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ABSTRACT

While great progress is made in the area of information access, 
there are still open issues that involve designing intelligent systems 
supporting task-based search. Despite the importance of task-based 
search, the information retrieval and information science commu-
nities still feel the lack of open-ended and annotated datasets that 
enable the evaluation of a number of related facets of search tasks 
in downstream applications. Existing datasets are either sampled 
from large-scale logs but provide poor annotations, or sampled 
from lower-scale user studies but focus on ranked list evaluation. 
In this work, we present CoST1: a novel richly annotated dataset 
for evaluating complex search tasks, collaboratively designed by 
researchers from the computer science and cognitive psychology 
domains, and intended to answer a wide range of research ques-
tions dealing with task-based search. CoST includes 5667 queries 
recorded in 630 task-based sessions that result from a user study in-
volving 70 french native participants who are expert in one among 3 
different domains of expertise (computer science, medicine, psychol-
ogy). Each participant completed 15 tasks with 5 different types of 
cognitive complexity (fact-finding, exploratory learning, decision-
making, problem-solving, multicriteria-inferential). In addition to 
search data (e.g., queries and clicks), CoST provides task and session-
related data, task annotations and query annotations. We illustrate 
possible usages of CoST through the evaluation of query classifica-
tion models and the understanding of the effect of task complexity 
and domain on user’s search behavior.

KEYWORDS

Complex search task, Expertise, User study, Evaluation

1The data collection is available at https://doi.org/10.6084/m9.figshare.15286353
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1 INTRODUCTION

Search systems are the main access to the world-scale digital li-
brary, allowing people to achieve tasks triggered from problematic 
real-world situations. As a result, the range and level of complexity 
of search tasks span from simple ones (e.g., fact finding), to more 
intensive knowledge oriented tasks, well known today as complex 
search tasks [1, 7, 16, 33] (e.g., decision-making, planning). Such 
tasks induce multidimensional search interactions and are generally 
structured in multiple subtasks with many cognitive resources in-
volved. Clearly, to tackle complex tasks by means of search systems, 
users would require support for task achievement that extends well 
beyond the list of ‘ten blue links’. While research investigation in 
the area of task-based search gained maturity since the early works 
rooted in the interactive Information Retrieval (IR) community 
[39], the topic still attracts an increasing interest by researchers, 
as acknowledged by the several recent related workshops among 
which: Supporting Complex Search Tasks (2015-2017) [1], Learning 
from User Interactions (2018) [28], Task Intelligence (2019) [15] and 
Investigating Learning During Web Search (2020)2.

The IR community has a strong tradition of making experimen-
tal resources available for re-use, more particularly test collections 
built-up on shared tasks. Early initiatives which specifically focused 
on the evaluation of user-system interactions while achieving tasks, 
include TREC Interactive tracks (1997–2002) [31], followed later by 
the TREC Session Tracks (2011–2014) [6]. Recently, the TREC Dy-
namic Domain Track (2015–2017) [45], TREC Tasks track (2015–
2017) [22] and the CLEF Dynamic Search Lab (2017–2018) [21] have 
also brought significant benefits to the research progress in this 
area. However, the information seeking (IS) and IR communities 
still feel the lack of richly annotated datasets for understanding 
and evaluating multiple aspects of task-based search. We identify 
two barriers to the lack of publicly available data collections. The 
first one is privacy and the second one is the cost underlying user 
studies and associated human annotations. To address this issue and 
contribute to a faster research progress in this area, we introduce 
CoST, a data collection built-up from a relatively large-scale user 
study, particularly designed for the evaluation of complex search 
tasks. Unlike the previous TREC and CLEF-like resources cited

2https://iwilds2020.wordpress.com/



suggestions resulting in 7202 across-user tasks with an average of
172 queries per-task.

The TREC and CLEF evaluation initiatives attempted to address
the need of task-based search datasets allowing the evaluation of
shared tasks. TREC Session [6] allows evaluating whether systems
can improve their effectiveness for a target query by considering
previous user-system interactions. The dataset includes: 80 topics
and corresponding 1.282 sessions in total, leading up to the test
query for each session; the top ranked list of documents from the
ClueWeb12 collection and for each past query, the user’s clicking
behavior. In TREC 2012-2014, sessions are classified based on two
facets of complexity: product and goal. These two facets produce
four types of sessions: known-item (factual specific), interpretive
(intellectual specific), known-subject (factual amorphous) and ex-
ploratory (intellectual amorphous). The graded relevance labels of
a document were provided per topic. With a more system-centered
approach, the main objective of TREC Dynamic Domain Track [45]
and the TREC Tasks track [22] is to optimize user-system inter-
actions involved in complex search tasks. In the TREC Dynamic
Domain Track [45], optimal rankings w.r.t. provided relevance la-
bels per topic are expected at early stages of the task. The track
provides 15 topics (i.e., tasks) descriptions and associated subtopics
(i.e., substasks). The TREC Tasks track [22] was designed to evalu-
ate systems supporting multi-aspect or multi-step tasks. The track
provides 50 queries designed in such a way that the underlying
tasks can be decomposed in a sequence of subtasks. The latter are
provided as ground truth with the aim of evaluating system un-
derstanding of the tasks. The dataset also includes usefulness and
relevance labels of documents with the aim of evaluating systems’
document rankings.

