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VARIATIONAL METHODS FOR ACOUSTIC RADIATION IN A1

DUCT WITH A SHEAR FLOW AND AN ABSORBING BOUNDARY2

J-F. MERCIER∗3

Abstract. The well-posedness of the acoustic radiation in a 2D duct in presence of both a shear4
flow and an absorbing wall described by the Myers boundary condition is studied thanks to variational5
methods. Without flow the problem is found well-posed for any impedance value. The presence of a6
flow complicates the results. With a uniform flow the problem is proven to be always of the Fredholm7
type but is found well-posed only when considering a dissipative radiation problem. With a general8
shear flow, the Fredholm property is recovered for a weak enough shear and the dissipative radiation9
problem requires to introduce extra conditions to be well-posed: enough dissipation, a large enough10
frequency and non-intuitive conditions on the impedance value.11

Key words. Acoustics, time-harmonic radiation, shear flow, impedance boundary condition,12
variational methods, Fredholm alternative13
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1. Introduction. Wave propagation in a steady flow over an acoustically lined15

wall has been widely studied due to its applications to noise damping. To reduce fan16

and engine noise, an important feature is the inclusion of sections of acoustic lining17

at the intake or exhaust of an aeroengine. These acoustic linings are usually made18

of a honeycomb of small resonators designed to dampen tonal noise. Alternatively,19

bulk linings (e.g. foam or wool-type materials) can be used, with the characteristic20

to dampen broadband noise. The first case is called locally reacting liners because it21

is characterized by a local impedance defined to relate the acoustic pressure to the22

normal acoustic displacement at the liner surface. On the contrary the second kind23

of lining is modelled by a non local impedance through Fourier transforms along the24

interface air/material.25

In this paper we consider the first case characterized by a local impedance and26

we focus more particularly on the influence of a flow. The boundary conditions often27

used in numerical simulations incorporate both the impedance of the lining and the28

effect of the slipping mean flow. Ingard [1] proposed a boundary condition accounting29

for the continuity of the acoustic normal displacement at the liner surface, between30

the fluid and the acoustic liner and considering the effect of a mean flow parallel to31

the surface. Myers [2] extended this result to any arbitrary mean flow along a curved32

wall. This Ingard-Myers impedance boundary condition has been extensively used33

and has been verified to correctly represent the limit of a vanishingly-thin inviscid34

boundary layer over the acoustic lining [3, 4] although the boundary layer needs to35

be very thin in some cases to give a good approximation [5].36

The Ingard-Myers boundary condition is known to have drawbacks. In time-37

domain simulations, there have been several reports on issues of stability when ap-38

plying the Myers boundary condition to an acoustically-lined duct with flow [6, 7, 8,39

9, 10, 11]. The boundary condition leads to numerical simulations becoming unstable40

at the grid scale, even in the uniform flow case. However due to a lack of alternatives,41

the Myers boundary condition is still used, with any instability artifacts considered42

spurious and filtered out using an artificial selective filter [6, 12, 13, 14, 15].43

In this paper we focus on the Myers condition in the time-harmonic regime. It has44
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2 J-F. MERCIER

been less studied theoretically because numerical stability issues are in practice less45

problematic when the frequency is fixed, and the well-posedness of the time-harmonic46

radiation in presence of a Myers condition is still an open question. The aim is to bring47

a comprehensive mathematical study of the time-harmonic propagation in a waveguide48

with an absorbing boundary and to study the influence of various complexities of49

the flow: no flow, uniform flow and shear flow. Our approach is different from the50

ones developed in the references already cited because they mostly focus on the time51

domain and on the behavior of the guided modes. Indeed, these studies restrict to52

a problem without any source which enables them to use a spatial Fourier transform53

of the linearized Euler equations. It leads to the Pridmore-Brown equation [16],54

whose solutions are the guided modes. When one mode is found unstable, in the55

sense exponentially growing in time, the problem is deduced to be ill-posed. On the56

contrary in the frequency-domain, other tools must be used. Indeed even if a mode is57

found unstable in the sense exponentially spatially growing, the ill-posedness cannot58

be deduced since the modes do not form a complete basis [17], even for a uniform59

flow. To avoid this procedural problem, in this paper we don’t study the guided modes60

individually. To recover a controlled mathematical framework we prefer to consider61

a radiation problem due to the presence of a source and to use variational arguments62

and coercivity properties to study the well-posedness.63

The paper is organized as follows. Section 2 concerns a fluid at rest. The acoustic64

radiation problem and the impedance boundary condition are presented. Thanks65

to the absorbing boundary, the solution is found of finite energy and thus can be66

directly sought in an unbounded waveguide. The problem is shown to be well-posed:67

the proof is easy at low frequencies and more involved at larger frequencies. To68

conclude in this latter case, we draw inspiration from works on the scattering from69

unbounded rough surfaces [18]. The extension to a fluid in motion is done in section70

3. First is treated in subsection 3.2 the case of a uniform flow. Thanks to the71

introduction of PMLs to select the outgoing solution, the problem is proven to always72

be of Fredholm type but to prove well-posedness, a dissipative radiation problem73

must be considered. The problem is proven to be well-posed, including for weak74

dissipations. Eventually subsection 3.3 deals with the case of a varying flow. Then75

the problem is found to remain of Fredholm type for a weak shear and is proven to be76

well-posed under some extra constraints: the dissipation must be large enough and77

the physical parameters must follow some laws, a small impedance modulus or a high78

frequency. These constraints are illustrated numerically.79

2. Case of a fluid at rest.80

2.1. Geometry and equation. We consider a 2D infinite duct (X,Y ) ∈ R ×81

(0, h) of height h filled with a compressible fluid. The real acoustic pressure P̃ (X,Y, t)82

satisfies the wave equation83

∆P̃ − 1

c20

∂2P̃

∂t2
= F̃ (X,Y, t),84

where F̃ is a real source term and c0 is the sound speed. To use non-dimensional85

equations, we introduce x = X/h, y = Y/h and the new unknowns P (x, y, t) =86

P̃ (X,Y, t) and F (x, y, t) = F̃ (X,Y, t). The guide is defined by Ω = {(x, y) ∈ R ×87

(0, 1)}. We note Γ0 = {(x, y) ∈ R2, y = 0} the lower boundary that we suppose88

rigid. The upper boundary Γ = {(x, y) ∈ R2, y = 1} is supposed to absorb the89

sound and is characterized by a complex impedance Z. For a time harmonic source90
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term F (x, y, t) = f(x, y)e−iωt with a frequency ω > 0, we look for the pressure91

P (x, y, t) = p(x, y)e−iωt satisfying the following Helmholtz problem: for f ∈ L2(Ω)92

and k = ω/c0 > 0, find p ∈ H1(Ω) such that93

(1)

{
(∆ + k2)p = f in Ω,

∂p/∂y = ikY p on Γ and ∂p/∂y = 0 on Γ0,
94

where Y = 1/Z is the admittance, that we consider constant with <e(Y ) > 0 to95

produce sound absorption.96

Remark 1. The sign of the real part of the admittance is easy to understand when97

considering the time domain and restricting to a real admittance: in the transient98

regime, the pressure P (x, y, t) satisfies the time version of (1) (considered without99

source term but with some initial conditions not precised here):100

(2)

{
c20 ∆P = ∂2P/∂t2 in Ω,

c0 ∂P/∂y = −Y ∂P/∂t on Γ and ∂P/∂y = 0 on Γ0.
101

Multiplying (2) by ∂P/∂t is easily deduced the energy balance102

(3)
dE

dt
= −Y

c0

∫
Γ

(
∂P

∂t

)2

dx with E =
1

2

∫
Ω

[(
1

c0

∂P

∂t

)2

+ |∇P |2
]

dxdy.103

It is clear that the energy decreases only if Y > 0.104

Remark 2. In [19] is considered a Generalized Impedance Boundary Condition105

(GIBC) of the form106

∂p

∂y
+
∂p

∂x

(
µ
∂p

∂x

)
+ λp = 0.107

It corresponds to our case with µ = 0 and λ = −ikY , thus with =m(λ) < 0 for our108

acoustics applications. On the contrary [19] treats the opposite case =m(λ) > 0 (with109

the same e−iωt convention), well-adapted to electromagnetism applications [20]. Note110

that our case is less favorable to prove the coercivity of the radiation problem.111

For the rest of the paper we consider the time-harmonic regime. Due to the112

absorption and to the energy balance (3), the pressure decays away from the source113

and looking for a solution of finite energy, thus being in H1(Ω), we will prove that the114

radiation problem is well-posed, first for low frequencies and then for all frequencies.115

To do so, we will use the Lax-Milgram theorem. We first notice that the problem (1)116

is equivalent to the following variational formulation: find p ∈ H1(Ω) such that117

(4) a(k; p, q) = − (f, q)L2(Ω) ∀q ∈ H1(Ω),118

where we have introduced the sesquilinear form for all p, q ∈ H1(Ω)119

(5) a(k; p, q) =

∫
Ω

(
∇p ·∇q̄ − k2pq̄

)
dxdy − ikY

∫
Γ

pq̄ dx.120

2.2. Well-posedness at low frequencies. To prove the coercivity of a(k; p, q),121

we start with a Poincaré-like inequality.122

Lemma 1. For all p ∈ H1(Ω) and all λ > 0,123

(6)

∫
Ω

|p|2 dxdy ≤ (1 + λ)

∫
Γ

|p|2 dy +
1

2

(
1 +

1

λ

)∫
Ω

∣∣∣∣∂p∂y
∣∣∣∣2 dxdy.124
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Proof. For all p ∈ C∞(Ω) ∩H1(Ω) and for all y ∈ [0, 1] we have125

|p(x, y)| ≤ |p(x, 1)|+
∫ 1

y

∣∣∣∣∂p∂y (x, t)

