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Abstract

An important class of nonlinear weighted least-squares problems arises from the assimilation of observations in
atmospheric and ocean models. In variational data assimilation, inverse error covariance matrices define the weighting
matrices of the least-squares problem. For observation errors, a diagonal matrix (i.e., uncorrelated errors) is often
assumed for simplicity even when observation errors are suspected to be correlated. While accounting for observation-
error correlations should improve the quality of the solution, it also affects the convergence rate of the minimization
algorithms used to iterate to the solution. If the minimization process is stopped before reaching full convergence, which
is usually the case in operational applications, the solution may be degraded even if the observation-error correlations
are correctly accounted for.

In this article, we explore the influence of the observation-error correlation matrix (R) on the convergence rate of a
preconditioned conjugate gradient (PCG) algorithm applied to a one-dimensional variational data assimilation (1D-Var)
problem. We design the idealised 1D-Var system to include two key features used in more complex systems: we use the
background error covariance matrix (B) as a preconditioner (B-PCG); and we use a diffusion operator to model spatial
correlations in B and R. Analytical and numerical results with the 1D-Var system show a strong sensitivity of the
convergence rate of B-PCG to the parameters of the diffusion-based correlation models. Depending on the parameter
choices, correlated observation errors can either speed up or slow down the convergence. In practice, a compromise may
be required in the parameter specifications of B and R between staying close to the best available estimates on the one
hand and ensuring an adequate convergence rate of the minimization algorithm on the other.

Keywords: nonlinear weighted least-squares; observation errors; diffusion operators; conjugate gradient; conver-
gence rate; condition number

1 Introduction

An important class of nonlinear weighted least-squares problems arises from the assimilation of observations in atmo-
spheric and ocean models, a procedure known as data assimilation. In data assimilation, observations of the state of a
system are combined with an a priori estimate of the state, called the background, to produce an optimal estimate of
the state of the system, called the analysis. In variational data assimilation, the optimal estimate is obtained iteratively
by minimising a nonlinear weighted least-squares cost function that is the sum of two terms: one measuring the model
fit to the background state (the background term Jb); the other measuring the model fit to the observations (the
observation term Jo), subject to constraints (generally nonlinear) that relate the model state to the observations. The
weighting matrices for Jb and Jo are defined by an estimate of the inverse of the background and observation-error
covariance matrices (B−1 and R−1), respectively. Variational data assimilation is widely used for operational state
estimation in meteorology and oceanography as it is a practical method for solving nonlinear least-squares problems
when the dimensions of the state and observation vectors are huge (typically 106 to 109).

In variational data assimilation, the cost function is minimised approximately using a Truncated Gauss-Newton (GN)
algorithm (Gratton et al., 2007) or incremental variational data assimilation as it is known in the data assimilation
community (Courtier et al., 1994). This reduces the nonlinear problem to a sequence of linear sub-problems (quadratic
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cost functions), each of which is solved iteratively using a Preconditioned Conjugate Gradient (PCG) method (Gürol
et al., 2013). Standard implementations of PCG for data assimilation employ B as a first-level preconditioner (Derber
and Rosati, 1989; Gürol et al., 2013), which we refer to as B-PCG hereafter. Besides significantly improving the
conditioning of the Hessian matrix (Lorenc, 1997), B-preconditioning allows the B-PCG algorithm to be formulated in
a way that avoids the need to specify B−1 explicitly. This is important as most B formulations used in practice are
not associated with convenient representations of B−1.

There is still a requirement to specify R−1, however. To simplify its specification, practical implementations of
R tend to have relatively simple structural forms. In the extreme yet common case, R is taken to be a diagonal
matrix, which amounts to assuming that the observation errors are uncorrelated. This is a poor assumption for certain
observations, especially from satellites (Bormann and Bauer, 2010; Waller et al., 2016a). If observation-error correlations
are neglected when they are known to be important then the solution of the weighted least-squares problem will result
in a degraded (sub-optimal) analysis and poor exploitation of the assimilated data. To mitigate the former while still
using a diagonal R, observation data sets are either ‘thinned’ into a subset of observations or aggregated into ‘super-
observations’ that have reduced error correlations (Liu and Rabier, 2002). Furthermore, the observation-error variances
are often multiplied by an ‘inflation’ factor in order to prevent the analysis from overfitting observations that may
still have a substantial component of correlated error. However, when observation error is correlated over distances
similar to or greater than those of the background error, inflation can actually degrade the analysis (Reid et al., 2020).
While these methods can alleviate to some extent the inaccuracies associated with a diagonal R, they still lead to
sub-optimal solutions since potentially valuable observations are excluded and any remaining error correlations from
the pre-processed observations are ignored (Rainwater et al., 2015).

Several studies have examined the impact from using non-diagonal representations of R to account for spatially
correlated errors (Healy and White, 2005; Stewart et al., 2013; Ruggiero et al., 2016; Pinnington et al., 2016). A
general conclusion that arises in most of these works is that accounting for spatial correlations in R leads to a more
accurate solution, especially for the smaller spatial scales, even with a rather crude correlation model. However, even
crude correlation models can lead to impractical representations of R−1. Various correlation models with accessible
inverse representations have been proposed in the literature (Brankart et al., 2009; Michel, 2018; Bédard and Buehner,
2019; Guillet et al., 2019; Hu and Dance, 2021). One of the challenges with specifying R and R−1 is that observation
locations tend to be arranged in an arbitrary and unpredictable way due to the measurement method or quality control
procedures that result in observations being removed. This means that correlation models developed for structured
grids, like those typically associated with B, are not necessarily applicable for R.

In this study, we use diffusion operators to model spatial correlations in both B and R. Diffusion operators can
be used to model correlation functions from the Matérn class (Guttorp and Gneiting, 2006) and provide convenient
and inexpensive representations of the associated inverse correlation operators (Mirouze and Weaver, 2010; Weaver
and Mirouze, 2013). They are popular for representing spatially correlated background error in complex boundary
domains such as those encountered in ocean data assimilation (Derber and Rosati, 1989; Egbert et al., 1994; Weaver
and Courtier, 2001; Weaver et al., 2015, 2020). Furthermore, Guillet et al. (2019) describes how to adapt these operators
to unstructured meshes and hence to make them suitable for R and R−1.

The rate of convergence of the conjugate gradient (CG) method is mainly determined by the characteristics of the
eigenvalue spectrum of the Hessian matrix (Axelsson and Kaporin, 2000; Gürol et al., 2013). As the eigenvalues of
the Hessian matrix are strongly dependent on B and R, we can expect a non-diagonal R to have a significant impact
on the rate of convergence of B-PCG. In operational data assimilation, analyses must be delivered subject to strict
computational constraints, which means that the stopping criterion for B-PCG is usually set by a maximum allowed
number of iterations rather than a measure of the convergence of the solution. Therefore, it is essential to ensure that
the rate of convergence of B-PCG from the use of a non-diagonal R is not deteriorated to an extent that it outweighs
the benefits brought from specifying a more accurate R.

In previous work, Haben et al. (2011) analysed the convergence rate for the special case of a diagonal R and discussed
the influence on the condition number of observation and background accuracy, observation density and the background-
error correlation length-scale. Tabeart et al. (2018) studied the effects of a non-diagonal R on the convergence rate of
the unpreconditioned CG method and derived general theoretical bounds for the condition number. These results were
extended by Tabeart et al. (2021) to the B-preconditioned case (B-PCG). In both studies, theoretical and experimental
results were obtained for the special case where the background- and observation-error correlation matrices are defined
as circulant matrices. Their numerical experiments were performed using a particular circulant matrix built from a
Second Order Auto-Regressive (SOAR) correlation function defined on the one-dimensional (1D) circular domain S.

In this article, we are interested in understanding the sensitivity of the condition number with respect to the
basic parameters of the diffusion operators that are used to model background- and observation-error correlations.
Correlation functions derived from diffusion operators are controlled by a smoothness parameter M (the number of
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diffusion iterations) as well as a length-scale parameter L (the square-root of the diffusion coefficient), and thus are
more flexible than the SOAR function, which is controlled by a single length-scale parameter. In fact, the SOAR
function corresponds to a particular member (M = 2) of the family of correlation kernels represented by the 1D diffusion
operator. We illustrate how the relative choice of M for B and R can have a profound effect on the conditioning of the
minimisation problem.

The organisation of the article is as follows. In Section 2, we introduce the weighted least-squares problem underlying
variational data assimilation and we outline the solution algorithm based on truncated GN combined with CG. We
provide the background theory on CG (and B-PCG) that is needed in this article for establishing the theoretical results
and for interpreting the results from the numerical experiments with a 1D variational data assimilation (1D-Var)
system. We conclude this section with a description of B and R, exposing the fundamental covariance parameters
that control the shape characteristics of the correlation functions as well as the conditioning of the CG minimisation.
The formulation of B and R in terms of diffusion operators depends on theoretical results that are summarised in
Appendix A. In Section 3, we study the eigenvalue spectrum of the Hessian matrix and derive analytical expressions for
bounds on the condition number. First, we present the general bounds that were derived by Tabeart et al. (2018) and
Tabeart et al. (2021). Then, we derive specific bounds that take into account the structural properties of the diffusion
operators used to model B and R. We relegate the technical details of the proofs of a key theorem and associated
corollaries to Appendices B, C, and D. In Section 4, we present the results from numerical experiments with the 1D-Var
system to examine the sensitivity of the convergence of B-PCG to the parameters of B and R. These results show a
strong sensitivity of the condition number, and hence convergence rate, to the correlation parameters. We argue that
the parameter values should be chosen as a compromise between specifying the most accurate correlation model on the
one hand and achieving a satisfactory convergence rate for the CG minimisation on the other. We provide a summary
and conclusions in Section 5.

2 The weighted least-squares problem

2.1 Problem formulation: variational data assimilation

Variational data assimilation provides an estimate of the physical state of a system by combining a priori information
(the background state) and observations, together with information about their uncertainties. Here, we will use math-
ematical notation that is standard in meteorological and ocean data assimilation (Ide et al., 1997). Assuming unbiased
Gaussian error statistics for the background state and observations, the estimation problem can be formulated as a
nonlinear weighted least-squares problem defined by the cost function

min
x
J (x) = 1

2
‖x− xb‖2B−1 + 1

2
‖H(x)− yo‖2R−1 (1)

where x ∈ Rn is the state vector to be optimised and xb ∈ Rn is the background estimate of the state vector. The vector
of observations is yo ∈ Rm, and H(·) is the observation operator, which maps an estimate of the state of the system
to its equivalent in observation space. In general, H(·) is nonlinear and non-bijective. In four-dimensional variational
assimilation (4D-Var), H(·) would contain the forecast model operator, x would be the initial state vector and yo would
be a vector that concatenates observations distributed over a given time window. The unbiased Gaussian distributions
of the background and observation errors are characterized statistically by the covariance matrices B ∈ Rn×n and
R ∈ Rm×m, respectively. By definition, B and R are symmetric positive-definite (SPD) matrices. The inverse covariance
matrices B−1 and R−1 define inner products in the background and observation spaces, and are used as weighting
matrices in the cost function (1) where ‖x‖2P = xTPx denotes the squared P-norm of a vector. The analysis is the
global minimising solution: xa = arg minJ (x).

Truncated Gauss-Newton (GN) (Gratton et al., 2007), which is known as incremental variational assimilation in
the meteorological and ocean data assimilation communities (Courtier et al., 1994), is a common method for finding an
approximate minimum of the nonlinear cost function (1). Truncated GN approaches the solution iteratively by solving,
on each GN iteration k, the linearized sub-problem

min
δx

J(δx) = 1
2
‖xk − xb + δx‖2B−1 + 1

2
‖Hkδx− dk‖2R−1 , (2)

which is a quadratic approximation of the non-quadratic cost function (1) in a neighbourhood of the current iterate xk.
In (2), Hk ∈ Rm×n is the observation operator linearized about xk, and dk = yo −H(xk) ∈ Rm is the misfit between
the observation vector and the current iterate mapped to observation space. If δxk denotes the solution of (2) then the
estimate of the state is updated according to

xk = xk−1 + δxk,
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where k = 1, . . . ,K and x0 = xb (in general). In data assimilation applications with atmospheric or ocean models, the
maximum number of GN iterations is typically very small (K < 10) for computational reasons.

The quadratic sub-problem (2) can be rewritten in standard quadratic form

min
δx

J(δx) =
1

2
δxTAkδx− bT

kδx + ck, (3)

where
Ak = B−1 + HT

kR
−1Hk

is the SPD approximation of the Hessian matrix of the nonlinear cost function,

bk = B−1(xb − xk) + HT
kR
−1dk

is the negative gradient of the nonlinear cost function with respect to the current iterate xk, and ck = J(0) is a scalar.
Satisfying the optimality condition of the quadratic sub-problem (3) requires solving the linear system

Akδx = bk.

For our target applications, the dimension (n) of the state vector is large and the matrices are generally only available
as operators (i.e., via matrix-vector products, not explicit matrices). For this reason, it is very common to solve the
quadratic sub-problem iteratively using CG methods.