While AOL-based datasets allowed a significant progress in task-
based search, mainly because of their source size, they critically
lack of description about the accomplished tasks. The TREC tracks
are a significant step forward towards tackling this limit. However,
since their design is mostly driven by shared ranking tasks, none
of these datasets fully provides data about both the tasks and the
search sessions. By adopting an open-ended benchmark design, the
built-up CoST data collection tackles this limit. CoST is obtained
through a user study which involved 70 participants (50% female)
who are experts in one of 3 targeted knowledge domains (computer
science, medicine, psychology). Each participant had to solve a
total of 15 search tasks varying in complexity within and outside of
her/his domain expertise. Table 1 shows a comparison of different
existing datasets released for the purpose of task-based search
evaluation. As can be seen, CoST provides rich task and session data,
in addition to human annotations that are critical for understanding
and evaluating a wide range of both interaction and search models.
Besides, as a french collection, it is the first one released in another
language than English, making it appropriate for the evaluation
of language agnostic or multilingual models. Table 2 shows the
statistics of CoST.

above which are designed considering the traditional shared task 
structure, CoST is open-ended, putting task complexity and task 
doers (i.e., users) at the center of the experimental design. This 
type of resource design allows better standardization and an in-
creasing level of collection re-use as highly recommended in the 
interactive IR community [3]. CoST includes 5667 queries recorded 
in 630 task-based sessions that result from a user study involving 
70 participants. Each participant is expert either in the computer 
science, medicine or psychology domain and completes 15 search 
tasks. Among those tasks, 3 belong to simple fact-finding search 
tasks (designed for evaluation control) and the remainder 12 ones 
are complex search tasks which are related to his/her own domain 
expertise, as well as out of his/her domain expertise. As a result, 
each user achieved the same tasks, with the aim of allowing fair 
comparative evaluation. We consider 5 types of cognitive complex-
ity following three taxonomies [2, 12, 18]: fact-finding task [2], 
exploratory learning task [12], decision-making, problem solving 
task [18] and multicriteria-inferential task [2]. In addition to all 
the data related to search sessions, user expertise, task complexity 
and participant’s final answers at the end of their task completion, 
we provide human assessments about the queries (exploration, ex-
ploitation, narrow exploitation, spelling correction) and expected 
subtasks for each task w.r.t. the domain-knowledge involved in 
the task. We also provide all the experimental material including 
non personal answers to pre-task and post-task questionnaires. We 
release the complete session and tasks data that fit with all the 
requirements of privacy policy, the human annotations and the 
design procedure documentation. Our ultimate goal is to encourage 
reproducible and replicable experiments which greatly reduce the 
effects of privacy and cost barriers in task-based search evaluation.

2 RELATED WORK

There have been several attempts at making available Web search 
query logs splitted into session-based tasks. The first attempts are 
exemplified by collections sampled from the publicly available AOL 
query log [32]. Lucheese et al. [25] is a dataset sampled from AOL 
including 1424 queries submitted by 13 users. The queries were first 
clustered from 307 time-gap sessions. The tasks were annotated by 
humans within each session, leading to a total number of 554, with 
an average of 2.57 queries per task. Task labels across sessions are 
necessarily different. Each task is defined by a tag and optionally 
with a longer textual description. Sen et al. released the Extraction 
(CSTE) dataset [37] which extends the dataset released by Lucheese 
et al. [25] by a cross-session annotation. Thus the time gap session 
was not applicable and the annotators were instructed to re-label 
task identifiers spanning across different query sessions. The Webis 
Search Mission Corpus 2012 (WSMC12) dataset [14] comprises 8800 
queries with associated clicks, submitted by 127 unique users. The 
queries have been annotated within and across sessions leading 
to a total of 1378 tasks with an average of 3.45 queries per task. 
Task annotation is limited to a numeric identifier. However, in all 
the above datasets the annotations were made per-user even if the 
underlying search intents of a subset of queries are shared across 
users. Recently, Volske et al. [41] tackled this limit. The authors 
released a large-scale web-search log extracted from the WSMC12 
and Lucchese et al. [25] datasets with associated task identifiers 
across users and then extended them with Google and Bing query



Dataset L Tasks and Queries Sessions

TD STD TC TDK QT EX CL RL TO

Lucchese et al. [25] En Y N N N N N Y N N
WSMC12 [14] En N N N N N N Y N N
Lucchese et al. [25] En N N N N N N Y N N
CSTE [37] En N N N N N N Y N N
Völske et al. [41] En N N N N N N N N N
Session TREC [6] En Y N Y N N N Y Y N
Dynamic Domain TREC [45] En Y Y N Y N N N Y N
Tasks TREC [22] En Y Y N N N N N Y N
CoST Fr Y Y Y Y Y Y Y N Y

Table 2: Statistics of the CoST data collection.

# Search tasks 15
Min/Max/Avg/Std Queries per task 1/60/5.39/6.70
# Sessions and human answers 630
# Queries 5667
# Min/Max/Avg/Std Query length 1/36/3.93/2.45 terms
# Min/Max/Avg/Std Clicks per query 1/24/1.7/1.8

3 THE COST DATA COLLECTION

3.1 Participants

A total of 70 french participants took part in our study, each one
being expert in one domain knowledge: 25 experts in computer
science, 10 experts in medicine and 35 experts in psychology. All of
them have at least bachelor degree in their study domain and 43%
among them are PhD students. They have been recruited using a
campus-wide opt-in mailing list of students over 3 faculties (com-
puter science, psychology and medicine). To check their knowledge
level in the domain, participants had to complete a knowledge test
in each domain before starting search sessions. Each test has 10
multiple-choice questions established by senior researchers in the
respective domains (30 in total), with 5 candidate answers per ques-
tion (i.e., 1 correct, 3 incorrect and 1 option "I don’t know"). All
the participants had to solve the same 15 tasks, described below, 5
from his/her own domain of expertise, the remaining 10 ones out
of his/her domain of expertise. In these conditions, all of them were
at the same time expert or non-expert according to tasks’ topics.
In order to guarantee confidentiality and a strict anonymization
process, we carried out several data filtering steps. First, all socio-
demographic data concerning the participants were removed. More
precisely, CoST does not allow inferring the age of the participants,
their gender, their level of study, their location, their affiliation,
and their Internet use habits. A thorough cleaning of the logs was
conducted; For example, if a user visited a website requiring login
and password, all of these private data were removed. Thus, from
the data included in CoST, it is not possible to cross-reference the
data in such a way as to be able to trace a particular user. In addi-
tion, user ID was anonymous and non-nominative. Only domain

expertise data is provided: "Csi" (i.e., computer science); "Med" (i.e.,
medicine); "Psy" (i.e., psychology).

