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Abstract 

Background: Phenomic prediction has been defined as an alternative to genomic prediction by using spectra 
instead of molecular markers. A reflectance spectrum provides information on the biochemical composition within a 
tissue, itself being under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture 
genetic signal. This new methodology has been mainly applied in several annual crop species but little is known so far 
about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits, 
mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine, 
using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits, related 
to berry composition, phenology, morphological and vigour. A major novelty of this study was to collect spectra and 
phenotypes several years apart from each other. First, we characterized the genetic signal in spectra and under which 
condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability.

Results: For the first time, we showed that the similarity between spectra and genomic relationship matrices was 
stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and 
half-diallel populations, respectively. Applying a mixed model on spectra data increased phenomic predictive ability, 
while using spectra collected on wood or leaves from one year or another had less impact. Differences between 
populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diver-
sity panel and 0.35 for the half-diallel. For both populations, a significant positive correlation was found across traits 
between predictive ability of genomic and phenomic predictions.

Conclusion: NIRS is a new low-cost alternative to genotyping for predicting complex traits in perennial species such 
as grapevine. Having spectra and phenotypes from different years allowed us to exclude genotype-by-environment 
interactions and confirms that phenomic prediction can rely only on genetics.
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Background
Viticulture has to face two major threats in the next dec-
ades, diseases and climate change, which impact both 
yield and wine quality. Plant breeding could help mitigat-
ing these impacts by mobilizing grapevine genetic diver-
sity [21]. However, grapevine breeding is slow because 

Open Access

Plant Methods

*Correspondence:  vincent.segura@inrae.fr

1 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro 
Montpellier, Montpellier 34398, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-022-00940-9&domain=pdf


Page 2 of 13Brault et al. Plant Methods          (2022) 18:108 

of the long juvenile period and cumbersomeness of 
field trials. Indeed, phenotyping requires 6 to 7 years in 
grapevine, and breeding cycles traditionnally last at least 
15 years. Genomic prediction (GP), first proposed by 
Bernardo et al.  [2] and Meuwissen et al. [18] is a prom-
ising tool to speed up breeding programs and increase 
selection accuracy, by using genomic information to 
predict breeding values of candidates to selection. Even 
though genotyping costs have decreased drastically dur-
ing the last decades, they can still be prohibitive when 
hundreds of selection candidates have to be genotyped. 
That is why Rincent et al. [24] proposed to switch from 
genomic markers to near-infrared spectra (NIRS) meas-
ured on plant tissues, in a new concept called phenomic 
prediction (PP). The relationship matrix based on NIRS 
is indeed expected to share similarities with the genomic 
relationship matrix, because a reflectance spectrum is 
determined by the biochemical composition of the ana-
lyzed sample (Beer-Lambert law), which in turn is deter-
mined by genetic and environmental factors. As PP uses 
endophenotypes such as NIRS, it may better account for 
non-additive genetic effects. In addition, besides being 
cheaper, NIR measurements are high-throughput, which 
is required for screening the large populations typically 
evaluated in breeding programs. One step further, Rob-
ert et al. [26] proposed a definition of genomic-like omics 
based (GLOB) prediction, which encompasses both phe-
nomic and other omics-based prediction as in  Schrag 
et  al. [28]. GLOB is a particular configuration where 
NIRS (or other omics) used for model training and pre-
diction come from different environments.

Rincent et al. [24] found that phenomic predictive abil-
ity could be higher than genomic predictive ability with 
wheat grain NIRS and equivalent predictive ability (PA) 
with poplar wood NIRS for some traits. In wheat, when 
predicting across environments, PP was still more accu-
rate than GP for most traits.

Other studies, such as Lane et al. [16] in maize reported 
PA for PP, but in this study, GP was not implemented for 
comparison. Krause et  al.  [15] applied PP in wheat in a 
single environment with hyperspectral imaging from dif-
ferent phenological stages, they found higher PA with PP 
than with GP for most time-points studied. Indeed, this 
might be explained thanks to genotype-by-environment 
( G × E ) interactions, because NIRS on training set (TS) 
and validation set (VS) were measured in a single envi-
ronment, and spectra and traits were collected the same 
years. Several studies also reported an increase in PA 
when combining genomic and phenomic matrices in a 
single prediction model [6, 12]. Nevertheless, PP is still 
in its infancy, as it has been mostly applied to cereals with 
grain and leaves as tissues. Many issues remain, in par-
ticular which could be the best way to implement PP in 

breeding programs. In the case of perennial species, such 
as grapevine, year effect is known to strongly affect phe-
notype, and how behaves PP in this context remains to be 
studied. Also, in the case of woody perennial, wood mat-
ter offers another kind of material for collecting spectra 
which could be complementary to leaves.  Rincent et  al. 
[24] found in wheat that combining NIRS collected on 
leaves and grains could enhance the PA for some cases. 
More work is thus required to devise a strategy for imple-
menting PP in breeding programs.

