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VARIATIONAL METHODS FOR ACOUSTIC RADIATION IN A
DUCT WITH A SHEAR FLOW AND AN ABSORBING BOUNDARY

J-F. MERCIER*

Abstract. The well-posedness of the acoustic radiation in a 2D duct in presence of both a shear
flow and an absorbing wall described by the Myers boundary condition is studied thanks to variational
methods. Without flow the problem is found well-posed for any impedance value. The presence of a
flow complicates the results. With a uniform flow the problem is proven to be always of the Fredholm
type but is found well-posed only when considering a dissipative radiation problem. With a general
shear flow, the Fredholm property is recovered for a weak enough shear and the dissipative radiation
problem requires to introduce extra conditions to be well-posed: enough dissipation, a large enough
frequency and non-intuitive conditions on the impedance value.

Key words. Acoustics, time-harmonic radiation, shear flow, impedance boundary condition,
variational methods, Fredholm alternative

AMS subject classifications. 35J20,35J50,35Q35,76N10

1. Introduction. Wave propagation in a steady flow over an acoustically lined
wall has been widely studied due to its applications to noise damping. To reduce fan
and engine noise, an important feature is the inclusion of sections of acoustic lining
at the intake or exhaust of an aeroengine. These acoustic linings are usually made
of a honeycomb of small resonators designed to dampen tonal noise. Alternatively,
bulk linings (e.g. foam or wool-type materials) can be used, with the characteristic
to dampen broadband noise. The first case is called locally reacting liners because it
is characterized by a local impedance defined to relate the acoustic pressure to the
normal acoustic displacement at the liner surface. On the contrary the second kind
of lining is modelled by a non local impedance through Fourier transforms along the
interface air/material.

In this paper we consider the first case characterized by a local impedance and
we focus more particularly on the influence of a flow. The boundary conditions often
used in numerical simulations incorporate both the impedance of the lining and the
effect of the slipping mean flow. Ingard [1] proposed a boundary condition accounting
for the continuity of the acoustic normal displacement at the liner surface, between
the fluid and the acoustic liner and considering the effect of a mean flow parallel to
the surface. Myers [2] extended this result to any arbitrary mean flow along a curved
wall. This Ingard-Myers impedance boundary condition has been extensively used
and has been verified to correctly represent the limit of a vanishingly-thin inviscid
boundary layer over the acoustic lining [3, 4] although the boundary layer needs to
be very thin in some cases to give a good approximation [5].

The Ingard-Myers boundary condition is known to have drawbacks. In time-
domain simulations, there have been several reports on issues of stability when ap-
plying the Myers boundary condition to an acoustically-lined duct with flow [6, 7, 8,
9, 10, 11]. The boundary condition leads to numerical simulations becoming unstable
at the grid scale, even in the uniform flow case. However due to a lack of alternatives,
the Myers boundary condition is still used, with any instability artifacts considered
spurious and filtered out using an artificial selective filter [6, 12, 13, 14, 15].

In this paper we focus on the Myers condition in the time-harmonic regime. It has
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2 J-F. MERCIER

been less studied theoretically because numerical stability issues are in practice less
problematic when the frequency is fixed, and the well-posedness of the time-harmonic
radiation in presence of a Myers condition is still an open question. The aim is to bring
a comprehensive mathematical study of the time-harmonic propagation in a waveguide
with an absorbing boundary and to study the influence of various complexities of
the flow: no flow, uniform flow and shear flow. Our approach is different from the
ones developed in the references already cited because they mostly focus on the time
domain and on the behavior of the guided modes. Indeed, these studies restrict to
a problem without any source which enables them to use a spatial Fourier transform
of the linearized Euler equations. It leads to the Pridmore-Brown equation [16],
whose solutions are the guided modes. When one mode is found unstable, in the
sense exponentially growing in time, the problem is deduced to be ill-posed. On the
contrary in the frequency-domain, other tools must be used. Indeed even if a mode is
found unstable in the sense exponentially spatially growing, the ill-posedness cannot
be deduced since the modes do not form a complete basis [17], even for a uniform
flow. To avoid this procedural problem, in this paper we don’t study the guided modes
individually. To recover a controlled mathematical framework we prefer to consider
a radiation problem due to the presence of a source and to use variational arguments
and coercivity properties to study the well-posedness.

The paper is organized as follows. Section 2 concerns a fluid at rest. The acoustic
radiation problem and the impedance boundary condition are presented. Thanks
to the absorbing boundary, the solution is found of finite energy and thus can be
directly sought in an unbounded waveguide. The problem is shown to be well-posed:
the proof is easy at low frequencies and more involved at larger frequencies. To
conclude in this latter case, we draw inspiration from works on the scattering from
unbounded rough surfaces [18]. The extension to a fluid in motion is done in section
3. First is treated in subsection 3.2 the case of a uniform flow. Thanks to the
introduction of PMLs to select the outgoing solution, the problem is proven to always
be of Fredholm type but to prove well-posedness, a dissipative radiation problem
must be considered. The problem is proven to be well-posed, including for weak
dissipations. Eventually subsection 3.3 deals with the case of a varying flow. Then
the problem is found to remain of Fredholm type for a weak shear and is proven to be
well-posed under some extra constraints: the dissipation must be large enough and
the physical parameters must follow some laws, a small impedance modulus or a high
frequency. These constraints are illustrated numerically.

2. Case of a fluid at rest.

2.1. Geometry and equation. We consider a 2D infinite duct (X,Y) € R x
(0, h) of height h filled with a compressible fluid. The real acoustic pressure P(X,Yt)
satisfies the wave equation

i

82
t2

AP — = F(X,Y,t),

c@w‘ =
QD

where F' is a real source term and ¢ is the sound speed. To use non-dimensional
equations, we introduce z = X/h, y = Y/h and the new unknowns P(z,y,t) =
P(X,Y,t) and F(z,y,t) = F(X,Y,t). The guide is defined by Q = {(z,y) € R x
(0,1)}. We note I'y = {(z,y) € R?,y = 0} the lower boundary that we suppose
rigid. The upper boundary I' = {(x,y) € R%y = 1} is supposed to absorb the
sound and is characterized by a complex impedance Z. For a time harmonic source
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91 term F(x,y,t) = f(z,y)e ™ with a frequency w > 0, we look for the pressure
92 P(x,y,t) = p(z,y)e” ! satisfying the following Helmholtz problem: for f € L?(f2)
93 and k = w/co > 0, find p € H(Q) such that

o) (A+E)p f in Q,
dp/0y = ikYp on T and Op/dy =0 on Ty,

95 where Y = 1/Z is the admittance, that we consider constant with Re(Y) > 0 to
96 produce sound absorption.

97 REMARK 1. The sign of the real part of the admittance is easy to understand when
98 considering the time domain and restricting to a real admittance: in the transient
99 regime, the pressure P(x,y,t) satisfies the time version of (1) (considered without

100 source term but with some initial conditions not precised here):
o @ AP = 0°P/ot*  in Q,
o OP/0y = =YOP/Ot on T and OP/O0y=0 on T\y.

102 Multiplying (2) by OP/0t is easily deduced the energy balance

dE Y aP 2 1 1 8P 2 2
: —_— = - ith B = — —— ] +|VP
103 (3) m @ Jr ( St) dz with 2/ [(Co %) | |

104 It is clear that the energy decreases only if Y > 0.

dzdy.

105 REMARK 2. In [19] is considered a Generalized Impedance Boundary Condition
106 (GIBC) of the form
dp  Op ( dp

107 — ==

Oy Ox Max
108 It corresponds to our case with ;1 = 0 and A = —ikY, thus with Im(\) < 0 for our
109 acoustics applications. On the contrary [19] treats the opposite case Sm(\) > 0 (with
110 the same e~ ™t convention), well-adapted to electromagnetism applications [20]. Note
111 that our case is less favorable to prove the coercivity of the radiation problem.

)-i-/\p:O.