∣∣∣∣ dt.126

We use Young’s inequality: for all λ > 0,127

|p(x, y)|2 ≤ (1 + λ) |p(x, 1)|2 +

(
1 +

1

λ

)(∫ 1

y

∣∣∣∣∂p∂y (x, t)

∣∣∣∣dt)2

.128

Then thanks to Cauchy-Schwarz inequality, the final result is obtained by integrating129

on Ω and is extended to p ∈ H1(Ω) by density. �130

Now we prove the well-posedness at low frequencies:131

Lemma 2. If132

(7) k <

√
1 + 2|Y |2 − 1

|Y |
,133

then problem (4) is well-posed.134

Proof. We use the Lax-Milgram theorem. a(k; ·, ·) is continuous on H1(Ω) ×135

H1(Ω) because136

|a(k; p, q)| ≤
∫

Ω

(
|∇p||∇q̄|+ k2|p||q̄|

)
dxdy + k|Y |

∫
Γ

|p||q̄|dx.137

We conclude thanks to the continuity of the trace application: ∃Ctr > 0 such that138

∀p ∈ H1(Ω), ‖p‖L2(Γ) ≤ Ctr ‖p‖H1(Ω).139

Now we prove that a(k; ·, ·) is coercive on H1(Ω). Let us note iY = |Y | eiζ140

where ζ = arg(Y ) + π/2 ∈]0, π[, since <eY > 0. We introduce the decomposition141

a(k; p, p) = α(p)− eiζβ(p), where we have introduced the forms:142

α(p) =

∫
Ω

(
|∇p|2 − k2|p|2

)
dxdy and β(p) = k|Y |

∫
Γ

|p|2 dx.143

The lower bound: |α − eiζβ| = |e−iζ/2(α − eiζβ)| ≥ |=m(e−iζ/2α − eiζ/2β)| ≥144

−=m(e−iζ/2α− eiζ/2β) = sin (ζ/2) (α+ β), leads to the estimation:145

|a(k; p, p)| ≥ sin

(
ζ

2

)[∫
Ω

(
|∇p|2 − k2|p|2

)
dxdy + k|Y |

∫
Γ

|p|2 dx

]
.146

Note that sin (ζ/2) 6= 0 because <e(Y ) > 0. Using (6) leads to147

|a(k; p, p)| ≥ sin

(
ζ

2

){[
1− k2

2

(
1 +

1

λ

)]∫
Ω

|∇p|2 dxdy + k [|Y | − k (1 + λ)]

∫
Γ

|p|2 dx

}
.148

To recover the H1-norm on the right-hand side, we use again (6) leading to149

‖p‖2H1(Ω) ≤ (1 + λ)

∫
Γ

|p|2 dx+
1

2

(
3 +

1

λ

)∫
Ω

|∇p|2 dxdy.150

This leads to the lower bound151

|a(k; p, p)| ≥ sin

(
ζ

2

)
min

[
1− k2

2

(
1 + 1

λ

)
1
2

(
3 + 1

λ

) ,
k [|Y | − k (1 + λ)]

(1 + λ)

]
‖p‖2H1(Ω) .152

Therefore a is coercive if λ is chosen such that [(2/k2)− 1]−1 < λ < (|Y |/k)− 1. This153

is possible if k is such that |Y |k2 + 2k − 2|Y | < 0, and also if k2 < 2, ensuring that154

λ > 0. Since k > 0, both conditions are fulfilled if (7) applies. �155
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2.3. Well-posedness at all frequencies. The previous result can not be easily156

extended to large frequencies. However it remains true and we have the following157

Theorem 3. For all k > 0, the problem (4) is well-posed.158

To prove this theorem, we follow the procedure in [18], indicating that we just159

have to find an a-priori estimate for a solution of (4). It corresponds to prove that160

exists C > 0 such that for all p ∈ H1(Ω) and f ∈ L2(Ω) satisfying (4), it holds that161

(8) ‖p‖H1(Ω) ≤ C ‖f‖L2(Ω) .162

Then as in [18], we invoke Lemmas 4.4 and 4.5 in [21], which show that the a-priori163

estimate implies an inf-sup condition for the sesquilinear form a(k; p, q) and also the164

transposed inf-sup condition. Then [[22], Theorem 2.15] yields existence, uniqueness,165

and boundedness of a solution of (4).166

We now focus on establishing the a priori bound (8), which is a rather technical167

task. First we prove the following lemmas:168

Lemma 4. If p ∈ H1(Ω) is solution of the variational problem (4) then169

(9) ‖∇p‖2L2(Ω) − k
2 ‖p‖2L2(Ω) ≤ (1 + |=m(Y )|/<e(Y )) ‖f‖L2(Ω) ‖p‖L2(Ω) ,170

and171

(10) k<e(Y ) ‖p‖2L2(Γ) ≤ ‖f‖L2(Ω) ‖p‖L2(Ω) .172

Proof. From (4) and (5) written for q = p is found173

a(k; p, p) =

∫
Ω

(
|∇p|2 − k2|p|2

)
dxdy−k [i<e(Y )−=m(Y )]

∫
Γ

|p|2 dx = − (f, p)L2(Ω) .174

The real and imaginary parts read175 
k<e(Y )

∫
Γ

|p|2 dx = =m (f, p)L2(Ω) ,∫
Ω

(
|∇p|2 − k2|p|2

)
dxdy + k=m(Y )

∫
Γ

|p|2 dx = −<e (f, p)L2(Ω) ,
176

which gives the two inequalities. �177

To go further, we need first to prove that p ∈ H2(Ω).178

Lemma 5. If p ∈ H1(Ω) is solution of the variational problem (4) then p ∈179

H2(Ω).180

Proof. p ∈ H1(Ω) satisfies (1) which can be written181 {
−∆p+ p = g in Ω with g ≡ −f + (k2 + 1)p,
∂p/∂y = ikY p on Γ and ∂p/∂y = 0 on Γ0.

182

The key point is to use the Fourier transform p̂(ξ, y) of p(x, y) and a convenient183

definition of the H2-norm. In [23] is indicated that H2(Ω) can be equipped with the184

following norm185

(11) ‖p‖2H2(Ω) =

∫
R

(
‖p̂(ξ, ·)‖2H2(0,1) + ξ4‖p̂(ξ, ·)‖2L2(0,1)

)
dξ,186
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6 J-F. MERCIER

equivalent to the usual norm in H2(Ω). Taking the Fourier transform along the x187

axis, p̂(ξ, y), noted for simplicity ϕ(y) since ξ is just a parameter, is found to satisfy188 {
−d2ϕ/dy2 + (1 + ξ2)ϕ = h in (0, 1),

dϕ/dy = ikY ϕ at y = 1 and dϕ/dy = 0 at y = 0,
189

where h(y) = ĝ(ξ, y). Deriving the corresponding variational form and choosing the190

test field ψ = ϕ, we deduce191

‖dϕ/dy‖2L2(0,1) + (1 + ξ2)‖ϕ‖2L2(0,1) − ikY |ϕ(1)|2 = (h, ϕ)L2(0,1).192

Proceeding as in the proof of lemma 2, we get the coercivity of the left-hand side193

leading to194

sin (ζ/2)
(
‖dϕ/dy‖2L2(0,1) + (1 + ξ2)‖ϕ‖2L2(0,1) + k|Y ||ϕ(1)|2

)
≤ |(h, ϕ)L2(0,1)|.195

Therefore by the Lax-Milgram theorem we have that for all ξ ∈ R, p̂(ξ, ·) = ϕ(·) ∈196

H1(0, 1) exists and is unique and we derive also two upper bounds:197

sin (ζ/2) (1 + ξ2)‖ϕ‖L2(0,1) ≤ ‖h‖L2(0,1),198

that we note199

(12) (1 + ξ2)‖ϕ‖L2(0,1) ≤ C‖h‖L2(0,1),200

where C designs a generic constant (same convention in the following). The other201

upper bound is202

sin (ζ/2)
(
‖dϕ/dy‖2L2(0,1) + ‖ϕ‖2L2(0,1)

)
≤ ‖h‖L2(0,1)‖ϕ‖L2(0,1),203

from which we deduce a control of the H1-norm of ϕ: ‖ϕ‖H1(0,1) ≤ C‖h‖L2(0,1). To204

go further and to control the L2-norm of d2ϕ/dy2, we come back to the equation205

satisfied by ϕ from which is deduced206 ∥∥d2ϕ/dy2
∥∥
L2(0,1)

≤ (1 + ξ2)‖ϕ‖L2(0,1) + ‖h‖L2(0,1) ≤ C‖h‖L2(0,1),207

where (12) has been used. Therefore we deduce the control of the H2-norm208

‖ϕ‖2H2(0,1) =
∥∥d2ϕ/dy2

∥∥2

L2(0,1)
+ ‖ϕ‖2H1(0,1) ≤ C‖h‖

2
L2(0,1).209

Finally to prove that p ∈ H2(Ω), we just need to show that210

‖p̂(ξ, ·)‖2H2(0,1) + ξ4‖p̂(ξ, ·)‖2L2(0,1) ≤ C‖ĝ(ξ, ·)‖2L2(0,1),211

from which (11) leads, with Plancherel relation, to212

‖p‖2H2(Ω) ≤ C‖g‖
2
L2(Ω).213

This is achieved by noting that214

‖ϕ‖H2(0,1) + ξ2‖ϕ‖L2(0,1) ≤ ‖ϕ‖H2(0,1) + (1 + ξ2)‖ϕ‖L2(0,1) ≤ C‖h‖L2(0,1),215

from which is deduced216

‖ϕ‖2H2(0,1) + ξ4‖ϕ‖2L2(0,1) ≤
(
‖ϕ‖H2(0,1) + ξ2‖ϕ‖L2(0,1)