2.2 Solving the quadratic sub-problem with the conjugate gradient method

CG is a Krylov subspace method (see Golub and Van Loan (2013, Section 6.7) and Saad (2003, Section 10.2)) for
solving linear systems where the system matrix is SPD. CG seeks an approximate solution

δx` ∈ δx0 +K`(Ak,bk),

where δx0 is the initial approximation and

K`(Ak,bk) = span{bk,Akbk, · · · ,A`−1
k bk}

is the Krylov subspace generated by Ak and bk. When x0 = xb, the initial iterate δx0 = 0. Hereafter, we will drop the
truncated GN iteration index k for clarity of notation. In order to find a unique solution, CG imposes the orthogonality
condition

r` ⊥ K`(A,b),

where r` = b−Aδx` is the residual at the `-th iteration of CG. As a result, CG minimises the quadratic cost function
given by (3) over the subspace δx0 + K`(A,b) (Nocedal and Wright, 2006, Theorem 5.2), so that the `-th iterate δx`
minimises the error e` = δx∗− δx` in the A-norm over the same Krylov subspace, δx∗ being the exact solution (Kelley,
1987, Lemma 2.1.1). The convergence properties of CG can then be analysed in terms of the error in the A-norm (Saad,
2003, pages 204-205):

‖e`‖A
‖e0‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)`
, ` ∈ N, (4)

where κ(A) is the condition number of A, which is defined in the 2-norm as

κ(A) =
λmax(A)

λmin(A)
,

with λmax(A) and λmin(A) being the largest and smallest eigenvalues of A, respectively. Equation (4) shows that
convergence will tend to be fast when the condition number is close to 1. The condition number can thus be used as
an indicator of the convergence rate of CG. Note that the initial error may also have an influence on the convergence
behaviour. For simplicity, however, we focus only on the effect of the condition number on the convergence rate.

Since Equation (4) depends on the condition number, it does not account for the distribution of the eigenvalues
between the smallest and largest values. As a consequence, it can lead to a pessimistic error bound, especially when κ is
very large. More advanced error bounds exist, which account for a more complex representation of the spectrum (e.g.,
see Chapter 13 in the book of Axelsson (1994)). However, for the problem considered in this article, those error bounds
provide little improvement over the error bound given by Equation (4). They have been shown to be more accurate
only in the limit of a very large number of iterations, while here we are interested mainly in the solution accuracy in
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the early iterations of CG. As they are more complex and less general than Equation (4), we did not apply them in this
article.

In order to accelerate the convergence rate of CG, it is common to use a preconditioner. For data assimilation
problems that solve quadratic problem (3), it is customary to use B as a preconditioner, as it usually yields a signif-
icantly smaller condition number compared to that of the unpreconditioned problem, and a more clustered spectrum
of eigenvalues (Lorenc, 1988, 1997; Gürol et al., 2013). Therefore, we will focus on solving the B-preconditioned linear
system. Since B is SPD, it can be factored as

B = UUT

where U ∈ Rn×n. We can then introduce B-preconditioning symmetrically using a split-preconditioner,

UTA U δv = UTb (5)

where δx = Uδv. An unpreconditioned CG can be applied to Equation (5) by taking UTAU as the (SPD) system
matrix and UTb as the right-hand side.

In this article, we will evaluate the condition number of the preconditioned Hessian matrix,

S = UTA U = In + UTHTR−1 H U, (6)

and determine its sensitivity to parameters in the covariance matrices B and R when their spatial correlations are
modelled by diffusion operators.

2.3 Weighting matrices formulated as the inverse of diffusion operators

The operators B and R describe the covariance structures of the background and observation errors. In the idealised 1D-
Var system used in this study, the covariance matrices are small enough to be constructed explicitly using a functional
expression to determine the matrix elements (e.g., as done in Tabeart et al. (2021)). However, when one considers a
realistic system, the size of B and R become too large to perform direct matrix-vector products. Hence, we prefer to
adopt an approach that scales with the size of the problem and avoids the explicit construction of covariance matrices.

Covariance matrices can be factored as ΣCΣ where Σ is a diagonal matrix of standard deviations and C is an SPD
correlation matrix. The computational difficulties are inherent in the specification and application of C. Egbert et al.
(1994) showed that multiplying an arbitrary vector by a Gaussian correlation matrix can approximately be achieved
by numerically ‘time’-stepping a diffusion equation with that arbitrary vector taken as the ‘initial’ condition1. This
procedure defines an operator that models the product of a correlation matrix with the ‘initial’ condition without
defining each element of the matrix. Since each ‘time’-step involves the manipulation of sparse matrices, this strategy is
naturally appropriate for large problems. The product of the diffusion coefficient µ and the total action ‘time’ T = M∆t
of the diffusion process, where M is the total number of diffusion steps and ∆t is the ‘time’ step, controls the length-
scale Dg of the Gaussian function that would be used to construct the correlation matrix, where D2

g = 2µT . Weaver
and Courtier (2001) describe the technique in detail and generalize it to account for anisotropic correlations. Mirouze
and Weaver (2010) and Weaver and Mirouze (2013) describe an extension of the technique that involves solving the
diffusion equation using an implicit ‘time’-stepping scheme instead of the explicit scheme of the original approach.

With the implicit scheme, the total number of diffusion steps M becomes a free parameter together with the diffusion
coefficient multiplied by the ‘time’ step (µ∆t). (With the explicit scheme, their product is the single free parameter
controlling the length-scale Dg of the Gaussian function). This extra degree of freedom allows the diffusion operator
to represent matrix-vector products with correlation matrices from the Matérn family (Guttorp and Gneiting, 2006)
where M is linked to the standard smoothness parameter ν of the underlying Matérn correlation functions in Rd via the
relation ν = M − d/2. In R, these functions are characterised by a polynomial times the exponential function and are
also known as Mth-order Auto-Regressive (AR) functions. The parameter µ∆t is precisely the square of the standard
length-scale parameter L of the Matérn functions. Without loss of generality, ∆t can be set to 1, so that µ = L2. The
connection between the Matérn correlation functions and the differential operator describing the inverse of an implicit
diffusion process has its roots in the seminal work of Whittle (1963). We outline the connection in Appendix A and
provide the key theoretical relations for the 1D-Var problem under consideration in this study.

While L is the length-scale parameter appearing explicitly in the definition of the diffusion operator, it is common in
data assimilation to use an alternative length-scale parameter, the Daley length-scale D, to control the spatial smoothing
properties of the diffusion kernel. The Daley length-scale can be understood as the half-width of the parabola osculating

1In the current context, the time coordinate in the diffusion equation does not represent physical time but should be interpreted as a pseudo-
time coordinate that controls the smoothing properties of the diffusion kernel. This explains why ‘time’ has been written within quotation
marks.
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the correlation function at its origin (Daley, 1991; Pannekoucke et al., 2008). It is defined for at least twice differentiable
correlations functions, which in our case corresponds to AR functions with M > 1. As discussed in Appendix A.1, on
R, D and L are related through the equation

D = L
√

2M − 3 (7)

where the square-root term generalises to
√

2M − d− 2 in Rd (Weaver and Mirouze, 2013). An advantage of D over L is
that it allows better control of the spectral properties of the AR functions (see Figure 10 in Appendix A.1). In particular,
AR functions converge to a Gaussian function with length-scale D as M tends to infinity with L simultaneously reduced
to zero to keep D constant. A closely-related length-scale parameter

ρ = L
√

2M − 1 (8)

is used in geostatistics (Stein, 1999, pp. 48–50) and machine learning (Rasmussen and Williams, 2006, Chapter 4.2).
AR functions defined in terms of ρ also have the property of converging to a Gaussian function (with length-scale ρ) as
M tends to infinity with ρ fixed. In Rd, the square-root term in Equation (8) generalises to

√
2M − d. An advantage

of ρ over D is that it is valid for M = 1 as well as M > 1, while an advantage of D over ρ (and L) is that it is easier to
estimate in practical applications when D is spatially dependent (Weaver et al., 2020, Section 2.4). In Section 3, the
analytical results are first derived in terms of L and then interpreted in terms of both D and ρ, where we will refer to
the latter as the Stein length-scale2 for convenience. In Section 4, the numerical experiments are discussed mainly in
terms of D.

On a circular domain of radius a (see Appendix A.2), we can define the discrete, symmetric diffusion-modelled
correlation operator C as a sequence of linear operators represented by their respective matrices (Weaver et al., 2015,
Section 3.1):

C = Γ L W−1 Γ (9)

where L = T−M is a self-adjoint diffusion operator, T being a discrete representation of the shifted Laplacian operator
T . On the circular domain with constant L, we have from Equation (41) that T ≡ I − L2∂2/a2∂φ2 where −π ≤ φ ≤ π.
The matrix W contains geometry- and grid-dependent weights. It defines the weighting matrix of the discrete form
of the L2(S)-inner product with respect to which L is self-adjoint; i.e., L = W−1LTW. Sections 3.2 and 3.3 of
Guillet et al. (2019) provide a comprehensive discussion of this point within the context of a Finite Element Method
discretisation of the diffusion equation. The diagonal matrix Γ contains normalisation factors so that the diagonal
elements of C are approximately equal to one. On the circular domain with constant L� a, we can set Γ = γI where
γ is well approximated by the constant product

√
νL where ν is a monotonically increasing function of M given by

Equation (38). For example, the error in γ2 is smaller than 0.001% when L/a = 0.3. Weaver et al. (2020) provide an
overview of methods for estimating Γ on other domains and when the correlation parameters are not constant.

Taking M to be an even number allows us to split T−M = T−M/2 T−M/2 and hence to derive a simple ‘square-root’
factorisation of Equation (9). The ‘square-root’ operator is convenient for generating random correlated samples and
has been used for this purpose for the numerical experiments in Section 4. Another convenient property that comes
specifically from the implicit formulation is that it provides immediate access to an inexpensive formulation of the
inverse of the operator. This can be noticed from the inverse of Equation (9),

C−1 = Γ−1 W L−1 Γ−1,

where L−1 = TM simply involves M applications of the shifted Laplacian operator.
Here, we consider a finite-difference discretisation of the diffusion equation under the assumption that the grid

resolution is uniform so that W = hI where h is the grid size. Furthermore, we assume that Σ = σI where σ is a
constant standard deviation. Given these assumptions together with the assumption that L is constant, we can simplify
the expressions for the diffusion-modelled covariance operators for B and R as

B =
σ2
bνbLb

hb
T
−Mb
b =

σ2
bνbLb

hb

(
In − L2

b∆hb

)−Mb , (10)

R =
σ2
oνoLo

ho
T−Mo

o =
σ2
oνoLo

ho

(
Im − L2

o∆ho

)−Mo
, (11)

where the subscripts ‘b’ and ‘o’ refer to quantities relative to the background and observations, respectively. The symbol
∆h denotes the finite-difference representation of the Laplacian operator, which depends on the grid resolution for the

2In Stein (1999), the square-root term in Equation (8) is effectively
√

2(2M − 1) where the extra factor of 2 comes from his alternative
definition of the Gaussian function that does not include the factor of 2 in the denominator of the function argument as we have assumed here
(see Equation (40)).
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background and observations. The matrices In ∈ Rn×n and Im ∈ Rm×m are identity matrices. We are also interested
in the expression for R−1, which follows immediately from Equation (11):

R−1 =
ho

σ2
oνoLo

TMo
o =

ho

σ2
oνoLo

(
Im − L2

o∆ho

)Mo
.

By taking Wo = hoIm, we are assuming that the observations are regularly distributed with a separation distance of
ho. This is done for mathematical convenience. Relative to the domain size 2πa, ho is an explicit parameter that
reflects observation density and can be compared to hb/2πa, the density of background points. With the simplifying
assumptions above, we are able to establish explicit theoretical bounds on the condition number of the preconditioned
Hessian matrix as detailed in Section 3.

We remark now on the actual values of the parameter pairs (Mb,Mo), (Lb, Lo) and (σ2
b, σ

2
o) that will be considered

in this study. First, values of (Mb,Mo) ≥ 10 lead to AR functions that are practically Gaussian, so we will not consider
values beyond 10. Values of (Lb, Lo) should be large enough compared to the grid size (hb, ho) (at least Lb/hb ≥ 1 and
Lo/ho ≥ 1) in order to avoid large discretisation errors in the finite-difference representation of the diffusion operator.
Ideally, the parameters should be chosen to provide the optimal fit to our available estimate of the error covariances
(with (Lb, Lo) and (σ2

b, σ
2
o) made spatially dependent in general). Background-error correlations are often specified

as quasi-Gaussian functions (large values of (Mb,Mo)). The reason for this choice can be mainly computational;
i.e., efficient models, like diffusion, exist for applying quasi-Gaussian functions (Gaspari and Cohn, 1999; Weaver and
Courtier, 2001; Purser et al., 2003). Another reason is that quasi-Gaussian functions are sufficiently regular that they
can be differentiated, which is important for defining cross-variable (multivariate) covariances in atmospheric and ocean
data assimilation (Daley, 1991; Derber and Bouttier, 1999; Weaver et al., 2005). In comparison, estimates of the spatial
correlations of observation error often display a sharp decrease at short range and slow decay at longer range (Waller
et al., 2016a,b; Michel, 2018), which with an AR function is best modelled with a small value of (Mb,Mo). In view of
these remarks, the case where Mo < Mb seems to be of particular interest. Nevertheless, both this case and the case
where Mo ≥Mb will be considered as different data-sets may give rise to different error characteristics.