112 For the rest of the paper we consider the time-harmonic regime. Due to the
113 absorption and to the energy balance (3), the pressure decays away from the source
114 and looking for a solution of finite energy, thus being in H*(£2), we will prove that the
115 radiation problem is well-posed, first for low frequencies and then for all frequencies.
116 To do so, we will use the Lax-Milgram theorem. We first notice that the problem (1)
117 is equivalent to the following variational formulation: find p € H'(Q) such that

118 (4) a(k;p7 q) = (fu q)LZ(Q) Vq € HI(Q)7

119 where we have introduced the sesquilinear form for all p,q € H*(Q)

120 (5) a(k;p,q) = / (Vp -Vq-— kaq) dxdy — ikY / pgdz.
Q r
121 2.2. Well-posedness at low frequencies. To prove the coercivity of a(k; p, q),
122 we start with a Poincaré-like inequality.
123 LEMMA 1. For allp € HY(Q) and all A > 0,
1 1 ap|®
124 (6) Ip|> dedy < (14 /\)/ pPdy+=(1+< / = dzdy.
Q r 2 A) Ja |0y
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4 J-F. MERCIER

Proof. For all p € C>(Q) N H(Q) and for all y € [0, 1] we have

@(x,t) dt.

1
bl < ot )]+ [ |2

We use Young’s inequality: for all A > 0,

[p(e, )2 < (14 X) lpla, D + (1 ; i) ( / 1 g§<x,t)’ dt)

Then thanks to Cauchy-Schwarz inequality, the final result is obtained by integrating

2

on 2 and is extended to p € H*(f2) by density. O
Now we prove the well-posedness at low frequencies:
LEMMA 2. If
V1I+H2lY]2 -1
(7) k< —pi—,
Y]

then problem (4) is well-posed.

Proof. We use the Lax-Milgram theorem. a(k;-,-) is continuous on H'(£2) x
H'(Q) because

la(k: p,q)| < / (IVplIVa| + ¥[pllal) dedy + kY] / ipllalda.
Q I

We conclude thanks to the continuity of the trace application: 3C%. > 0 such that
Vp € HY(Q), lIpll 2y < Cor [Pl g1 (-

Now we prove that a(k;-,-) is coercive on H'(€). Let us note iY = |Y]e%
where ¢ = arg(Y) + n/2 €]0, x], since feY > 0. We introduce the decomposition
a(k;p,p) = a(p) — €“B(p), where we have introduced the forms:

a(p) =/Q (IVp\2 —k2|p|2) dazdy and B(p) =kIY|/F|pl2dx-

The lower bound: |a — B = e /2 (a — eB)| > |Sm(e” 2a — /28)] >
—Sm(e " 2a — €“/?3) = sin (¢/2) (a + B), leads to the estimation:

altipp)| = sin (5 ) [ [ (199 = K2 docy + 11 [ 9 as].
Q r
Note that sin (¢/2) # 0 because Re(Y) > 0. Using (6) leads to

REVEENE {[1—’f<1+§)] [ 1op dzay+ kv - k)] [ p|2dx}.|

To recover the H'-norm on the right-hand side, we use again (6) leading to

1 1
ey < ) [l ans g (34 5) [ 1902 dsa.
r Q

This leads to the lower bound
2
OV L= ) kY- k()
b )| sin ( § ) win ,
2 ;3+%) (1+X)

Therefore a is coercive if ) is chosen such that [(2/k?) —1]7! < X\ < (|Y|/k) — 1. This
is possible if k is such that |Y|k% + 2k — 2|Y| < 0, and also if k? < 2, ensuring that
A > 0. Since k > 0, both conditions are fulfilled if (7) applies. O

2
HpHHl(Q) :
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156 2.3. Well-posedness at all frequencies. The previous result can not be easily
157 extended to large frequencies. However it remains true and we have the following
158 THEOREM 3. For all k > 0, the problem (4) is well-posed.

159 To prove this theorem, we follow the procedure in [18], indicating that we just

160 have to find an a-priori estimate for a solution of (4). It corresponds to prove that
161 exists C' > 0 such that for all p € H}(Q) and f € L*(Q) satisfying (4), it holds that

162 (8) Pl 1) < C Al L2 -

163 Then as in [18], we invoke Lemmas 4.4 and 4.5 in [21], which show that the a-priori
164 estimate implies an inf-sup condition for the sesquilinear form a(k; p, q) and also the
165 transposed inf-sup condition. Then [[22], Theorem 2.15] yields existence, uniqueness,
166 and boundedness of a solution of (4).

167 We now focus on establishing the a priori bound (8), which is a rather technical
168 task. First we prove the following lemmas:

169 LEMMA 4. If p € HY(Q) is solution of the variational problem (4) then
0 19l — K sy < (1 ISmO/RE)) 1]l oy 2] 12
171 and

172 (10) KRe(Y) P72y < I1F ]l 22y 1Pl 2y

173 Proof. From (4) and (5) written for ¢ = p is found

i alkipr) = [ (196 = P dedy—k (Re(V) = Sm(v)] [ o do = = (£0)sxo) |

175 The real and imaginary parts read
BRe(v) [ pfds = Im ()

176

/Q (1V9 = K21pl?) dady + kSm(Y) f pPde = ~Re(f.p)paq) .

r
177 which gives the two inequalities. O
178 To go further, we need first to prove that p € H?(Q).
179 LEMMA 5. If p € HY(Q) is solution of the variational problem (4) then p €
180 H2(Q).
181 Proof. p € H!(Q) satisfies (1) which can be written
L —Ap+p = g in Q with g=—f+ (k2 +1)p,
Op/0y = ikYp on T and 9p/dy =0 on Ty.

183  The key point is to use the Fourier transform p(€,y) of p(x,y) and a convenient
184 definition of the H?-norm. In [23] is indicated that H?(f2) can be equipped with the
185 following norm

s (1) Pl @) = / (156 Y 0,1) + € 1BCE Moy )
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6 J-F. MERCIER

equivalent to the usual norm in H?(f). Taking the Fourier transform along the x
axis, p(€,y), noted for simplicity ¢(y) since £ is just a parameter, is found to satisfy

~do/dy +(1+ )¢ = h in (0,1),
dp/dy = ikYp at y=1 and dp/dy=0 at y =0,

where h(y) = §(&,y). Deriving the corresponding variational form and choosing the
test field ¥ = ¢, we deduce

ldio/dyl| 20,1y + (14 E)lelF20.0) — iKY [V = (B, @) £2(0,1)-

Proceeding as in the proof of lemma 2, we get the coercivity of the left-hand side
leading to

sin (¢/2) (lde/dy| 30,1y + (1 + €6l a0, + FIY (D) < 1(h9) 20,1 -

Therefore by the Lax-Milgram theorem we have that for all £ € R, p(§,:) = ¢(:) €
H'(0,1) exists and is unique and we derive also two upper bounds:

sin (¢/2) (14 &)llellz20.1) < 1Allz2(0,1)
that we note
(12) (1T+ & ellr20,1) < Cllhllr20,1),

where C designs a generic constant (same convention in the following). The other
upper bound is

. 2
sin (¢/2) (lde/dy|320,0) + I913200,1)) < IAllz20,llelz2(0,1)1

from which we deduce a control of the H'-norm of ¢: [|¢[lg1(0,1) < C||hl|L2(0,1)- To
go further and to control the L?-norm of d?p/dy?, we come back to the equation
satisfied by ¢ from which is deduced

Hd2<p/dy2HL2(071) <@ +&)ellzon) + IhllL201) < ClikllL20,1),

where (12) has been used. Therefore we deduce the control of the H2-norm

2
||80||§{2(0,1) = HdQ‘P/d?JQHB(OJ) + ||‘P||%11(0,1) < C”h”%2(0,1)~
Finally to prove that p € H?(Q), we just need to show that
1B M 20,1y + EMNDE 2001y < CIE 2(0,1):
from which (11) leads, with Plancherel relation, to
Ipll7r2 0y < CllglZ2(a)-
This is achieved by noting that
lellz20,1) + Ellellz20,1) < lellm2(0,1) + L+ ED@llz20,1) < Cllhllz2(0,1):
from which is deduced
2
lellEe00) + € 1el7200) < (lellaz0,1) + ElleliL20,1))” < ClIAIZ 20,15

with o(y) = p(& y), h(y) = 9(&,y).- O
Now we prove the following technical lemma:

This manuscript is for review purposes only.
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220 LEMMA 6. If p € HY(Q) is solution of the variational problem (4) then
ap|* [Sm(Y)] k 2
221 (13 2| = <(1 1+|Y 2 .
09 2 (1 e+ Y +2) Wl I
222 Proof. We follow closely the approach in [18], using in particular some Green’s

223 like identity [[24], Theorem 4.4, Theorem 3.34]. For any p € H?(2), using two times
224 the Green formula, one gets:
(14)
. 2 2 2 2
225 2Re (yIp/ Oy, Ap) 12 (q) = =200/ 0yl 12 () + IV DIl L2 (0) T2 100/ Oyl L2 0y = 1V Il L2 1) -

226 On the other side, p € H'(Q) solution of the variational problem (4) belongs to H?({2)
227 thanks to lemma 5 and satisfies (1)

s (A+k)p = f  in Q
- Op/dy = ikYp on T and 9p/0y =0 on Ty.