3.2 Protocol

The user study that allowed the release of CoST was conducted in
three main stages. First, participants were asked to complete an on-
line pre-questionnaire containing the test that assessed their level
of knowledge in each domain (i.e., computer science, medicine, psy-
chology). All the participants also completed a free and informed
consent form informing them of the terms of use of the data col-
lected during the study. In addition, before starting each task, users
had to complete a pre-questionnaire which contains: a question-
naire of expected difficulty as proposed byWu et al. [44], a question
on familiarity with the task topic (4-pt Lickert scale ranging from
"not at all familiar" to "very familiar").

Second, participants were invited to take part in the search ses-
sions, using a browser designed to record their logs. They completed
15 search tasks either at their universities or at home and had the
option of doing that in multiple episodes and were autonomous
in managing their search time. The order of task presentation was
counterbalanced from one user to another one, both in terms of task
complexity (Section 3.3), and knowledge domain. The format for
presenting the search tasks to be completed was paper and pencil.
This choice is motivated by the fact that we wanted the computer
to be a tool exclusively dedicated to interactions with the search
system during the sessions. All the other activities are therefore car-
ried out directly in writing. A browser has been developed to record
the interactions between each participant and the search system
during the whole duration of the task completion. This browser
was close to a real browser but users couldn’t open several tabs. It
allowed the generation of logs containing: 1) the keyboard keys;
2) Mouse clicks; 3) SERPs and visited documents; 4) timestamps
in milliseconds (e.g., instant of click on a selected SERPs). From
these logs, we extracted search sessions data released in CoST. More
precisely, the CoST sessions mainly include: 1) the identifiers (Id) of
the search sessions; 2) Id of the search task with the complexity and
domain attributes; 3) the anonymous Id of the users about his/her
domain of expertise; 4) Query Id and query textual formulation; 5)
SERPs’ clicks (i.e., page and rank); 6) URLs of visited documents.

Third, immediately after completing each search task, partic-
ipants were asked to complete a post-questionnaire. The latter
contains a questionnaire of experienced difficulty following the
form proposed in [44]; a self-assessment of the quality of the an-
swer provided (4-pt Lickert scale ranging from "very bad" to "very
good"). As suggested by Jiang et al. [20], we propose 3 questions
to evaluate the search engine, websites and visited documents in
terms of topical relevance, usefulness of the information gathered
and participant’s feeling about the reliability of the results.
Finally, participants were asked to complete a scale to evaluate
their self-satisfaction with the task (7-pt Lickert scale ranging from
"absolutely not satisfied" to "extremely satisfied"). All the answers
to both the pre- and post-session questionnaires are provided in
CoST.

Table 1: Comparison of existing datasets used for task-based 
search evaluation in terms of data publicly released. Ab-
breviations used are: L (Language; En: English; Fr: French); 
TD (Task Description); STD (SubTask Description); TC (Task 
Complexity); TDK (Task Domain Knowledge); QC (per 
Query-Task Class); EX (user’s EXpertise); CL (CLicks); TO 
(user’s Task Outcome); RL (search result Relevance Label). 
Data availability is indicated by either Y (Yes) or N (No).



• Search tasks adapted from the taxonomy of Bell et al. [2]. Using
this taxonomy, we designed fact-finding and multicriteria-

inferential tasks. In fact-finding tasks, complexity is manipu-
lated at the level of the task’s statement. According to [2],
this type of complexity involves clear statements including
relevant keywords. The task goal is well-defined and there
are few subtasks which are easy to perform. Multiple paths
can be led to achieve the goal and the answer is directly
accessible from SERPs [35]. It is a closed task where only
one answer is right. In addition, a fact-finding task requires
neither a high knowledge level in the related domain, nor to
mobilize a high number of cognitive resources. In our study,
the fact-finding task is designed for evaluation control.
Unlikely, a multicriteria-inferential task has an unclear state-
ment. Users need to have prior domain knowledge about the
task topic to achieve the ill-defined goal [2]. The keywords
are search criteria to be integrated into the query to allow
reaching an answer. In addition, some of those criteria may
require mental inferences because they are too fuzzy, am-
biguous and unclear [2]. Few paths are possible to reach a
unique expected answer. Users have generally to perform
several subtasks: 1) select key concepts to be integrated into
a query gathering all search criterion; 2) infer new concepts
that might replace irrelevant ones; 3) explore different search
paths; 4) find information matching to search criterion and

aggregate them to identify those that fulfill them [35]. To
perform these subtasks, users have to mobilize a high num-
ber of cognitive resources allowing to reach their goal with
the SERP but also to identify new and more relevant query
reformulations.

• Search tasks adapted from the taxonomy of Marchionini [12].
The third type of task complexity we use is the exploratory
learning task [12]. The latter is a scenario in which the main
goal is to lead users to gain new knowledge about a topic.
The task statement is fuzzy and unclear [13] because it does
not naturally lead users to perform clear subtasks. Several
paths can be proceeded to solve subtasks and several out-
comes are acceptable. This task type does not require to have
a high level of prior domain knowledge and to mobilize many
cognitive resources. For instance, experts can seek specific
information about the topic whereas non-expert users can
collect basic knowledge. The general statement is "you want

to learn more about...”. The navigation paths have to be in-
ferred by users such as three subtasks can be completed: 1)
understand the main topic; 2) identify various aspects related
to the main topic; 3) discover/find out more about various
aspects of the main task topic.

• Search tasks adapted from the taxonomy of Campbell [18]. The
fourth and fifth types of task complexity are both work tasks
proposed in [18]: decision-making tasks and problem solving

tasks. For decision-making tasks, the work goal is to make a
decision by evaluating new information collected. The state-
ment is clear but several subtasks have to be achieved: 1)
understand the main task topic; 2) understand various as-
pects of the main task topic; 3) identify the advantages and
disadvantages of each aspect; 4) analyze and differentiate
the collected arguments; 5) judge arguments/information
according to criteria to be established by the user. To per-
form those subtasks, users can follow several paths but the
outcomes heavily depend on criteria inferred by users them-
selves during the search. The comparison and evaluation
work consists in selecting the best solution among several
candidate ones to make a decision. This task calls the users
to mobilize many cognitive resources and to have a high
level of prior domain knowledge to compare information
against several criteria inferred during the search.
Finally, we also designed problem-solving tasks [18]. The
work task goal is to elaborate and create a new consistent
set of information from new knowledge acquired. In other
terms, users have to apply information collected from web
content to achieve the work goal. The statement is clear but
several subtasks have to be achieved: 1) understand the main
topic; 2) understand various aspects of the main topic; 3) ex-
plore typology and characteristics of various aspects of the
main topic; 4) analyze the previously collected information
and envision their usage to achieve the task; 5) create a new
set of consistent information. Several paths can be followed
but users should find the best one to reach the target out-
come. In addition, links between paths and outcomes are
uncertain even if several outcomes are possible. This task