)2 ≤ C‖h‖2L2(0,1),217

with ϕ(y) = p̂(ξ, y), h(y) = ĝ(ξ, y). �218

Now we prove the following technical lemma:219
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Lemma 6. If p ∈ H1(Ω) is solution of the variational problem (4) then220

(13) 2

∥∥∥∥∂p∂y
∥∥∥∥2

L2(Ω)

≤
(

1 +
|=m(Y )|
<e(Y )

+
k

<e(Y )
(1 + |Y |2) + 2

)
‖f‖L2(Ω) ‖p‖H1(Ω) .221

Proof. We follow closely the approach in [18], using in particular some Green’s222

like identity [[24], Theorem 4.4, Theorem 3.34]. For any p ∈ H2(Ω), using two times223

the Green formula, one gets:224

(14)

2<e (y∂p/∂y,∆p)L2(Ω) = −2 ‖∂p/∂y‖2L2(Ω)+‖∇p‖2L2(Ω)+2 ‖∂p/∂y‖2L2(Γ)−‖∇p‖2L2(Γ) .225

On the other side, p ∈ H1(Ω) solution of the variational problem (4) belongs to H2(Ω)226

thanks to lemma 5 and satisfies (1)227 {
(∆ + k2)p = f in Ω,

∂p/∂y = ikY p on Γ and ∂p/∂y = 0 on Γ0.
228

Multiplying f̄ by y∂p/∂y is obtained229

2<e (y∂p/∂y,∆p)L2(Ω) = k2 ‖p‖2L2(Ω) − k
2 ‖p‖2L2(Γ) + 2<e (y∂p/∂y, f)L2(Ω) ,230

while (14) becomes for the solution of problem (4):231

2<e (y∂p/∂y,∆p)L2(Ω) = −2 ‖∂p/∂y‖2L2(Ω)+‖∇p‖2L2(Ω)+k
2|Y |2 ‖p‖2L2(Γ)−‖∂p/∂x‖

2
L2(Γ) .232

Combining these two equalities together gives:233

2 ‖∂p/∂y‖2L2(Ω) = ‖∇p‖2L2(Ω) − k
2 ‖p‖2L2(Ω) + T − 2<e (y∂p/∂y, f)L2(Ω) ,234

where235

T = k2|Y |2 ‖p‖2L2(Γ) − ‖∂p/∂x‖
2
L2(Γ) + k2 ‖p‖2L2(Γ) .236

Using (10) we get an upper bound for T237

T ≤ [k/<e(Y )](1 + |Y |2) ‖f‖L2(Ω) ‖p‖L2(Ω) ,238

and combined with (9), it gives (13). �239

Now we can prove the required a priori estimation (8) from which theorem 3 is240

directly deduced:241

Lemma 7. If p ∈ H1(Ω) is solution of the variational problem (4) then (8) holds242

with243

C = (1 + k2)

[
2

k<e(Y )
+

1

2

(
1 +
|=m(Y )|
<e(Y )

+
k

<e(Y )
(1 + |Y |2) + 2

)]
+ 1 +

|=m(Y )|
<e(Y )

.244

Proof. We start from (6) with λ = 1. Using (10) combined with (13) leads to245

‖p‖2L2(Ω) ≤
[

2

k<e(Y )
+

1

2

(
1 +
|=m(Y )|
<e(Y )

+
k

<e(Y )
(1 + |Y |2) + 2

)]
‖f‖L2(Ω) ‖p‖H1(Ω) .246

Then with the control of ‖∇p‖2L2(Ω) with (9), we get247

‖p‖2H1(Ω) ≤ (1+k2) ‖p‖2L2(Ω)+(1 + |=m(Y )|/<e(Y )) ‖f‖L2(Ω) ‖p‖L2(Ω) ≤ C ‖f‖L2(Ω) ‖p‖H1(Ω) .248

�249
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3. The case of a fluid in motion. Now we extend the previous study by250

adding a motion of the fluid. Restricting to a bounded domain, we will prove that251

the radiation problem is always of Fredholm type, for no shear or at most for a weak252

shear (see paragraphs 3.2.5 and 3.3.4) but to prove the well-posedness in an unbounded253

guide, a main difference with the no-flow case is that we need to introduce some extra254

dissipation (limiting absorption principle). We consider in the duct Ω an horizontal255

subsonic shear flow of velocity U(y)ex with |U | < c0, which in non-dimensional form256

becomes M(y)ex with M(y) = U(y)/c0 the Mach number. The acoustics equations257

are more complicated than in the no-flow case and are detailed now.258

3.1. Impedance boundary condition in presence of a flow. In the flow259

case, the impedance boundary condition reads260

∂uy/∂t = Y c0p at y = 1,261

where u is the acoustic displacement linked to the velocity by v = Dtu with the262

convective derivative263

(15) Dt = (1/c0)∂/∂t+M∂/∂x.264

Without flow the condition expressed versus the velocity and the pressure is simply265

vy = c0Y p but in presence of a uniform flow it becomes ∂vy/∂t = Y c0Dtp at y = 1.266

In the time-harmonic regime it reads267

vy = (iY/k)Dkp,268

where Dk is the convective operator269

(16) Dk = M(y)∂/∂x− ik.270

Note that in the no flow case, Dk reduces to −ik and since the Linearized Euler271

Equations give ∇p = ikv, we recover the no-flow condition in Eq. (1).272

For a fluid in motion, the difficulty of the study is weaker when the Mach number273

is constant. Therefore we present first the case of a uniform flow and then we consider274

the most difficult case of a varying flow.275

3.2. Uniform flow case.276

3.2.1. Equations of the problem. We consider a uniform flow M =cst 6= 0.277

Then the Linearized Euler Equations read278

(17)

{
Dkv + ∇p = 0,
Dkp+ div v = f,

279

with Dk defined in (16). The first relation of (17) implies that curl (Dkv + ∇p) = 0280

where has been used the scalar curl operator defined by curl v = ∂xvy − ∂yvx. Thus281

it implies that exists a velocity potential ϕ such that v = ∇ϕ with p = −Dkϕ.282

Indeed the solution of Dk(curl v) = 0 is curl v = A(y) exp (ikx/M) and the only283

causal solution (curl v = 0 when x→ −∞) is curl v = 0. Expressing the impedance284

boundary condition versus the velocity potential leads to the new equations replacing285

(1):286

(18)

{
∆ϕ−D2

kϕ = f in Ω,
ik∂ϕ/∂y = Y D2

kϕ on Γ and ∂ϕ/∂y = 0 on Γ0.
287
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VARIATIONAL METHODS FOR ACOUSTIC RADIATION IN A DUCT WITH A SHEAR FLOW AND AN ABSORBING BOUNDARY9

For a fluid at rest M = 0, since p = ikϕ we recover (1). Note that even when M 6= 0,288

the equations (18) can be expressed versus the pressure (in fact, since the admittance289

Y is constant, p satisfies the same equations). But it will no longer be the case when290

M is not constant. Since the velocity potential will be a natural unknown in the shear291

case, we prefer to formulate the problem with the velocity potential in the uniform292

flow case.293

We keep on considering <e(Y ) > 0 although contrary to the case of a fluid at rest,294

we don’t know how to establish an energy balance for the problem (18) as explained295

in the two following remarks.296

Remark 3. The transient version of (18), without any source term and restricted297

to a real admittance is:298 
∆Φ−

(
1

c0

∂

∂t
+M

∂

∂x

)2

Φ = 0 in Ω,

1

c0

∂2Φ

∂y∂t
= −Y

(
1

c0

∂

∂t
+M

∂

∂x

)2

Φ on Γ and
∂Φ

∂y
= 0 on Γ0,

299

with Φ(x, y, t) = ϕ(x, y)e−iωt. Multiplying the volume equation by ∂Φ/∂t, we did not300

succeed in deriving an energy balance. This is due to the term ∂2Φ/∂y∂t which does301

not appear naturally when applying the Green formula. In fact we suspect that it is302

not possible to establish an energy balance because in the following we will be able to303

prove the well-posedness of the time-harmonic problem only when introducing some304

extra dissipation.305

Remark 4. Eliminating all the unknowns to work with the velocity only, it is306

possible to derive an equality close to an energy balance. We start from (17) without307

any source term and expressed in the time domain:308 {
Dtv + ∇p = 0 and Dtp+ div v = 0 in Ω,
∂vy/∂t = Y c0Dtp on Γ and vy = 0 on Γ0,

309

with Dt defined in (15). Eliminating the pressure leads to310 {
D2
t v −∇div v = 0 in Ω,

∂vy/∂t = −Y c0 div v on Γ and vy = 0 on Γ0.
311

Multiplying by ∂v/∂t is easilly deduced the equation312

dE

dt
= −Y c0

∫
Γ

(div v)
2

dx with E =
1

2

∫
Ω

[(
1

c0

∂v

∂t

)2

−
(
M
∂v

∂x

)2

+ (div v)
2

]
dxdy.313

Thus E decreases only if Y > 0 and as in the no flow case, we recover that an314

admittance with a positive real part corresponds to an absorbing boundary condition.315

Unfortunately the sign of E is not known as soon as M 6= 0, which prevents from316

assuring that it is an energy.317

The consequence of these remarks is that we are not allowed to look for a solution318

of problem (18) in H1(Ω). In fact we think that such solution doesn’t exist, only a319

solution in H1
loc(Ω) should exist. To characterized this solution, we introduce some320

extra dissipation, as detailed now.321
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3.2.2. The dissipative problem. We consider a dissipative radiation problem322

by extending the frequency k to the upper complex plane. Indeed, to define uniquely323

the good physical solution of a radiation problem, a usual approach (see [25] for324

instance) is to use the limiting absorption principle [26]: the frequency k is extended325

to the complex plane by k + iε with ε > 0, which defines the so-called dissipative326

problem. Then the physical solution is defined as the limit, as ε goes to 0, of the327

unique H1solution of the dissipative problem. In [27] is given an interpretation of328

the limiting absorption principle: it is shown that to extend the frequency to the329

complex plane in the Helmholtz equation corresponds to add a slight dissipation in330

the medium in the wave equation (for the problem in time). To apply the limiting331

absorption principle, we use the following transformation to extend the frequency to332

the complex plane with =m(k) > 0333

(19) k → kθ = keiθ, with 0 < θ < π/2,334

more convenient than the usual transformation k → k + iε. In the following we will335

determine how θ must be chosen to get well-posedness.336

The variational formulation of (18) for k = kθ is to find ϕ ∈ V such that ∀ψ ∈ V337

(20) aM (kθ;ϕ,ψ) = − (f, ψ)L2(Ω) ,338

where the sesquilinear form reads339

(21)
aM (kθ;ϕ,ψ) =

∫
Ω

[
∇ϕ ·∇ψ −

(
M
∂ϕ

∂x
− ikθϕ

)(
M
∂ψ

∂x
+ ikθψ

)]
dxdy,

+
Y

ikθ

∫
Γ

(
M
∂ϕ

∂x
− ikθϕ

)(
M
∂ψ

∂x
+ ikθψ

)
dx.