In grapevine, GS has been already implemented and 
gave promising results on different populations [3, 4, 9, 
10]. However, so far to our knowledge only one study has 
evaluated PP in woody perennials (in poplar [24]) and 
consequently none on grapevine.

The aim of this study was to understand under which 
configuration PP could be implemented in grapevine 
breeding programs. For that, we used spectra and phe-
notypes collected different years appart, in order to 
minimize G × E interaction effects, which are typically 
captured by spectra. It allows us to disconnect phenomic 
prediction from G × E . We first provided a thorough 
characterization of the genetic signal in spectra. Spe-
cifically, we performed a co-inertia analysis [7] to assess 
the covariation between genotyping and NIRS matri-
ces. This methodology was already used in ecology and 
multi-omics studies but has never been applied in this 
context [17, 19]. It consists in maximizing the covariance 
between eigenvectors of matrices. By using co-inertia 
analysis, we wanted to assess to what extent spectra pro-
vide similar information as molecular markers, in terms 
of genetic relationship.

Then, we compared multiple configurations for per-
forming PP, such as using raw NIRS vs. derived BLUPs 
over a single or two years and over a single or two tissues. 
Finally, three distinct questions were answered: what is 
the best configuration for performing PP? How do phe-
nomic PA performs compared to genomic PA? Can add-
ing NIRS to genotypic data increase PA?

Material and methods
Plant material
Our plant material is composed of a diversity panel 
reflecting the whole genetic diversity of Vitis vinifera [22] 
and a half-diallel [29], more similar to the populations 
used in breeding programs.

The diversity panel is composed of 279 varieties, with 
an equal proportion of individuals from each of the three 
gene pools: Wine West (WW), Wine East (WE) and Table 
East (TE) [22]. This panel was overgrafted on Marselan 
in 2009, itself grafted on Fercal. Field location is in the 
Domaine du Chapitre experimental vineyard of Institut 
Agro | Montpellier SupAgro in Villeneuve-lès-Maguelone 
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(South of France). The panel is replicated in five rand-
omized complete blocks, each variety being represented 
by one plot of a single vine in each block.

The half-diallel is composed of 676 individuals from 
ten bi-parental populations (hereafter named crosses) in 
a half-diallel mating design between five parents: Syrah 
(S), Grenache (G), Cabernet-Sauvignon (CS), Terret 
Noir (TN) and Pinot Noir (PN) [29]. All of them, except 
Grenache, belong to the WW gene pool [4]. Each cross 
comprises between 64 and 70 offspring. This population 
was planted in 2005 and grafted on Richter 110. Field 
location is the same experimental vineyard, a few kilom-
eters away from the diversity panel field trial. The half-
diallel is replicated in two randomized complete blocks, 
each offspring being represented by one plot of two con-
secutives vines in each block.

Phenotyping
We studied the same 15 traits in both trials (diversity 
panel and half-diallel). Phenotypic data were collected in 
2011 and 2012 for the diversity panel and between 2013 
and 2017 for the half-diallel. Traits were related to (i) 
berry composition at harvest, with malic acid (mal.ripe), 
tartaric acid (tar.ripe), shikimic acid (shik.ripe) concen-
trations, and shikimic to tartaric acid (shiktar.ripe) and 
malic to tartaric acid (maltar.ripe) ratios, (ii) berry and 
cluster morphological traits, with mean berry weight 
(mbw), mean cluster weight (mcw), mean cluster length 
(mcl), mean cluster width (mcwi) and cluster compact-
ness (clucomp), (iii) phenology traits, with véraison date 
(onset of ripening, verday), harvest date (samplday) and 
the interval between véraison and harvest (vermatu), 
(iv) vigor (vigour). Details about phenotypic measure-
ments, statistical processing and heritability can be found 
in Brault et al. [4]. For prediction, we used the Best Lin-
ear Unbiased Predictors (BLUP) of genotypic values 
from  Flutre et  al. [9] in the diversity panel and  Brault 
et al. [4] in the half-diallel. Briefly, a mixed linear model 
was fitted for eliminating experimental confounding 
effects and in order to extract BLUPs of genotypic values. 
In the following, only BLUPs of genotypic values were 
used for the diversity panel, whereas the sum of geno-
typic and cross BLUPs were used for the half-diallel.