3.3 Task Complexity

3.3.1 Background. It is worth of mention that while a number 
of previous studies argued that the complexity of tasks may be 
impacted by both the domain in which they fall and doers’ ex-
pertise [8, 36, 38], the majority of user studies offer a single task 
per complexity level and/or type. The main reason underlying this 
limitation is that the multiplication of tasks requires more effort 
and commitment from the users. Unlikely, in the user study that 
allowed the construction of CoST, the designed experimental proto-
col (Section 3.2) overcomes this limitation. As outlined above, all 
participants completed the same 15 tasks with varying complex-
ity. In this work, we particularly address the cognitive complexity 
which relates to the types of mental processes required to complete 
the tasks as defined in 3  well established taxonomies [2, 12, 18]. 
Beyond the types of task complexity, we also consider levels of 
task complexity as assessed by the authors of each taxonomy as 
well as the authors of this paper from the cognitive psychology 
domain. This assessment is based on a comparative analysis of the 
definitions of task complexity provided by each taxonomy w.r.t. 
to set of 7 relevant criteria: the goal of the task, the statement, 
the sub-tasks, the outcomes, the level of cognitive resources re-
quired, and the level of prior domain knowledge needed to solve 
the task. This analysis leads us to fix 5 types of task complexity 
that we ordered by levels across taxonomies: 1) fact-finding task 
[2]; 2) exploratory learning task [12]; 3) decision-making task [18]; 
4) problem-solving task [18] and 5) multicriteria-inferential task [2].

3.3.2 Task design. To allow fair comparison of tasks in terms of 
cognitive complexity, we indicate below the definitions used in 3 
well established taxonomies and according to the 7 criteria cited 
above.



requires a high number of cognitive resources to perform
associated subtasks and to collect relevant information al-
lowing to build a good answer. The level of required prior
domain knowledge is high because users cannot directly
access the answer.

The different task characteristics tend to impact the level of their
complexity [2, 18]. For instance, if the task goal is well-defined, a
task will be easier to perform [2]. Also, as the number of paths to
the desired outcome increases, the complexity of a task decreases
[18]. From the elements presented above, we can establish for each
task which characteristics tend to make it more or less complex.
To this extent, we can make a hypothesis about the level of com-
plexity of each task. We postulate that the first level would be the
fact-finding task, followed by the exploratory learning task, then
the decision making task, the problem solving task and finally the
inferential multi-criteria task which would be the fifth and final
level of complexity.

Examples of tasks in the medicine domain and corresponding
subtasks, sessions and answers are presented in Table 3.

3.4 Query Annotation

3.4.1 Background. A number of previous user studies highlighted
the impact of different task characteristics on users’ query refor-
mulations [24, 34, 38, 43]. The results mainly revealed that: 1) the
domain knowledge of the task doer significantly impacts query
term changes; 2) the cognitive complexity of the task (e.g., simple,
hierarchical, parallel) has a significant effect on users’ query re-
formulation behavior. This motivates us to provide in CoST, query
annotations that could reveal two main user’s search strategies
well-known in the IS and IR communities: exploration vs. exploita-
tion [23, 34] also called generalization vs. specialization [17, 19].
The exploration strategy refers to the regulation and adaptation
behaviors of the user’s information seeking activity. At the task
level, the user might dynamically reframe his goal while the search
task evolves, by integrating new incoming information from the
online visited content. Exploration allows the opening and initia-
tion of new search paths so that the user processes an additional
part of the search space (e.g., moving from one subtask to another
with a clear cut-off) [23, 43]. At the query formulation level, an
exploration strategy results in a large semantic jump between the
content of two successive queries.
The exploitation strategy reflects perseverance behaviors in pro-
cessing similar information needs during the information seeking
activity. At the task level, this strategy allows the deep processing
of a previously opened search path initiated with the aim of pro-
cessing a specific part of the search space [19, 34]. At the query
formulation level, exploitation corresponds to a narrow semantic
jump between the content of two successive queries.

3.4.2 Query annotation process. CoST benefits from a double man-
ual annotation of the 5667 queries by two distinct human annotators.
All the queries meet the confidentiality criteria presented in Sec-
tion 3.2. Both annotators are experts in one among the 3 domains.
Specifically, one annotator is an expert in computer science and the
other annotator is an expert in psychology. These two annotators
also annotated the medicine queries. Under these conditions, the

annotations of these queries might be of lower quality than those
related to computer science and psychology fields. We describe
below the different steps of the query annotation process.

• Step 1: Presentation of the coding grid and training. The two
expert human annotators (i.e., from computer science and
psychology domains) were first trained to use the coding
grid. The annotators were instructed to follow the guideline
below:

(1) For each session of 𝑛 queries 𝑞𝑖 , {𝑞1, 𝑞2 . . . , 𝑞𝑛}, observe
the first query 𝑞1 and, if any, pairs of successive queries
(𝑞𝑖 and 𝑞𝑖+1), 𝑖 = 1 . . . 𝑛 − 1.

(2) Code 𝑞1 as "1" to indicate exploration. Indeed, the user
starts the search by exploration.

(3) Code 𝑞𝑖+1 as "0" to indicate a reformulation of 𝑞𝑖 only to
fix spelling errors.

(4) Code 𝑞𝑖+1 as "1" to indicate a reformulation for exploration
in the case where the semantic jump from 𝑞𝑖 is qualified
as large [17, 19, 34].

(5) Otherwise, code 𝑞𝑖+1 as "2" to indicate exploitation as an
intermediate semantic jump from query 𝑞𝑖 but keeping
the same search path, without a clear break.

