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ABSTRACT

In this demo paper, we present a new open-source python mod-
ule for building information retrieval pipelines with transformers 
namely CHERCHE. Our aim is to propose an easy to plug tool 
capable to execute, simple but strong, state-of-the-art information 
retrieval models. To do so, we have integrated classical models 
based on lexical matching but also recent models based on semantic 
matching. Indeed, a large number of models available on public 
hubs can be now tested on information retrieval tasks with only 
a few lines. CHERCHE is oriented to newcomers into the neu-
ral information retrieval field that want to use transformer-based 
models in small collections without struggling with heavy tools. 
The code and documentation of CHERCHE is public available at 
https://github.com/raphaelsty/cherche
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1 INTRODUCTION

Most recent research in Information Retrieval (IR) is focusing on
the integration of neural models within IR, a task which is widely
called neural IR. After the development of static embeddings, such
as Word2Vec [10], researchers first focused on the use of those
static representations into adapted neural models for IR. Most of
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Figure 1: Online demo of CHERCHE using spaces of hugging-

face available at huggingface.co/spaces/raphaelsty/games.

the models are oriented to propose new architecture that integrate

the static embeddings in early layers. Neural tools, such as match-

Zoo [3], regrouped multiple existing models and facilitated the

development of new ones. However, static embeddings are cur-

rently being replaced by contextualized representations, such as

BERT [1]. These new models have new characteristics that call for

the use of the full models instead of a lookup table of embedding

vectors [5]. Dedicated libraries to access these new family of mod-

els, such as transformers [16], were developed and are nowadays

widely used in Natural Language Processing (NLP). Some efforts

have been made to integrate these libraries in IR systems, but at

the expense of extra parameters or new methods on their standard



• a new tool that reduces the loadwhen integrating transformer-

based models

• a new option to perform the exploration of new (expert

driven) pipelines to improve neural IR models (such as Cas-

cade model [15])

2 RELATED TOOLS

Multiple python-based IR tools are publicly available nowadays.

Some of the most popular, pyterrier [8] and pyserini, are backended

by their Java versions Terrier and Anserini [17], because, at their

time, they are based on Lucene4. Both of them are standard, and

well established, alternatives when considering a python-based IR

tool. Although they both are developed by strong communities,

both tools are “heavy”5 to install and use as extra steps are needed

for their use (e.g., starting a Java virtual machine is required in both

cases even when only python code is used). This contrasts with the

NLP alternatives for similar downstream tasks.

3 CHERCHE

In this section, we detailed CHERCHE. First, we present its installa-

tion followed by its raking models, reraker models, pipelines, and

finally, its internal evaluation module.

1We arguably suggest that all those models may be useful in neural IR.
2https://huggingface.co/spaces/
3Full code is available at https://colab.research.google.com/drive/1yN_
64KNg6XT6Q5BZ_dzhWlbpnjDOtmfI?usp=sharing
4https://lucene.apache.org/
5It is clear that current installation process is clean but we refer to heavy to the fact
that a Java virtual machine is needed. Thus, library that rely on Java are, arguable, less
portable under certain configurations.

3.1 Installation

We opted for a light installation from pip repository as many other

python libraries. So the single line “pip –install cherche” allows the

full installation of CHERCHE.

3.2 Retriever

Retrievers allow the speed up of a neural search pipeline by filtering

out documents that may be not relevant. We implemented most

common retrievers based on lexical matching between the query

and the documents. However, recent models that use semantic

similarity combined with approximate search, based on faiss [4],

were also included to speed up the retrieval process. Here is the list

of available retrievers using CHERCHE:

• TfIdf: is based on the TfidfVectorizer6 of sklearn. It computes

the dot product between the query tf-idf vector and the

documents tf-idf matrix and retrieves the highest match.

TfIdf retriever stores a sparse matrix and an index that links

the rows of the matrix to document identifiers.

• BM25L and BM25Okapi: is defined by the use of a wrapper

to the Rank-BM257 library, a two line search engine, which

implements the BM25 version of [13].

• Elastic: is defined by the use of a wrapper to the Elastic-

search Python client8. This allows the use of any Elastic-

search server into a neural search pipeline. In this case, re-

trieval parameters are externally defined directly on Elastic.