SNP genotyping
We used a set of 32,894 SNP markers common to both 
populations, coming from genotyping-by-sequencing 
technology (ApeKI) [8], using Illumina Hi-seq sequenc-
ing. Details about genotyping and marker processing are 
given in Tello et al. [29] for the half-diallel and in Flutre 
et al. [9] for the diversity panel. The selection of common 
SNPs was done in Brault [4]. 622 out of 676 individuals 

were successfully genotyped in the half-diallel, and 277 
out of 279 individuals in the diversity panel.

Spectra measurements
Spectra were measured in both trials on dried wood and 
leaves collected during two consecutive years (2020 and 
2021). For wood tissue, two shoots were cut per plot, on 
two vines in the half-diallel and one in the diversity panel. 
These wood shoots were approximately 3 cm long. Wood 
was harvested on January 27th in 2020 and January 14th 
in 2021. For leaf tissue, four discs were sampled per plot, 
on two adult leaves per vine for two different vines in 
the half-diallel and on four leaves per vine in the diver-
sity panel. Leaf disks had diameters of circa 1 cm and 0.5 
cm in 2020 and 2021, respectively. Leaf tissue harvest 
occurred on July 1st 2020 and June 16th 2021. Two blocks 
were used in both trials, leading to a total of four wood 
shoots and eight leaf discs per genotype. After harvest, 
shoots and leaves were dried at 60◦C until the weight 
stopped decreasing, and then stored in a cold chamber 
until measurements. For each tissue, spectra measure-
ments for both populations lasted a few weeks.

For spectra gathering, a reflectance probe plugged to 
a visible-infrared spectrometer was used (LabSpec 2500 
Portable Vis/Nir spectrometer device ; Analytical Spec-
tral Devices, Inc., Boulder, CO, US) with its associated 
software IndicoPro 6.5. A reference spectrum was taken 
twice a day, using Spectralon ®. For each wood shoot, 
two scans were taken, one on each end of the shoot. For 
each leaf disc, one scan was taken, on the adaxial surface. 
Thus, for each tissue, four scans were produced per plot 
(i.e., per genotype × block combination). Wavelengths 
ranged from 350 to 2,500 nm, with a 1 nm step. For each 
scan, the spectrometer takes 10 spectra which are auto-
matically averaged to make one spectrum record. In total 
around 1800 and 5400 scans were collected on the diver-
sity panel and the half-diallel populations for each year 
and tissue, respectively.

Spectra pre‑processing
Spectra were processed separately within each trial. The 
first 50 wavelengths (visible range) were cut, because 
of instabilities. The average of the four spectra per plot 
were then carried out over the 2101 remaining wave-
lengths. From these averaged raw spectra (raw), five 
pre-processing were then applied: smoothing (smooth) 
using Savitzky-Golay  [27] procedure, normalization or 
standard normal variate (snv) which consists in center-
ing and scaling [1], detrend (dt) for removing baseline 
[1], and first and second derivative on normalized spectra 
(der1and der2, respectively), also for removing baseline 
and exacerbate some parts of the signal.
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On each of these six spectra matrices (raw, smooth, 
snv, dt, der1 and der2), we applied a mixed model over 
the reflectance at each wavelength, to compute variance 
components and derive NIRS genotypic BLUPs for each 
possible combination of three models at the tissue level 
times three models at the year level (Table 1).

The mixed model was:

With r the reflectance at a given wavelength, µ the inter-
cept, geno the random genotypic effect, cross/subpop 
the random effect for cross (10 levels in the half-diallel) 
or subpopulation (3 levels in the diversity panel) effect, 
block the fixed effect of block, x and y the random effects 
for plot coordinates, and ε the residuals.

Factors could then be added to this base model, 
depending on the model combination (Table 1).

NIRS BLUPs used further were the sum of genotypic 
and cross or subpopulation BLUPs. For comparison, we 
also computed genotypic BLUPs from models without 
cross or subpopulation effects.