220  Multiplying f by ydp/0y is obtained
20 2Re (yOp/0y, AP) ) = K 1Pl = K P72y + 2Re (¥0p/0y, 1120 »
231 while (14) becomes for the solution of problem (4):

252 2Re (ydp/ Dy, Ap) 120y = =210/ y|72(0) HI VPl T2 ) R Y 1 10112 0y = 109/ 0|72 1y ]

233 Combining these two equalities together gives:

234 2 ||3p/3y||2L2(Q) = ||VP||2L2(Q) —k? ||p||2L2(Q) + T — 2Re (yop/0y, f) 20 »
235 where ) , )
236 T =kY[? 1PN z2ry — [10P/ 02721y + k? 1Pl 72y -
237 Using (10) we get an upper bound for T'
238 T < [k/Re(W)A+ Y P) £l 2y 1P] 220 »
239 and combined with (9), it gives (13). O
240 Now we can prove the required a priori estimation (8) from which theorem 3 is
241  directly deduced:
242 LEMMA 7. If p € HY(Q) is solution of the variational problem (4) then (8) holds
243 with
2 1 |Sm(Y)] k |Sm(Y)]

214 C = (1+k? (1 1+ Y]*) +2 el

(1+K) [kﬂRe(Y) T3 ( T Re) TRy LY A2+ 1T
245 Proof. We start from (6) with A = 1. Using (10) combined with (13) leads to

2> 1/ lsm(Y) K
246 22 < — 2 2 1 .
6 19l < | gy + 5 (0 g * e+ VD +2) | Wl oo

247 Then with the control of ||Vp||2Lz(Q) with (9), we get

248 ||P||?{1(Q) < (1+k?) ||p||iz(9)+(1 +[Sm(Y)|/Re(Y)) ||fHL2(Q) ||pHL2(Q) <C ||fHL2(Q) ”pHHl(Q) I
249 O
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3. The case of a fluid in motion. Now we extend the previous study by
adding a motion of the fluid. Restricting to a bounded domain, we will prove that
the radiation problem is always of Fredholm type, for no shear or at most for a weak
shear (see paragraphs 3.2.5 and 3.3.4) but to prove the well-posedness in an unbounded
guide, a main difference with the no-flow case is that we need to introduce some extra
dissipation (limiting absorption principle). We consider in the duct € an horizontal
subsonic shear flow of velocity U(y)e, with |U| < ¢y, which in non-dimensional form
becomes M (y)e, with M(y) = U(y)/co the Mach number. The acoustics equations
are more complicated than in the no-flow case and are detailed now.

3.1. Impedance boundary condition in presence of a flow. In the flow
case, the impedance boundary condition reads

duy /0t =Ycopaty =1,

where u is the acoustic displacement linked to the velocity by v = Dyu with the
convective derivative

(15) Dy = (1/¢p)0/0t + M /0.

Without flow the condition expressed versus the velocity and the pressure is simply
vy = ¢oY'p but in presence of a uniform flow it becomes Ov, /0t = Y¢oDyp at y = 1.
In the time-harmonic regime it reads

Uy = (ZY/]{;)ka,
where Dy, is the convective operator
(16) Dy, = M(y)0/0x — ik.

Note that in the no flow case, Dy reduces to —ik and since the Linearized Euler
Equations give Vp = ikv, we recover the no-flow condition in Eq. (1).

For a fluid in motion, the difficulty of the study is weaker when the Mach number
is constant. Therefore we present first the case of a uniform flow and then we consider
the most difficult case of a varying flow.

3.2. Uniform flow case.

3.2.1. Equations of the problem. We consider a uniform flow M =cst# 0.
Then the Linearized Euler Equations read

(17)

Dyv+Vp = 0,
Dip+dive = f,

with Dy, defined in (16). The first relation of (17) implies that curl (Dyv + Vp) =0
where has been used the scalar curl operator defined by curl v = d,vy — dyv,. Thus
it implies that exists a velocity potential ¢ such that v = V¢ with p = —Dyp.
Indeed the solution of Dy(curl v) = 0 is curl v = A(y)exp (¢kx/M) and the only
causal solution (curl v = 0 when  — —00) is curl v = 0. Expressing the impedance
boundary condition versus the velocity potential leads to the new equations replacing

(1):

ikdp/0y = YDip on T and d¢/dy=0 on Ty.

This manuscript is for review purposes only.
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288 For a fluid at rest M = 0, since p = iky we recover (1). Note that even when M # 0,
289 the equations (18) can be expressed versus the pressure (in fact, since the admittance
290 Y is constant, p satisfies the same equations). But it will no longer be the case when
291 M is not constant. Since the velocity potential will be a natural unknown in the shear
292 case, we prefer to formulate the problem with the velocity potential in the uniform
293 flow case.

294 We keep on considering Re(Y') > 0 although contrary to the case of a fluid at rest,
295 we don’t know how to establish an energy balance for the problem (18) as explained
296 in the two following remarks.

297 REMARK 3. The transient version of (18), without any source term and restricted
298 to a real admittance is:

2
AP — lg—i—Mg d=0 in Q,

200 co Ot ox ,

1 0%® 10 0 0P
—_—— = ——+M—) @ I' and — =0 I
co Oyot (co ot + 5$> om s oan Oy oo

0 with ®(x,y,t) = o(z,y)e” . Multiplying the volume equation by 0®/0t, we did not
)1 succeed in deriving an energy balance. This is due to the term 82®/0ydt which does
)2 not appear naturally when applying the Green formula. In fact we suspect that it is
)3 not possible to establish an energy balance because in the following we will be able to
4 prove the well-posedness of the time-harmonic problem only when introducing some
)5 extra dissipation.

306 REMARK 4. Eliminating all the unknowns to work with the velocity only, it is
307 possible to derive an equality close to an energy balance. We start from (17) without
308 any source term and expressed in the time domain:

200 Diw+Vp=0 and Dip+dive =0 in Q,
o Ovy /0t =Y coDip on T' and v, =0 on Ty,

310 with Dy defined in (15). Eliminating the pressure leads to

- D?v — Vdivo 0 mn £,
‘ Ovy /ot = —Yc¢odive on T and vy =0 on T.

312 Multiplying by Ov/0t is easilly deduced the equation

1 1 2 2
313 dd—f = —Yco/r(divv)Q dz with E = 5/9 [(q}gj) — <MZZ) +(divv)2] dg:dy.l

314 Thus E decreases only if Y > 0 and as in the no flow case, we recover that an
315 admittance with a positive real part corresponds to an absorbing boundary condition.
316 Unfortunately the sign of E is not known as soon as M # 0, which prevents from
317 assuring that it is an energy.