(6) Otherwise, code 𝑞𝑖+1 as "3" to indicate narrow exploitation

in the case of narrow semantic gap observed by the use of
lexically similar or semantically close terms (e.g., use of
synonyms) in comparison to 𝑞𝑖 .

Following the presentation of the grid, the two annotators
practiced coding queries on a representative sample of all the
designed tasks and domains. Then, they were invited to dis-
cuss their disagreement during meetings, fix the underlying
reasons and then homogenize their feelings about the coding.

• Step 2: Full annotation. During this step, the annotators had
to annotate all the queries produced by the participants in
the framework of our study. Each query received a specific
code: "0" (i.e., spelling correction), "1" (i.e., exploration), "2"
(i.e., exploitation), "3" (i.e., narrow exploitation). Throughout
their annotations, both annotators had access to the coding
grid, detailed definitions and query examples for each code.

• Step 3: Annotation validation. The two annotators coded
a total of 5667 queries based on the theoretical and prac-
tical elements presented above. The overall agreement of
Cohen’s Kappa coefficient between annotators is 95% which
is considered excellent.

Table 4 provides a summary of the data provided in the full CoST
data collection release3.

4 TASK-BASED SEARCH EVALUATION
EXPERIMENTS

In this section, we study two main tasks that may be addressed
using the human labels provided in CoST. First, query-task mapping
which is a task recently studied [26, 42] that consists in assigning to
a given issued query, the task that it more likely belongs to, among

3The CoST dataset is available at https://doi.org/10.6084/m9.figshare.15286353



Table 3: Sample of tasks and subtasks in the medicine domain with their respective complexity type, session, and answer.

The subtasks (numerated list in second column) were not accessible to the participants during the study. Full descriptive data

is provided in the CoST data collection. The ‘→’ symbol is used to separate queries within the session. Only the answer is

automatically translated to English.

Task Type Task Examples and associated subtasks (from Medicine domain) Session Answer

Decision-making
(TDMed)

An 83-year-old woman had a non-sequelae stroke 5 months ago.

At the stroke assessment, atrial fibrillation was discovered.

She had dropped 3 times in the last 2 months.

Should anticoagulant therapy be initiated?

After having evaluated the benefit-risk ratio of the initiation or not of an

anticoagulant treatment, select the management that seems best to

you and justify your choices.

1. Understanding non-sequential stroke
2. Understanding atrial fibrillation
3. Understanding the risk of falls
4. Identify the advantages and disadvantages of anticoagulant therapy
5. Judge this information according to criteria to be established (benefit/risk assessment)

Non-expert: avc non séquellaire→ fibrillation auriculaire→ fibrillation au-
riculaire traitemebnt → anti coagulant avc → anticoagulant avc → AVC is-
chémique aigu → anticoagulant avc → scholar google → Anticoagulants dans
l’accident vasculaire cérébral (AVC) ischémique aigu → scholar google →

anticoagulant avc → avk→ anticoagulant avc

The stroke appears to be due to a blood clot created by the atrial fibrillation.
An anticoagulant treatment seems to be prescribed to avoid a recurrence. De-
pending on the type of anticoagulant, special monitoring will be required.

Problem-solving
(TRPMed)

A 47-year-old man presented to the emergency room with left hypochondrium pain

that had been evolving for 24 hours and was not relieved by level 1 analgesics.

His history included cutaneous lupus and polycythemia.

The biological workup was normal.

The abdomino-pelvic scanner found two splenic hypodensities.

With the information collected on the Internet, propose your diagnosis and etiological

hypotheses.

1. Understanding the left hypochondrium
2. Understanding of level 1 analgesics
3. Understanding cutaneous lupus and polycythemia
4. Understanding splenic hypodensity
5. Analyze the information previously collected and propose a diagnosis with etiological
hypotheses

Expert: hypochondre gauche hypodensité splénique→ hypodensité splénique
→ hypodensité splénique polyglobulie → maladie de vaquez → maladie de
vaquez hypodensité→maladie de vaquez "hypodensité"→ lupus cuta→ lupus
cutané polyglobulie → hypodensité splénique cause → hypodensité splénique
kupus→ hypodensité splénique lupus → syndrome de felty → scanner hypo-
densité → scanner hypodensité splénique → infractus s → infarctus splénique
lupus→ infarctus splénique→ scanner hypodensité splénique→ splénomé-
galie→ splénomégalie scnanner→ splénomégalie lupus→ evolution ;lupus
cutannée en systématique → evolution lupus cutannée en systématique

It could be splenomegaly which can lead to splenic infarction (by overload). The
spleen is located in the left hypochondrium and the polycythemia may be due
to a myeloproliferative syndrome. Splenic hypodensity suggests splenomegaly.
Splenomegaly may be a (rare) sign of systematic lupus manifestation (digestive
manifestation).

Table 4: Summary of the CoST resources

Filename. Description Data in each record

CoSTQueries.tsv All the task-based retrieval
data

QueryId, IdS, Query, Task,
QueryActivity, QueryTime

CoSTSessionAnn.tsv The session data and annota-
tions about user’s expertise,
user’s answer

IdS, Exp, Task, Answer

CoSTClicks.tsv The click data of each query QueryId, URL, URLTime

CoSTTasks.tsv The task data and human-
assessed sub-tasks

Task, Task description, expert
expected sub-tasks

a set of candidate ones. Second, we also evaluate search strategy
identification which consists in indicating if an issued query in
context (based on previous queries in the session) mainly indicates
either an exploration or an exploitation strategy. Note that both
tasks are multi-class problems, but the numbers of labels vary from
15 for the former to 4 for the latter (Section 3.4). In the following
sections we describe the query representation models and baselines
used, followed by an analysis of the results obtained in each task.

4.1 Query Representation, Metrics, and
Baselines

For query representation, we benefit from the power of recent con-
textualized embeddings, namely transformers [9]. In particular, we
use three BERT-based architectures adapted for French: 1) the origi-
nal BERT multilingual [9] that covers more than 100 languages and
developed jointly with the BERT model; 2) LaBSE [11], a sentence
enriched language-agnostic model, and 3) a language specific model
for French, namely CamemBERT [27]. To the sake of simplicity, we
use base models with the standard configuration for each architec-
ture and opt for an all-frozen layers configuration. At the top of
the architecture, we attach the two classification algorithms that
use the CLS token representation.