For comparison purpose and to evaluate the benefit of 
fitting a mixed model per wavelength to extract a geno-
typic BLUP (i.e. BLUP spectra), we also computed for 
each of the 6 spectra matrices (raw, smooth, snv, dt, 
der1 and der2) the averaged spectra per genotype, this 
configuration was called base spectra.

Variance components and co‑inertia
Variance components from mixed models were extracted 
at each wavelength and compared between model combi-
nations and populations.

We also compared relationship matrices obtained 
independently from SNPs (that is, the genomic relation-
ship matrix) and NIRS BLUPs (that could be called the 
phenomic relationship matrix), using co-inertia analysis 
[7]. Briefly, the co-inertia between two matrices X and Y 
(from SNP and wood NIRS for example) is computed as:
coinertia(X ,Y ) = trace(XQXX

TDYQYY
TD) , with QX 

and QY  the weights associated with X and Y columns 
(SNP markers and reflectances), which were set to 1, and 

(1)
rijk = µ+ genoi + cross/subpopi + blockj + x + y+ ǫijk

D the weights associated with X and Y rows (individuals), 
which were set to 1/n with n the number of individuals.

Then, a measure of correlation between X and Y can be 
computed as the RV coefficient [25]:
RV = coinertia(X ,Y )√

coinertia(X ,X)
√
coinertia(Y ,Y )

We applied co-inertia analysis to SNPs, wood and leaf 
NIRS BLUPs, in order to estimate pairwise RV coeffi-
cients between these matrices.

Heritability assessment
Heritability values of phenotypic data were assessed for 
both populations in Flutre et al. [9] for the diversity panel 
and in Brault et  al.  [4] for the half-diallel. Broad-sense 
heritability values ranged between 0.53 and 0.91 for the 
half-diallel and between 0.72 and 0.97 for the diversity 
panel.

Heritability values were also assessed for reflectance 
data at each wavelength, after mixed model fitting. As for 
phenotypic data, heritability formula was calculated on 
an entry-mean basis, as described in Piepho et al. [23]:
H2 =

σ 2
geno+σ 2

cross

σ 2
geno+σ 2

cross+
σ2geno:year+σ2cross:year

nyear
+

σ2x+σ2y +σ2ǫ
nrep×nyear

 , with the 

variance components previously estimated in the mixed 
model, nrep.year the mean number of replicates per year, 
and nyear the number of year (one or two, depending on 
the model).

Phenomic and genomic prediction models
Three methods were compared for the implementation 
of PP and GP, based on two models. Models were fitted 
separately for each population and trait.

rrBLUP vs GBLUP model type

• In rrBLUP, we fitted the following model: 
y = Xβ + ǫ , with y the vector of genotypic BLUPs 
from phenotypic data, X the matrix for marker geno-
types (additively coded as in Brault et al. [4]) or wave-
length data (from NIRS BLUPs for each of the nine 
above-mentioned model combinations), β the marker 
or wavelength effects and ǫ the residual effects. This 
model was fitted using R/glmnet package version 

Table 1 Mixed model fitted, depending on the model combination

cross effect is replaced by subpop for the diversity panel. 1 corresponds to the mixed model specified in Eq. 1

Wood Leaves Wood + leaves

2020 1 1 1 +geno : tissue + cross : tissue

2021 1 1 1 +geno : tissue + cross : tissue

2020 + 2021 1 +geno : year + cross : year 1+geno : year + cross : year 1 +geno : tissue + cross : tissue + geno : year + cross : year
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4.1-2 [11]. In rrBLUP, marker or wavelength effects 
are shrunk towards zero, according to a regulariza-
tion parameter, chosen by an inner cross-validation 
(CV).

• In GBLUP model (using the NIRS or the genomic 
relationship matrix), we fitted the following model: 
y = u+ ǫ , with y the vector of genotypic BLUPs 
from phenotypic data, u the random effects for 
genomic or phenomic estimated breeding value, with 

u ∼ N (0, σ 2
uK ) , K being the relationship matrix from 

markers or spectra, σ 2
u the genetic variance, and ǫ the 

random residual effect, ǫ ∼ N (0, σ 2
ǫ I) , I being the 

identity matrix. K = XscX
T
sc

nb of Xsc columns , Xsc the previ-
ously described X matrix scaled on allelic frequencies 
or wavelength reflectances. This model was fitted 
using R/lme4GS package version 0.1 [5].