340

The boundary term on Γ implies that H1(Ω) is no longer the good framework and we341

must choose the Hilbert space342

(22) V =
{
ϕ ∈ H1(Ω), ∂ϕ/∂x ∈ L2(Γ)

}
,343

equipped with the norm ‖ϕ‖2V = ‖∇ϕ‖2Ω + ‖ϕ‖2Ω + ‖∂ϕ/∂x‖2Γ.344

3.2.3. Well-posedness conditions. As in the no flow case, to prove the well-345

posedness of the problem (20) we will use the Lax-Milgram theorem. In this aim it is346

sufficient to show that ∃C > 0 such that ∀ϕ ∈ V ,347

|aM (kθ;ϕ,ϕ)| ≥ C ‖ϕ‖2V .348

To simplify the notations, we introduce the admittance argument −π/2 < γ < π/2349

(let us recall that <e(Y ) > 0) such that350

(23) Y = |Y |eiγ .351

352

Theorem 8. For all Mach number 0 < M < 1 and for all admittance Y = |Y |eiγ353

defined in (23), a critical angle 0 < θc < θmax ≡ (2γ+π)/4 exists such that the problem354

(20) is well posed for all dissipations associated to an angle 0 < θ < θc where θ is355

defined in (19) and θc is defined in (31).356
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Remark 5. Since the lower bound for θ is zero, the dissipation is allowed to357

take very small values. It will not be the case when M ′ 6= 0 for which we will get358

θ > θmin > 0.359

To prove latter this theorem, we introduce360

AM (ϕ) = a ‖∂ϕ/∂x‖2Ω+b ‖∂ϕ/∂y‖2Ω+c ‖ϕ‖2Ω+d ‖∂ϕ/∂x‖2Γ+2e =m (ϕ, ∂ϕ/∂x)Γ+f ‖ϕ‖2Γ ,361

with the parameters defined by362

(24)
a = (1−M2) sin(θ)/k, b = sin(θ)/k, c = k sin(θ),
d = |Y |M2 cos(γ − 2θ)/k2, e = |Y |M cos(γ − θ)/k, f = |Y | cos(γ).

363

The quantity AM (ϕ) is useful since we have the364

Lemma 9. If ∃C > 0 such that ∀ϕ ∈ V defined in (22),365

AM (ϕ) ≥ C
(
‖∇ϕ‖2Ω + ‖ϕ‖2Ω + ‖∂ϕ/∂x‖2Γ

)
,366

then aM (kθ; ·, ·) is coercive and consequently problem (20) is well posed.367

Proof. As we will show hereafter, AM (ϕ) = =m
(
aM (kθ;ϕ,ϕ)/kθ

)
. Thus the368

coercivity comes from369 ∣∣∣∣aM (kθ;ϕ,ϕ)

kθ

∣∣∣∣ ≥ =m
[(

aM (kθ;ϕ,ϕ)

kθ

)]
and |aM (kθ;ϕ,ϕ)| ≥ |kθ|

∣∣∣∣aM (kθ;ϕ,ϕ)

kθ

∣∣∣∣ .370

Now we evaluate =m
(
aM (kθ;ϕ,ϕ)/kθ

)
. Noting ‖·‖Ω = ‖·‖L2(Ω) and ‖·‖Γ = ‖·‖L2(Γ),371

from (21) we get372 (
aM (kθ;ϕ,ϕ)

kθ

)
=

(1−M2)

kθ

∥∥∥∥∂ϕ∂x
∥∥∥∥2

Ω

+
1

kθ

∥∥∥∥∂ϕ∂y
∥∥∥∥2

Ω

− kθ ‖ϕ‖2Ω − 2M =m
(
ϕ,
∂ϕ

∂x

)
Ω

,373

374

+i
Y M2

kθ
2

∥∥∥∥∂ϕ∂x
∥∥∥∥2

Γ

+ i
Y M

kθ
2 =m

(
ϕ,
∂ϕ

∂x

)
Γ

+ iY ‖ϕ‖2Γ .375

Taking the imaginary part, we get AM (ϕ). �376

Now we look for conditions on θ under which lemma 9 applies. If M = 0, we377

get from (24) the simplifications d = 0 = e, a = sin(θ)/k = b and thus AM (ϕ) =378

a ‖∇ϕ‖2Ω + c ‖ϕ‖2Ω + f ‖ϕ‖2Γ has all its coefficients positive. Therefore AM (ϕ) ≥379

a ‖∇ϕ‖2Ω + c ‖ϕ‖2Ω and the dissipative radiation problem is well-posed in H1(Ω) for380

all θ > 0 (V 6= H1(Ω) has to be introduced only when M > 0). Note that we have381

proven in the previous section that it is also true without dissipation (θ = 0).382

Now we focus on the case M > 0 and to go further we need to establish some383

lower bounds. First we show the384

Lemma 10. For all µ > 0,385

(25) ‖ϕ‖2Γ ≤ (1 + µ) ‖ϕ‖2Ω + (1/µ) ‖∂ϕ/∂y‖2Ω .386

Proof. For all ϕ ∈ C∞(Ω) ∩H1(Ω), ∀y ∈ [0, 1],387

|ϕ(x, 1)|2 − |ϕ(x, y)|2 =

∫ 1

y

∂

∂t

(
|ϕ(x, t)|2

)
dt,388
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which is developed in389

|ϕ(x, 1)|2 = |ϕ(x, y)|2 + 2<e
(∫ 1

y

ϕ(x, t)
∂ϕ

∂t
(x, t) dt

)
.390

We use Young’s inequality: for all µ > 0 and for y = 0 in the integral,391

|ϕ(x, 1)|2 ≤ |ϕ(x, y)|2 + µ

∫ 1

0

|ϕ(x, y)|2dy + (1/µ)

∫ 1

0

|∂ϕ/∂y(x, y)|2 dy,392

The result is obtained by integrating for y between 0 and 1 and then for x on R and393

is finally extended to ϕ ∈ H1(Ω) by density. �394

Then we show the395

Lemma 11. For all λ > 0 and µ > 0,396

AM (ϕ) ≥ a ‖∂ϕ/∂x‖2Ω + C1 ‖∂ϕ/∂y‖2Ω + C2 ‖ϕ‖2Ω + C3 ‖∂ϕ/∂x‖2Γ ,397

with g = eλ−f , C1 = b−(g/µ), C2 = c−g(1+µ), C3 = d−(e/λ) and other constants398

defined in (24).399

Proof. We use the Young inequality:400

∀λ > 0, |2 =m (ϕ, ∂ϕ/∂x)Γ| ≤ λ ‖ϕ‖
2
Γ + (1/λ) ‖∂ϕ/∂x‖2Γ ,401

to deduce:402

AM (ϕ) ≥ a ‖∂ϕ/∂x‖2Ω + b ‖∂ϕ/∂y‖2Ω + c ‖ϕ‖2Ω + (d− e/λ) ‖∂ϕ/∂x‖2Γ − g ‖ϕ‖
2
Γ .403

Then using (25) leads to the relation in lemma 11. �404

Now we can prove theorem 8 by finding conditions on θ under which lemma 9405

applies, thanks to lemma 11.406

Proof of theorem 8. We want all the coefficients a, C1, C2 and C3 in lemma407

11 to be strictly positive. First we consider the case C3 = 0 thus408

(26) λ = λ0(θ) ≡ e

d
=

k

M

cos(γ − θ)
cos(γ − 2θ)

.409

From lemma 11, λ must be strictly positive which implies 2θ < γ + π/2 and which410

defines the maximum angle411

(27) θmax = (2γ + π)/4.412

This upper bound for θ becomes a strong constraint only when γ → −π/2. For413

λ = λ0, g = g0 ≡ eλ0 − f is found to be equal to414

(28) g0(θ) = |Y | sin2(θ)/ cos(γ − 2θ),415

and thus g0 > 0. To get C1 > 0 and C2 > 0 we must satisfy (g0/b) < µ < (c/g0)− 1416

with µ > 0. Thus θ ∈]0, θmax[ must be chosen such that (g0/b) < (c/g0) − 1 and417

this is obtained for θ below a critical value. Indeed (g0/b)(g0/c) + (g0/c) < 1 can be418

written as P̃0(u) < 0 with the polynomial419

(29) P̃0(u) = u2 + (u/k)− 1,420
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where421