318 The consequence of these remarks is that we are not allowed to look for a solution
319 of problem (18) in H(Q). In fact we think that such solution doesn’t exist, only a
320 solution in H}_ (€2) should exist. To characterized this solution, we introduce some
321 extra dissipation, as detailed now.
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10 J-F. MERCIER

3.2.2. The dissipative problem. We consider a dissipative radiation problem
by extending the frequency k to the upper complex plane. Indeed, to define uniquely
the good physical solution of a radiation problem, a usual approach (see [25] for
instance) is to use the limiting absorption principle [26]: the frequency k is extended
to the complex plane by k + ie with € > 0, which defines the so-called dissipative
problem. Then the physical solution is defined as the limit, as € goes to 0, of the
unique H'solution of the dissipative problem. In [27] is given an interpretation of
the limiting absorption principle: it is shown that to extend the frequency to the
complex plane in the Helmholtz equation corresponds to add a slight dissipation in
the medium in the wave equation (for the problem in time). To apply the limiting
absorption principle, we use the following transformation to extend the frequency to
the complex plane with Sm(k) > 0

(19) k—ko=ke", with 0<6<m/2,

more convenient than the usual transformation k& — k + ie. In the following we will
determine how 6 must be chosen to get well-posedness.
The variational formulation of (18) for k = ky is to find ¢ € V such that Vi € V

(20) arr(ko; 0, 9) = = (f,¥) 1200 »
where the sesquilinear form reads
_ o o _
alhoiow) = [ (Vo Vi (MGE ko) (M + ikt ) | dady,
1) Y 9 9%
o [ (MEE —ikgp ) ( MEE +iket) ) da.
ikg Jr Ox oz

The boundary term on I' implies that H'(Q) is no longer the good framework and we
must choose the Hilbert space

(22) V={peH(Q),0p/0x € L*I)},

equipped with the norm |||} = |Vl + [[@ll, + 100/ 0z}

3.2.3. Well-posedness conditions. As in the no flow case, to prove the well-
posedness of the problem (20) we will use the Lax-Milgram theorem. In this aim it is
sufficient to show that 3C' > 0 such that Yy € V,

lan (kos @, 0)| > Cllgll3 -

To simplify the notations, we introduce the admittance argument —7/2 < v < /2
(let us recall that fe(Y") > 0) such that

(23) Y = [Y]e".

THEOREM 8. For all Mach number 0 < M < 1 and for all admittance Y = |Y |e?
defined in (23), a critical angle 0 < 0. < 0,,., = (2y+m7)/4 exists such that the problem

(20) s well posed for all dissipations associated to an angle 0 < 0 < 0. where 0 is
defined in (19) and 6. is defined in (31).
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57 REMARK 5. Since the lower bound for 6 is zero, the dissipation is allowed to
58  take very small values. It will not be the case when M' # 0 for which we will get
359 60 >0,,.,>0.

360 To prove latter this theorem, we introduce

2 2 2 2 2
561 Ap(p) = a |0/ 0zl g+b 00 /0y |+ llellg+d |0/ |7+2e Sm (0, 00/ 0x) o+ f el M
362 with the parameters defined by

a=(1— M?)sin()/k, b = sin(0)/k, ¢ = ksin(6),

363 (24) d=|Y|M?cos(y — 20)/k?, e=|Y|Mcos(y—0)/k, f=]|Y]|cos(7).

364 The quantity Aps(p) is useful since we have the

365 LEMMA 9. If 3C > 0 such that Vo € V defined in (22),

366 Au(@) 2 € (199l + llellf, + 100/0217)

367 then apr(kg; -, +) is coercive and consequently problem (20) is well posed.

368 Proof. As we will show hereafter, Ay(p) = Sm (aM(kg;ga,cp)/kg). Thus the

369 coercivity comes from
ko; ko; ko;

370 aM( 97()07410) ng aM( 97‘)07()0) and ‘aM(k97<P7§0)|2 ‘kG‘ G’M( 95%0’90) ]
ke kg k@

371 Now we evaluate Im <G,M(k9;g0,(p)//€9). Noting ||l = [|"| p2(qy and [|[[r = Il 21y

372 from (21) we get

i) _ (1= M) [0y
ke ko Ox

2 2

1

1|9
ko

dy

_ dp
“Talleld - 2M Sm <<P> ,
Q & dz /g

YM? ||op|>  YM Ay — o
375 j — —— 2 — Y .
> +e k—ez o 1“+Z s Sm <‘Pa 8x>r+l el
376 Taking the imaginary part, we get Aps(¢). O
377 Now we look for conditions on # under which lemma 9 applies. If M = 0, we

378 get from (24) the simplifications d = 0 = e, a = sin(f)/k = b and thus Ay (p) =
379 a||Vgp||?2 + c||<,0||?2 +f HcpHI% has all its coefficients positive. Therefore Ap(p) >
380 a ||Vg0||52) +c ||<p\|52) and the dissipative radiation problem is well-posed in H'(f2) for
381 all @ > 0 (V # H'(Q) has to be introduced only when M > 0). Note that we have
382 proven in the previous section that it is also true without dissipation ( = 0).

383 Now we focus on the case M > 0 and to go further we need to establish some
384 lower bounds. First we show the

385 LeEMMA 10. For all 4 > 0,
556 (25) lel? < (1 + ) lelld + (1/m) [0/ 0yl3, -
387 Proof. For all ¢ € C>*(Q)N HY(Q), Yy € [0,1],
Lo
= ol D = o) = [ 5 (e ) dt

Y

This manuscript is for review purposes only.



389

390

391

392

393
394

395

396

412

413
414
115
416
417
418

419

420

12 J-F. MERCIER

which is developed in

oD = (o) + 20 ( [ ol G w0 at)

We use Young’s inequality: for all u > 0 and for y = 0 in the integral,

o D < (e, ) + s / o, 9)Pdy + (1/p) / 10/ Oy, ) dy,

The result is obtained by integrating for y between 0 and 1 and then for  on R and
is finally extended to ¢ € H*(2) by density. O
Then we show the

LEMMA 11. For all A >0 and x> 0,

An(p) = a|0p/0x|E, + Crllow/dyli6, + Ca S, + Cs 0w/ dzlIF,
withg=e\—f,C1 =b—(g/n), Ca = c—g(1+u), C3 =d—(e/\) and other constants
defined in (24).

Proof. We use the Young inequality:

YA >0, |2 Sm (¢, 0p/02)1] < Mlellp + (1/A) |[0/0x]},
to deduce:
An(p) > a||p/dzl|3 + b1|0p/dyllg + cllelig + (d — e/X) [|00/0xF — g llollf-

Then using (25) leads to the relation in lemma 11. O
Now we can prove theorem 8 by finding conditions on € under which lemma 9
applies, thanks to lemma 11.
Proof of theorem 8. We want all the coefficients a, C7, Co and C3 in lemma
11 to be strictly positive. First we consider the case C's = 0 thus
_k cos(y—10)

(26) A= Xo(6) 2_ oot —20)"

From lemma 11, A must be strictly positive which implies 26 < v + 7/2 and which
defines the maximum angle

(27) O = (27 +m) /4.

This upper bound for 6 becomes a strong constraint only when v — —n/2. For
A= Ao, g =go =eX — [ is found to be equal to

(28) 90(0) = Y |sin®(6)/ cos(y — 20),

and thus go > 0. To get C; > 0 and Cz > 0 we must satisfy (go/b) < pu < (¢/go) — 1
with g > 0. Thus 0 €]0,0,,4,[ must be chosen such that (go/b) < (¢/go) — 1 and
this is obtained for 0 below a critical value. Indeed (go/b)(go/c) + (go/c) < 1 can be
written as Py(u) < 0 with the polynomial

(29) Po(u) = u® + (u/k) - 1,
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121 where
122 (30) u(0) = go(0)/sin(0) = |Y|sin(f)/ cos(y — 20).

123 Since Py(0) < 0, this is achieved for u < u, where Py(u,.) = 0 with the explicit critical
424 value 2u, = —(1/k) + \/(1/k)? + 4. Finally, 0 € (0,6,...) — u(f) is found to be an
425 increasing function of range (0,00). u < u,. corresponds to § < 6., where the critical
426 angle 6, is defined as the unique solution 6 € (0, 6,,..) of u(f.) = u. which reads more
127 explicitly

|Y|sin(6,) —ou, = 1 N 1

28 1 —_— ™
25 (31) cos(y — 26.) k k2

+ 4.