Multi‑matrix model fitting
Using R/lme4GS allowed us to fit a single model involv-
ing several variance-covariance matrices, such as: 
y =

∑q
j=1

uj + ǫ , with uj ∼ N (0, σ 2
j Kj) , and Kj the rela-

tionship matrix from SNPs, wood NIRS or leaf NIRS 
previously described. We fitted this multi-matrix model 
using two or three variance-covariance matrices: SNPs + 
wood NIRS, SNPs + leaf NIRS, wood NIRS + leaf NIRS 
and SNPs + wood NIRS + leaf NIRS.

Cross‑validation
PP and GP models were assessed within each popula-
tion and for each trait using CV. In order to egalize the 
TS size between populations, a 10-fold CV was applied 
in the half-diallel, while a 5-fold CV was applied in the 
diversity panel. CV was repeated 10 times. For each CV 
replicate, predicted values from all folds were combined 
and compared with observed genotypic BLUPs. We com-
puted predictive ability (PA) as Pearson’s correlation 
between the observed and predicted genotypic values. In 
the half-diallel, PA was calculated within each cross, as it 
was done in Brault et al.  [4]. Predicted genotypic values 
were separated per cross and predictive ability was calcu-
lated for each of the ten crosses.

Results
Characterization of genetic signal in spectra
Variance components
Variance components for the nine model combinations 
studied in each population are shown in Fig. 1 for der1 
pre-processing, the pre-process with the highest herit-
ability (Additional file  1: Fig. S1). In both populations, 

genotypic variance was maximized in single-year and 
single-tissue analyses. The genotypic variance had the 
same magnitude between years (2020 and 2021) and 
between tissues (leaf and wood). In multi-tissue analyses, 
genotypic variance drastically decreased and was mostly 
replaced by the geno:tissue interaction variance, while in 
multi-year analyses, genotypic variance was only partly 
replaced by the geno:year interaction variance. A strong 
x effect (row effect) was observed, while barely no y effect 
was present.

Comparing populations, the cross variance in the half-
diallel was larger than the subpop variance in the diver-
sity panel. The variance of interactions between cross or 
subpop and year or tissue remained low. The geno:year 
interaction was more important in the diversity panel 
than in the half-diallel for leaf tissue, and comparable for 
wood tissue.
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Fig. 1 Variance components from the mixed models applied to NIRS 
after der1 pre-process. A in the diversity panel population, B in the 
half-diallel population. x and y correspond to field plot coordinates
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Heritability
Genotypic variance results were consistent with herit-
ability values calculated for each wavelength (distri-
butions of heritability values for each pre-process are 
given in Additional file 1: Fig. S1).

When comparing raw and pre-processed spectra, it 
was clear that the lowest heritability values generally 
corresponded to raw and smooth spectra. Heritability 
values for other pre-processes were close to each other, 
der1 yielding the highest heritability values overall 
(Additional file 1: Fig. S1).

Including both wood and leaf NIRS in the mixed 
model resulted in very low heritability values (Addi-
tional file  1: Fig. S2), hence we excluded this model 
in the following analyses. The analysis wavelength by 
wavelength has showed that NIRS carry some genetic 
variance, with a moderate magnitude. To further char-
acterize this genetic signal over the entire spectral 
range, we then carried out a co-inertia analysis between 
NIRS and SNP matrices.

Comparison of matrices from SNPs and NIRS, using co‑inertia 
analysis
Co-inertia analysis was conducted on single-tissue mod-
els only. Figure 2 shows for each population the relative 
co-inertia between three matrices of SNPs, wood and leaf 
NIRS BLUPs of genotype + cross or subpopulation effects 
for “2 years” models. For both populations, correlation 
with SNPs was similar between wood and leaf NIRS. 
However, this correlation was nearly twice higher in the 
half-diallel than in the diversity panel. It is noteworthy 
that in both populations the correlation between the SNP 
matrix and NIRS BLUPs matrices (obtained from wood 
or leaves) was higher than between the two NIRS BLUPs 
matrices obtained on wood and leaves.

We also carried out the co-inertia analysis with matri-
ces derived from NIRS BLUPs of genotype effect for a 
model containing either a genotype effect only or both 

genotype and cross or subpopulation effects (Additional 
file  1: Fig. S2).