• K-Nearest Neighbors (k-NN): This is a classical classification
algorithm that relies on the neighbors distribution to assign

labels. In this case, we explore multiple neighbors configura-
tions (𝑘 = 1, ..., 50) and present results of the best parameters.

• AdaBoost: We opt for an ensemble algorithm based on three
classifiers. In this case we focus on the optimization of the
number of estimators (𝑛 = 100, ..., 1100) used for the ensem-
ble strategy. Results are reported for the best configuration.

For both algorithms, we present Accuracy, F-measure, Precision
and Recall measures over a five cross-validation experiment with a
grid search strategy for parameter optimization and a fixed random
seed4. Accuracy is used to select the best model but all metrics are
presented for each selected model. No special pre-processing was
performed on the text queries.

4.2 Query-Task Mapping

The query task mapping problem has attracted recent attention as
it may help understanding the user search intent thus, enhancing
for instance document ranking and query suggestion models [26,
42]. In our context, the labels are known a priori as interactions
were recorded under controlled search tasks and are provided in
CoST. To facilitate future comparisons, the multiple baselines for
CoST are presented in Table 5. Note that surprisingly the k-NN
algorithm outperforms the strong AdaBoost classifier regardless of
the contextualized representations. This could be explained by the
fact that as tasks are similar across-users, queries likely overlap or
are likely similar helping the k-NN algorithm to assign the correct
label while AdaBoost is not able to correctly identify the pattern.
Moreover, it is also surprising that the multilingual model and the
language-agnostic model outperform a language specific model,
but this difference is small when comparing multilingual BERT and
CamemBERT models.

4.3 Search Strategy Identification

Here, our objective is to automatically identify the behavioral search
strategy adopted by the user based on the observation of an issued

4set to 42.



Accuracy F1 Precision Recall

k-NN CamemBERT 0, 890,01 0, 890,01 0, 900,01 0, 890,01

LaBSE 0, 950,01 0, 950,01 0, 960,01 0, 950,01

BERT-multi 0, 900,01 0, 900,01 0, 910,01 0, 900,01

Adaboost CamemBERT 0, 310,03 0, 300,03 0, 350,03 0, 310,03

LaBSE 0, 470,03 0, 440,04 0, 480,05 0, 470,03

BERT-multi 0, 300,02 0, 280,03 0, 310,03 0, 300,02

Table 6: Search strategy identification performances using

three different BERT-based architectures. Queries are en-

coded in a Single and Session-aware fashion. Values corre-

spond to average and standard deviation over a five cross-

validation setup with parameters optimization of the best

model. Power value corresponds to the standard deviation.

Accuracy F1 Precision Recall

k-NN CamemBERT Single query 0, 580,02 0, 500,02 0, 530,04 0, 580,02

Session-aware 0, 570,01 0, 510,02 0, 500,03 0, 570,02

LaBSE Single query 0, 570,02 0, 510,02 0, 520,04 0, 570,02

Session-aware 0, 580,01 0, 530,01 0, 530,02 0, 580,01

BERT-multi Single query 0, 570,01 0, 510,01 0, 520,02 0, 570,01

Session-aware 0, 590,01 0, 540,01 0, 540,02 0, 590,01

Adaboost CamemBERT Single query 0, 540,02 0, 500,01 0, 490,02 0, 540,02

Session-aware 0, 550,01 0, 520,01 0, 500,01 0, 550,01

LaBSE Single query 0, 570,01 0, 540,02 0, 530,02 0, 560,01

Session-aware 0, 580,01 0, 560,01 0, 550,01 0, 580,01

BERT-multi Single query 0, 560,01 0, 530,01 0, 520,01 0, 560,01

Session-aware 0, 580,01 0, 560,01 0, 550,01 0, 580,01

query. Similarly to query-task mapping, we address search strategy
identification as a classification problem. Unlikely, the labels here
are obtained in the post-experiment stage (Section 3.4.1): "0" (i.e.,
spelling correction), "1" (i.e., exploration), "2" (i.e., exploitation),
"3" (i.e., narrow exploitation). Moreover, it is likely that query con-
text (e.g., previous query, session) may be useful for identifying
the user’s search strategy. Thus, we use the same classification
algorithms as those used for query-task mapping but extend the
query representation with a session-aware representation. The lat-
ter consists in concatenating previous queries to the current one
and has been shown to be effective on session retrieval [40]. Results
are presented in Table 6. Note that, as can be expected, most of
the session-aware representations outperform their counterparts
and achieve best performances for all metrics. Differently to the
query-task mapping results, the Adaboost algorithm outperforms
k-NN in terms of F1 and Precision. Overall, this problem seems to
be more challenging than the query-task mapping problem as accu-
racy ranges are 0.30 absolute points lower. However, as suggested
by our results, feature engineering at session-level may help on
this problem5.

5This exploration is left as future work

5 ANALYZING THE EFFECTS OF
COMPLEXITY AND DOMAIN KNOWLEDGE
OF THE TASKS ON USER’S SEARCH
BEHAVIOR

In this section, we show the usage of the CoST collection in under-
standing the user’s search behavior. More precisely, our objective
here is to examine the effects of task complexity and domain knowl-
edge of the task on the users’ behavior based on seven quantitative
behavioral features, among which: 1) five ones directly observed
from the browsing behavior: total number of clicks on SERPs (Click-
Serp), total number of SERPs viewed that did not lead to a click
(NoClickSerp), total time spent on SERPs (TimeSerp), total time
spent on web pages (TimeURL) and total time to complete a search
session (TimeSession) ; 2) two additional features related to search
strategies inferred from the query annotations (Section 3.4): total
number of exploration queries (Exploration) and total number of
exploitation queries (Exploitation). Note that exploitation queries
include queries with code "2" and those with code "3" (Section 3.4).
In this experiment, we perform repeated measures of ANOVA on
the seven dependent variables cited above. We select two indepen-
dent variables: 1) Task complexity as within-subject factor (fact-
finding, exploratory learning, decision-making, problem-solving,
multicriteria-inferential); 2) Task domain knowledge as within-
subject factor (computer science, medicine, psychology). In the
case where the ANOVA test is significant, we perform Scheffe’s
post-hocs. To this extent, all comparisons presented in the results
analysis are significant. Table 7 presents a summary of the ANOVA
results and Table 8 details means and standard deviations of the
behavioral feature values. We discuss below the results obtained
and the primary findings that emerged from them.