429  Note that 6. is surprisingly independent of M. Eventually to satisfy lemma 9 we need
430  conditions under which Cj is strictly positive. This is achieved by slightly perturbing
431 the condition under which C3 = 0. We take A. = (e/d) + ¢ for any € > 0. Then Cj
432 becomes Cf such that C§ = ed/[(e/d)+¢] > 0. g becomes g. = e\, — f = go+ec > 0.
133 The conditions C¢ =b— (g /) > 0 and C5 = ¢ — g-(1 + p) > 0 lead to (g:-/b) < u <
131 (¢/ge) — 1, which implies the condition P.(u) < 0 with

N - - 2egqgp ee \’ ee
435 Pe(u) = Po(u) + sin(6)2 + (sin(@)) * ksin(6)

136 Since P.(u) > Po(u), Po(uc(e)) = 0 for ue(e) < ue(0) = u.. Therefore the condition
137 P.(u) < 0 is satisfied for 6 < 0.(¢) < 6.(0), with 6,(0) noted previously 6,. .() can
438  be as close as we want to 6. by taking € small enough which ensures that the problem
439 is well posed for any 6 < 0., as stated in theorem 8.

440 (]

141 3.2.4. Numerical illustration. It is not possible to get 6. more explicitly than
442 the solution of the fixed point equation (31) but we can characterize it numerically.
443 Some dependences of 6. versus several physical parameters are explicit: since u is an
444 increasing function of 6, from (31) is deduced that 0.(k,Y") increases when k increases
445 or |Y| decreases. Moreover . — 0 when k£ — 0 or when |Y| — oco. However the
146 variations of .(7) are not easy to guess and it is why we plot them now numerically.
447 For k = 2, .() solution of (31) is plotted in Fig. 1 for two modulus of the
448 admittance: |Y| = 1.4 and |Y| = 1.6. The maximum of 6. is located at V.. =
449 2aresin(u./|Y|) with wu. defined in (31). For |Y] = 1.4 we get V.. = 1.18 and
450 Oo(Vmax) = 0.59 whereas |Y| = 1.6 leads t0 Y. = 1.02 and thus 0.(Ym..) = 0.51.
151 Moreover the values of 0.(y) at v = £7/2 are expected. When v — —7/2, since 0 <
152 0 < 0,0 with 0,,..(7) = 0 when v — —7/2, naturally 6.(y) — 0. For v — 7/2, we
453 get directly from (31) that 0.(7w/2) = arccos(|Y|/2u.) if |Y]/2u. <1 and 0.(7/2) =0
154 for |Y|/2u. > 1. For |Y| = 1.4 we get |Y|/2u. = 0.90 and 0.(7/2) = 0.46 whereas
455 Y] = 1.6 leads to |Y'|/2u. = 1.03 and thus 6.(7w/2) = 0.

156 3.2.5. Case without dissipation. Without dissipation (6 = 0 and ky = k),
457 we are not able to prove that the problem (20) is well-posed (and we suspect it is
458 not true), as we did in the no-flow case, but we can at least prove that the prob-
459 lem is of Fredholm-type. To do so, we restrict the problem to a bounded domain
460 and we close it with appropriate radiation conditions. The outgoing solution is se-
161 lected thanks to the introduction of PMLs: the problem is set in a bounded domain
162 Qo = Q4 U Q% composed of the central domain Q4 = {(z,9);|z| < d,0 < y < 1}
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M=0.5, k=2
0.6 T T T

IY=14
0.5 1

04t
<03t IY|=1.6
02t

well-posed area

01r

-2 -1.5 -1 -0.5 0 05 1 1.5 2
Y

Fig. 1. For k=2, 0. in (31) versus v = argY for |Y| =14 in blue and |Y| = 1.6 in red

containing the source (for d large enough) and of surrounding absorbing layers Q%
of length L: QF = {(x,y);d < £z < d+ L,0 < y < 1}. The introduction of PMLs
amounts to the transformation of the differential operator 9/0x — «(z)d/0z in
the governing equations of the problem. The complex function « is assumed to be
unity in Q4 and constant and equal to the complex scalar a*, satisfying the following
hypotheses Re(a*) > 0, Im(a*) < 0 to produce absorption (see [28] for a more thor-
ough description and justification). For a source f € L?(Q2), the radiation problem in
presence of PMLs reads

(32)
o[ op\ e o .
ag- (aax>—|—ay2—Da@ = f in Qq,
dp/dy = (Y/ik)Dip on To={(x,1);]z| <d+ L},
dp/dy = 0 on If = {(z,0);]z| <d+ L},
p =0 on X,

where D, = Mad/0x — ik and where the purpose of the Dirichlet condition on
Y1 ={(z,y);tx =d+ L,0 < y < 1} is to select the outgoing solution. This problem
has the equivalent variational form:

Find ¢ € U = {p € HL ,(Q,) with ¢/0z € L*(T,)}
(33) ’

such that aa(p,¥) = — (f/, V)2, forally €U,

where Hy, 4(Q0) = {¢ € H'(Q0), ¢|z, = 0} and where the sesquilinear form a, (¢, )
is defined as:

1 — — - Y 1

| 5 (Vap Vai = Do D) dedy+ 3 [+ (Dag D) do.

Q. @ ik Jr,

where D, = Mad/0x + ik and V, = (ad/0x,0/0y).
LEMMA 12. Problem (33) is of Fredholm type.

Proof. We show that a,(¢,v) is the sum of a compact part and a coercive
part. The proof of compactness is classic (remember that ¢|r, € H'(I',)) and the
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183 coerciveness is obtained by proving that 3C > 0 such that YV € U defined in (33):

4 |ba<so>|zc(/ Vil dady + [ |aso/am|2dx),
Qq T

485 with the non-compact part of as(p,1) defined as

2
Y Oy
—_— 2 R
]dxdy—l— T /Fa M a‘ax

2 2

1
— dx.

(%

O

486 (34)  ba(ep) =/Q [“‘M%‘ %i dy

487 It is true for any value of the admittance as soon as the numerical parameter a* is
488 chosen such that —2arg(a*) < /2 4 argY (remember that arg(a*) < 0). O
489 Note that this condition on the PML parameter a* becomes hard to fulfill in the
490 limit v = argY — —7/2. It is consistent with the results for the dissipative problem
191 set in an unbounded domain of the previous paragraphs: then it was hard to find a
192 good dissipation to get a well-posed problem in the same limit.

493 To go further, we are not able to prove uniqueness of problem (33), which would
194 imply well-posedness from Fredholm alternative. A classic approach to prove unique-
195 mness in a waveguide is to perform a Fourier transform along x and then to use the

496 completeness of the transverse modes of the guide. Here the transverse modes are
497 easy to determine but the associated theoretical framework is not well suited to prove
498 completeness. The difficulty is that the transverse modes satisfy a quadratic and not
199  self-adjoint eigenvalue problem. Completeness is proven only in the no flow case: then
)0 the problem reduces to a linear eigenvalue problem, still not self-adjoint but at least
)1 symmetric. Then we recover the same transverse modes than when studying water
02 waves propagation and, for a fixed k, excepting for a countable sequence of values of
3 Y, the transverse modes have been proven [29, 30] to form a basis of H'/2(0,1).

4 Although we don’t know how to prove it, we postulate that problem (33) is well-
5 posed outside a countable sequence of frequencies tending to infinity. This is typical
6 in acoustic radiation problems [31] and it would explain why the problem (20) is
07 well-posed only for a dissipation 6 > 0, preventing to consider the limit § — 0: it
8 is because the limit would not exist on a set of frequencies (even though this set is
9 small, of zero measure).