(30) u(θ) = g0(θ)/ sin(θ) = |Y | sin(θ)/ cos(γ − 2θ).422

Since P̃0(0) < 0, this is achieved for u < uc where P̃0(uc) = 0 with the explicit critical423

value 2uc = −(1/k) +
√

(1/k)2 + 4. Finally, θ ∈ (0, θmax) → u(θ) is found to be an424

increasing function of range (0,∞). u < uc corresponds to θ < θc, where the critical425

angle θc is defined as the unique solution θ ∈ (0, θmax) of u(θc) = uc which reads more426

explicitly427

(31) 2
|Y | sin(θc)

cos(γ − 2θc)
= 2uc ≡ −

1

k
+

√
1

k2
+ 4.428

Note that θc is surprisingly independent of M . Eventually to satisfy lemma 9 we need429

conditions under which C3 is strictly positive. This is achieved by slightly perturbing430

the condition under which C3 = 0. We take λε = (e/d) + ε for any ε > 0. Then C3431

becomes Cε3 such that Cε3 = εd/[(e/d)+ε] > 0. g becomes gε ≡ eλε−f = g0 +eε > 0.432

The conditions Cε1 ≡ b− (gε/µ) > 0 and Cε2 ≡ c− gε(1 + µ) > 0 lead to (gε/b) < µ <433

(c/gε)− 1, which implies the condition P̃ε(u) < 0 with434

P̃ε(u) = P̃0(u) +
2eεg0

sin(θ)2
+

(
eε

sin(θ)

)2

+
eε

k sin(θ)
.435

Since P̃ε(u) ≥ P̃0(u), P̃ε(uc(ε)) = 0 for uc(ε) ≤ uc(0) = uc. Therefore the condition436

P̃ε(u) < 0 is satisfied for θ < θc(ε) ≤ θc(0), with θc(0) noted previously θc. θc(ε) can437

be as close as we want to θc by taking ε small enough which ensures that the problem438

is well posed for any θ < θc, as stated in theorem 8.439

�440

3.2.4. Numerical illustration. It is not possible to get θc more explicitly than441

the solution of the fixed point equation (31) but we can characterize it numerically.442

Some dependences of θc versus several physical parameters are explicit: since u is an443

increasing function of θ, from (31) is deduced that θc(k, Y ) increases when k increases444

or |Y | decreases. Moreover θc → 0 when k → 0 or when |Y | → ∞. However the445

variations of θc(γ) are not easy to guess and it is why we plot them now numerically.446

For k = 2, θc(γ) solution of (31) is plotted in Fig. 1 for two modulus of the447

admittance: |Y | = 1.4 and |Y | = 1.6. The maximum of θc is located at γmax =448

2 arcsin(uc/|Y |) with uc defined in (31). For |Y | = 1.4 we get γmax = 1.18 and449

θc(γmax) = 0.59 whereas |Y | = 1.6 leads to γmax = 1.02 and thus θc(γmax) = 0.51.450

Moreover the values of θc(γ) at γ = ±π/2 are expected. When γ → −π/2, since 0 <451

θc < θmax with θmax(γ) → 0 when γ → −π/2, naturally θc(γ) → 0. For γ → π/2, we452

get directly from (31) that θc(π/2) = arccos(|Y |/2uc) if |Y |/2uc ≤ 1 and θc(π/2) = 0453

for |Y |/2uc ≥ 1. For |Y | = 1.4 we get |Y |/2uc = 0.90 and θc(π/2) = 0.46 whereas454

|Y | = 1.6 leads to |Y |/2uc = 1.03 and thus θc(π/2) = 0.455

3.2.5. Case without dissipation. Without dissipation (θ = 0 and kθ = k),456

we are not able to prove that the problem (20) is well-posed (and we suspect it is457

not true), as we did in the no-flow case, but we can at least prove that the prob-458

lem is of Fredholm-type. To do so, we restrict the problem to a bounded domain459

and we close it with appropriate radiation conditions. The outgoing solution is se-460

lected thanks to the introduction of PMLs: the problem is set in a bounded domain461

Ωα = Ωd ∪ ΩL± composed of the central domain Ωd = {(x, y); |x| < d, 0 < y < 1}462
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Fig. 1. For k = 2, θc in (31) versus γ = arg Y for |Y | = 1.4 in blue and |Y | = 1.6 in red

containing the source (for d large enough) and of surrounding absorbing layers ΩL±463

of length L: ΩL± = {(x, y); d < ±x < d + L, 0 < y < 1}. The introduction of PMLs464

amounts to the transformation of the differential operator ∂/∂x −→ α(x) ∂/∂x in465

the governing equations of the problem. The complex function α is assumed to be466

unity in Ωd and constant and equal to the complex scalar α∗, satisfying the following467

hypotheses Re(α∗) > 0, Im(α∗) < 0 to produce absorption (see [28] for a more thor-468

ough description and justification). For a source f ∈ L2(Ω), the radiation problem in469

presence of PMLs reads470

(32)
α
∂

∂x

(
α
∂ϕ

∂x

)
+
∂2ϕ

∂y2
−D2

αϕ = f in Ωα,

∂ϕ/∂y = (Y/ik)D2
αϕ on Γα = {(x, 1); |x| < d+ L},

∂ϕ/∂y = 0 on Γ0
α = {(x, 0); |x| < d+ L},

ϕ = 0 on Σ±,

471

where Dα = Mα∂/∂x − ik and where the purpose of the Dirichlet condition on472

Σ± = {(x, y);±x = d+L, 0 < y < 1} is to select the outgoing solution. This problem473

has the equivalent variational form:474

(33)

{
Find ϕ ∈ U = {ϕ ∈ H1

Σ,0(Ωα) with ∂ϕ/∂x ∈ L2(Γα)}

such that aα(ϕ,ψ) = − (f/α, ψ)L2(Ωα) for all ψ ∈ U,
475

where H1
Σ,0(Ωα) = {ϕ ∈ H1(Ωα), ϕ|Σ± = 0} and where the sesquilinear form aα(ϕ,ψ)476

is defined as:477 ∫
Ωα

1

α

(
∇αϕ ·∇αψ̄ −DαϕDαψ̄

)
dxdy +

Y

ik

∫
Γα

1

α

(
DαϕDαψ̄

)
dx,478

where Dα = Mα∂/∂x+ ik and ∇α = (α∂/∂x, ∂/∂y).479

Lemma 12. Problem (33) is of Fredholm type.480

Proof. We show that aα(ϕ,ψ) is the sum of a compact part and a coercive481

part. The proof of compactness is classic (remember that ϕ|Γα ∈ H1(Γα)) and the482
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coerciveness is obtained by proving that ∃C > 0 such that ∀ϕ ∈ U defined in (33):483

|bα(ϕ)| ≥ C
(∫

Ωα

|∇ϕ|2 dxdy +

∫
Γα

|∂ϕ/∂x|2 dx

)
,484

with the non-compact part of aα(ϕ,ψ) defined as485

(34) bα(ϕ) =

∫
Ωα

[
(1−M2)α

∣∣∣∣∂ϕ∂x
∣∣∣∣2 +

1

α

∣∣∣∣∂ϕ∂y
∣∣∣∣2
]

dxdy +
Y

ik

∫
Γα

M2α

∣∣∣∣∂ϕ∂x
∣∣∣∣2 dx.486

It is true for any value of the admittance as soon as the numerical parameter α∗ is487

chosen such that −2 arg(α∗) < π/2 + arg Y (remember that arg(α∗) < 0). �488

Note that this condition on the PML parameter α∗ becomes hard to fulfill in the489

limit γ = arg Y → −π/2. It is consistent with the results for the dissipative problem490

set in an unbounded domain of the previous paragraphs: then it was hard to find a491

good dissipation to get a well-posed problem in the same limit.492

To go further, we are not able to prove uniqueness of problem (33), which would493

imply well-posedness from Fredholm alternative. A classic approach to prove unique-494

ness in a waveguide is to perform a Fourier transform along x and then to use the495

completeness of the transverse modes of the guide. Here the transverse modes are496

easy to determine but the associated theoretical framework is not well suited to prove497

completeness. The difficulty is that the transverse modes satisfy a quadratic and not498

self-adjoint eigenvalue problem. Completeness is proven only in the no flow case: then499

the problem reduces to a linear eigenvalue problem, still not self-adjoint but at least500

symmetric. Then we recover the same transverse modes than when studying water501

waves propagation and, for a fixed k, excepting for a countable sequence of values of502

Y , the transverse modes have been proven [29, 30] to form a basis of H1/2(0, 1).503

Although we don’t know how to prove it, we postulate that problem (33) is well-504

posed outside a countable sequence of frequencies tending to infinity. This is typical505

in acoustic radiation problems [31] and it would explain why the problem (20) is506

well-posed only for a dissipation θ > 0, preventing to consider the limit θ → 0: it507

is because the limit would not exist on a set of frequencies (even though this set is508

small, of zero measure).509

3.3. Shear flow case. Now we study the general case of a varying flow. The510

effect of a mean shear flow on the acoustic perturbations has already been studied511

[32, 33] but with other tools. It has been done in the absence of source, thanks to a512

Fourier transform of the linearised Euler equations. Then compared to the uniform513

flow case, the novelty is that among the numerical solutions of the Pridmore-Brown514

[16] equation, unstable hydrodynamic modes (spatially exponentially growing) can515

appear [34]. Thanks to our variational approach, we can consider a radiation problem516

and thus study a realistic solution combining all the Pridmore-Brown modes together.517

The main novelty compared to the uniform flow case is that it will not be always518

possible to find a dissipation value for which the acoustic problem is well-posed.519

This is expected since enough dissipation must be introduced to attenuate a possible520

unstable mode.521

3.3.1. Equations of the problem. We consider a shear flow M(y)ex of regu-522

larity M ∈ C1([0, 1]). We suppose also that 0 < M(y) < 1, the case of a vanishing523

flow leading to specific difficulties hard to handle (M → 0 is a singular limit, see (37)).524

When M 6=cst, (18) is not valid and we choose to use the Goldstein equations [35]525
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because they are convenient since they are a direct extension of (18). The velocity526

has no longer a potential but reads v = ∇ϕ+ξ associated to the pressure p = −Dkθϕ527

with Dkθ = M(y)∂/∂x − ikθ. The acoustic unknown ϕ ∈ V defined in (22) and528

the hydrodynamic unknown ξ ∈ W = {ξ ∈ (L2(Ω))2, ∂ξ/∂x ∈ (L2(Ω))2} (such that529

Dkθξ ∈ (L2(Ω))2) satisfy the Goldstein equations: they are made of the following530

acoustic propagation equation for ϕ531

(35)

 div (∇ϕ+ ξ)−D2
kθ
ϕ = f in Ω,

∂ϕ

∂y
+ ξy =

Y

ikθ
D2
kθ
ϕ on Γ and

∂ϕ

∂y
+ ξy = 0 on Γ0,

532

(if ξ = 0 we recover (18)) coupled to the transport equations for ξ533

(36)

{
Dkθξx = −M ′(y) (∂ϕ/∂y + ξy) in Ω,
Dkθξy = M ′(y)∂ϕ/∂x in Ω.