• Lunr: is defined by the use of a wrapper to Lunr.py9. It is a

powerful and practical solution for searching inside a corpus

of documents. Lunr stores an inverted index in memory.

• Flash: is defined by the use of a wrapper to FlashText10. This

is based on a keywords-based retrieval system as described

in [11].

• Encoder: allows the use of a framework that encodes queries

and documents with a single model. It is compatible with the

SentenceTransformers models. The encoder pre-computes

document embeddings and uses Faiss11 to quickly find the

documents most similar to the query embedding.

• DPR: behaves similarly than Encoder but uses two distinct

transformers, one for the document and another for the

query.

• Fuzz: is defined by the use of a wrapper to RapidFuzz12. It is

a blazing fast library dedicated to fuzzy string matching by

storing documents in memory.

Currently, only the retriever Elastic is recommended with large

corpora in CHERCHE. The other retrievers are adapted to small/medium

size corpora as they rely on memory to store main data structures.

6https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html
7https://github.com/dorianbrown/rank_bm25/
8https://github.com/elastic/elasticsearch-py
9https://github.com/yeraydiazdiaz/lunr.py
10https://github.com/vi3k6i5/flashtext
11https://github.com/facebookresearch/faiss
12https://github.com/maxbachmann/RapidFuzz

functionalities. Although major advances have been obtained by 
this new family of models in IR, nowadays there exist few tools 
capable of perform neural IR based on transformers.

Most of the existing tools for neural IR focus on the training of 
new models, giving little attention to the use of existing models 
which makes their integration harder on out of the box IR systems. 
Indeed, even if an existing pre-trained model for IR is available, its 
integration on a portable IR system is not a straightforward task. 
Additionally, it is clear that an important number of IR users may 
not be interested in training their own models while they are still 
interested in using recent, and publicly available, advances in the 
field. Currently, more than 29000 public models are available on 
the model hub of huggingface, with more than 8000 focused on the 
use of BERT and more than 300 finetuned for sentence similarity1.

Our tool, called CHERCHE, was developed as an option to fill this 
gap. We also aim to empower newcomers in neural IR to explore 
pipelines with pretrained models without extra effort. Indeed, its 
flexibility is shown by its integration to online demo portfolios such 
as spaces of huggingface2 as shown in Figure 1. Our full architecture 
is depict in Figure 2. As intended, when using CHERCHE, it is only 
needed few lines to read, process, and evaluate a neural model as 
shown in Figure 33. We expect that by reducing the load in the use 
of these models, more IR users will be motivated to integrate neural 
IR models into their IR systems.

The main contributions of CHERCHE, and thus, of this demo 
paper, are:



Figure 2: Global architecture of CHERCHE.

Figure 3: Example of running CHERCHE using the vaswani

dataset on a fresh Colab notebook. This code include the li-

brary installation, dataset reading, qrel preparation, retriever

definition, reranking process, and evaluation. Printed values

correspond to NDCG@10.

3.3 Reranker

Rerankers will then be able to pull up documents based on semantic

similarity. Rerankers are models that measure the semantic sim-

ilarity between a document and a query. The reranker allows to

reorder the documents retrieved by the retriever based on the se-

mantic similarity between the query and the documents retrieved.

Rerankers are compatible with all the retrievers in CHERCHE.

To enhance the integration of new models, CHERCHE supports

SentenceTransformers models available in the model hub of hug-

gingfaces. This opens a multiple of models that could be used. Ad-

ditionally, local models can be also specified as the system supports

the standard class loader of huggingfaces models.

Here is the list of available rerankers using CHERCHE:

• Encoder: integrates into a neural search pipeline a model

capable of building an embedding of a document. This is a

cross-encoder strategy.

• DPR: dedicated to the Dense Passage Retrieval models which

aims to train two distinct neural networks, one that encodes

the query and the other one that encodes the documents.

3.4 Pipelines

CHERCHE overcharges the operators ‘+’ (plus), ‘|’ (union) and ‘&’

(intersection) to build pipelines efficiently.

3.4.1 Operator plus. + is the main operator dedicated to pipelines.

This operator allows the definition of a pipeline where left parame-

ter is performed first followed by the second parameter. The number

of aggregations is limitless. However, the first model in a pipeline

should always be a retriever.

