPmin(µ0), and

∫
R2

|∂1θpn |2 → µ0 > 0, whenn→∞.

(7.22)

Then using proposition 2.2, there exists (an)n∈N and a ground state
∼
N0 with

speed σ =
µ2
0

(µ∗)2 , such that

∂1θpn(.− an) −→
n→∞

∼
N0 inY (R2). (7.23)

So by (7.13) we have

Npn(.− an) −→
n→∞

∼
N0 in L2(R2). (7.24)

Using proposition 7.1 we have

∀1 < q <∞, ∀k ∈ N, Npn(.− an) ⇀ N0 in W k,q
(
R2
)
, when n→∞,

with N0 a solution of (SW). Thus by (7.24) N0 =
∼
N0, and

∼
N0 is a ground state

of speed 1. We will now prove the convergence of Npn and ∂1θpn . Using the
continuity of the translation in Lq(R2) for any 1 ≤ q <∞, if an → a then

∂1θpn(.− a) −→
n→∞

N0 in Y (R2), and Npn(.− a) −→
n→∞

N0 in L2(R2).

Thus, it is sufficient to prove that (an)n∈N is bounded. By contradiction assume,
up to an extraction, that (an)n∈N satisfies

an −→
n→∞

∞.

Then combining (7.2) and (1.10) there exists C > 0 not depending on n such
that ∫

B(0,1)

N2
pn > 2C, (7.25)

33



thus by (7.24) we have∫
B(0,1)

|N0(x+ an)−Npn(x)|2dx −→
n→∞

0. (7.26)

Then for n large enough ∫
B(0,1)

|N0(x+ an)|2dx ≥ C, (7.27)

which is absurd since for any f ∈ L2 we have∫
B(0,1)

|f(x+ an)|2dx −→
n→∞

0, (7.28)

this concludes the proof of proposition 7.5.

Proof of theorem 2. Combining proposition 7.5 (L2 convergence), theorem 5
(boundedness in W k,q) and an interpolation argument we have

Npn −→
n→∞

N0 in W k,q(R2). (7.29)

Since the embedding Y (R2) ↪→ L2(R2) is continuous the same argument gives

∂1θpn −→
n→∞

N0 in W k,q(R2). (7.30)

A Soliton in the one dimensional case

We begin with some reminders about nonlinear Schrödinger equations in di-
mension 1. Traveling wave solutions to (TWc) are related to the soliton of the
generic Korteweg-de Vries equation (see [2]). For traveling waves solution to
(NLS) the transonic limit can lead to solitons of the modified (KdV) equation
or even the generalized (KdV) (see [9]). We show in this section that traveling
waves of (E-K) exhibit similar properties.
The existence of traveling waves in dimension one for the Euler-Korteweg equa-
tion follows from basic ode arguments that we sketch here. The Euler-Korteweg
system, in dimension one, reads

− cρ′ + (ρu)′ = 0, (1)

− cu′ +
(
u2

2

)′
+ g′ =

(
K(ρ)ρ′′ +

1

2
K ′(ρ)ρ′2

)′
(2), x ∈ R.

(E-K)

We assume

g(1) = 0, g′(1) = 1 , Γ = g′′(1) + 3 6= 0, γ =
1

g′′(1) + 3
, c ∈]0, 1[. (A.1)
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We will study solitons whose limits are

ρ±∞ = 1; ρ′±∞ = 0, ρ′′±∞ = 0, u±∞ = 0;u′±∞ = 0, u′′±∞ = 0. (A.2)

As in dimension two, we let

ε =
√

1− c2. (A.3)

By integrating (1) on [x,+∞[ we obtain

− cρ+ ρu = −c, (A.4)

so

u =
c(ρ− 1)

ρ
. (A.5)

Using (A.5) and (2), we have, by integration on [x,+∞[,

− c2 (ρ− 1)

ρ
+
c2(ρ− 1)2

2ρ2
+ g(ρ) = K(ρ)ρ′′ +

1

2
K ′(ρ)ρ′2. (A.6)

Multiplying by ρ′ and integrating on [x,+∞[, we have

1

2
K(ρ)(ρ′)2 =

−c2

2ρ
(ρ− 1)2 +G(ρ). (A.7)

where G is a primitive of g such that G(1) = 0.

The case Γ 6= 0 We define the function

−c2

2ρ
(ρ− 1)2 +G(ρ) = Fε(ρ), (A.8)

and

ρm,ε =

{
sup {ρ < 1, Fε(ρ) = 0} , if γ > 0.
inf {ρ > 1, Fε(ρ) = 0} , if γ < 0.

(A.9)

Then we have:

Lemma A.1. For ε� 1, we have

1− (3γε2 + |γ|ε3) ≤ ρm,ε ≤ 1− (3γε2 − |γ|ε3). (A.10)

Proof. The lemma is a direct consequence of the intermediate value theorem
and the fact that

Fε(1− γαε2) = ε6α2γ2(1− α

3
+O(ε2α)).