534

The transport equations are solved explicitly and we prove the535

Lemma 13. The (L2(Ω))2 solution ξ(ϕ) of (36) is536

(37)


ξy(x, y) =

M ′

M

∫ x

−∞
ei
kθ
M (x−s) ∂ϕ

∂x
(s, y) ds,

ξx(x, y) = −M
′

M

∫ x

−∞
ei
kθ
M (x−s)

(
∂ϕ

∂y
+ ξy

)
(s, y) ds,

537

and satisfies for any τ > 0 and any ϕ ∈ H1(Ω):538

(38)

∣∣∣∣∫
Ω

(ξ ·∇ϕ) dxdy

∣∣∣∣ ≤ (s1

c

)2
∥∥∥∥∂ϕ∂x

∥∥∥∥2

Ω

+
(s1

c

)(
τ

∥∥∥∥∂ϕ∂x
∥∥∥∥2

Ω

+
1

τ

∥∥∥∥∂ϕ∂y
∥∥∥∥2

Ω

)
,539

where s1 = supy∈[0,1] |M ′(y)| is the maximum flow shear and c = −=m(kθ) = k sin(θ)540

defined in (24).541

Proof. The (L2(Ω))2 solution ξ of (36) is obtained thanks to the causal Green542

function G(x, y) = (H(x)/M) exp (ikθx/M(y)) with H the Heaviside function. Then,543

since exp(ikθx/M) /∈ L2(Ω), the only L2 solution is ξy(x, y) = G(·, y)∗(M ′(y) ∂ϕ/∂x(·, y))544

and using545

‖G(·, y) ∗ ∂ϕ/∂x(·, y)‖L2(R) ≤ ‖G(·, y)‖L1(R) ‖∂ϕ/∂x(·, y)‖L2(R) with ‖G(·, y)‖L1(R) = 1/c,546

we get
∫
R |ξy(s, y)|2 ds ≤ |M ′/c|2

∫
R |∂ϕ/∂x(s, y)|2 ds. Using s1 = supy∈[0,1] |M ′(y)|547

we finally get548 {
‖ξy‖Ω ≤ (s1/c) ‖∂ϕ/∂x‖Ω ,
‖ξx‖Ω ≤ (s1/c) ‖∂ϕ/∂y + ξy‖Ω ≤ (s1/c) ‖∂ϕ/∂y‖Ω + (s1/c)

2 ‖∂ϕ/∂x‖Ω .
549

Eventually we deduce the upper bound550 ∣∣∣∣∫
Ω

(ξ ·∇ϕ) dxdy

∣∣∣∣ ≤ ‖ξx‖Ω ‖∂ϕ/∂x‖Ω + ‖ξy‖Ω ‖∂ϕ/∂y‖Ω ,551

≤ (s1/c)
2 ‖∂ϕ/∂x‖2Ω + 2 (s1/c) ‖∂ϕ/∂x‖Ω ‖∂ϕ/∂y‖Ω ,552

and thus for any τ > 0, thanks to the Young inequality:553 ∣∣∣∣∫
Ω

(ξ ·∇ϕ) dxdy

∣∣∣∣ ≤ (s1/c)
2 ‖∂ϕ/∂x‖2Ω + (s1/c)

(
τ ‖∂ϕ/∂x‖2Ω + (1/τ) ‖∂ϕ/∂y‖2Ω

)
.554
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�555

Thanks to the resolution of the transport equation, the scattering problem for556

the unknown ϕ alone can be derived:557

Lemma 14. The variational formulation of (35) is: find ϕ ∈ V defined in (22)558

such that ∀ψ ∈ V559

(39) ãM (kθ;ϕ,ψ) = − (f, ψ)L2(Ω) ,560

with561

ãM (kθ;ϕ,ψ) = aM(y)(kθ;ϕ,ψ) +

∫
Ω

ξ(ϕ) ·∇ψ dxdy.562

aM(y)(kθ; ·, ·) is aM (kθ; ·, ·) defined in (21) evaluated for a varying Mach profile M =563

M(y) and ξ(ϕ) is defined in (37).564

3.3.2. Well-posedness conditions. Now we derive conditions under which565

(39) is well-posed. The main novelty in the shear case is that ∃θmin > 0 such that the566

problem is well-posed only with enough dissipation: for θmin < θ < θc (for a uniform567

flow, θmin = 0). The well-posedness conditions are given in the forthcoming theorem568

16 which will be given later since several notations must be introduced before. To569

establish this theorem, we proceed as in the uniform case: we introduce570

(40) ÃM (ϕ) = C ′4 ‖∂ϕ/∂x‖
2
Ω + C ′1 ‖∂ϕ/∂y‖

2
Ω + C ′2 ‖ϕ‖

2
Ω + C ′3 ‖∂ϕ/∂x‖

2
Γ ,571

and we will show in the proof of lemma 15 that it is a lower bound of =m
(
ãM (kθ;ϕ,ϕ)/kθ

)
.572

The constants are defined by573

(41)
C ′4 = a′ − 1

k

(s1

c

)2

−
(s1

c

) τ
k
, C ′1 = b′ − g′

µ
with b′ = b−

(s1

c

) 1

kτ
,

C ′2 = c− g′(1 + µ), C ′3 = d′ − e′/λ,
574

for all λ, µ, τ > 0, with b, c and f already defined in (24), with the new parameters575

a′ = (1− s2
0) sin(θ)/k, d′ = |Y |i20 cos(γ − 2θ)/k2,

e′ = |Y |s0 cos(γ − θ)/k, g′ = e′λ− f,576

with the upper and lower bounds of the flow velocity

s0 = sup
y∈[0,h]

|M(y)| and i0 = inf
y∈[0,h]

|M(y)| ,

and with the shear s1 defined in lemma 13. ÃM (ϕ) is introduced because we have the577

new lemma similar to lemma 9:578

Lemma 15. If ∃C > 0 such that ∀ϕ ∈ V ,579

ÃM (ϕ) ≥ C
(
‖∇ϕ‖2Ω + ‖ϕ‖2Ω + ‖∂ϕ/∂x‖2Γ

)
,580

then ãM (kθ; ·, ·) is coercive and consequently problem (39) is well posed.581

Proof. Starting from582 (
ãM (kθ;ϕ,ϕ)

kθ

)
=

1

kθ

∥∥∥∥√1−M2
∂ϕ

∂x

∥∥∥∥2

Ω

+
1

kθ

∥∥∥∥∂ϕ∂y
∥∥∥∥2

Ω

−kθ ‖ϕ‖2Ω−2 =m
(
Mϕ,

∂ϕ

∂x

)
Ω

,583
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584

+i
Y

kθ
2

∥∥∥∥M ∂ϕ

∂x

∥∥∥∥2

Γ

+ i
Y

kθ
2 =m

(
Mϕ,

∂ϕ

∂x

)
Γ

+ iY ‖ϕ‖2Γ +
1

kθ

∫
Ω

ξ(ϕ) ·∇ϕdxdy,585

proceeding as for lemmas 9 and 11, we get for all λ, µ > 0 the lower bound586

=m

[(
ãM (kθ;ϕ,ϕ)

kθ

)]
≥ a′

∥∥∥∥∂ϕ∂x
∥∥∥∥2

Ω

+

(
b− g′

µ

)∥∥∥∥∂ϕ∂y
∥∥∥∥2

Ω

,587

588

+ [c− g′(1 + µ)] ‖ϕ‖2Ω +

(
d′ − e′

λ

)∥∥∥∥∂ϕ∂x
∥∥∥∥2

Γ

− 1

k

∣∣∣∣∫
Ω

ξ(ϕ) ·∇ϕdxdy

∣∣∣∣ .589

Note that this is the same inequality than in lemma 11 with two differences: the590

constants are now written with a prime since they have been extended from a uniform591

flow to a varying flow (M is replaced by i0, s0 or s1) and the extra hydrodynamic592

unknown ξ is also involved.593

Eventually, using (38) we can eliminate ξ and improve the lower bound: for all594

τ > 0,595

=m

[(
ãM (kθ;ϕ,ϕ)

kθ

)]
≥
[
a′ − 1

k

(s1

c

)2

−
(s1

c

) τ
k

] ∥∥∥∥∂ϕ∂x
∥∥∥∥2

Ω

,596

597

+

[
b− g′

µ
−
(s1

c

) 1

kτ

] ∥∥∥∥∂ϕ∂y
∥∥∥∥2

Ω

+ [c− g′(1 + µ)] ‖ϕ‖2Ω +

(
d′ − e′

λ

)∥∥∥∥∂ϕ∂x
∥∥∥∥2

Γ

,598

with the right hand side noted ÃM (ϕ) in (40). �599

Now our aim is to write for a shear flow a theorem similar to theorem 8, providing600

the conditions on θ under which lemma 15 applies. Thus we want all the coefficients601