3.4.2 Operator pipe. The union operator ‘|’ is used to improve

neural search recall by gathering documents retrieved by multiple

models. It can be used when retrieving or reranking. The union

will avoid duplicate documents and keep the first one. The first

documents out of the union will be from the first model, the next

ones will be from the second model and so on. This is not a bug, it

is a feature. This strategy allows to prioritize one model or pipeline

over another. It may make sense to create a union between two

separate pipelines, with the first one having the highest precision

and the second one having better recall, like a spare tire.



Table 1: Statistics of the vaswani and scifact datasets.

Dataset Type Total Stats

vaswani
Documents 11429 41.92 tokens/doc

Qrels 93 22.39 docs/query

scifact
Documents 5183 201.81 tokens/doc

Qrels 30 1.3 docs/query

3.4.3 Operator intersection. The intersection operator ‘&’ improves

the precision of the model by filtering documents on the intersec-

tion of proposed candidates of retrievers and/or rankers.

3.5 Evaluation

Evaluate a pipeline using pairs of query and answers. The pipeline

objects allow evaluation with three different metrics including F1,

Precision, Recall, and P-Recall. However, we used external evalua-

tion libraries in our experiments.

3.6 Example

Figure 3 shows the full python script to perform experiments. Note

that, after defining a retriever and a reranker, only one line is needed

to define the pipeline, e.g. “searcher = retriever + ranker”.

4 EXPERIMENTS WITH CHERCHE

In order to highlight the characteristics of CHERCHE, we performed

a set of experiments using two datasets of small size and one dataset

of medium size. The full code to perform this evaluation is similar

to the one in Figure 3, but with a loop over the reranker models to

check the performance of other alternatives. In both cases, a simple

pipeline strategy was used, e.g. a pipeline composed by a retriever

followed by a reranker, as described in Section 3.6.

4.1 Experimental setup

4.1.1 Small size datasets. We used the vaswani13 and scifact14

datasets in our first experiments. In both cases, we opted for the

python libraries that offer an easy access to the datasets, BEIR

[12] and IR_datasets [7], to highlight the flexibility of opting for

CHERCHE.

Details of both dataset are presented in Table 1. Note that both

dataset are small as experiments were performed without Elastic15.

4.1.2 Medium size dataset. We also used CHERCHE on MSMarco

passages, a medium size dataset. As CHERCHE python retrievers

are not stored on disk16, we used development, TREC DL 2019 and

2020 queries by only indexing query words to avoid large indices17.

Details of the dataset and qrels are presented in Table 2.

4.1.3 Metrics. Although CHERCHE proposes an internal evalua-

tion module, we opted for standard IR evaluations metrics including

MAP, R@1000, NDCG@5, NDCG@10, and NDCG@20. Pytrec_eval

13http://ir.dcs.gla.ac.uk/resources/test_collections/npl/
14https://scifact.apps.allenai.org/
15Elastic may be needed for larger datasets.
16Future versions may include this option.
17This may be solved by using ElasticSearch, but the experiment was intended to be
light.

Table 2: Statistics of the MSMarco dataset.

Dataset Type Total

MSMarco
Documents 8.8M

Qrels DL 2019 43

Qrels DL 2020 54

[14] and ir-measures [6] implementations were used as evaluation

tools.

4.2 Models

We used a set of the most downloaded models on huggingfaces hub

for the sentence encoders. The full list of models is presented in

Table 3.

Table 3: SentenceTransformers models used in our experi-

ments. Models were selected based on their number of down-

loads only.

Model Huggingfaces name

Model A all-mpnet-base-v2

Model B all-MiniLM-L6-v2

Model C paraphrase-albert-small-v2

Model D paraphrase-MiniLM-L6-v2

Model E paraphrase-mpnet-base-v2

Model F paraphrase-multilingual-MiniLM-L12-v2

Model G bert-base-nli-mean-tokens

Model H LaBSE

4.3 Results on small size datasets

Table 4 presents the summary of our results on both datasets. Note

that we included pyterrier as baseline, and if available, we reported

the results from their official repository18 or performed experiments

to obtain its results. In both datasets, we used Lunr as retriever as it

performs similarly than pyterrier in terms of ndcg@10 when using

18https://github.com/terrier-org/pyterrier

Table 4: Results on the two datasets of small size. AVG(A-H)

correspond to the average performance of the models A to

H. Best model correspond to the best results, the A model.

‘*’ values were taken from https://github.com/terrier-org/

pyterrier/blob/master/examples/notebooks/ltr.ipynb.