Remark A.2. For ε� 1,
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• If γ > 0, 0 < ρm,ε < 1 , Fε(ρm,ε) = 0 and Fε(ρ) > 0 for ρ ∈]ρm,ε, 1[.

• If γ < 0, 1 < ρm,ε < 2 , Fε(ρm,ε) = 0 and Fε(ρ) > 0 for ρ ∈]1, ρm,ε[.

To continue our reasoning, we need informations on the derivative.

γF ′ε(ρm,ε) > 0, (if 1− c� 1).

Indeed, we will prove, if γ > 0, that the soliton decreases from 1 to ρm,ε between
]−∞, 0] then increases between [0,∞[. If γ < 0, the soliton increases from 1 to
ρm,ε between ]−∞, 0] then decreases between [0,∞[. But if F ′ε(ρm,ε) = 0 then
the Cauchy solution of (A.6) such that ρ(0) = ρm,ε, ρ

′(0) = 0 is stationary. And
in this case there is no soliton that converges to 1.

Lemma A.3. For ε� 1
γF ′ε(ρm,ε) > 0. (A.11)

Proof. Consequence of lemma A.1 and elementary computation.

We can now conclude

Proposition A.4. Under the conditions

g(1) = 0, g′(1) = 1, Γ 6= 0.

For ε� 1, there exists ρ solution of (A.6) with

ρ(0) = ρm,ε, ρ
′(0) = 0,

and

u =
c(ρ− 1)

ρ
.

Then (ρ, u) is a global solution of
− cρ′ + (ρu)′ = 0, (1)

cu′ +

(
u2

2

)′
+ g′ =

(
K(ρ)ρ′′ +

1

2
K ′(ρ)ρ′2

)′
(2), x ∈ R,

(E-K)

such that

ρ±∞ = 1; ρ′±∞ = 0, ρ′′±∞ = 0, u±∞ = 0;u′±∞ = 0, u′′±∞ = 0.

Moreover if γ > 0

• ρ is increasing on [0,+∞[ and even.

If γ < 0

• ρ is decreasing on [0,+∞[ and even.
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Proof. Multiplying the equation (A.6) by ρ′ and integrating on [0, x] we obtain

1

2
K(ρ)(ρ′)2 =

−c2

2ρ
(ρ− 1)2 +G(ρ) = F (ρ). (A.12)

We have, by (A.11), ρ′′(0) = F ′(ρm) has the same sign as γ. So near 0, if γ > 0
ρ′ is increasing. The rest of the proof is deduced using basic ode argument and
phase portrait analysis (see figure 1, 2).

We let, as in the two-dimensional case

ρ− 1 = −ε2γrε
(

εx√
K(1)

)
. (A.13)

Then we have

Proposition A.5. Let

N(x) =
3

ch2(x2 )
, (A.14)

the classical soliton to the Korteweg-de-Vries equation (KdV). Then

rε −→
ε→0

N, in C0(R). (A.15)

Figure 1: K=1, Γ > 0, ε = 0.82,

G(x) = (x−1)2
2 . Figure 2: Graph of ρ(x).

First of all we have

Lemma A.6. For any ε� 1, r is even, increasing on ]−∞, 0] then decreasing
on [0,+∞[. Moreover

rε(0) −→
ε→0

3,

and there exists a constant C, not depending on ε, such that

‖r′ε‖∞ ≤ C.
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Proof. The variations of r are an immediate consequence of the proposition A.4.
Using (A.13) and lemma A.1 we have for ε� 1

3− ε

|γ|
≤ rε(0) ≤ 3 +

ε

|γ|
.

Using (A.12) we obtain

γ2

2K(1)
K(ρ)r′2ε =

r2εγ
2

2

(
1− rεγ

1

3γ

)
+O(ε2r3ε).

Since K(1) 6= 0 and ρ −→
ε→0

1 in C0(R) there exists M not depending on ε such

that
‖r′ε‖∞ ≤M,

this ends the proof.

Proof of proposition A.5. We recall that

− c2 (ρ− 1)

ρ
+
c2(ρ− 1)2

2ρ2
+ g(ρ) = K(ρ)ρ′′ +

1

2
K ′(ρ)ρ′2. (A.16)

After lenghty but simple computations, we find that (rε, r
′
ε) is a solution of

X ′ = f(t,X, ε), X(0) =

(
rε(0)

0

)
,

with

f : R× U×]− δ, δ[−→ R2

f

(
t,

(
r
r′

)
, ε

)
=

(
r′

g(r, r′, ε)

)
,

where U =]0, 4[×]−M − 1,M + 1[,

g(r, r′, ε) = r − r2

2
+ ε2R1(ε2r) + ε2r3P1(ε2r) + ε2R2(ε2r)r′2.

with P1, R1, R2 ∈ C∞(]− 1, 1[). We recall that

N(x) =
3

ch2(x/2)
.