3 Conditioning of the preconditioned linear system

In this section, we are interested in analysing the convergence of CG applied to the linear system (5) where the system
matrix S depends on the diffusion-modelled covariance matrices described in the previous section. In particular, we are
interested in analysing the sensitivity of the convergence in terms of the parameters of these covariance matrices. For
this purpose, we will focus on the condition number of S, denoted κ(S).

We start by recalling some results from Haben et al. (2011) and Tabeart et al. (2021) on the upper bound of κ(S)
for general covariance matrices.

Theorem 1 (Theorem 3 of Tabeart et al. (2021)). Let B ∈ Rn×n and R ∈ Rm×m be symmetric, positive-definite
matrices. Let U = UT ∈ Rn×n be the (unique) symmetric square root of B = UUT = U2 and let V = VT ∈ Rm×m be
the (unique) symmetric square root of R = VVT = V2. If H ∈ Rm×n, with m < n, and S = In + UHTR−1HU, then

κ(S) ≤ 1 + ‖V−1HBHTV−1‖∞. (12)

The upper bound given in Equation (12) is quite general and it is not straightforward to understand the impact of
each component of the matrix S on the condition number. Moreover, caution is needed when applying Equation (12)
in physical applications as the eigen-decomposition of a covariance matrix will not be independent of the physical
units of the variables (Tarantola, 1987, Section 4.3.4). For this reason, it is generally more meaningful to consider an
eigen-decomposition on the associated (non-dimensional) correlation matrix. In our idealised study, there is a single
“physical” variable, with arbitrary units, and direct observations of that variable. Furthermore, both the background-
and observation-error variances are taken to be constant, so can be factored out of B and R. In this case, the eigenvalues
of B and R will be identical to those of their respective correlation matrices up to a multiplicative factor given by their
respective variances. We can thus continue to consider the eigen-decompositions of B and R without ambiguity.

Other bounds have been proposed by Haben et al. (2011) and Tabeart et al. (2021) to understand the impact of
each covariance matrix.

Theorem 2 (Corollary 1 of Tabeart et al. (2021)). Let B ∈ Rn×n and R ∈ Rm×m be symmetric, positive-definite
matrices. Let U = UT ∈ Rn×n be the (unique) symmetric square root of B = UUT = U2. If H ∈ Rm×n, with m < n,
and S = In + UHTR−1HU, then

κ(S) ≤ 1 +
λmax(B)

λmin(R)
λmax(HHT). (13)
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The upper bound in Equation (13) attempts to separate the influence of B and R by considering their eigenvalues
separately. While this separation makes the bound easier to use for sensitivity analyses, it can also degrade the accuracy
of the bound. Indeed, compared to the bound given by Equation (12), the bound given by Equation (13) does not
account for any interaction between B and R−1, which results in a more pessimistic bound.

As an example, we consider the case where both B and R are modelled using diffusion operators as described
in Section 2.3, and H is a selection matrix. We consider a domain of length 2000 km, composed of n = 500 points
that are equally spaced every hb = 4 km. We assume that direct observations are available at every other grid point
(m = 250 and ho = 8 km). We define L̃b = Lb/hb and L̃o = Lo/ho where Lb = 60 km is fixed and Lo is allowed to
vary. Figure 1 compares the two upper bounds from Theorem 1 and Theorem 2 with the exact condition number3 for
different parameter specifications in B and R. Figure 1a shows the results for Mb = 8 and Mo = 2, while Figure 1b
shows the results for Mb = 2 and Mo = 8, for values of L̃o/L̃b ranging from 0.01 to 2. While the bound of Theorem 1
matches closely the condition number for both settings, the bound of Theorem 2 is far less accurate. This discrepancy
shows that even though the diffusion models use different parameters, the structural similarities between B and R
lead to a crucial interaction between them. Therefore, separating the effect of these matrices in the bound results in a
pessimistic upper bound.

In this article, we are interested in obtaining explicit and accurate theoretical bounds on the condition number in
terms of the key parameters of the diffusion-modelled correlation operators presented in Section 3.1. We restrict H to
a class of uniform selection operators, which are associated with uniformly distributed observations. In Section 3.2, we
study how these selection operators interact with diffusion operators. Based on the results of these two sections, we
examine the conditioning of S in Section 3.3. Additional results are derived in Section 3.3.1 using a simplified matrix
So, which is equal to S when H is the identity matrix but is an approximation otherwise.

(a) The correlation function of the background error is
Gaussian-like (Mb = 8), while the correlation function of
the observation error is a SOAR function (Mo = 2).

(b) The correlation function of the background error is a
SOAR function (Mb = 2), while the correlation function of
the observation error is Gaussian-like (Mo = 8).

Figure 1: Upper bounds on the condition number of S compared to the exact condition number as a function of
L̃o/L̃b = Lohb/Lbho.

3.1 Spectral properties of diffusion operators

The diffusion-modelled covariance operators for B and R in Equations (10) and (11) are defined in terms of Laplacian
matrices ∆hb ∈ Rn×n and ∆ho ∈ Rm×m, formed from a centred finite-difference discretisation of the Laplacian operator
on a uniform grid of resolution hb and ho, respectively. On a periodic domain, ∆hb and ∆ho are circulant matrices4

that are tridiagonal except for the first and last lines where additional non-zero elements appear in the corners due to
the periodic boundary conditions. Likewise, the shifted Laplacian matrices Tb ∈ Rn×n and To ∈ Rm×m are circulant,

3The exact condition number is computed using results from Theorem 3 described later in Section 3.
4Each column (row) of a circulant matrix is a cyclic permutation of the previous column (row).
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near-tridiagonal matrices. Specifically, for R, we have

∆ho =
1

h2
o



−2 1 0 0 1
1 −2 1 0 0

0
. . .

. . .
. . .

. . .
. . .

. . . 0
0 0 1 −2 1
1 0 0 1 −2


(14)

and thus

To =



1 + 2L̃2
o −L̃2

o 0 0 −L̃2
o

−L̃2
o 1 + 2L̃2

o −L̃2
o 0 0

0
. . .

. . .
. . .

. . .
. . .

. . . 0

0 0 −L̃2
o 1 + 2L̃2

o −L̃2
o

−L̃2
o 0 0 −L̃2

o 1 + 2L̃2
o


(15)

where L̃o = Lo/ho is a non-dimensional parameter that roughly corresponds to the number of grid points over which
observation-error correlations are significant. The expressions for ∆hb and Tb are the same as Equations (14) and (15)

with (hb, L̃b) instead of (ho, L̃o).
An important property of circulant matrices is that, for a given size, they all share the same eigenvectors, which form

a Fourier basis (Gray, 2005). Consequently, their eigenvalues can be found by taking the discrete Fourier transform
of one of the rows. Let [f (i)]p be the p-th component of the i-th eigenvector of To and let λi be the corresponding
eigenvalue: [

f (i)
]
p

=
1√
m
e−2πj ip

m , λi = 1 + 4L̃2 sin2

(
π
i

m

)
, i, p ∈ J0,m− 1K,

where j denotes the imaginary unit (j2 = −1). Since To is symmetric, its eigenvalues are real and each of them is
repeated twice; i.e., λi(To) = λm−i(To), except λ0(To) as the index i stops at m − 1. If m is even, λm/2(To) is also
unique.

The covariance matrices B and R in Equations (10) and (11) are proportional to a power of the inverse of Tb and
To, respectively. They are also circulant matrices and diagonal in a Fourier basis described by the vectors f (i). Two
circulant covariance matrices with different parameter specifications then share the same eigenvectors as long as they
are applied on the same domain. In addition, since To and Tb are symmetric, the diffusion matrices are symmetric and
their eigenvalues are real and proportional to powers of the inverse of the eigenvalues of To and Tb. The eigenvalues
of B and R are then

λi(B) =
σ2
bνbLb

hb
λi(Tb)−Mb = σ2

bνbL̃b

[
1 + 4L̃2

b sin2

(
π
i

n

)]−Mb

, i ∈ J0, n− 1K, (16)

λi(R) =
σ2
oνoLo

hb
λi(To)−Mo = σ2

oνoL̃o

[
1 + 4L̃2

o sin2

(
π
i

m

)]−Mo

, i ∈ J0,m− 1K. (17)

3.2 Influence of H as a uniform selection operator

In the previous section, we derived the eigenvalue spectra of the covariance matrices when they are defined as circulant
matrices. Our simplifying assumption that the covariance parameters are constant is crucial to ensure the circulant
property of the covariance matrices. In this section, we exploit these results to analyse the spectrum of the matrix
HBHT that appears in S. To do so, we will assume that H is a uniform selection operator; i.e. we have observations
every ζ grid points where ζ is a positive integer. The total number of observations is then given by m = n/ζ assuming
that ζ is a divisor of n. This assumption will allow us to analyse the sensitivity of the diffusion parameters in a more
explicit way since it preserves to some extent the structure of B, as shown in the following lemma.

Lemma 1. Let B ∈ Rn×n be a symmetric circulant matrix and let H ∈ Rn×m be a uniform selection operator where
ζm = n with ζ a positive integer. The matrix HBHT ∈ Rm×m is then a symmetric circulant matrix with eigenvalues

λi
(
HBHT) =

1

ζ

ζ−1∑
r=0

λi+rm(B), (18)
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for i ∈ J0,m− 1K.

Proof. Let the notation [A]p,q denote the element on the p-th row and q-th column of any matrix A. As B is a circulant
matrix, it can be diagonalised in a Fourier basis:

B = FnΛbFH
n , (19)

where Λb is a diagonal matrix, and the elements of Fn are the (normalized) n-th roots of unity:

∀p, q ∈ J0, n− 1K,
[
Fn
]
p,q

=
1√
n
ωpqn with ωn = e

2πj
n .

The superscript “H” stands for conjugate (Hermitian) transpose and FH
n = F−1

n . Starting from Equation (19), we have

HBHT = HFnΛb

(
HFn

)H
. (20)

The matrix HFn is of dimension m× n and is composed of the rows of Fn:

∀p ∈ J0,m− 1K, q ∈ J0, n− 1K
[
HFn

]
p,q

=
[
Fn
]
ζp,q

=
1√
n
ωζpqn .

The matrix HFn can be linked to Fm, the matrix that diagonalises circulant matrices of dimension m×m. The
elements of the latter are the m-th root of unity:

∀p, q ∈ J0,m− 1K,
[
Fm
]
p,q

=
1√
m
ωpqm with ωm = e

2jπ
m ,

which, as n = ζm, can be linked to the n-th root of unity as ωm = ωζn. Consequently, for the first m columns of HFn,
we have

∀p ∈ J0,m− 1K, q ∈ J0,m− 1K
[
HFn

]
p,q

=
1√
n
ωpqm =

1√
ζ

[
Fm
]
p,q
.

The other n−m columns of HFn can be characterized by using the periodicity of the m-th root of unity: ωpqm = ω
p(q+rm)
m

for any positive integer r. Therefore, HFn is a matrix concatenated with ζ copies of Fm:

HFn =
1√
ζ

[Fm · · ·Fm].

Equation (20) can thus be rewritten as

HBHT = Fm
1√
ζ

(
Im · · · Im

)
Λb

Im
...

Im

 1√
ζ

FH
m = FmΛ′bFH

m

where Λ′b is a diagonal matrix of dimension m×m. As HBHT is diagonal for the basis defined by the columns of Fm, it
is a circulant matrix. Its eigenvalues are the elements of the diagonal matrix Λ′b, which are given by Equation (18).

A matrix-vector product with HBHT is therefore in the range of the column vectors f
(i)
m , weighted by the average

of ζ evenly-distributed eigenvalues of B. This result can be linked to the notion of aliasing. Different vectors from
the Fourier basis of dimension n (e.g., column f

(i)
n ) become indistinguishable and equal to the same frequency mode in

the Fourier basis of dimension m (e.g., column f
(i)
m ) once they are sub-sampled, as the highest frequencies cannot be

resolved by the observation grid. This point is illustrated in Figure 2, which shows multiple distinct columns of Fn that
all take the same values on the observation grid, which are the values of a column of Fm. As shown in Equation (18),

the weight associated with a frequency mode f
(i)
m in HBHT is the average of the weights associated with the frequency

modes f
(i)
n , f

(i+m)
n , ..., f

(i+(ζ−1)m)
n in B, which become equal to f

(i)
m once sub-sampled by H.
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Figure 2: Eigenvectors f
(i+rm)
n of a circulant matrix of size n × n with n = 9, for i = 2, r ∈ J0, ζ − 1K with ζ = 3 and

m = n/ζ = 3. On the model grid with n points, these eigenvectors can be distinguished. On the observation grid with m
points (marked by dashed lines), they all take the same values, which are the elements of the corresponding eigenvector

f
(i)
m of a circulant matrix of size m×m. Note that the first and last points in the figure represent the same grid point due

to the periodic boundary conditions. The vectors have been plotted with a higher resolution than the one of the model
grid for the sake of clarity.