C ′1, C ′2, C ′3 and C ′4 in (40) to be strictly positive. Compared to the no-flow case, we602

have the extra parameter τ to adjust. First we choose C ′4 = 0 defined in (41) and603

thus we choose604

τ = τ0(θ) ≡ (1− s2
0)
k sin2(θ)

s1
− s1

k sin(θ)
=
s1

k

(
x2

σ2
− 1

x

)
,605

where we have noted x = sin(θ) ∈]0, 1[ and where we have introduced the new pa-606

rameter607

(42) σ =
s1

k
√

1− s2
0

,608

which will be important in the following. We call it the instability parameter since it609

is linked to the possible existence of unstable solutions defined as solutions growing610

exponentially in time. More precisely we postulate that a velocity profile M(y) can be611

unstable only if σ is large enough. It is true if σ = 0 since then the velocity is uniform612

and thus stable. It is also true for a shear flow with a maximum velocity s0 fixed:613

then in [36] is proven that a compressible velocity profile of fixed maximum velocity614

s0 can allow the development of instabilities only if the profile has an inflexion point615

(as for an incompressible flow) and if s1 is above a threshold.616

We choose also C ′3 = 0 defined in (41) thus617

λ = λ′0 ≡
e′

d′
= k

s0

i20

cos(γ − θ)
cos(γ − 2θ)

,618

This manuscript is for review purposes only.



VARIATIONAL METHODS FOR ACOUSTIC RADIATION IN A DUCT WITH A SHEAR FLOW AND AN ABSORBING BOUNDARY19

similar to (26), where M is replaced by i20/s0. To get λ′0 > 0, we restrict to θ < θmax619

already defined in (27). The parameter g′0 defined by g′0 = e′λ′0 − f is found to be620

g′0(θ) = |Y |
[
ζ

sin2(θ)

cos(γ − 2θ)
+ (ζ − 1) cos(γ)

]
,621

with ζ = (s0/i0)2 and is thus found positive. For ζ = 1 is recovered g0 defined in (28)622

for a uniform flow.623

Eventually we have to determine conditions under which C ′1 > 0 and C ′2 > 0.624

C ′1 > 0 requires at least b′ = b − (s1/ckτ0) > 0. τ0 is an increasing function which625

vanishes at xτ such that x3
τ = σ2. For xτ < x < xmax with626

xmax ≡ sin (θmax) = sin[(2γ + π)/4],627

we find628

b′(θ) =
1

k

(
x− 1

x3

σ2 − 1

)
.629

b′ is an increasing function vanishing at xσ defined as the unique positive solution of630

(43)
x4
σ

xσ + 1
= σ2,631

and b′ is positive above the threshold xσ > xτ . Then the remaining conditions to632

fulfill for x > xσ are C ′1 > 0 and C ′2 > 0 and these lead to a condition similar to the633

one for a uniform flow634

(44)
g′0
b′
< µ <

c

g′0
− 1,635

with a positive left-hand side for xσ < x (we recall that µ must be positive). The636

existence of µ satisfying the condition (44) is equivalent to Pσ < 0 on (xσ, xmax) with637

(45) Pσ(x) = P0(x)Qσ(x) +
σ2

x4
v(x)2,638

where639

P0(x) ≡ Pσ=0(x) = P̃0(v(x)) = v(x)2 +
v(x)

k
− 1,640

with P̃0 recalled here but already defined in (29) and v defined by641

(46) v(x) =
g′0
x

= |Y |
[
ζ

x

cos(γ − 2θ(x))
+ (ζ − 1)

cos γ

x

]
,642

where θ(x) = arcsin(x) and with643

(47) Qσ(x) = 1− σ2x+ 1

x4
.644

The sign of Pσ has to be determined on x ∈ (xσ, xmax). In the uniform flow case645

(σ = 0, ζ = 1), Pσ in (45) reduces to R0 defined by646

(48) R0(x) ≡ P̃0(u(x)) = u(x)2 +
u(x)

k
− 1,647
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where u has been defined in (30) versus θ, that we can also write versus x648

(49) u(x) = |Y |x/ cos(γ − 2θ(x)).649

Then we found that R0(x) < 0 for 0 < x0
c < xmax with x0

c the zero of R0 which, from650

(31), is also defined as the unique solution in (0, xmax) of651

(50) 2u(x0
c) = 2uc ≡ −

1

k
+

√
1

k2
+ 4.652

For σ 6= 0, as for R0(x) we still have limx→xmax
Pσ(x) = ∞ since v(x) → ∞ but the653

main difference is that although for σ = 0, R0(0) was negative, Pσ(xσ) = v(xσ)2σ2/x4
σ654

is positive as soon as σ > 0. Therefore the existence of negative values of Pσ(x) is no655

longer guaranteed when σ 6= 0. Since Qσ > 0 for x > xσ from (47), the existence of x656

such that Pσ(x) < 0 requires at least P0(x) < 0 from (45), thus v(x) < uc defined in657

(31). Contrary to the behavior of u, x → v(x) is not an increasing function. Indeed658

from (46) is obtained that659

(51) v(x) = ζu(x) + (ζ − 1)
|Y | cos γ

x
,660

with x → u(x) an increasing function but x → |Y | cos(γ)/x is a decreasing function.661

Therefore the solutions of the inequality v(x) < uc are not easy to characterize. The662

only easy result is that since u(x) < uc for x < x0
c defined in (50) and since v ≥ u663

from (51), v(x) < uc implies that x < x0
c .664

Thanks to these notations, we can write the following theorem generalizing the-665

orem 8 to a varying flow:666

Theorem 16. For all admittance Y = |Y |eiγ defined in (23) and all instability667

parameter σ defined in (42), we define the set Iσ by668

(52) Iσ = {x ∈ (xσ, x
0
c), Pσ(x) < 0},669

with xσ defined in (43), x0
c defined in (50) and with the convention Iσ = ∅ if x0

c ≤ xσ.670

If Iσ is not empty, then the problem (39) is well posed for all dissipation associated671

to the angle θ defined in (19) such that sin(θ) ∈ Iσ.672

Remark 6. Note that in the uniform flow case, the problem was well-posed as673

soon as θ > 0. In the shear flow case, we need to introduce enough dissipation (θ > θmin674

with sin θmin = xσ) to expect to get the well-posedness of (39).675

Note also that the existence of θmin is not a strong constraint since it is easy to676

get θmin small: θmin → 0 if σ → 0 from (43), thus for a small shear s1 and/or k large.677

As already mentioned, σ → 0 is expected to imply the existence of no instability and678

thus no need to introduce a strong dissipation.679

Proof of theorem 16.680

Iσ has been defined previously to impose the conditions C ′3 = 0 = C ′4. But as681

for the uniform case in the proof of theorem 8, we show now that it is easy to get C ′3682

and C ′4 strictly positive for a set as close as we want to Iσ. We take λε = (e′/d) + ε683

such that C ′3 > 0 for all ε > 0 from (41) and we take τη = τ − η such that C ′4 > 0684

for any η > 0 from (41). The constants C ′1 and C ′2 depend continuously on ε and685

η. It is straightforward to check that the conditions C ′1(ε, η) > 0 and C ′2(ε, η) > 0686

lead to a slight perturbation of (44) and thus to a set Iε,ησ ⊂ Iσ with Iε,ησ → Iσ when687
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(a) (b)

Fig. 2. Pσ(x) defined in (45) in red, Qσ(x) defined in (47) in green and R0(x) defined in (48)
in blue for s0 = 0.5, i0 = 0.3, s1 = 0.3, k = 2 and (a): Y = 0.2 ei0.9, (b): Y = 0.2 ei1.1.

(ε, η)→ 0. Then the theorem is a consequence of lemma 15 since all the constants in688

(40) are strictly positive. �689

Let us analyze the theorem 16. We don’t have general criteria for the existence690

of a non-empty Iσ set ensuring the well-posedness of the problem (39) but we have691

global tendencies given by the692

Lemma 17. The set Iσ defined in (52) is empty if at least one of the following693

condition is fulfilled: σ is large or k is small or |Y | is large.694

Remark 7. In other words, to get a non-empty set Iσ, necessary conditions are:695

σ small enough and k large enough and |Y | small enough. This will be confirmed by696

the forthcoming numerical illustrations697

Note that the condition on the instability parameter σ was expected since the698

velocity profile is expected to be stable for σ small enough.699

Proof. The key point is that Iσ is empty if xσ ≥ x0
c . From (43), xσ is found700

to be an increasing function of σ and tends to infinity when σ →∞. Moreover from701

(49) and (50), we deduce that x0
c(k, Y ) decreases when k decreases or |Y | increases702

and x0
c(k, Y )→ 0 when k → 0 or |Y | → ∞. Therefore xσ ≥ x0

c is necessarily satisfied703

if σ too large or k too small or |Y | too large. �704

3.3.3. Numerical illustrations. Now we illustrate numerically on some ex-705

amples the theoretical derived bounds for the parameters given in lemma 17 for the706

well-posedness of problem (39). In all the tested situations, when Iσ exists it has been707

found as a one-piece interval, of the form Iσ = (xmin, x
σ
c ) ⊂ (xσ, x

0
c), with xmin and708

xσc the two zeros of Pσ. The upper zero xσc < x0
c is the generalization of x0

c in the709

sense: xσc → x0
c when σ → 0. We illustrate now numerically this empirical relation710