5.1 Analyzing the Effects of Complexity

Overall, we can clearly see from Table 7, that all the behavioral
features are significant for explaining user’s search behavior. Let
us for instance have a first close look to NoClickSerp and TimeURL
features regarding the browsing behavior. As can be seen fromTable
8, looking particularly at NoClickSerp feature, the fact-finding task
(𝑀 = 1.94, 𝑆𝐷 = 2) and the exploratory learning task (𝑀 = 2.2,
𝑆𝐷 = 3.72) lead to significantly fewer unlinked SERPs than the
other types of task complexity. Indeed, for the fact-finding task,
the answer is directly accessible on SERPs, with the first SERP
therefore relevant to finding the answer [10, 29, 35]. Therefore, we
do not observe an increase in the number of unlinked SERPs for
this low-level task complexity. For the exploratory learning task,
the goal is to collect information to gain new knowledge [12] and
is therefore similar to a multiple fact search. Several paths can be
pursued and depend directly on the sub-goals that the user sets for
himself. It is therefore not difficult to access relevant documents as
long as they allow the user to learn more about the subject of the
task. Another trend that emerges from the results is the fact that
the multicriteria-inferential task (𝑀 = 12.93, 𝑆𝐷 = 11.73) leads to
the most unclicked SERPs compared to all the other types of task
complexity. This is in line with previous findings indicating that if
users fail to infer new additional keywords than those provided in
the statement which are likely to be ambiguous, they cannot access

Table 5: Query-task mapping performances using three dif-
ferent BERT-based architectures. Values correspond to aver-
age and standard deviation over a five cross-validation setup 
with parameters optimization of the best model. Power 
value corresponds to the standard deviation.



Table 7: Summary of ANOVA results for Task Complexity (TC), Task Domain (TD), and Task Complexity*Task Domain

(TC*TD).

ClickSerp NoClickSerp TimeSerp TimeURL TimeSession Exploration Exploitation
Effects F* F p N2p F p N2p F p N2p F p N2p F p N2p F p N2p F p N2p

TC F(4,276) 50.2 <.001 0.421 94.2 <.001 0.577 46.34 <.001 0.402 74.06 <.001 0.518 76.93 <.001 0.527 60.31 <.001 0.466 75.49 <.001 0.522
TD F(2,138) 10 <.001 0.127 4 <.05 0.055 3.5 <.05 0.048 0.2 n.s 0.98 n.s 4.51 <.05 0.061 9.43 <.001 0.12
TC*TD F(8,552) 32.4 <.001 0.32 49.34 <.001 0.417 14.9 <.001 0.178 1.4 n.s 6.32 <.001 0.084 38.56 <.001 0.358 38.8 <.001 0.36

Table 8: Means and (standard deviations) of Analysis for the Psychology Task (PT), Computer Science Task (CST), Medicine

Task (MT), and Total Task (TT) complexity.

ClickSerp NoClickSerp TimeSerp TimeURL TimeSession Exploration Exploitation

PT CST MT TT PT CST MT TT PT CST MT TT PT CST MT TT PT CST MT TT PT CST MT TT PT CST MT TT

Fact-
finding

1.4
(1.6)

1.64
(1.6)

2.3
(1.84)

1.72
(1.7)

1.93
(1.9)

1.9
(2.1)

1.9
(2)

1.94
(2)

60
(79.3)

49.42
(69.3)

52.33
(62.71)

57.33
(70.6)

54.33
(80.1)

60.23
(85.1)

113.4
(103.4)

72.33
(93.5)

114.3
(132.41)

109.7
(116.1)

165.7
(114.9)

129.7
(123.5)

1.41
(1.04)

1.5
(1.1)

1.2
(.61)

1.4
(0.94)

.66
(1.12)

.5
(.8)

.6
(.8)

.6
(.91)

Exploratory
learning

4.7
(4.2)

2.3
(1.6)

1.84
(1.2)

3.2
(2.93)

3.8
(5.4)

1.73
(2.62)

.84
(1.21)

2.2
(3.72)

168.9
(273.2)

68.21
(68.12)

42.52
(66.23)

97.5
(174.94)

440.5
(380.72)

436.13
(341.62)

449.82
(344.52)

474.7
(354.41)

609.4
(477.02)

504.45
(347)

492.4
(355.73)

572.24
(399.3)

2.33
(3.24)

1.5
(1.2)

1.3
(.63)

1.74
(2.1)

1
(1.5)

.24
(.91)

.2
(.5)

.5
(1.1)

Decision-
making

2.3
(1.71)

5.43
(4.1)

3.9
(3.4)

3.9
(3.43)

1.8
(3.24)

8.7
(7.23)

5.31
(4.33)

5.24
(5.91)

83.6
(155.7)

209.13
(204.3)

198.7
(301.2)

156.8
(234.5)

623.4
(446.2)

664.8
(710.42)

579
(493.2)

649.9
(560.3)

706.9
(488.2)

873.9
(790.6)

777.6
(580.14)

806.5
(633.12)

1.6
(1.2)

4.23
(3.24)

3
(2.3)

2.83
(2.6)

.6
(1.6)

2.9
(3.01)

1.9
(2.23)

1.7
(2.6)

Problem
solving

4.6
(4.13)

3.7
(3.8)

10.14
(8.5)

6.1
(6.5)

6.3
(6.8)

6.04
(5.6)

16.41
(13.64)

9.6
(10.54)

227.4
(250.71)

206.9
(268.74)

343.6
(256.63)

253.6
(264.5)

593.24
(550)

543.23
(421.7)

659.7
(637.8)