3.3 Spectral properties of the B-preconditioned Hessian matrix

Lemma 1 implies that HBHT shares the same eigenvectors as any circulant matrix of size m×m, including the matrices
associated with the constant-parameter diffusion operator applied on the uniform observation grid. This allows us to
derive a new expression for the spectrum of S.

Lemma 2. Let B = UUT ∈ Rn×n and R ∈ Rm×m, with m < n, be circulant matrices and let H ∈ Rn×m be a uniform
selection operator. If S = In + UTHTR−1HU then the i-th eigenvalue of S is

λi
(
S
)

=

1 +
λi
(
HBHT

)
λi
(
R
) if i ∈ J0,m− 1K,

1 otherwise.

Proof. Let Λ∗(·) denote the spectrum of a matrix without its zero eigenvalues. For any matrix P and Q of respective
sizes n×m and m× n, with n > m, we know that (Harville, 1997, Theorem 21.10.1)

Λ∗
(
PQ

)
= Λ∗

(
QP

)
. (21)

With P = UTHT and Q = R−1HU, Equation (21) implies that UTHTR−1HU has at least n−m eigenvalues equal
to zero, and that

Λ∗
(
UTHTR−1HU

)
= Λ∗

(
R−1HBHT).

Therefore, S has an eigenvalue of 1 with multiplicity of n−m and the remaining m eigenvalues are the elements of
1 + Λ∗

(
R−1HBHT

)
. Since HBHT and R−1 are circulant matrices (see Lemma 1), they are diagonalisable in the same

basis. Therefore, the eigenvalues of their product is the product of their respective eigenvalues:

∀i ∈ J0,m− 1K, λi
(
R−1HBHT) = λi

(
R−1)λi(HBHT) =

λi
(
HBHT

)
λi
(
R
) .

We can now write the eigenvalues of S in terms of the constant parameters of the diffusion-modelled covariance
matrices by using the results of Lemma 1 and Lemma 2, and the expressions for the eigenvalues of B and R given by
Equations (16) and (17), respectively.

Theorem 3. Let B = UUT ∈ Rn×n and R ∈ Rm×m be circulant matrices defined by Equations (10) and (11) where
the shifted Laplacian matrices Tb and To are defined in Section 3.1. Let H ∈ Rn×m be a uniform selection operator

11



where ζm = n with ζ a positive integer. If S = In + UTHTR−1HU then

λi(S) =


1 + α

ζ−1∑
r=0

[
1 + 4L̃2

o sin2
(
π i
m

)]Mo

[
1 + 4L̃2

b sin2
(
π i+ rm

ζm

)]Mb
if i ∈ J0,m− 1K,

1 otherwise,

(22)

with L̃o = Lo/ho, L̃b = Lb/hb and

α =
σ2
bνbLb

σ2
oνoLo

.

Proof. Lemma 2 provides an expression for the eigenvalues of S in terms of the eigenvalues of R and HBHT. The
eigenvalues of R are known from Equation (17), and the eigenvalues of HBHT are obtained by applying the result of
Lemma 1 to the eigenvalues of B from Equation (16):

λi
(
HBHT

)
=
σ2
bνbLb

ho

m−1∑
i=0

[
1 + 4L̃2

b sin2

(
π
i+ rm

ζm

)]−Mb

, i ∈ J0,m− 1K,

as ho = ζhb and n = ζm.

From Theorem 3, it is clear that the minimum eigenvalue of S, λmin(S), is equal to one when m < n (fewer
observations than background variables), and is bounded below by 1 when m = n. The condition number of S is thus
bounded above by the maximum eigenvalue of S, λmax(S). There is no simple analytical expression for λmax(S) that
can be deduced from Theorem 3. However, we can already notice that λmax(S) increases with increasing ratio between
the background- and observation-error variances, σ2

b/σ
2
o . This basic dependency of the condition number on the relative

variances is well known (Andersson et al., 2000; Haben et al., 2011; Tabeart et al., 2021).

3.3.1 Spectral properties of the simplified B-preconditioned Hessian matrix

Analysing the sensitivity of λmax

(
S
)

with respect to the diffusion parameters is not straightforward from the expression

given in Theorem 3. We can obtain a better understanding by approximating the effect of the matrix HBHT with a
diffusion operator discretised directly on the observation grid. Specifically, let Bo ∈ Rm×m be a diffusion operator with
the same covariance parameters as B ∈ Rn×n but discretised on the observation grid:

Bo =
σ2
bνbLb

ho

(
Im − L2

b∆ho

)−Mb .

As HBHT and Bo are two spatial discretisations of the same continuous diffusion operator, the difference between the
two is solely due to the error associated with the spatial discretisation. If there are direct observations at each grid
point (H = In), both Bo and HBHT are equal to B and there is no approximation. If there are less observations than
grid points, Bo and HBHT still share the same eigenvectors as they are both circulant. However, they have slightly
different eigenvalues due to the different spatial discretisations. As Bo is a diffusion operator, its eigenvalues can be
deduced from the results of Section 3.1:

λi(Bo) = σ2
bνbL̃b/o

[
1 + 4L̃b/o sin2

(
π
i

m

)]−Mb

, (23)

where L̃b/o = Lb/ho. The eigenvalues of Bo tend to overestimate the eigenvalues of HBHT, with maximum relative
error occurring for the smallest eigenvalues, as illustrated in Figure 3 for the case where ho/hb = 2.

Let us recall that S has an eigenvalue of 1 with multiplicity of n−m and that the remaining m eigenvalues are the
elements of 1 + Λ∗

(
R−1HBHT

)
(see Lemma 2). Approximating the matrix HBHT by Bo, we are now interested in

determining the eigenvalues of the matrix
So = Im + R−1Bo.
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Figure 3: The eigenvalues of HBHT and Bo on a domain of 2000 km, with a model grid of n = 500 points and an
observation at every other model grid point (m = 250). The correlation model represented by B is an AR function of
order Mb = 8 with a Daley length-scale of Db = Lb

√
2Mb − 3 = 100 km.

Theorem 4. Let Bo ∈ Rm×m be the circulant matrix defined by Equation (10) with hb = ho, and let R ∈ Rm×m be
the circulant matrix defined by Equation (11). The shifted Laplacian matrices Tb and To are defined in Section 3.1. If
So = Im + R−1Bo then

∀i ∈ J0,m− 1K, λi
(
So

)
= 1 + α

[
1 + 4L̃2

o sin2
(
π i
m

)]Mo

[
1 + 4L̃2

b/o sin2
(
π i
m

)]Mb
,

with

α =
σ2
bνbL̃b/o

σ2
oνoL̃o

=
σ2
bνbLb

σ2
oνoLo

. (24)

Proof. The eigenvalues of So are given by λi
(
So

)
= 1 + λi

(
R−1Bo

)
. As Bo and R−1 are both circulant matrices, they

share the same eigenvectors. Therefore, we have

λi
(
So

)
= 1 +

λi
(
Bo

)
λi
(
R
) .

Replacing the eigenvalues of Bo and R by their expressions provided by Equations (23) and (17), respectively, yields
the expression for the eigenvalues of So.

The next theorem provides a bound on the condition number of So by using the expression for the eigenvalues of
So.

Theorem 5. Let So be defined as in Theorem 4, and let α be given by Equation (24). Then, κ(So) ≤ η where

η =



1 + α

(
L̃2

o
Mb

)Mb
(
Mo

L̃2
b/o

)Mo
(
Mb −Mo

L̃2
o − L̃2

b/o

)Mb−Mo

if (i) L̃2
oMo > L̃2

b/oMb; (ii) Mo < Mb; and

(iii) L̃2
b/oMb − L̃2

oMo > 4L̃2
b/oL̃

2
o(Mo −Mb)

1 + αmax

{
(1 + 4L̃2

o)Mo

(1 + 4L̃2
b/o)Mb

, 1

}
otherwise.

Proof. See Appendix B.

As explained further in this section, Theorem 5 describes the sensitivity of the condition number of So to the diffusion
parameters while keeping the bound sharp. The sharpness of the bound is illustrated in Figure 4, where it is compared
with the exact condition number of S and the bounds given in Theorem 1 and Theorem 2. The exact condition number
has been evaluated using the extreme eigenvalues taken from the full spectrum of exact eigenvalues provided by the
expression in Theorem 3. These results show that taking into account the specific structure of the covariance matrices
improves the bound relative to the one given in Theorem 2.

We can further simplify the result in Theorem 5 by considering η as a function of L̃o only. Corollary 1 and Corollary 2
below characterize the variations of η with respect to L̃o when Mo ≥Mb and Mo < Mb, respectively.

13



(a) Mo = 2, Mb = 8 (b) Mo = 8, Mb = 2

Figure 4: As in Figure 1 but with an additional curve for the new bound from Theorem 5.

Corollary 1. Consider that η defined in Theorem 5 is a function of L̃o; η = f(L̃o). Assume that L̃o has a lower bound

such that L̃o

√
2Mo − 1 > 1/2 and that condition (ii) from Theorem 5 is not met; i.e., Mo ≥ Mb. Then, the minimum

of the function f is unique and reached when(
1 + 4L̃2

o

)Mo =
(
1 + 4L̃2

b/o

)Mb . (25)

Proof. See Appendix C.

Corollary 2. Consider that η defined in Theorem 5 is a function of L̃o; η = f(L̃o). Assume that condition (ii) from
Theorem 5 is met (Mo < Mb). Assume further that condition (iii) holds when condition (i) is satisfied. Then, the
minimum of the function f is unique and reached when

Lo

√
2Mo − 1 = Lb

√
2Mb − 1 (26)

Proof. See Appendix D.

Although the assumptions in Corollary 1 and Corollary 2 appear restrictive, they exclude cases that are of limited
practical interest. In particular, values of L̃o that are smaller than the observation grid resolution ho correspond to
observation errors that are effectively uncorrelated. To avoid this case, we focus on values of L̃o ≥ 1, which automatically
fulfils the condition on the lower bound in Corollary 1. Alternatively, the condition on the lower bound can be seen as
restricting the Stein length-scale ρo = Lo

√
2Mo − 1 (see Equation (8)) to be greater than half the grid resolution. In

Corollary 2, we assume that condition (iii) of Theorem 5 holds if condition (i) is satisfied. To simplify condition (iii), we

can impose a practical bound on the value of L̃b/o. For instance, we are not interested in cases where the length-scale

Lb is smaller than ho, i.e., L̃b/o ≤ 1. More generally, we can assume that L̃b/o is bounded below by a positive scalar

L̃min, which leads to the next corollary.

Corollary 3. Assume that there exists a positive scalar L̃min such that

L̃b/o ≥ L̃min,

and that condition (ii) of Theorem 5 holds. Then, condition (iii) of Theorem 5 simplifies to

Mb ≤ 2
(

1 + 4L̃2
min

)
. (27)

Proof. Let us define rM = Mo/Mb. Using the assumption on the length-scale, condition (iii) of Theorem 5 can be
rewritten as

L̃2
min + 4L̃2

minL̃
2
o(1− rM )− L̃2

orM ≥ 0.
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AsMo andMb are assumed to be even integers and as condition (ii) is met (Mo < Mb), we know that rM ≤ (Mb − 2)/Mb.
Using this relation, we obtain that

MbL̃
2
min + 8L̃2

minL̃
2
o − L̃2

o(Mb − 2) ≥ 0,

which can be rearranged to give

Mb

(
1− L̃2

min/L̃
2
o

)
≤ 2

(
1 + 4L̃2

min

)
.

Since L̃2
min/L̃

2
o is positive, we obtain the inequality (27).

Taking L̃min = 1 in Equation (27) results in Mb ≤ 10. Increasing Mb beyond 10 has little practical value as the
correlation function is already approximately Gaussian with this value.

For the case where B and R are modelled with SOAR functions (Mb = Mo = 2), Tabeart et al. (2021) point out
that, for fixed Lb, the minimum of their upper bound for the condition number of the B-preconditioned Hessian matrix
is found by setting Lo = Lb. Corollary 1 and Corollary 2 confirm this result and extend it to other AR functions
(Mo = Mb > 2). They also cover cases where the order of the AR functions differs between B and R (Mb 6= Mo), in

which case the function defining the upper bound on the condition number, η = f(L̃o), does not reach its minimum
value when Lo = Lb.