510 3.3. Shear flow case. Now we study the general case of a varying flow. The
511 effect of a mean shear flow on the acoustic perturbations has already been studied
512 [32, 33] but with other tools. It has been done in the absence of source, thanks to a
513 Fourier transform of the linearised Euler equations. Then compared to the uniform
514 flow case, the novelty is that among the numerical solutions of the Pridmore-Brown
515 [16] equation, unstable hydrodynamic modes (spatially exponentially growing) can
516 appear [34]. Thanks to our variational approach, we can consider a radiation problem
517 and thus study a realistic solution combining all the Pridmore-Brown modes together.
518 The main novelty compared to the uniform flow case is that it will not be always

519 possible to find a dissipation value for which the acoustic problem is well-posed.
520 This is expected since enough dissipation must be introduced to attenuate a possible
521 unstable mode.

522 3.3.1. Equations of the problem. We consider a shear flow M (y)e, of regu-
523 larity M € C'([0,1]). We suppose also that 0 < M(y) < 1, the case of a vanishing
524 flow leading to specific difficulties hard to handle (M — 0 is a singular limit, see (37)).
525 When M #cst, (18) is not valid and we choose to use the Goldstein equations [35]
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526 because they are convenient since they are a direct extension of (18). The velocity
527 has no longer a potential but reads v = V4§ associated to the pressure p = — Dy, ¢
528  with Dy, = M(y)0/0x — ikg. The acoustic unknown ¢ € V defined in (22) and
520 the hydrodynamic unknown & € W = {¢ € (L*(Q2))?,0¢/0x € (L*(Q2))?} (such that
530 Di,& € (L%())?) satisfy the Goldstein equations: they are made of the following
531 acoustic propagation equation for ¢
div(Vo+€) - D} ¢o=f in Q
532 (35 Op Y Op
(35) a—y—i—{y:%nggﬁ on I' and a—y+§y:0 on Iy,
533 (if & = 0 we recover (18)) coupled to the transport equations for &
534 (36) { Dryée = —M'(y)(0p/0y+§&) in Q
Dié, = M'(y)dp/ox in Q.
535 The transport equations are solved explicitly and we prove the
536 LEMMA 13. The (L?(2))? solution &(¢) of (36) is
M/ x . ) 6
fy(xay) = 37 elkﬁo(l_é)ﬁ(say) d87
. M J_ ox
537 (37) 1T
Gy = [0 e (926 ) () ds
T I y - M e ay Yy I y I

1

538 and satisfies for any T > 0 and any p € H*(Q):
2
_l’_ —
-

2 2
_ 512 51 o
- VE) dady| < (2 l ge
/Q(€ @)xy’_(c) Q+(c)<TH3$Q Q>7
540 where 51 = supyepo.1) |M'(y)| is the mazimum flow shear and ¢ = —Im(ky) = ksin(0)

541 defined in (24).

42 Proof. The (L?(9))? solution & of (36) is obtained thanks to the causal Green

13 function G(z,y) = (H(x)/M) exp (tkgx/M (y)) with H the Heaviside function. Then,

544 since exp(ikgz /M) ¢ L?(£2), the only L? solution is &, (z,y) = G(-,y)x(M'(y) d¢/0z(-,v))}}
545 and using

516 1G(1) 00/0a(, )l 3y < IGC 1) 21x) 199/02(, ) ocay with [1GC,) o2y = L/

517 we get [i [€,(s,y)” ds < |M’/c\2fR |8/0x(s,y)|* ds. Using s, = supyeo,1] 1M’ ()]
548 we finally get

{Ilﬁylg < (s1/0) |99/ 0], ,
el < (51/0)109/0y + &yllq < (s1/¢) |90/ 0yllg + (s1/¢)” |00/ Izl -

550 Eventually we deduce the upper bound

9y
dy

9¢

539 (38) e

/Q(i - VY) dxdy‘ < Nllq 109/ 0xllq + €yl 199/ 0yllg

552 < (s1/0)* |09/ 0x||3, + 2 (s1/¢) [0/ Dz |, |0/ Dyl
553 and thus for any 7 > 0, thanks to the Young inequality:

/Q (& Vo) dmdy] < (51/0) [9/0z]%, + (s1/€) (71100, + (1/7) 0/ 0y, )
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O
Thanks to the resolution of the transport equation, the scattering problem for
the unknown ¢ alone can be derived:

LEMMA 14. The variational formulation of (35) is: find ¢ € V defined in (22)
such that Vi € V

(39) &M(ke’ ®, VI/J) = - (f7 w)LQ (Q) )
with
ing (kos 0,0) = antiy) (kos 0,0) + /Q £(0) - VT dady.

ani(y)(kos -, -) s arr (ko -, -) defined in (21) evaluated for a varying Mach profile M =
M(y) and &E(p) is defined in (37).

3.3.2. Well-posedness conditions. Now we derive conditions under which
(39) is well-posed. The main novelty in the shear case is that 30,,,, > 0 such that the
problem is well-posed only with enough dissipation: for 6,,,, < 6 < 6. (for a uniform
flow, 6,.., = 0). The well-posedness conditions are given in the forthcoming theorem
16 which will be given later since several notations must be introduced before. To
establish this theorem, we proceed as in the uniform case: we introduce

(40)  An(p) = Cy1|0p/dz|[5, + C1 100/ dylls, + Ch ll¢lls, + C% 1|8 /0|3,

and we will show in the proof of lemma 15 that it is a lower bound of Im (&M (ko; @, go)/kg) I
The constants are defined by

1 /51\2 S1\ T g . s1\ 1

Ct=d —=(=) = (=)=, C/=b-—Zwitht =b—(—) —

41 4 ) 1 )

(41) , _ﬁ’(c) (c)k /_/_M/ (c)kT
CQ_C g(l—"_/’b)a Cg_d 6/)\,

for all A\, p, 7 > 0, with b, ¢ and f already defined in (24), with the new parameters

a = (1—s2)sin(0)/k, d =|Y|iZcos(y—20)/k?
¢ =|Y|sgcos(y—0)/k, ¢ =€eX—f,

with the upper and lower bounds of the flow velocity

so= sup [M(y)| and o= inf [M(y)],
y€[0,h] y€[0,h]

and with the shear s; defined in lemma 13. Aj/(p) is introduced because we have the
new lemma similar to lemma 9:

LEMMA 15. If 3C > 0 such that Vo € V,

Aarle) 2 © (IV6lld + el + low/0e1)

then ang(ke;-,+) is coercive and consequently problem (39) is well posed.

Proof. Starting from

Nyl

ox

2 2

1

o ko

dp

Jy

ko

_ 3(10
ko llell?, —2 Sm [ My, ==
- ~Flll m< " 890)9,
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4 Y
1—5
ko

8<p2

x

Y 0 — 1 -
2 3m (Mw, @> +iY |lp|l2 + :/ &(p) - Vodady,
Ox ) 1 ko Jo

M 1—
r ke

proceeding as for lemmas 9 and 11, we get for all A, x > 0 the lower bound

e |0
rlem gl + (¢-5) |52

Note that this is the same inequality than in lemma 11 with two differences: the
constants are now written with a prime since they have been extended from a uniform
flow to a varying flow (M is replaced by ig, so or s1) and the extra hydrodynamic
unknown £ is also involved.

Eventually, using (38) we can eliminate £ and improve the lower bound: for all

2 , 2
(-5
Q K Y |l

2

1
Lk

Oy

ox

Sm

/ @ . V(pdxdy‘ .
Q

7> 0,
. ,
o am(koips @) \ [ < [ L s\ _ sy 7|99
o | (B0 | [ (2= () ] |21
o= Lo (@Y L2 we- v mnien+ (¢ - )| 2]
i c/ kt]||0y]lq g #HI#le X))oz |
with the right hand side noted Aj;(p) in (40). O

Now our aim is to write for a shear flow a theorem similar to theorem 8, providing
the conditions on 6 under which lemma 15 applies. Thus we want all the coefficients
C1, C4, C% and C} in (40) to be strictly positive. Compared to the no-flow case, we
have the extra parameter 7 to adjust. First we choose C} = 0 defined in (41) and
thus we choose

_ ksin?(0) s1 sp (2% 1
r=m0(0) = (1~ ) s ksin(0) _k(02_$)’

where we have noted z = sin(f) €]0, 1] and where we have introduced the new pa-
rameter

S1
k+/1 7587

which will be important in the following. We call it the instability parameter since it
is linked to the possible existence of unstable solutions defined as solutions growing
exponentially in time. More precisely we postulate that a velocity profile M (y) can be
unstable only if ¢ is large enough. It is true if ¢ = 0 since then the velocity is uniform
and thus stable. It is also true for a shear flow with a maximum velocity so fixed:
then in [36] is proven that a compressible velocity profile of fixed maximum velocity
sp can allow the development of instabilities only if the profile has an inflexion point
(as for an incompressible flow) and if s; is above a threshold.
We choose also C% = 0 defined in (41) thus

(42) o=

e’ so cos(y—0)

v =9 _
A== d’ i3 cos(y —26)’
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619 similar to (26), where M is replaced by i3/so. To get A, > 0, we restrict to 0 < 0,
620 already defined in (27). The parameter g{, defined by g = €¢’Aj — f is found to be

sin?(8)

621 90(0) = Y] Cm

+(C=1cos(7) |,

622 with ¢ = (s0/i0)? and is thus found positive. For ( = 1 is recovered go defined in (28)
623 for a uniform flow.