601.33
(543.24)

820.7
(597.8)

749.1
(511.1)

983.32
(819.3)

838.62
(659.9)

2.8
(2)

2.7
(2.23)

7.43
(5.9)

4.2
(4.4)

2.34
(3.6)

2.11
(2.5)

5.11
(5.4)

3.1
(4.21)

Multicriteria-
inferential

8.6
(6.71)

4.6
(3.3)

4.81
(3.8)

5.81
(5.14)

21.14
(13.64)

10
(7.5)

8.04
(6.03)

12.93
(11.73)

377.8
(294.7)

208.2
(165.2)

148.11
(92.2)

237.3
(223.6)

302.34
(276.14)

239.6
(265.52)

231.43
(185.3)

263.8
(246.5)

680.1
(490.01)

447.82
(379)

379.6
(237.91)

501.1
(402.5)

7.1
(5.12)

3.4
(2.4)

3.44
(2.2)

4.6
(3.9)

9.2
(7.3)

3.4
(3.4)

2.8
(3.03)

5
(5.7)

Total
Task domain

4.3
(4.8)

3.7
(4.8)

4.5
(4.8)

4.14
(4.61)

6.83
(9.1)

5.9
(9.3)

6.41
(9.3)

6.4
(8.9)

185.9
(230.4)

145.1
(232.21)

150.5
(230.3)

163
(220.21)

418.2
(471.22)

418.33
(467.74)

400.7
(461.5)

399.4
(246.5)

604
(570.5)

563
(564.7)

541.91
(553.7)

561
(546.6)

3.1
(3.4)

2.7
(3.5)

3.1
(3.5)

3
(3.3)

2.7
(3.92)

1.8
(4.01)

2.02
(4.1)

2.23
(3.9)

to relevant links [35]. Finally, there is also a significant difference
between the decision-making task (𝑀 = 5.24, 𝑆𝐷 = 5.91) and
the problem-solving task (𝑀 = 9.6, 𝑆𝐷 = 10.5), which both lead
to more unclicked SERPs. As argued in previous work [18], the
problem-solving task implies the need to investigate several search
paths in order to discard those that are not relevant to the goal.
To this extent, some irrelevant paths are directly discarded during
the browsing activity, which explains why the problem-solving
task leads to more SERPs offering no relevant links to the user. On
the contrary, for the decision-making task, several possibilities of
relevant paths can be taken [18] which could lead to fewer failed
SERPs than the problem-solving task.

When looking at the TimeURL feature, the significance of the
ANOVA results (see Table 7) coupled with the statistics in Table
8, highlight several interesting trends. First, the fact-finding task
(𝑀 = 72.33, 𝑆𝐷 = 93.5) requires the least amount of time spent on
URLs compared to all the other types of task complexity. This could
be explained by the fact that in such a task, the user does not need
to access documents to locate the target information [34, 35]. The
completion of this task does not induce an in-depth processing of
web page content. The other interesting observation that emerges
is that the exploratory learning task (𝑀 = 474.7, 𝑆𝐷 = 354.41)
results in less time spent on URLs than the decision-making task
(𝑀 = 649.9, 𝑆𝐷 = 560.3) and the problem-solving task (𝑀 = 601.33,
𝑆𝐷 = 543.24). This is because the multiple information gathering
objective [12] does not require the direct application of the newly
acquired knowledge as it is the case for the decision-making task
and the problem-solving task. The latter requires more time spent
on the URLs (i.e., to process in depth the content of the web pages).
This processing activity underlies the mobilization of a significant
amount of cognitive resources [34], since the completion of those
tasks, require from users to investigate beyond simple fact-finding
[5]. For the decision-making task, the objective is to analyze web
pages, to locate comparison criteria and arguments, to conduct
evaluation work to make the best decision among several possi-
bilities [18]. Regarding the problem-solving task, the challenge is
to understand the new incoming information in order to be able

to apply it and produce a new coherent set of information [18].
Finally, the last result worth highlighting regarding the TimeURL
indicator is the one concerning the multicriteria-inferential task
(𝑀 = 263.8, 𝑆𝐷 = 246.5) which requires less time spent on URLs
than the problem solving, decision-making and exploratory learn-
ing task. According to [34], ill-defined goals, as those targeted in
multicriteria-inferential tasks, likely lead users to search failure and
thus, they spend little time processing URLs thoroughly.

Now, turning our search attention to strategy-based features
(Exploration, Exploitation), we note that overall, the fact-finding
task and exploratory learning task require the least number of
exploration and exploitation queries compared to the other tasks.
As previously shown, the fact-finding task does not require initi-
ating new search leads since the first lead provides direct access
to the desired result [35]. The other interesting result is that the
multicriteria-inferential task (𝑀 = 5, 𝑆𝐷 = 5.7) requires, at a highest
extent compared to the other tasks, the exploitation strategy. This
result is consistent with previous work indicating that ill-defined
tasks lead to abusive exploitation behaviors in processing similar
information despite repeated failures [34]. At the query level, the
literature indicates that narrow semantic changes in two successive
queries (i.e., exploitation) repeated multiple times, are a clear signal
that users struggle to find relevant information while solving the
task [4, 30].

5.2 Analyzing the Effects of Task Domain and
its Interaction with Task Complexity

Here, we focus on the effect of task domain and the joint effect
of task complexity and task domain on browsing behavior and
search strategies. From Table 7 and Table 8, we can observe several
significant effects. Regarding the browsing behavior, let us focus
for instance on ClickSerp and NoClickSerp features. From the task
domain perspective, we can see that the computer science domain
significantly impacts ClickSerps feature. Tasks in the computer sci-
ence domain lead to significantly fewer clicks from SERPs (𝑀 = 3.7,
𝑆𝐷 = 4.8) than those in the psychology domain (𝑀 = 4.3, 𝑆𝐷 = 4.8)



these attributes. We showcased the usage of CoST for query map-
ping and search strategy classification tasks as well as for studying
user search behavior w.r.t. tasks of varying cognitive complexity.
In the future, we plan to use the CoST collection in more in depth
comparative analysis with additional applications, baselines and
benchmarks.
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