If Mo > Mb then L̃o can be much smaller than L̃b/o to attain the minimum of the function f(L̃o). For example,

if Mb = 2, Mo = 10 and L̃o = 1.5, then L̃b/o needs to be 158 to satisfy Equation (25) of Corollary 1. The correlation

functions with fixed values of
(
1 + 4L̃2

)M
have very different range for low values of M as illustrated in Figure 5a. On

the other hand, if Mo < Mb then Corollary 2 states that the minimum value is attained when the Stein length-scales
ρo = Lo

√
2Mo − 1 and ρb = Lb

√
2Mb − 1 are equal. Note that, unlike condition (25), condition (26) is independent of

ho. As shown in Figure 5b, the correlation functions with fixed values of ρ are very similar for different values of M .

Figure 5: AR correlation functions (Equation (37)) displayed for different values of M . For each M , the value of L̃

is chosen such that the quantities (a)
(
1 + 4L̃2

)M
and (b) L

√
2M − 1 from Corollary 1 and Corollary 2, respectively,

are kept constant. The corresponding values of L, the Stein length-scale ρ = L
√

2M − 1, and the Daley length-scale
D = L

√
2M − 3 can be found in Table 1.

For an alternative interpretation of Corollary 1 and Corollary 2, we can recast Equations (25) and (26) in terms
of the Daley length-scales Do and Db (Equation (7)), which is the length-scale parameter we will use to interpret the
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(1 + 4L̃2)M fixed L
√

2M − 1 fixed

M L (km) ρ (km) D (km) L (km) ρ (km) D (km)

2 158.1 273.8 158.1 46.2 80.0 46.2

4 8.9 23.5 19.9 30.2 80.0 67.6

6 3.4 11.2 10.1 24.1 80.0 72.4

8 2.0 7.7 7.4 20.7 80.0 74.5

10 1.5 6.5 6.2 18.3 80.0 75.7

Table 1: Values of the length-scale parameter L = L̃h where h = 1 km, the Stein length-scale ρ = L
√

2M − 1, and the

Daley length-scale D = L
√

2M − 3 associated with the curves in Figure 5. The fixed values of
(
1+4L̃2

)M
and L

√
2M − 1

are 1010 and 80 km, respectively.

numerical experiments in the following sections. Assuming Mb > 1 and Mo > 1, we have

Lb =
Db√

2Mb − 3
and Lo =

Do√
2Mo − 3

. (28)

If Mo = Mb then the minimum is reached when Do = Db.
If Mo > Mb then Equation (25) translates as(

1 +
4D2

o

h2
o(2Mo − 3)

)Mo

=

(
1 +

4D2
b

h2
o(2Mb − 3)

)Mb

. (29)

The location of the minima is very sensitive to Mo and Mb since they appear as exponents in Equation (29). While a
small change of Mo from 8 to 10 would have limited effect on the correlation function, it can have a drastic effect on the
quantities in Equation (29). In turn, this can significantly affect the condition number (as seen from Theorem 5) as well
as the criteria in Corollary 1. This property can be detrimental if ignored, but can also be exploited to our advantage
to improve the conditioning without significantly altering the correlation shape, as will be illustrated in Section 4.

If Mo < Mb then Equation (26) translates as

D2
o

(
2Mo − 1

2Mo − 3

)
= D2

b

(
2Mb − 1

2Mb − 3

)
, (30)

from which we can deduce that the minimum is reached when Do < Db (cf. Lo > Lb and ρo = ρb). This is evident
from the last column of Table 1, which shows D increasing with increasing M . The ratio between Db and Do reaches
at most 1.6 for the limiting values of Mo = 2 and Mb = 10.

Equations (25) and (26) (respectively, Equations (29) and (30)) provide simple criteria that can be used to adjust
the value of Lo (respectively, Do) to minimise the condition number of the B-preconditioned Hessian matrix. From
this perspective, we can use Corollary 1 and Corollary 2 as the basis of a method for reconditioning observation-error
covariance matrices that account for spatial correlations with parametric functions from the Matérn family. This
would be complementary to existing methods for reconditioning sample covariance matrices, for example, to represent
inter-channel error correlations in satellite observations (Weston et al., 2014; Tabeart et al., 2020). For more complex
problems, where the assumptions of these corollaries are not perfectly satisfied, we can still use criteria (25) and (26)
(or (29) and (30)) as a guideline for adjusting covariance parameters in B and R to improve the conditioning of the
B-preconditioned Hessian matrix.

3.3.2 Condition number estimates with correlated and uncorrelated observation errors

In this section, we compare the condition number of S for different values of the correlation parameter pairs (Mo, Do)
and (Mb, Db). The condition number κ(S) is computed using the (exact) analytical expression of the eigenvalues of
S given in Theorem 3. In addition, we compute the exact ‘optimal’ parameter pairs (i.e., those that minimise the
condition number) and compare them with those predicted by the optimality criteria in Corollary 1 and Corollary 2.
As this theorem applies to the matrix So, and not S, these optimality criteria are only exact when there is a direct
observation at each grid point.
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In presenting the results, we choose to normalize κ(S) by κ
(
Su

)
where Su is given by Equation (6) with R = σ2

oIm;
i.e., with observation-error correlations neglected. An analytical expression for the eigenvalues of Su can be derived
directly from Equation (22) of Theorem 3 by setting Mo = 0 (no diffusion) and νoL̃o = γ2/ho = 1 (exact normalisation):

∀i ∈ J0, n− 1K, λi
(
Su

)
=

1 + αu

ζ−1∑
r=0

[
1 + 4L̃2

b sin2

(
π
i+ rm

ζm

)]−Mb

if i ∈ J0,m− 1K,

1 otherwise,

where

αu =
σ2
bνbLb

σ2
ohb

.

As we are considering the case where there are fewer observations than grid points (n > m), the minimum eigenvalue
of Su is one. The maximum eigenvalue is λ0(Su) as can be seen by noting that the term in square brackets is larger
(and hence its inverse is smaller) for all i > 0. Consequently, if n > m, the condition number of Su is

κ(Su) = 1 + αu

ζ−1∑
r=0

[
1 + 4L̃2

b sin2

(
π
r

ζ

)]−Mb

. (31)

Note that the sum in Equation (31) is larger than one and approximately equal to one for parameter values of interest;

i.e., for Mb ≥ 2 and L̃b ≥ 1, its maximum is less than 1.04. The condition number of Su is thus dominated by αu.
We denote χ the ratio of condition numbers:

χ =
κ(S)

κ(Su)
. (32)

As Mo and Do have no effect on κ(Su), variations of χ with respect to these parameters will reflect variations of κ(S).
If χ < 1 then accounting for correlated observation error will improve the conditioning of S and thus we can expect
the convergence rate of CG to be improved. Conversely, if χ > 1 then accounting for correlated observation error will
degrade the conditioning of S and we can expect the convergence rate of CG to be degraded.

In the following, we will compute the condition numbers as a function of the Daley length-scales defined in Equa-
tion (28). Furthermore, since we are mainly interested in the sensitivity of the condition number to the correlation
model parameters, we will assume that the background- and observation-error variances are equal (σ2

b/σ
2
o = 1). We

consider a domain of length 2000 km, composed of n = 500 points that are equally spaced every hb = 4 km. We assume
that a direct observation is available every other grid point (ζ = 2, m = 250, ho = 8 km).

Figure 6 shows χ as a function of Do (abscissa) and Mo (ordinate) for different parameter pairs (Mb, Db) indicated
in the title of each panel. The zones in blue (respectively, red) correspond to parameter pairs (Mo, Do) that improve (re-
spectively, degrade) the condition number. When Mo ≤Mb and Do ≤ Db, the conditioning is systematically improved.
An improvement is also possible when Do ≥ Db if Mo is small enough. However, when Mo becomes too large compared
to Mb or when Do becomes too large compared to Db, the conditioning is degraded and can become significantly
degraded even for modest changes in the parameter values. For example, when Mb = 8 and Db = 60 km (Figure 6a),
and Mo = 10, χ (and thus κ(S)) increases by several orders of magnitude when the value of Do is increased to less than
double Db. When Do is approximately four times Db, χ reaches 1010 (top right corner of Figure 6a). In these cases,
we can expect the convergence of CG to be significantly affected, as illustrated later in Section 4.

As predicted by Corollary 1 and Corollary 2, if Db, Mb and Mo are fixed, then κ(S) admits a unique minimum.
When Mo > Mb, the minima predicted by Corollary 1 are visibly shifted towards lower values of Do (cf. circles and
crosses in Figure 6). This shift corresponds to an increase of the condition number of up to 5%. As the variations
of the condition number studied here cover a range of more than 10 orders of magnitude, this increase is acceptable.
When Mo < Mb, there is no significant difference in the position of the minima predicted by Corollary 2 and the exact
minima; there is an increase of the condition number between the predicted minima and exact minima that is smaller
than 0.1%. The pattern is similar with each fixed settings for (Mb, Db) (i.e., each panel of Figure 6). If Db increases
(decreases) then the ‘optimal’ values of Do are shifted to the right (left) towards larger (smaller) values of Do (cf.
Figure 6a and b, or Figure 6c and d).

4 Numerical experiments

In this section, we illustrate how different covariance parameter settings influence the performance of the CG minimi-
sation. We evaluate the convergence rate in relation to the condition number diagnostic χ presented in Section 3.3.2
(see Figure 6) and the results of Corollary 1 and Corollary 2
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Figure 6: The ratio χ (Equation (32)) is plotted for a fixed parameter pair (Mb, Db) per panel (indicated in the title), and
values of Mo and Do that vary along the axes. The cyan circles mark the minima predicted by Corollary 1 and Corollary 2.
The yellow crosses mark the true minima. Note that the colour palette uses a logarithmic scale with a different range
below and above χ = 1.

4.1 Experimental framework

As in Section 3.3.2, we define our baseline 1D-Var experiment as one in which the background- and observation-error
variances are taken to be equal, with their actual values set to one unit (σ2

b = σ2
o = 1). The domain is periodic with

length 2000 km and there are n = 500 grid points (hb = 4 km). We define H as a selection operator where direct
observations are assumed to be available at every other grid point (m = 250, ho = 8 km).

We consider different ‘scenarios’ where observations with perfectly known error correlations are assimilated together
with a background state that also has perfectly known error correlations. We start by defining a ‘true state’, xt, which
is specified by an analytical function. As H is linear in our framework, the actual choice of the true state has no impact
on the performance of the CG minimisation as it is subtracts out from the innovation vector. The background state
and observations are then generated by adding to the true state, unbiased random perturbations of covariance matrices
B and R, respectively. Specifically, let ε̂b and ε̂o be normally-distributed vectors with zero mean and covariance matrix
equal to the identity matrix. We can generate many realisations of ε̂b ∼ N(0, In) and ε̂o ∼ N(0, Im) using a random
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number generator. Then, using the factored covariance matrices B = UUT and R = VVT, we define

xb = xt + εb,

yo = Hxt + εo, (33)

where εb = Uε̂b and εo = Vε̂o. By construction, E[εbε
T
b ] = B and E[εoε

T
o ] = R where E[ ] is the expectation operator.

To assess the convergence rate of the CG algorithm at each iteration, it is common to monitor the reduction of the
cost function or, equivalently, the reduction of the A-norm of the analysis (solution) error. However, if we want to
compare the convergence rate of CG with different R, the A-norm is not appropriate since it depends on R and thus
does not represent the same quantity in all cases. Since we are working with an idealized system for which the true
state xt is known, we have access to alternative metrics that would not be available in a realistic system.

At the `-th iteration of the CG algorithm, an increment δx` is produced. We can deduce from this increment the
analysis error that would result if the CG algorithm was stopped at the `-th iteration:

ε(`)a = xb + δx` − xt.

In each experiment, there is a random component in the generation of the background and observations, which will
affect ε

(`)
a . By performing multiple experiments with different right-hand sides (b in Equation (5)), we can obtain

multiple realizations of ε
(`)
a from which analysis-error statistics can be deduced. In particular, we can estimate at each

iteration the total analysis-error variance or, equivalently, the trace of the analysis-error covariance matrix. This is the
quantity that is minimised explicitly in a statistical analysis based on the Best Linear Unbiased Estimator (BLUE).
It is well known that, when the constraints are linear and when the background and observation errors are normally
distributed, the minimising solution of the cost function of variational data assimilation is equivalent to the BLUE when
both are formulated under the same assumptions (Gelb, 1974).

As a diagnostic, we compute the square root of the average of the total analysis-error variance:

σ(`)
a =

√
1

n
E
[
Tr
(

(ε
(`)
a )(ε

(`)
a )T

)]
=

√
1

n
E
[
(ε

(`)
a )T(ε

(`)
a )
]

(34)

where E denotes the expectation operator and Tr the trace operator. We approximate the expectation operator as an
average of 1000 realizations with random right-hand sides.