Using such matrices strongly decreased correlation 
with the SNP matrix, as compared to using matrices 
derived from BLUPs of genotype + cross or subpopulation 
effects (Additional file  1: Fig. S2). Therefore, in subse-
quent prediction analyses, we used only the latter matri-
ces including cross or subpopulation effect. Matrices from 
multi-year NIRS BLUPs generally displayed a slightly 
higher correlation with the SNP matrix than the single-
year BLUPs, and this effect was more pronounced in the 
half-diallel (Additional file  1: Fig. S3).

Phenomic prediction using BLUPs vs base spectra 
and rrBLUP vs GBLUP
In each population and across both tissues and both 
years, using spectra BLUPs instead of base spectra almost 
always resulted in higher PA (Fig.  3). However, differ-
ences were observed depending on the method and pop-
ulation. The method yielding the highest PA was GBLUP 
(implemented with lme4GS) in the half-diallel and rrB-
LUP (implemented with glmnet) in the diversity panel. 
However, it is worth mentioning that differences between 
methods were found to be more pronounced in the half-
diallel than in the diversity panel. The highest differences 
between base spectra and BLUPs were observed for the 
best method in each population.

Thus, we retained spectra BLUPs in all cases, lme4GS 
in the half-diallel and glmnet in the diversity panel.

We observed higher variance in PA in the half-diallel 
than in the diversity panel, because in the half-diallel, 
PA distribution was over 10 crosses in addition to the 6 
years × tissues model combinations retained (see above). 
Average PA for the best method was slightly higher in the 
half-diallel (0.31) than in the diversity panel (0.26).

We compared PA for all pre-processes, after selecting 
the best method for each population (Additional file  1: 
Fig. S4). We found that der1 and der2 pre-processes gave 
close results, with a slight superiority of der1 overall. 
Therefore, we kept only this pre-process in subsequent 
analyses.

Phenomic prediction using NIRS collected over one or two 
years and tissues
We further compared PP models including a single vs. 
both NIRS BLUP matrices obtained from wood and 
leaves. For each tissue configuration, we used the NIRS 
BLUPs derived from the above-described year configu-
rations (2020, 2021 or both). For single tissue configura-
tions, we used the best method selected above in each 
population, and one NIRS BLUP matrix was fitted. For 
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the wood+leaves configuration in both populations, two 
NIRS BLUP matrices (one for wood and one for leaves) 
were fitted using lme4GS package.

For both populations, the nine configurations tested 
resulted in close PA distributions (Fig.  4). Yet, “2 years” 
and “wood+leaves” configurations overall gave the best 
average PA values. We thus retained only multi-year and 
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multi-tissue PP results for subsequent comparison with 
GP.

Finally, PA was slightly higher in the half-diallel on 
average, with a larger variance originating from differ-
ences between crosses (see hereafter).

If we now turn to details per trait, the results show that, 
within the diversity panel, each trait displayed nearly the 
same PA for the different tissue configurations, for PA 
values above 0.2 (Additional file  1: Fig. S5). In the half-
diallel, there were larger differences between tissue con-
figurations. However, this factor still had far less impact 
on PA than cross or trait.

Overall average PA of PP for “2 years” and 
“wood+leaves” configuration was 0.27 in the diversity 
panel and 0.35 in the half-diallel (Fig.  4). PA values per 
trait ranged from -0.04 for shiktar.ripe to 0.59 for mbw 
in the diversity panel (Additional file  1: Fig. S5A), and 
from 0.09 for mal.ripe to 0.72 for mbw in the half-diallel 
(note that in the half diallel, PA values per trait are aver-
aged over the 10 crosses). However, large differences in 
PA of PP were observed within a trait at the cross level in 
the half-diallel for “2 years” and “wood+leaves” configu-
ration, such as for tar.ripe, from -0.49 for GxCS to 0.74 
for TNxS (Fig. 5B and Additional file  1: Fig. S5B). Com-
paratively, differences at the cross level were lower for GP 
(Additional file  1: Fig. S6). The best predicted cross with 
PP over all traits was GxS (average PA of 0.41) and the 
worst one was TNxG (0.29) (Additional file  1: Fig. S7). 
For some crosses and traits, PA values could be above 0.8, 
the maximum PA for PP being 0.91 for mbw and TNxG 
(Additional file  1: Fig. S5B).