624 Eventually we have to determine conditions under which C7 > 0 and C} > 0.

625 C7 > 0 requires at least o = b — (s1/ckry) > 0. 7 is an increasing function which
626 vanishes at z, such that 23 = 2. For 2, < 2 < 2., with

627 Tnax = SIN (Oay) = sin[(2y + 7) /4],

628  we find

1 1
629 v'(9) = z (az - $3> .

630 b is an increasing function vanishing at z, defined as the unique positive solution of

o
631 (43) . 11 =0

632 and b’ is positive above the threshold z, > x,. Then the remaining conditions to
633 fulfill for x > x, are C7 > 0 and C > 0 and these lead to a condition similar to the
634 one for a uniform flow

/
on 90 ¢
635 (44) ? < p< % — 1,
636 with a positive left-hand side for z, < z (we recall that g must be positive). The
637 existence of p satisfying the condition (44) is equivalent to P, < 0 on (%4, Tpay) With

0.2
635 (45) Py(z) = Po(7)Qo () + g”(m)za

639 where

040 Py(z) = Po—o(x) = Py(v(x)) = v(z)* + v@)

k 9
611 with Py recalled here but already defined in (29) and v defined by

642 (46) U(l‘) = %) = IY‘ CWT—%(LE)) + (C - 1)00;7 )

643 where 6(x) = arcsin(z) and with

s +1
24

644 (47) Qo(x)=1-0

645 The sign of P, has to be determined on & € (Zy,Ty.,). In the uniform flow case
646 (0 =0,¢=1), Py in (45) reduces to Ry defined by

647 (48) Ro(2) = Po(u(x)) = u(x)* + —= — 1,
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where u has been defined in (30) versus 6, that we can also write versus x
(49) u(z) = |Y|x/ cos(y — 20(x)).

Then we found that Rg(x) < 0 for 0 < 20 < ... with 20 the zero of Ry which, from
(31), is also defined as the unique solution in (0, Z,,.,) of

1 [1
(50) 2u(x?) = 2u, = —rtVmE T

For o # 0, as for Ry(z) we still have lim,_,, . P,(x) = oo since v(x) — oo but the
main difference is that although for o = 0, Ry (0) was negative, P, (z,) = v(z,)%0? /2%
is positive as soon as ¢ > 0. Therefore the existence of negative values of P,(x) is no
longer guaranteed when o # 0. Since @, > 0 for = > x, from (47), the existence of x
such that P,(z) < 0 requires at least Py(x) < 0 from (45), thus v(z) < u. defined in
(31). Contrary to the behavior of u,  — v(z) is not an increasing function. Indeed
from (46) is obtained that

G1) o) = Cula) + (¢ - T,
with  — wu(z) an increasing function but  — |Y|cos(y)/z is a decreasing function.
Therefore the solutions of the inequality v(x) < u. are not easy to characterize. The
only easy result is that since u(z) < u, for z < 22 defined in (50) and since v > u
from (51), v(x) < u. implies that z < x0.

Thanks to these notations, we can write the following theorem generalizing the-
orem 8 to a varying flow:

THEOREM 16. For all admittance Y = |Y|e? defined in (23) and all instability
parameter o defined in (42), we define the set I, by

(52) I, ={r € (Ia,xg),Pa(:E) <0},

with x, defined in (43), x° defined in (50) and with the convention I, = 0 if 20 < x,.
If I, is not empty, then the problem (39) is well posed for all dissipation associated
to the angle 0 defined in (19) such that sin(f) € I,,.

REMARK 6. Note that in the uniform flow case, the problem was well-posed as
soon as @ > 0. In the shear flow case, we need to introduce enough dissipation (0 > 0,
with sinb,,, = x5 ) to expect to get the well-posedness of (39).

Note also that the existence of 0., is not a strong constraint since it is easy to
get 0., small: 0, — 0 if o = 0 from (43), thus for a small shear s; and/or k large.
As already mentioned, o — 0 is expected to imply the existence of no instability and
thus no need to introduce a strong dissipation.

Proof of theorem 16.

I, has been defined previously to impose the conditions C§ = 0 = C}. But as
for the uniform case in the proof of theorem 8, we show now that it is easy to get C4
and C strictly positive for a set as close as we want to I,. We take A\ = (¢//d) + ¢
such that C5 > 0 for all ¢ > 0 from (41) and we take 7,, = 7 — 1 such that C} > 0
for any 7 > 0 from (41). The constants C; and C} depend continuously on ¢ and
n. It is straightforward to check that the conditions Cj(e,n) > 0 and Cj(e,n) > 0
lead to a slight perturbation of (44) and thus to a set IS" C I, with I7 — I, when
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sn=0.5, in=ﬂ.3, s1=0.3, k=2, |Y|=0.2, v=0.9 sn=0.5, i°=0.3, s1=0.3, k=2, |Y|=0.2, v=1.1

045 05 055 06 065 07 075 08 08 09
X X

(a) (b)

FIG. 2. Py (z) defined in (45) in red, Qo (x) defined in (47) in green and Ro(z) defined in (48)
in blue for so = 0.5, i9p = 0.3, 51 = 0.3, k=2 and (a): Y =0.2¢99, (b): Y =0.2¢11.

(e,m) — 0. Then the theorem is a consequence of lemma 15 since all the constants in
(40) are strictly positive. O

Let us analyze the theorem 16. We don’t have general criteria for the existence
of a non-empty I, set ensuring the well-posedness of the problem (39) but we have
global tendencies given by the

LEMMA 17. The set I, defined in (52) is empty if at least one of the following
condition is fulfilled: o is large or k is small or |Y| is large.

REMARK 7. In other words, to get a non-empty set I,, necessary conditions are:
o small enough and k large enough and |Y'| small enough. This will be confirmed by
the forthcoming numerical illustrations

Note that the condition on the instability parameter o was expected since the
velocity profile is expected to be stable for ¢ small enough.

Proof. The key point is that I, is empty if z, > 2%. From (43), x, is found
to be an increasing function of ¢ and tends to infinity when ¢ — co. Moreover from
(49) and (50), we deduce that 22(k,Y) decreases when k decreases or |Y| increases
and 20(k,Y) — 0 when k — 0 or |[Y| — oo. Therefore x, > 20 is necessarily satisfied
if o too large or k too small or Y] too large. O

3.3.3. Numerical illustrations. Now we illustrate numerically on some ex-
amples the theoretical derived bounds for the parameters given in lemma 17 for the
well-posedness of problem (39). In all the tested situations, when I, exists it has been
found as a one-piece interval, of the form I, = (7,,,2%) C (z4,22), with z,;, and
x9 the two zeros of P,. The upper zero 27 < x¥ is the generalization of 20 in the
sense: 7 — 20 when o — 0. We illustrate now numerically this empirical relation
Iy = (Zpim, 7). In Fig. 2(a) and Fig. 2(b) we explain how we determine z,,;, and
22 and in this aim we represent the variations of P,(z) defined in (45) for the flow
parameters sg = 0.5, ig = 0.3, s; = 0.3, the frequency k& = 2 and the admittance
Y| = 0.2 with two values of the admittance argument . For the argument v = 0.9
in Fig. 2(a), we look for zeros of P, on (z,,2) where the interval boundaries are
respectively the zeros of Q, defined in (47) and of Ry defined in (48). @, (z) is plotted
in green and vanishes at z, = 0.46 represented as a green vertical dashed line. We
plot also Rg(x) in blue which vanishes at 20 = 0.94 represented as a blue vertical
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5,70.5,i5=0.3, k=2, |Y[=0.2, =1.1

well-posed area

0.9

0.8

0.6

0.5

0.4

0.3

5,70.5,1=0.3, 5,=0.3, |¥|=0.2, =11

0
c

/—fx;

well-posed area

0.2 -

Fic. 3. 2o < @min < 27 < xg for so = 0.5, ip = 0.3, Y = 0.2¢1-1: (a) versus s1 for k = 2,
(b) versus k for s1 = 0.3

dashed line. P, (x) is found to never vanish, leading to an empty I, set.