This metric can be used to assess not only the convergence rate of the minimisation on which we focused in the
previous sections, but also the accuracy of the solution at each iteration. We expect the solution of the minimisation at
full convergence to be more accurate when the actual observation-error correlations are accounted for. If the condition
number is reduced by a non-diagonal R (i.e., χ < 1 as in the ‘blue zone’ of Figure 6) then the minimisation should
converge faster. In this situation, we can expect the solution to be more accurate no matter when the minimisation is
stopped. On the other hand, if the condition number is increased by a non-diagonal R (i.e., χ > 1 as in the ‘red zone’ of
Figure 6) then we can expect the convergence rate to be slower. In this situation, it is not clear whether a non-diagonal
R is beneficial to the analysis or not, as there is a trade-off between the convergence rate and the expected accuracy at
full convergence. Monitoring the analysis error at each iteration allows us to visualize this trade-off as it indicates, at
each iteration, how accurate the analysis would be (on average) if the convergence was stopped at this point.

A natural choice of normalization for σ
(`)
a is its initial value σ

(0)
a , which is equal to σb in the experiments as the

initial increment δx0 is zero. The quantity σ
(`)
a /σ

(0)
a thus indicates the relative error reduction on each iteration of CG.

We denote σ∗a the value of σ
(`)
a at full convergence of CG. If the specifications of B and R used to compute the analysis

match the actual error statistics, this quantity should become equal to its theoretical minimum, σopt
a , which can be

computed directly from the trace of the theoretical analysis-error covariance matrix:

σopt
a =

√
1

n
Tr
[
(B−1 + HTR−1H)−1] (35)

where B and R are the same as those used to generate the random errors in Equation (33).
In the experiments, R denotes the ‘true’ observation-error covariance matrix used to generate the spatially-correlated

random errors that are added to the observations. The matrix R̃1 = σ2
oIm is a diagonal approximation where σ2

o is
the same constant variance used in the ‘true’ R. This corresponds to the common case where spatially-correlated
observation errors are ignored in the weighting matrix in the cost function, which is inconsistent with the statistical
properties of the observations that are assimilated. The third scenario also uses a diagonal matrix, R̃2 = υ σ2

oIm,
but the variances are multiplied by an inflation factor (υ) to mitigate the effect of neglecting the error correlations.
This procedure is common in real-data assimilation problems, to avoid overfitting observations at large spatial scales
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while retaining a simple covariance matrix. In practice, the inflation factor is usually estimated empirically. In our
experiments, we can determine the best-possible inflation factor by minimizing σ∗a with respect to υ. As σ∗a behaves
approximately as a convex function of υ, this can be achieved by computing σ∗a for increasing values of υ until it stops
decreasing (i.e., until the observations are no longer overfit). This method cannot be applied in an operational context
as it requires access to the true state. Even with a performance metric that uses a proxy for the true state, the cost
of the procedure would be prohibitive as thousands of realisations of σ∗a are required. The experiments using R̃2 thus
represent the best inflation can offer rather than what could be achieved in practice.

4.2 Results

In the first set of experiments, we consider the case where the background- and observation-error correlation parameters
are in the regime Mo < Mb and Do < Db. The observation-error correlation parameters are set to Mo = 2 and Do =

(a) χ for different covariance parameters (b) CG minimisation

Figure 7: (a) Same as Figure 6 but with a plus sign added to indicate the parameter pair (Mo, Do) used for the 1D-Var

experiments in panel (b). (b) σ
(`)
a /σ

(0)
a (Equation (34)) as a function of CG iteration count ` for three 1D-Var experiments

with the same covariance parameters for B (σ2
b = 1, Mb = 8, Db = 60 km) but different covariance parameters for R:

(1) R with the ‘true’ correlation parameters (σ2
o = 1, Mo = 2, Do = 30 km); (2) a diagonal approximation, R̃1 = σ2

oIm
with σ2

o = 1; (3) a diagonal approximation with inflated variances, R̃2 = υ σ2
oIm where υ = 10.5 is an optimally-estimated

inflation factor. The theoretical minimum analysis-error ratio σopt
a /σ

(0)
a (Equation (35)) is marked by a horizontal dashed

line.

30 km, which corresponds to a SOAR function as used in Tabeart et al. (2021). These values are roughly similar
to those proposed by Guillet et al. (2019), where the parameter settings were determined to provide a suitable fit of
a diffusion-model to error correlation estimates of certain satellite radiance observations (Waller et al., 2016a). The
background-error correlation parameters are set to Mb = 8 and Db = 60 km, which makes the correlation function more
Gaussian-like than that of R. The correlation length-scale of B is double the correlation length-scale of R. These are
the same B parameters that were used in Figure 6. With these parameters, we know that χ < 1 (Figure 7a), which
means that the condition number is reduced when observation-error correlations are accounted for.

The average error-convergence curves from the 1D-Var experiments with R, R̃1 and R̃2 are shown in Figure 7b.
For each experiment, minimisations are performed in parallel for all 1000 realisations of the random right-hand side
and are stopped when the 2-norm of the residual normalized by its initial value reaches 10−6. Convergence is achieved
rather quickly, taking about 20 iterations with R̃1 and about 10 iterations with R and R̃2.

For the experiment with R̃1, the analysis-error standard deviation is only reduced by about 15% at full convergence,
compared to the theoretical limit of 32%. In this set-up, the optimal variance inflation factor is approximately equal to
10.5. Inflating the error variances significantly improves the error reduction (30%). However, the theoretical minimum
error cannot be reached, even with an inflation factor that has been optimized for this specific experiment. It is
also important to remark that the experiment with inflated variances converges faster than the experiment with the
original variances. This is consistent with Equation (31), which shows that, for large αu, the condition number of
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Su is approximately inversely proportional to the observation-error variance and is thus divided by 10.5 in this case.
Best results are obtained with R. First, the convergence rate is the fastest of the three experiments. Second, on each
iteration, the solution is more accurate than the solutions from either R̃1 or R̃2. At full convergence, the solution
attains the theoretical minimum error.

(a) χ for different covariance parameters (b) CG minimisation

Figure 8: Same as Figure 7 but with a different parameter pair (Mo = 10, Do = 120 km), indicated by the plus sign in
panel (a). The optimal inflation factor in panel (b) is υ = 17.

We now consider a case where the parameter values of the observation-error correlations suggest that the convergence
rate of the minimisation will be degraded (i.e., χ > 1) . Using Figure 6, we can select parameter values that will increase
the condition number. In particular, we set Mo = 10 and Do = 120 km, while keeping the background-error parameter
values unchanged. In this set-up, the observation-error length-scale Do is double the background-error correlation
length-scale. With this set of parameter values, the condition number is increased by a factor of 104. In this set-up,
the theoretical minimum error σopt

a /σb is lower than in the previous experiment: 65% instead of 68%. This decrease
means that observations with highly correlated errors ‘complement’ the background better than those of the previous
experiment.

As shown in Figure 8b, while the minimisation with R does reach the theoretical minimum, it requires about 200
iterations to converge. If the minimisation was terminated in its early iterations (< 50) then the analysis would be

hardly better than that of the background and not as accurate as the solutions from either the R̃1 or R̃2 experiments.
In this case, it would be clearly detrimental to account for the observation-error correlations instead of ignoring them.

It is interesting to note that the convergence curve for R̃1 in Figure 8b differs from the one in Figure 7b even though
the Hessian matrix S for this case is the same in both experiments. On the other hand, the assimilated observations
are different in each experiment as they have different correlated errors. The difference in the convergence curves in the
two experiments thus highlights the role of the right-hand side (which depends on the observations) of the system on
the convergence rate of CG. While this is an important issue, we have not attempted to address it in this article.

The experiment R̃1 results in an error reduction of only 5%, compared to the theoretical minimum of 35%. Moreover,
the error reduction is non-monotonic, which is symptomatic of a more concerning issue: as R̃1 is an approximation of
the actual error covariances, there is no guarantee that the analysis will be more accurate than the background (even

at full convergence). Repeating the experiment with a larger σo (in both R and R̃1) than σb actually results in a
monotonically increasing error (not shown). In this case, the analysis overfits the observations due to the neglected

correlations in R̃1. This problem is exacerbated when the observations are less accurate than the background.
In the current scenario, the optimal variance inflation factor is approximately equal to 17, and the experiment with

R̃2 gives the best results when using a modest number of iterations (< 150). It produces a similar, rapid convergence
rate as in the previous scenario (Figure 7b) and produces an accurate analysis, with a 23% error reduction compared
to the theoretical minimum error reduction of 35%.

Rather than adopting a diagonal approximation, an alternative approach would be to adjust the correlation param-
eters to accelerate the convergence rate while trying to retain the salient features of the original correlation function,
which in principle should correspond to our best available estimate of the actual correlation function. As discussed in
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Section 3.3, certain adjustments to the parameter settings can have a significant impact on the condition number, while
inducing relatively minor changes to the correlation function and hence to σ∗a . Moreover, previous studies have shown
that even an approximate correlation structure in R can yield higher quality analyses than ones obtained with wrongly
assuming uncorrelated observation errors (e.g., Stewart et al. (2013)).

(a) χ for different covariance parameters (b) CG minimisation

Figure 9: Same as Figure 8 but with different parameter pairs (Mo = 10, Do = 50 km), (Mo = 8, Do = 60 km) and

(Mo = 2, Do = 120 km) for R in panel (b) (experiments labelled R̃3, R̃4 and R̃5, respectively) compared to the parameter
pair (Mo = 10, Do = 120 km) used to generate the observations. The different pairs are indicated by the different coloured
symbols in panel (a). The optimal inflation factor in panel (b) is υ = 17 .

Corollary 1, Corollary 2 and Figure 6 can be used as a guideline to find suitable parameters. In this scenario,
we would like to pick values of Mo and Do that are ‘close enough’ to our target parameter values of Mo = 10 and
Do = 120 km so as not to increase the analysis error by too much at full convergence (σ∗a), but which produce a

much smaller condition number for S. In Figure 9, we consider three additional experiments (labelled R̃3, R̃4, and R̃5),
which all use correlation models that are approximate compared to the actual one used to generate the observation error
(Mo = 10 and Do = 80 km) but which lead to improved convergence rates. Figure 9 shows that all three experiments

outperform the diagonal R experiments R̃1 and R̃2 at every iteration. We now discuss the choice of the parameter
values for these experiments in relation to Corollary 1, Corollary 2 and Figure 6.

In the situation where using the accurate correlation model would degrade the condition number, for given values of
Mo, Mb and Db, we can modify Do to approximate the theoretical minimum condition number predicted by Corollary 1
or Corollary 2. The experiment with R̃3 corresponds to the ‘extreme’ case where Do is modified using Equation (29)
(Mo > Mb in this experiment) so its value coincides exactly with the minimum. To do so, we retain the true value of
Mo = 10 but use an approximate value of Do = 50 km to compute the analysis, instead of 120 km that was used to
generate the correlated observation errors. Decreasing Do to this value reduces the condition number by a factor of
106. With these new parameters, χ = 10−2, and the condition number obtained with R̃3 is lower than the one obtained
with either R̃1 or R̃2 (the condition number with R̃2 is only 17 times lower than the condition number with R̃1).

Figure 9a shows that the experiment with R̃3 outperforms both diagonal approximations at every iteration. With this
modified value of Do, the error reduction is 27% compared to 35% with the actual value of Do, but allows a much faster
convergence.

Another possibility is to modify Mo, so that a smaller modification on Do is required to approximate a minimum
condition number predicted by Corollary 1 or Corollary 2. When Mb = 8 and Db = 60 km, Equation (29) associated
with Corollary 1 predicts a minimum with the parameter pairs (Mo = 10, Do = 50 km) and (Mo = 8, Do = 60 km). It
is thus possible to reach a minimum condition number with a smaller decrease of Do if Mo is reduced from from 10 to 8.
The experiment with R̃4 uses Mo = Mb = 8 and Db = Do = 60 km (although B and R are not equal as there are less

observations than grid points). The condition number with R̃4 is slightly lower than with R̃3 (and thus also lower than

with R̃1 and R̃2). This correlation model allows a slightly better error reduction than with R̃3 (30% compared to 27%),

while also converging slightly faster. As for the experiment with R̃3, intermediate values of Do which approach the
local minima while staying closer to the true parameters might offer a better compromise between a fast convergence
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and good error reduction at full convergence.
In the two previous experiments, the parameter values were chosen in order to reach a local condition number

minimum predicted by Corollary 1 or Corollary 2. Another strategy, which does not rely on these corollaries, is to use
Figure 6 to select parameter pairs that result in lower condition numbers. If the actual parameter values have a severe
impact on convergence as in Figure 8 then Figure 6 suggests that reducing Mo and/or Do can reduce the condition
number. In particular, if Mo < Mb and Do < Db then χ < 1. Generally speaking, lower values of Do or Mo, relative
to the corresponding values of Db and Mb, reduce the risk of the condition number being increased compared to the
condition number with a diagonal R (i.e., of being in the red area of Figure 6 where χ > 1). The parameters Do and
Mo can be reduced progressively through trial-and-error to determine a convergence rate at least as good as the one
obtained with R̃1. For example, in the experiment with R̃5, we set Mo = 2 instead of 10 while keeping the correct value
of Do = 120 km. With R̃5, the condition number is approximately 20 times smaller than with R̃1 (and thus slightly

smaller than with R̃2). The experiment with R̃5 has similar convergence rate to the experiments with R̃3 or R̃4, but
achieves a better error reduction (33%), which is close to that of the theoretical minimum (35%).