vaswani scifact

MAP NDCG@10 MAP NDCG@10

pyterrier
PL2 0.2060* 0.4245 0.4087 0.4438

LambdaMART 0.2043* - - -

CHERCHE

retriever only 0.2590 0.4316 0.5169 0.5619

AVG (A:H) 0.1827 0.3456 0.4494 0.4943

BEST 0.2508 0.4741 0.6047 0.6484



Figure 4: map, ndcg@5, ndcg@10, and ndcg@20 perfor-

mances for models A, B, C, D, E, F, and H using vaswani

dataset and a simple pipeline with CHERCHE.

Figure 5: map, ndcg@5, ndcg@10, and ndcg@20 perfor-

mances for models A, B, C, D, E, F, and H using scifact dataset

and a simple pipeline with CHERCHE.

vaswani dataset19. As a main result, note that based on Table 4, the

best reranker strongly outperforms the retriever, but it is not the

case when averaging the performance of all models (AVG). This

result highlight the importance of selecting an adapted transformer

model, which can be easily performed when using CHERCHE.

4.3.1 vaswani. Results of the performances for the eighth rerankers

mentioned in Table 3 are presented in Figure 4. Note that the model

A outperforms other alternatives and clearly outperforms the sin-

gle retriever. Indeed, models A, B, and C outperform the retriever

performances. Other models underperformed the retriever. This

trend was observed for most of the used metrics.

4.3.2 scifact. Results using scifact are presented in Figure 5 and

follow the vaswani results, e.g., the retriever performance is out-

performed by a clear margin for models A and B. However, model

C did not manage to obtain a good performance, but model E does

across multiple metrics. Finally, model G is clearly not an option

for this dataset. This shows one of the feature of CHERCHE, the

rapidly identification of candidate models to be integrated in a

robust pipeline.

19Also note that as mentioned before, CHERCHE is clearly an option for small datasets
but standards libraries, such as pyterrier, will be more adapted for large datasets.

Table 5: Results on the TREC DL2019 and DL2020 qrels. Best

value are in bold and second is underlined. Baseline values

were taken from [2, 9].

TREC DL2019 TREC DL2020

NDCG@10 R@1000 NDCG@10 R@1000

retriever only 0.311 0.674 0.351 0.679

Model A 0.687 0.724 0.684 0.713

Model B 0.654 0.725 0.658 0.713

Model C 0.668 0.721 0.616 0.708

Model D 0.616 0.720 0.566 0.715

Model E 0.672 0.725 0.622 0.710

Model F 0.601 0.709 0.512 0.698

Model G 0.099 0.553 0.104 0.501

Model H 0.249 0.617 0.219 0.623

DeepCT [9] 0.578 - 0.55 -

Siamese [2] 0.637 0.711 - -

ANCE [2] 0.642 0.827 - -

DocT5Query [9] 0.648 - 0.619 -

SPLADE [2] 0.665 0.813 - -

SPLADE-max [2] 0.667 0.747 - -

SPLADE-doc [2] 0.684 0.851 - -

DeepImpact [9] 0.695 - 0.651 -

DistSPLADE-max [2] 0.729 0.865 - -

4.4 Results on MSMarco

Results of CHERCHE and recent baselines using TREC DL2019 and

DL2020 are presented in Table 5. We used the TfIdf retriever for this

dataset. As for the other datasets, model A remains a competitive

option closely followed by models E and C. Note that none of the

models outperform recent contributions such as DistilSPLADE-max

[2] or DeepImpact [9] when using the TRECDL2019 qrels. However,

Model A obtains the best performance when using the DL2020 qrels

but excluding best performing models for DL201920.

5 CONCLUSION

This demo paper presents CHERCHE a library for neural pipelines

definition. Our library was developed to be light and portable to

new environments as a tool to quickly evaluate/integrate neural IR

models. Although it can be used to develop new models, CHERCHE

targets newcomers to the neural search that want to verify the

pipelines based on transformers within their collections. Our ex-

ample using CHERCHE shows that a full pipeline composed by a

retriever followed by a reranker is possible to implement in only a

few lines without affecting the retrieval performances.
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