Moreover N is a solution of

X ′ = f(t,X, 0), X(0) =

(
3
0

)
.

Then as rε is a solution of

X ′ = f(t,X, ε), X(0) =

(
rε(0)

0

)
,
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with rε(0)→ 3, we obtain, using the Cauchy-Lipschitz theorem with parameter,
that for any compact set [a, b]

rε −→
ε→0

N, in C0([a, b]), (A.17)

and
r′ε −→

ε→0
N ′, in C0([a, b]). (A.18)

We have using proposition A.4 and (A.13) that the functions N, rε are increasing
on ]−∞, 0], decreasing on [0,∞[ and converge to 0 in +∞ and −∞. Thus we
obtain

rε −→
ε→0

N, in C0(R).

which concludes the proof.

The following proposition ends the proof of proposition 1.4

Proposition A.7. We have for all k ∈ N

‖r(k)ε −N (k)‖L∞(R) −→
ε→0

0.

Proof. We already know the result for k = 0, we prove it for k = 1. We have
by (A.18) uniform convergence on any compact. As rε converges uniformly to
N and N(x) −→

|x|→∞
0 then sup

ε′≤ε
sup
M≤|x|

rε′(x) −→
M→∞

0. Since we have

γ2

2K(1)
K(ρ)r

′2
ε =

r2εγ
2

2

(
1− rεγ

1

3γ

)
+O(ε2r3ε). (A.19)

we obtain that sup
ε′≤ε

sup
M≤|x|

r
′

ε′ −→|x|→∞
0. Moreover N ′(x) −→

|x|→∞
0 so we obtain

∀η > 0,∃ε′,∃M,
(
|x| > M, ε < ε′ =⇒ |r′ε(x)−N(x)| ≤ |r′ε(x)|+ |N(x)| ≤ η

)
,

combining with (A.15) we have

‖r(1)ε −N (1)‖L∞(R) −→
ε→0

0. (A.20)

The result for higher order follows by use of the ODE and a simple induction
argument.

Remark A.8. Using (A.5) and letting

u(x) = −ε2γvε
(

εx√
K(1)

)
, (A.21)

we obtain

vε(x) =

√
1− ε2

1− ε2γrε(x)
rε(x),
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so by the proposition A.7 we have that

‖rε −N‖L∞(R) −→
ε→0

0.

On the other hand by using Leibniz formula one has, for all n ∈ N

vε(x) =

n−1∑
k=0

( √
1− ε2

1− ε2γrε(x)

)(k)

r(n−k)ε (x) +

( √
1− ε2

1− ε2γrε(x)

)
r(n)ε (x),

and therefore by proposition (A.7) we have for all n ∈ N

‖v(n)ε −N (n)‖L∞(R) −→
ε→0

0, (A.22)

a result similar to the one obtained in dimension 2.

The case Γ = 0 The proof of proposition 1.6 is similar to what was done
earlier (see figure 3 for a phase portrait). let us give a heuristic argument.
Substituting

ρ = 1 + εr

(
εx√
K(1)

)
,

into (A.6) we find (
g′′′(1)− 12

6

)
r3 + r = r′′ +O(ε).

Then differentiating this equation we have

1

2
w2w′ + w′ = w′′′.

where

w =
1√

g′′′(1)− 12
.

For a similar (and more general) result in the case of the non-linear Schrödinger
equation, see [9].
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Figure 3: K=1, Γ = 0, ε=0.5, G(x) = (x−1)2
2 − (x−1)3

2 .
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[14] David Chiron and Mihai Mariş. Traveling waves for nonlinear Schrödinger
equations with nonzero conditions at infinity. Archive for Rational Me-
chanics and Analysis, 226(1):143–242, 2017.

[15] David Chiron and Eliot Pacherie. Smooth branch of rarefaction pulses for
the nonlinear Schrödinger equation and the Euler-Korteweg system in 2d.
In preparation.

[16] David Chiron and Eliot Pacherie. A uniqueness result for the two vor-
tex travelling wave in the nonlinear schrodinger equation. arXiv preprint
arXiv:2109.07098, 2021.

[17] David Chiron and Frédéric Rousset. The KdV/KP-I limit of the nonlinear
Schrödinger equation. SIAM Journal on Mathematical Analysis, 42(1):64–
96, 2010.

[18] A De Bouard and JC Saut. Remarks on the stability of generalized KP
solitary waves. Contemporary mathematics, 200:75–84, 1996.

[19] Anne de Bouard and Jean-Claude Saut. Solitary waves of generalized
Kadomtsev-Petviashvili equations. Ann. Inst. H. Poincaré Anal. Non
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