5 Summary and conclusions

Data assimilation concerns the problem of determining the optimal state of a system given observations, a background
(prior) estimate of the state, and constraints that link the system state to the observations. Mathematically, the
problem can be cast as one of nonlinear weighted least-squares. The technique of variational data assimilation, which
is commonly used in atmospheric and ocean applications, seeks an approximate solution by using a Truncated Gauss-
Newton (TGN) algorithm to minimise the cost function of the nonlinear weighted least-squares problem. The TGN
algorithm approximates the nonlinear problem by a connected sequence of linear sub-problems where each sub-problem
is solved using a conjugate gradient (CG) algorithm.

In this article, we have studied the convergence properties of the CG algorithm with respect to parameter specifi-
cations in the background-error covariance matrix (B) and observation-error covariance matrix (R) whose respective
inverse matrices are used to define the weights for the background and observations in the cost function. In line with
common practice in variational data assimilation, we considered a CG algorithm that uses B as a preconditioner, which
we referred to as the B-Preconditioned Conjugate Gradient (B-PCG) algorithm. Our results have shown that the
convergence rate of B-PCG (and thus of the whole TGN minimisation) is highly sensitive to parameters controlling
the shape of typical covariance functions used to model B and R. In particular, the number of CG iterations needed
to reach a given tolerance can change by a few orders of magnitude depending on the relative parameter specifications
between B and R. This underlines the importance of including convergence impact as an additional constraint when
adjusting covariance model parameters to fit covariances estimated from statistics.

We began by recalling the general upper bounds on the condition number derived by Tabeart et al. (2021). These
upper bounds do not depend on the type of covariance matrices used, and thus can be overly pessimistic in specific
cases. In order to derive more accurate bounds, we need to consider specific covariance matrices. In this article, we have
focussed on covariance matrices that can be modelled as a matrix-vector product using a diffusion operator. Diffusion
operators are commonly used for modelling spatial covariances in ocean data assimilation (Weaver and Courtier, 2001)
and are closely related to other techniques for modelling spatial covariances in atmospheric data assimilation (Purser
et al., 2003), geostatistics (Lindgren et al., 2011), inverse problems (Bui-Thanh et al., 2013) and uncertainty quantifi-
cation (Gmeiner et al., 2017). They are well suited for problems that have large state and observation vectors, they
provide convenient access to an inverse covariance operator (specifically R−1 as required by B-PCG), and they have
useful flexibility for specifying covariance functions with different characteristics.

In order to simplify the theoretical analysis, we assumed that the basic parameters of the diffusion-based covariance
models for both B and R were constant. These parameters consist of the standard deviations (σb and σo), as well as
parameters that control the degree of smoothness (integers Mb and Mo) and spatial range (length-scales Lb and Lo) of
the underlying correlation functions. (The quantities with subscripts ‘b’ and ‘o’ refer to the background and observation
quantities, respectively.) With these assumptions, the covariance functions implied by the diffusion model are of Matérn
type. In R, they are Auto-Regressive (AR) functions of orderM , which are the functions relevant for our one-dimensional
(1D) analysis. Furthermore, we assumed that the grids supporting the background state and observations have uniform
resolution hb and ho = ζhb where ζ is a positive integer, which implies that there are fewer observations than background
grid points. Under these assumptions, we derived an analytical expression for the eigenvalues of the B-preconditioned
Hessian matrix (S). By further assuming that HBHT can be approximated by a diffusion operator Bo that is discretised
directly on the observation grid, it has been possible to derive criteria that the parameter pairs (Mb, Lb) and (Mo, Lo)
must jointly satisfy to obtain a minimum upper bound for the condition number of S. These constraints are exact
when the observation and background grids coincide (ζ = 1), but are affected by a minor discretisation error when the
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observation grid is coarser than the background grid (ζ < 1). We used these analytical results to interpret numerical
results from experiments with a 1D variational data assimilation system (1D-Var).

First, our analytical expressions expose the already well-known result that increasing (decreasing) the ratio σo/σb

leads to an increase (decrease) of the condition number of S. Furthermore, when Mo = Mb, our results show that the
condition number is minimised when the same correlation model is used for both background and observation errors
(i.e., Lb = Lo). This is consistent with the results of Tabeart et al. (2021) who considered only the special case when
Mo = Mb = 2 (i.e., when the correlation functions are Second-Order AR functions). However, the main contribution
of our work has been to extend the analysis to the more realistic case where the background and observation errors are
modelled with different smoothness parameters (Mo 6= Mb).

While we have derived the analytical results in terms of the parameter pairs (Mb, Lb) and (Mo, Lo), we have
mainly interpreted them and the results of the numerical experiments in terms of the parameter pairs (Mb, Db) and
(Mo, Do) where Db and Do are alternative (‘Daley’) length-scale parameters commonly used for differentiable correlation
functions in data assimilation (Daley, 1991). Specifically, for the 1D problem under consideration, Db = Lb

√
2Mb − 3

and Do = Lo

√
2Mo − 3 where Mb > 1 and Mo > 1. In terms of fixed values of Db and Do, the AR functions have the

convenient property that they converge to Gaussian functions for large Mb and Mo. Our results have also exposed
a direct relationship with closely-related (‘Stein’) length-scale parameters, ρb = Lb

√
2Mb − 1 and ρo = Lo

√
2Mo − 1,

used in geostatistics (Stein, 1999). In terms of fixed values of ρb and ρo, the AR functions also converge to Gaussian
functions for large Mb and Mo, and are defined for both the differentiable (Mb > 1 and Mo > 1) and non-differentiable
AR functions (Mb = Mo = 1).

The condition number is markedly more sensitive to the parameter specifications for the case Mo > Mb than
Mo < Mb. This has been illustrated in the numerical experiments and is evident from the analytical expression (Equa-
tion (29)) that describes the relationship between (Mb, Db) and (Mo, Do) required to achieve the minimum upper
bound of the condition number when Mo > Mb. In general, Do needs to be much smaller than Db for this optimality
condition to be met because of the presence of Mb and Mo as exponents in the expressions. For this case, the small
eigenvalues of S are amplified by R−1 more than they are damped by B, which can result in a drastic increase of the
condition number and thus a significant risk that the convergence rate of B-PCG will be substantially degraded. For
the case Mo < Mb, the minimum upper bound of the condition number is attained when the ‘Stein’ length-scales ρb
and ρo are equal (Equation (26)). In contrast with the case Mo > Mb, this means that the minimum upper bound is
obtained when the background- and observation-error correlation functions have similar spatial range. When Mo < Mb

and Do ≤ Db, accounting for observation-error correlations systematically improves the conditioning of S compared to
the case when a diagonal R is used.

While Mo and Mb are intended as free parameters of the correlation model, to be adjusted to achieve the best possible
fit to statistical estimates of correlated error, they also provide valuable leverage for controlling the conditioning of S
when a non-diagonal R is used. Whereas using a non-diagonal R is likely to degrade significantly the convergence rate
when Mo > Mb, it can accelerate the convergence rate compared to the case where a diagonal R is used when Mo < Mb.
In practice, this situation would correspond to choosing a Gaussian-like correlation function for background error (e.g.,
Mb ≈ 10) and a correlation function with fatter tails (more power at smaller scales) for observation error (e.g., Mo = 2).
Interestingly, there is evidence in the atmospheric data assimilation literature that suggests that error correlations for
certain observation types do exhibit fat tails. In this case, the interest in using a non-diagonal R is twofold: it can
accelerate the B-PCG convergence rate as well as providing a more accurate correlation model. For the case where
statistical estimates of the correlation parameters result in unfavourable values in terms of conditioning (Mo > Mb

and/or Do � Db), S can be ‘reconditioned’ by adjusting the values of Mo and Do to enable faster convergence. We
have shown in our 1D-Var experiments that approximate correlation models can be used to reduce the condition number
without causing a significant loss of solution accuracy at full convergence. This corroborates the conclusion of several
previous studies (e.g., Stewart et al., 2013) that even a very crude approximation of the observation-error correlations
can give a better solution than one obtained by ignoring them altogether.

The analysis in this article has exposed important sensitivities of the convergence rate of B-PCG to fundamental
parameters of diffusion model representations of B and R, and has lead to conditions for adjusting the parameters
to improve the conditioning of S. We can expect similar results in higher dimensions where diffusion kernels have
similar (Matérn-like) functional forms as those in our 1D study. However, more work is required to extend these results
to account for more sophisticated diffusion models, such as ones that include diffusion tensors that are anisotropic
and spatially varying, or multiple-scale and hybrid formulations that are built from linear combinations of diffusion
operators. In this study, we considered a simple observation network. The convergence properties need to be revisited
in an operational-like framework using a full network of diverse observations for which only a subset may be affected
by spatially correlated errors in R, and where observation operators will be much more complex. The results from
this study are a first step towards understanding and controlling the convergence properties in this more challenging
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framework.
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A Matérn functions and diffusion operators on R and S
A.1 Diffusion on R
Matérn random fields on Rd can be derived by solving a general stochastic fractional partial differential equation (PDE)
(Whittle, 1963; Guttorp and Gneiting, 2006). Here, we are interested in the correlation functions of a subset of Matérn
fields on R (d = 1) where parameters are chosen such that the generating PDE has a simplified form for numerical
computations.

Let χ : z 7→ χ(z) and η : z 7→ η(z) be square-integrable functions (χ, η ∈ L2(R)) of the spatial coordinate z ∈ R. We
consider solutions of the following elliptic equation on R:

1

γ2

(
I − L2 ∂

2

∂z2

)M
η(z) = χ(z) (36)
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where I is the identity operator, M is a positive integer, L is a length-scale parameter, and γ2 is a normalisation
constant. Equation (36) can be interpreted as the inverse of a diffusion operator, η 7→ L−1η, which is formed by
discretising the time derivative of the diffusion equation with an Euler backward (implicit) scheme and by applying the
resulting operator over M time steps (Mirouze and Weaver, 2010). With this interpretation, L2 = µ∆t where µ is the
diffusion coefficient and ∆t is the time step. The integral solution of Equation (36) is thus a diffusion operator, χ 7→ Lχ.
The solution, which is straightforward to derive using the Fourier transform, is a convolution operator, Lχ ≡ c ∗ χ, where
c = c(r) is an Mth-order AR function (a polynomial times the exponential function) given by

c(r) =

M−1∑
j=0

βj
( r
L

)j
e−r/L, (37)

r = |z − z′| is the Euclidean distance between points z and z′, and

βj =
2j(M − 1)! (2M − j − 2)!

j! (M − j − 1)! (2M − 2)!
.

Setting the normalisation constant to
γ2 = ν L

where

ν =
22M−1[(M − 1)!]2

(2M − 2)!
(38)

ensures that c(0) = 1 (Mirouze and Weaver, 2010). The power spectrum of c, which is given by the Fourier transform
ĉ of c, describes the smoothness properties of c as a function of spectral scale:

ĉ(ẑ) =
γ2

(1 + L2ẑ2)M
(39)

where ẑ is the spectral wavenumber.
We focus on the differentiable AR functions that correspond to M > 1. For these functions, we use a standard

parameter (Daley, 1991)

D =

√
− 1

∂2c/∂z2|z=z′

to characterize the length-scale of the correlation function. The parameter D, which we call the Daley length-scale,
corresponds to the distance between z = z′ and the mid-amplitude point of a parabola that osculates the AR function
at z = z′. Using Equation (37), it is straightforward to show that D = L

√
2M − 3 (Equation (7)), which is a function

of both L and M . An important property of AR functions is that, for fixed D, they converge to the Gaussian function
cg(r) as M →∞:

cg(r) = exp
(
−r2/2D2). (40)

Figure 10 shows the effect on c and ĉ of varying D for a fixed value of M , and vice versa. Increasing D with M
held fixed increases the spatial reach of the correlation functions but does not affect their spectral decay rate at small
wavelengths. On the other hand, increasing M with D held fixed results in correlation functions with thinner tails and
sharper spectral decay rates at small wavelengths.

A.2 Diffusion on S
Tabeart et al. (2018) and Tabeart et al. (2021) use a SOAR function, which is equal to Equation (37) with M = 2 and
hence D = L from Equation (7). Furthermore, they restrict the SOAR function to the circular domain (S) of radius
a by using chordal distance r = 2a sin(θ/2) where θ is the angle between points z and z′ on the circle. This ensures
that c(r) is positive definite on S (Gaspari and Cohn, 1999). Taking a as the radius of the Earth, the domain S can be
interpreted as a latitude circle at the Equator.