Comparison of PP with GP
Before comparing PP with GP, we applied GP on both 
populations with the two methods previously compared 
for PP (Additional file  1: Fig. S6). We found that lme4GS 
was overall the best method in both populations, hence 
we retained this method for the following comparison. 
Like this was the case for PP, differences between meth-
ods appeared to be more pronounced in the half-diallel 
than in the diversity panel.

The PA reached by PP was generally lower to that of 
GP in both populations. Differences between PP and 
GP was small for a few traits and for some half-dial-
lel crosses (samplday, vermatu and mbw) (Fig.  5). PP 
even in some cases outperformed GP in the half-diallel, 
such as for CSxPN, GxCS, GxPN and vigour, or GxCS, 
SxPN, TNxPN and clucomp. Differences in PA between 
PP and GP were lower in the diversity panel than in the 
half-diallel.

In the diversity panel, PA of PP was significantly higher 
(non-overlapping error bar) than PA of GP for one trait 
(mcl) and non-significantly different for two other traits 
(clucomp and vermatu) (Fig. 5A). In the half-diallel, PA 
of PP was significantly higher than PA of GP for 28 trait 
× cross combinations out of 150, while this difference 
was not significant in 17 other cases (Fig. 5B). In all other 
cases, PA of PP was lower than PA of GP.

In Fig.  6, we further compared mean PAs of PP and 
GP per trait in each population. In both populations, 
the slope of the regression model was close to 1 and the 
intercept to −  0.2. This suggests that PA of PP and GP 
follow the same ranking, independently of the trait. How-
ever, this regression had a much lower R2 in the half-dial-
lel than in the diversity panel.

Enhancing genomic prediction using NIRS
Another possible way of using NIRS is to add it into the 
predictive model together with SNPs, in order to increase 
PA. We thus implemented multi-BLUP models with 
SNPs and NIRS BLUPs and compared them to GP mod-
els in each population.

Overall, for both populations and for all traits, differ-
ences in PA between SNP based model and different 
combined GP+PP models were small (Additional file  1: 
Fig. S8). In the diversity panel, combining wood NIRS 

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

corr=0.83
p−value=1.30e−04

0.0

0.2

0.4

0.6

0.2 0.3 0.4 0.5 0.6 0.7
Genomic prediction PA

Ph
en

om
ic

 p
re

di
ct

io
n 

PA

Diversity panelA

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

corr=0.57
p−value=2.77e−02

0.2

0.4

0.6

0.4 0.5 0.6 0.7 0.8
Mean genomic prediction PA per trait

M
ea

n 
ph

en
om

ic
 p

re
di

ct
io

n 
PA

 p
er

 tr
ai

t Half−diallel
B

Trait
mal.ripe
tar.ripe
shik.ripe
shiktar.ripe
maltar.ripe
verday
samplday
vermatu
clucomp
nbclu
mcl
mcwi
mcw
mbw
vigour

Fig. 6 Predictive ability of phenomic against genomic prediction. A 
in the diversity panel, B in the half-diallel. The correlation coeficient 
and associated p-value was computed over 15 observations (traits). 
In the half-diallel, PA was averaged across the ten crosses, hence 
standard error around each point is displayed. The red line is the 
regression line and the gray dashed line is the identity line



Page 10 of 13Brault et al. Plant Methods          (2022) 18:108 

with SNPs led to the best PA (0.405), closely followed by 
leaves NIRS + SNPs (0.403), wood NIRS + leaves NIRS 
+ SNPs (0.402) and SNPs alone (0.400). In the half-dial-
lel, SNPs alone gave the highest PA (0.595), followed by 
wood NIRS + leaves NIRS + SNPs (0.587), leaves NIRS 
+ SNPs (0.576), and wood NIRS + SNPs (0.569).

Nevertheless, adding NIRS to a predictive model could 
lead to minor (non-significant) improvements in PA for 
some traits, compared to classic GP. Combining GP + 
PP from wood NIRS slightly increased PA over the GP 
model for two traits in the diversity panel (clucomp and 
mcl) (Additional file  1: Fig. S8A). In the half-diallel, the 
difference in average PA with GP was much more vari-
able among traits, with an increase for vigour, clucomp, 
vermatu and samplday, and a decrease for mal.ripe, tar.
ripe, shik.ripe, shiktar.ripe, maltar.ripe, nbclu, mcl 
and mcwi (Additional file  1: Fig. S8B).