Fig. 2(b) corresponds to the same parameters but for the argument v = 1.1. P,
is found to vanish two times and noting x,., = 0.53 and x¢ = 0.77 the lower and
upper zeros of P,, represented as red vertical dashed lines, we find I, = (2, 27) as
a one-piece set.

Now we extend the numerical illustrations and we consider the influence of the
flow parameters and of the acoustics parameters. We did not find general laws for
the existence of non-empty I, but we have checked numerically that the general
tendencies given by lemma 17 are relevant. Let us recall that necessary conditions for
the existence of a non-empty I, are: ¢ small enough and k large enough and |Y| small
enough (the influence of ~ is not easy to characterize theoretically). We illustrate now
numerically these tendencies and in the following figures, we characterize the influence
of the parameters o, k, |Y| and v = argY".

Fig. 3(a) studies the influence of the instability parameter o for the parameters
of the flow sg = 0.5, ig = 0.3 and for k = 2, Y = 0.2e11. & defined in (42) is changed
by varying the flow-shear s;. We plot the four functions z, < . < 27 < :cg
versus s1. 20 is constant from (50) with 22 = 0.90. There are two conclusions. First
and as already stated, we find that when I, exists, it is a one-piece set of the form
Iy = (T, x2). Then and as expected, it is found that I, exists only for o small
enough, s; < 0.45, when the flow is more likely to be stable. The problem (39) has
been proven to be well-posed if z,,,, < < z7: this defines a “well-posed area” as
indicated on Fig. 3(a) such that if (s1,«) is chosen in this area, then problem (39) is
well-posed. We recall that x = sin 6 with # measuring the dissipation.

For the three coming illustrations, the parameters of the flow are fixed: sy = 0.5,
io = 0.3 and s; = 0.3. Fig. 3(b) studies the influence of the frequency k for Y =
0.2 et As expected, I, exists only for k large enough, k > 1.54. Fig. 4(a) studies
the influence of |Y'| for k = 2 and v = 1.1 and as expected, I, exists only for |Y| small
enough, Y| < 0.23.

We finish with the influence of the argument ~ of the admittance, for which we
don’t have general tendencies. It is illustrated in Fig. 4(b) for k = 2 and |Y]| = 0.2.
From (42), o and thus z, are constant, z, = 0.46. The set I, = (T, 27) C (24, 20)
is found to exist only for v > 0.95.
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5,=0.5,i)=0.3, 5,=0.3, k=2, y=1.1 $,=0.5,i;=0.3, 5,=0.3, k=2, |Y|=0.2

well-posed area
0.65 well-posed area P

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.9 1 11 12 1.3 1.4 15 16
Y] gl

(a) (b)

Fic. 4. 26 < Tpin < 27 < x(c) for so = 0.5, ip = 0.3, s1 = 0.3, k = 2, (a) versus |Y| for
v =1.1, (b) versus v for |Y| = 0.2

751 3.3.4. Case without dissipation. As in the uniform flow case, without dissi-
752 pation we don’t know how to prove well-posedness of (39) but we can prove that the
753  problem is Fredholm. The problem with a shear flow (35) and (36), extended to the
754 presence of PMLs is
(53)
0 Oy 0 (0p .
g (egere) v 3 (g ve) - Pie=s e
g . O .
» Ma% —ik )& = —M'(y) (ay —|—§y> in Qg,
[Rols} 8 8
Maa—x —iky | & = M’(y)aa—j in Q,
ikdp/0y =Y D2p on T, and 9¢/dy=0 on TY,
p=0on Xy and £€=0 on X_,
756 where Iy, T and X4 are defined in (32). As in the absorbing case, £ is explicitly
757 determined to get a problem depending only on ¢. & € (L?(2,))? is given by an
758 expression similar to (37) but extended to the presence of PMLs. As for (37), £ is
759 found proportional to M’ and thus ||€||z2 is bounded by the flow shear s;. This will
760 be important in the final estimate of the forthcoming proof.
761 The variational form of (53) is the same than in the uniform flow case (33) where
762 the sesquilinear form a, (¢, 1)) is replaced by:
~ 1 _
763 ol ) = aalp ) + [ E(9) - Vaidady.
764
765 LEMMA 18. For a flow shear s; small enough, problem (53) is of Fredholm type.
766 Proof. We show that a. (¢, %) is the sum of a compact part and a coercive part.

767 As in the uniform flow case the proof of compactness is classical and coerciveness is
768 obtained by proving that 3C > 0 such that Vo € U defined in (33):
2
dx) .

769 (54)

1 )
ba(so)+/ §(<P)‘Vag5dxdy’ >C </ |Vgp|2dxdy+/ '“0
Qq «a Qa Ta 61‘
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The term b, (p) defined in (34) was already involved in the uniform flow case and
we already know from the proof of lemma 12 that under the condition —2 arg(a*) <
7/2+argY, 3C° > 0 such that Vo € U:

2

dx) .

o
Iba(¢)|>00</ IVsDIdevdwa/ ’a@
Qo r, | 0T

fﬂa(l/a) &(p) - Va@ dxdy‘. From

the explicit expression of &(p) is deduced a constant C, > 0 (depending on the
geometry and on the flow parameters) such that

/ (fz% + @16@) dmdy‘ < ca/ Vil dady,
Qa 83} Qa

Therefore we just need to find an upper bound for

a Jy

and finally is deduced C = C° — C,, in (54). Coerciveness is obtained when C' > 0.
As in (38), C, is proportional to the shear s; and thus C,, is small when s is small.
Therefore the problem is Fredholm for a flow shear s; small enough: this condition of
o small was already involved when considering the problem without PMLs but with
dissipation. O

4. Conclusion. Thanks to variational methods, we have studied the well-posed-
ness of the time-harmonic radiation in a waveguide with a Myers absorbing boundary
condition on a boundary. The main tendencies are the followings. Without flow, the
radiation problem is always well-posed. In presence of a uniform flow, it is proven
to be always of Fredholm-type and well-posed as soon as just a little dissipation is
introduced. For a varying flow, the problem is Fredholm for a shear weak enough and
the well-posedness requires at least the introduction of enough dissipation, still with
moderate values of the flow shear.

To go further, let us mention that in the literature some progresses have been
made in the time domain to correct the illposedness induced by a uniform flow over
an impedance lining. Modifications to the Myers boundary condition have been sug-
gested, by incorporating a thin-but-nonzero thickness boundary layer over the lining,
leading to various so called modified Myers boundary conditions [34, 37, 38, 39]. These
boundary conditions remove the illposedness while still retaining the simplicity of a
uniform flow, with the thin boundary layer being incorporated within the boundary
condition. Moreover they match well [38] with solutions to the full linearised Euler
equations [40]. The extensions of the modified Myers boundary conditions to the
time-harmonic regime and their inclusion in our study would be interesting to in-
crease the domain of well-posedness of the considered radiation problem, but such
extensions are not straightforward since these conditions have complicated expression
preventing them from fitting naturally into a variational formulation, contrary to the
classical Myers condition.
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