In this article, we have also considered a circular domain of radius a. For length-scales L� a, the correlation
functions associated with the diffusion operator applied on S are approximately Matérn since the influence of curvature
is minor. It is instructive nevertheless to present the exact correlation functions on S, which can be derived by considering
the solution of the elliptic equation

1

γ2

(
I − L2

a2
∂2

∂φ2

)M
η(φ) = µ(φ), (41)
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Figure 10: (a) Equation (37) plotted as a function of distance r, and (b) Equation (39) plotted as a function of wavelength
2π/ẑ. The curves are displayed for different values of D and fixed value of M = 4. Panels (c) and (d) show corresponding
plots where M is varied for fixed value of D = 50 km.

subject to periodic boundary conditions on the solution and its derivative:

η(−π) = η(π),

∂η

∂φ

∣∣∣∣
φ=−π

=
∂η

∂φ

∣∣∣∣
φ=π

.

Solving Equation (41) is equivalent to solving Equation (36) on the periodic domain −Z ≤ z ≤ Z with z = aφ and
Z = aπ.

The solutions that satisfy the boundary conditions are of the general form

η(φ) =

∞∑
m=0

Am cos(mφ) +Bm sin(mφ). (42)

The coefficients Am and Bm can be determined using the orthogonality relations of the sine and cosine functions:∫ π

−π
sin(mφ) sin(nφ)dφ =

∫ π

−π
cos(mφ) cos(nφ)dφ = π δmn,∫ π

−π
sin(mφ) cos(nφ)dφ = 0 ∀m,n

where δmn is the Kronecker delta. To determine Am, we substitute Equation (42) in Equation (41), multiply the
resulting equation by cos(nφ), integrate from −π to π, and use the orthogonality relations above. This yields

Am =
γ2

π

(
1 +

L2

a2
m2

)−M ∫ π

−π
µ(φ) cos(mφ) dφ. (43)
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To determine Bm, we follow the same procedure but multiply by sin(nφ). This yields

Bm =
γ2

π

(
1 +

L2

a2
m2

)−M ∫ π

−π
µ(φ) sin(mφ) dφ. (44)

Substituting Equations (43) and (44) into Equation (42), and using the trigonometric identity

cos(m(φ− φ′)) = cos(mφ) cos(mφ′) + sin(mφ) sin(mφ′)

yields the solution

η(φ) =

∫ π

−π
c(θ)µ(φ′) dφ′

where θ = φ− φ′,

c(θ) = γ2
∞∑
m=0

cm cos(mθ) (45)

and

cm =
1

π

(
1 +

L2

a2
m2

)−M
. (46)

The normalisation factor and Daley length-scale are, respectively,

γ2 =
1∑∞

m=0 cm

and

D = a

√
− 1

∂2c/∂φ2|θ=0
= a

√
1∑∞

m=0m
2cm

.

All valid continuous isotropic correlation functions on S can be represented by a Fourier cosine series expansion
with non-negative Fourier coefficients (see Theorem 2.11 in Gaspari and Cohn (1999)), which is clearly satisfied by
Equations (45) and (46). The smoothness properties of the correlation function are determined by the Fourier coefficients
cm in Equation (46). They can be seen to have a similar dependence on L and M as ĉ in Equation (39) where we can
associate ẑ on R with m2/a2 on S.

B Proof of Theorem 5

The eigenvalues of So are bounded below by 1 (see Theorem 4), which implies that

κ(So) ≤ max
i∈J0,m−1K

λi(So) = λmax(So).

Since 0 ≤ sin2(y) ≤ 1 for any y ∈ [0, π], λmax(So) is bounded by

λmax(So) ≤ max
x∈[0,1]

φ(x)

where φ is a continuously differentiable function given by

φ(x) = 1 + α

[
1 + 4L̃2

ox
]Mo

[
1 + 4L̃2

b/ox
]Mb

. (47)

We seek a solution to the following bound-constraint problem:

max
x∈[0,1]

φ(x). (48)

Let x∗ ∈ [0, 1] be a stationary point for problem (48) and let us first assume that such point is inside the domain; i.e.,
φ′(x∗) = 0. The derivative of the function φ can be expressed as

φ′(x) = 4αv(x)w(x)
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where

v(x) =

(
L̃2

oMo

1 + 4L̃2
ox
−

L̃2
b/oMb

1 + 4L̃2
b/ox

)
and w(x) =

[
1 + 4L̃2

ox
]Mo

[
1 + 4L̃2

b/ox
]Mb

.

Since w(x) is strictly positive, and α > 0, a stationary point inside the domain satisfies v(x∗) = 0. This yields

x∗ =
L̃2

b/oMb − L̃2
oMo

4L̃2
oL̃

2
b/o(Mo −Mb)

. (49)

The second derivative of f is

φ′′(x) = 16αw(x)

(
L̃4

b/oMb

(1 + 4L̃2
b/ox)2

− L̃4
oMo

(1 + 4L̃2
ox)2

)
+ 16αv(x)2 w(x). (50)

Substituting (49) into Equation (50) gives

φ′′(x∗) = 16α(Mo −Mb)w(x∗)

(
L̃4

b/oL̃
4
o

(
Mo −Mb

)2(
L̃2

b/o − L̃2
o

)2
MoMb

)
.

Therefore, the stationary point x∗ can be a maximum point if and only if φ′′(x∗) < 0; i.e., if Mo < Mb. In addition,
for x∗ to be a feasible point then 0 < x∗ < 1 and from Equation (49) the following conditions must be satisfied:

L̃2
b/oMb − L̃2

oMo < 0

and
L̃2

b/oMb − L̃2
oMo > 4L̃2

oL̃
2
b/o

(
Mo −Mb

)
.

For the other cases, x∗ is equal to either the lower bound (x∗ = 0) or the upper bound (x∗ = 1), with function values of

φ(0) = 1 + α,

φ(1) = 1 + α

[
1 + 4L̃2

o

]Mo

[
1 + 4L̃2

b/o

]Mb
.

Finally, substituting (49) into (47), we obtain that

φ(x∗) = 1 + α

(
L̃2

o

Mb

)Mb
(
Mo

L̃2
b/o

)Mo
(
Mb −Mo

L̃2
o − L̃2

b/o

)Mb−Mo

.

C Proof of Corollary 1

We consider η as a function of L̃o, denoted f(L̃o). Hereafter, the conditions (i), (ii) and (iii) will refer to the conditions
stated in Theorem 5. We consider the case where condition (ii) does not hold, i.e., Mo ≥Mb. In this case, Theorem 5
states that

f(L̃o) = 1 +
σ2
bνbL̃b/o

σ2
oνoL̃o

max


(
1 + 4L̃2

o

)Mo(
1 + 4L̃2

b/o

)Mb
; 1

 . (51)

Let us first assume that
(
1 + 4L̃2

o

)Mo <
(
1 + 4L̃2

b/o

)Mb . Then, Equation (51) simplifies to

f(L̃o) = 1 +
σ2
bνbL̃b/o

σ2
oνoL̃o

,
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which is a decreasing function of L̃o. Let us now assume that
(

1 + 4L̃2
o

)Mo

>
(

1 + 4L̃2
b/o

)Mb

. In this case, Equation (51)

becomes

f(L̃o) = 1 +
σ2
bνbL̃b/o

σ2
oνoL̃o

(
1 + 4L̃2

o

)Mo(
1 + 4L̃2

b/o

)Mb
,

whose derivative is given by

f ′(L̃o) =
σ2
bνbL̃b/o

σ2
oνoL̃2

o

(
1 + 4L̃2

o

)Mo−1(
1 + 4L̃2

b/o

)Mb︸ ︷︷ ︸
>0

(
4L̃2

o

(
2Mo − 1

)
− 1
)
.

Under the assumption that L̃o > 1/
(
2
√

2Mo − 1
)
, f(L̃o) is an increasing function of L̃o. As we already showed that

f(L̃o) is decreasing when
(
1 + 4L̃2

o

)Mo <
(
1 + 4L̃2

b/o

)Mb , the function f then reaches its unique minimum when(
1 + 4L̃2

o

)Mo

=
(

1 + 4L̃2
b/o

)Mb

.

D Proof of Corollary 2

We consider η as a function of L̃o, denoted by f(L̃o). Hereafter, the conditions (i), (ii) and (iii) will refer to the
conditions stated in Theorem 5. Let us first assume that condition (ii) holds, i.e., Mo < Mb whereas condition (i) does
not hold, i.e.,

L̃2
oMo ≤ L̃b/oMb. (52)

From (52), we first consider the variations of f(L̃o) when L̃o is in the interval
[
0, L̃b/o

√
Mb/Mo

]
. In this case, Theorem 5

states that

f(L̃o) = 1 +
σ2
bνbL̃b/o

σ2
oνoL̃o

max

{
(1 + 4L̃2

o)Mo

(1 + 4L̃2
b/o)Mb

; 1

}
. (53)

From condition (52), we have

L̃2
o ≤ L̃2

b/o

Mb

Mo
,

which implies that

(
1 + 4L̃2

o

)Mo
Mb ≤

(
1 + 4L̃2

b/o

Mb

Mo

)Mo
Mb

and hence (
1 + 4L̃2

o

)Mo
Mb −

(
1 + 4L̃2

b/o

)
≤
(

1 + 4L̃2
b/o

Mb

Mo

)Mo
Mb

−
(

1 + 4L̃2
b/o

)
= g(L̃2

b/o) (54)

where the function g is given by g(x) = (1 + 4xMb/Mo)Mo/Mb − (1 + 4x). Taking the first derivative of g gives

g′(x) = 4

((
1 + 4x

Mb

Mo

)Mo
Mb
−1

− 1

)
.

Since Mo/Mb < 1, for all x ≥ 0, we have
(
1 + 4xMb/Mo

)Mo/Mb−1
< 1 and hence g′(x) < 0; i.e., g is a decreasing

function on [0,+∞). Consequently, g(L̃2
b/o) ≤ g(0) = 0 and thus inequality (54) implies that

(
1 + 4L̃2

o

)Mo
Mb −

(
1 + 4L̃2

b/o

)
≤ 0,
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or, equivalently, (
1 + 4L̃2

o

)Mo

≤
(

1 + 4L̃2
b/o

)Mb

.

By using this inequality in Equation (53), we obtain that

f(L̃o) = 1 +
σ2
bνbL̃b/o

σ2
oνoL̃o

.

In this expression, f(L̃o) is inversely proportional to L̃o. Therefore, f decreases on the interval
[
0, L̃b/o

√
Mb/Mo

]
.

As a consequence, the minimum of f(L̃o) must be located on the interval
[
L̃b/o

√
Mb/Mo,+∞

)
. We now study the

variations of f on this interval, which means that condition (i) holds:

L̃2
oMo > L̃b/oMb.

We assumed that condition (iii) holds when condition (i) is satisfied, which means that f(L̃o) takes the form

f(L̃o) = 1 +
σ2
bνbL̃b/o

σ2
oνoL̃o

(
L̃2

o

Mb

)Mb
(
Mo

L̃2
b/o

)Mo
(
Mb −Mo

L̃2
o − L̃2

b/o

)Mb−Mo

.

The derivative of f(L̃o) can be expressed as

∂f

∂L̃o

(L̃o) =
σ2
bνbL̃b/o

σ2
oνoL̃2

o

(
L̃2

o − L̃2
b/o

) ( L̃2
o

Mb

)Mb
(
Mo

L̃2
b/o

)Mo
(
Mb −Mo

L̃2
o − L̃2

b/o

)Mb−Mo [
L̃2

o

(
2Mo − 1

)
− L̃2

b/o

(
2Mb − 1

)]
. (55)

If conditions (i) and (ii) are met, we have L̃2
o − L̃2

b/o > 0. Therefore, the stationary point for f satisfies

∂f

∂L̃o

(L̃o) = 0 ⇔ L̃2
o

(
2Mo − 1

)
= L̃2

b/o

(
2Mb − 1

)
⇔ L̃o = L̃b/o

√
2Mb − 1

2Mo − 1
. (56)

Since Mo < Mb, it follows that

L̃b/o

√
2Mb − 1

2Mo − 1
> L̃b/o

√
Mb

Mo
.

We are now interested in examining the behaviour of f on the intervals
[
L̃b/o

√
Mb/Mo, L̃b/o

√
(2Mb − 1)/(2Mo − 1)

]
and

[
L̃b/o

√
(2Mb − 1)/(2Mo − 1),+∞

)
. For the first interval, we can show that f is decreasing since ∂f(L̃o)/∂L̃o < 0

from Equation (55) if

L̃2
o

(
2Mo − 1

)
< L̃2

b/o

(
2Mb − 1

)
⇔ L̃o < L̃b/o

√
2Mb − 1

2Mo − 1
.

Similarly, for the second interval, we can show that f is increasing since ∂f(L̃o)/∂L̃o > 0 from Equation (55) if

L̃2
o

(
2Mo − 1

)
> L̃2

b/o

(
2Mb − 1

)
⇔ L̃o > L̃b/o

√
2Mb − 1

2Mo − 1
.

Therefore, the stationary point (56) is the unique minimum of f . Finally, multiplying both sides of Equation (56) by
ho

√
2Mo − 1 yields Equation (26).
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