Iσ = (xmin, x
σ
c ). In Fig. 2(a) and Fig. 2(b) we explain how we determine xmin and711

xσc and in this aim we represent the variations of Pσ(x) defined in (45) for the flow712

parameters s0 = 0.5, i0 = 0.3, s1 = 0.3, the frequency k = 2 and the admittance713

|Y | = 0.2 with two values of the admittance argument γ. For the argument γ = 0.9714

in Fig. 2(a), we look for zeros of Pσ on (xσ, x
0
c) where the interval boundaries are715

respectively the zeros of Qσ defined in (47) and of R0 defined in (48). Qσ(x) is plotted716

in green and vanishes at xσ = 0.46 represented as a green vertical dashed line. We717

plot also R0(x) in blue which vanishes at x0
c = 0.94 represented as a blue vertical718
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(a) (b)

Fig. 3. xσ ≤ xmin ≤ xσc ≤ x0c for s0 = 0.5, i0 = 0.3, Y = 0.2 ei1.1: (a) versus s1 for k = 2,
(b) versus k for s1 = 0.3

dashed line. Pσ(x) is found to never vanish, leading to an empty Iσ set.719

Fig. 2(b) corresponds to the same parameters but for the argument γ = 1.1. Pσ720

is found to vanish two times and noting xmin = 0.53 and xσc = 0.77 the lower and721

upper zeros of Pσ, represented as red vertical dashed lines, we find Iσ = (xmin, x
σ
c ) as722

a one-piece set.723

Now we extend the numerical illustrations and we consider the influence of the724

flow parameters and of the acoustics parameters. We did not find general laws for725

the existence of non-empty Iσ but we have checked numerically that the general726

tendencies given by lemma 17 are relevant. Let us recall that necessary conditions for727

the existence of a non-empty Iσ are: σ small enough and k large enough and |Y | small728

enough (the influence of γ is not easy to characterize theoretically). We illustrate now729

numerically these tendencies and in the following figures, we characterize the influence730

of the parameters σ, k, |Y | and γ = arg Y .731

Fig. 3(a) studies the influence of the instability parameter σ for the parameters732

of the flow s0 = 0.5, i0 = 0.3 and for k = 2, Y = 0.2 ei1.1. σ defined in (42) is changed733

by varying the flow-shear s1. We plot the four functions xσ ≤ xmin ≤ xσc ≤ x0
c734

versus s1. x0
c is constant from (50) with x0

c = 0.90. There are two conclusions. First735

and as already stated, we find that when Iσ exists, it is a one-piece set of the form736

Iσ = (xmin, x
σ
c ). Then and as expected, it is found that Iσ exists only for σ small737

enough, s1 < 0.45, when the flow is more likely to be stable. The problem (39) has738

been proven to be well-posed if xmin < x < xσc : this defines a “well-posed area” as739

indicated on Fig. 3(a) such that if (s1, x) is chosen in this area, then problem (39) is740

well-posed. We recall that x = sin θ with θ measuring the dissipation.741

For the three coming illustrations, the parameters of the flow are fixed: s0 = 0.5,742

i0 = 0.3 and s1 = 0.3. Fig. 3(b) studies the influence of the frequency k for Y =743

0.2 ei1.1. As expected, Iσ exists only for k large enough, k > 1.54. Fig. 4(a) studies744

the influence of |Y | for k = 2 and γ = 1.1 and as expected, Iσ exists only for |Y | small745

enough, |Y | < 0.23.746

We finish with the influence of the argument γ of the admittance, for which we747

don’t have general tendencies. It is illustrated in Fig. 4(b) for k = 2 and |Y | = 0.2.748

From (42), σ and thus xσ are constant, xσ = 0.46. The set Iσ = (xmin, x
σ
c ) ⊂ (xσ, x

0
c)749

is found to exist only for γ > 0.95.750
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(a) (b)

Fig. 4. xσ ≤ xmin ≤ xσc ≤ x0c for s0 = 0.5, i0 = 0.3, s1 = 0.3, k = 2, (a) versus |Y | for
γ = 1.1, (b) versus γ for |Y | = 0.2

3.3.4. Case without dissipation. As in the uniform flow case, without dissi-751

pation we don’t know how to prove well-posedness of (39) but we can prove that the752

problem is Fredholm. The problem with a shear flow (35) and (36), extended to the753

presence of PMLs is754

(53)

α
∂

∂x

(
α
∂ϕ

∂x
+ ξx

)
+

∂

∂y

(
∂ϕ

∂y
+ ξy

)
− D2

αϕ = f in Ωα,(
Mα

∂

∂x
− ik

)
ξx = −M ′(y)

(
∂ϕ

∂y
+ ξy

)
in Ωα,(

Mα
∂

∂x
− ikθ

)
ξy = M ′(y)α

∂ϕ

∂x
in Ωα,

ik∂ϕ/∂y = Y D2
αϕ on Γα and ∂ϕ/∂y = 0 on Γ0

α,
ϕ = 0 on Σ± and ξ = 0 on Σ−,

755

where Γα, Γ0
α and Σ± are defined in (32). As in the absorbing case, ξ is explicitly756

determined to get a problem depending only on ϕ. ξ ∈ (L2(Ωα))2 is given by an757

expression similar to (37) but extended to the presence of PMLs. As for (37), ξ is758

found proportional to M ′ and thus ||ξ||L2 is bounded by the flow shear s1. This will759

be important in the final estimate of the forthcoming proof.760

The variational form of (53) is the same than in the uniform flow case (33) where761

the sesquilinear form aα(ϕ,ψ) is replaced by:762

ãα(ϕ,ψ) = aα(ϕ,ψ) +

∫
Ωα

1

α
ξ(ϕ) ·∇αψ̄ dxdy.763

764

Lemma 18. For a flow shear s1 small enough, problem (53) is of Fredholm type.765

Proof. We show that ãα(ϕ,ψ) is the sum of a compact part and a coercive part.766

As in the uniform flow case the proof of compactness is classical and coerciveness is767

obtained by proving that ∃C > 0 such that ∀ϕ ∈ U defined in (33):768

(54)

∣∣∣∣bα(ϕ) +

∫
Ωα

1

α
ξ(ϕ) ·∇αϕ̄dxdy

∣∣∣∣ ≥ C
(∫

Ωα

|∇ϕ|2 dxdy +

∫
Γα

∣∣∣∣∂ϕ∂x
∣∣∣∣2 dx

)
.769
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The term bα(ϕ) defined in (34) was already involved in the uniform flow case and770

we already know from the proof of lemma 12 that under the condition −2 arg(α∗) <771

π/2 + arg Y , ∃C0 > 0 such that ∀ϕ ∈ U :772

|bα(ϕ)| ≥ C0

(∫
Ωα

|∇ϕ|2 dxdy +

∫
Γα

∣∣∣∣∂ϕ∂x
∣∣∣∣2 dx

)
.773

Therefore we just need to find an upper bound for
∣∣∣∫Ωα(1/α) ξ(ϕ) ·∇αϕ̄dxdy

∣∣∣. From774

the explicit expression of ξ(ϕ) is deduced a constant Cα > 0 (depending on the775

geometry and on the flow parameters) such that776 ∣∣∣∣∫
Ωα

(
ξx
∂ϕ

∂x
+ ξy

1

α

∂ϕ

∂y

)
dxdy

∣∣∣∣ ≤ Cα ∫
Ωα

|∇ϕ|2 dxdy,777

and finally is deduced C = C0 − Cα in (54). Coerciveness is obtained when C > 0.778

As in (38), Cα is proportional to the shear s1 and thus Cα is small when s1 is small.779

Therefore the problem is Fredholm for a flow shear s1 small enough: this condition of780

σ small was already involved when considering the problem without PMLs but with781

dissipation. �782

4. Conclusion. Thanks to variational methods, we have studied the well-posed-783

ness of the time-harmonic radiation in a waveguide with a Myers absorbing boundary784

condition on a boundary. The main tendencies are the followings. Without flow, the785

radiation problem is always well-posed. In presence of a uniform flow, it is proven786

to be always of Fredholm-type and well-posed as soon as just a little dissipation is787

introduced. For a varying flow, the problem is Fredholm for a shear weak enough and788

the well-posedness requires at least the introduction of enough dissipation, still with789

moderate values of the flow shear.790

To go further, let us mention that in the literature some progresses have been791

made in the time domain to correct the illposedness induced by a uniform flow over792

an impedance lining. Modifications to the Myers boundary condition have been sug-793

gested, by incorporating a thin-but-nonzero thickness boundary layer over the lining,794

leading to various so called modified Myers boundary conditions [34, 37, 38, 39]. These795

boundary conditions remove the illposedness while still retaining the simplicity of a796

uniform flow, with the thin boundary layer being incorporated within the boundary797

condition. Moreover they match well [38] with solutions to the full linearised Euler798

equations [40]. The extensions of the modified Myers boundary conditions to the799

time-harmonic regime and their inclusion in our study would be interesting to in-800

crease the domain of well-posedness of the considered radiation problem, but such801

extensions are not straightforward since these conditions have complicated expression802

preventing them from fitting naturally into a variational formulation, contrary to the803

classical Myers condition.804
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[28] E. Bécache, A.-S. Bonnet-Ben Dhia, and G. Legendre, Perfectly matched layers for time-867
harmonic acoustics in the presence of a uniform flow, SIAM J. Numer. Anal. 44 1191-1217868
(2006).869

[29] C. Hazard and M. Lenoir, Determination of scattering frequencies for an elastic floating body,870
SIAM Journal of Mathematical Analysis 24 1458-1514 (1993).871

[30] A. S. Bonnet-Ben Dhia, J. F. Mercier, E. Redon and S. Poernomo Sari, Non-reflecting boundary872
conditions for acoustic propagation in ducts with acoustic treatment and mean flow, Int.873
J. Numer. Methods Eng., doi: 10.1002/nme.3108, (2011).874

This manuscript is for review purposes only.



26 J-F. MERCIER
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