Discussion
So far, PP has only been implemented in a reduced num-
ber of species and traits. This study provides the first use 
of PP in grapevine, within two complementary popu-
lations: a diversity panel and a half-diallel. Besides, we 
tested PP for 15 traits, belonging to four categories: berry 
composition, phenology, morphological traits and vig-
our. We first showed that NIRS variability was partly of 
genotypic origin. We then tested several parameters for 
PP implementation. We found that pre-processing had a 
little impact on NIRS heritability and PA. Nevertheless, 
using genotypic values from NIRS resulted in a strong 
increase in PA, while tissues and years tested had a rela-
tive small impact on PA. Finally, we found that PP could 
yield PA values close to or even higher than GP ones, for 
some traits and crosses.

NIRS variance components and co‑inertia with SNPs
Genotype and derived interaction variables had a fairly 
moderate impact on total variance observed between 
spectra (Fig.  1). The genotypic effect was best captured 
in single-tissue analyses. This was not surprising, because 
the genetic signal at a given wavelength relies on mol-
ecules specific to each tissue. Then, mixing both tissues 
into a single model led to no overall genetic effect and 
to strong geno:tissue interaction. This tendency was also 
observed, to a smaller extent, in the multi-year analyses. 
This also suggests that different tissues bring non redun-
dant genetic information. This was confirmed by co-iner-
tia analysis, which evidenced that NIRS matrices from 
wood and leaves were more correlated to the SNP matrix 
than to each other.

Interestingly, co-inertia analysis showed that multi-year 
NIRS BLUP matrices were slightly more correlated with 
the genomic relationship matrix than single-year ones, 

despite lower genotypic variance. This implies that the 
genotypic part of NIRS estimated by multi-year analysis 
could be more related to the genetic signal. Thus, genetic 
signal ignoring genotype-by-environment interactions 
could be better captured when several years are com-
bined, this was also the case in Galán et al. [13] for which 
multi-year spectra resulted in higher PA values.

Comparatively to genotype-related effects, among 
non-residual variance components, x effect displayed 
a large variance along wavelengths (Fig.  1). This effect 
actually corresponds to a row effect and might be due to 
the experimental design, which encompass field effects 
and spectra collection design, both being confounded. 
Indeed, leaf discs and wood shoots were both sampled 
and scanned row by row, sometimes several weeks appart 
for NIRS collection. However, we cannot determine 
whether this x effect comes from the tissue sampling, i.e., 
sampling time (over a day), soil heterogeneity ; or from 
the NIRS measurement step, i.e., device calibration, dif-
ferential storage time, air humidity. Our results under-
line the importance of accounting such experimental 
effects in order to improve the genetic signal captured 
and thus prediction. In further experiments, one could 
increase the number of spectra per plot and randomize 
NIRS measurements, in order to determine if the x effect 
observed here was due to measurement or sampling and 
to reduce it. Other studies that fitted a linear model for 
each wavelength did not introduce field coordinates as 
effects (e.g. [12, 15, 16]). But the first and last studies 
were based on hyperspectral images taken with aircraft 
flights, that is with an experimental design less prone to 
plot location effect, and the second study fitted a linear 
model with only block and environmental effects.

Galán et al. [12] found a mean heritability value of 0.73 
for wavelength reflectances, which is substantially higher 
than the values we observed (Additional file  1: Fig. S1). 
However, we did not use the same heritability formula. 
Montesinos-López et al. [20] also reported overall higher 
heritability values ranging from 0.6 to 0.8 for most time 
points, with strong variations depending on the environ-
ment (water availability) and time-point.

We found higher heritability and genetic variance in 
the diversity panel than in the half-diallel. Yet, PA were 
generally higher in the half-diallel. In Rincent et al. [24], 
genetic variance estimates per wavelength between wheat 
and poplar were consistent with PA in these species, i.e., 
they evidenced higher PA values in wheat than in poplar. 
On the opposite, our results on co-inertia analysis were 
consistent with PA values: correlation between SNP and 
NIRS BLUPs matrices was higher in the half-diallel than 
in the diversity panel (Fig. 2). This suggest that co-iner-
tia analysis is more relevant to compare configurations 
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for NIRS BLUP than variance components. The higher 
co-inertia observed between SNP and NIRS BLUP in 
the diallel with respect to the diversity panel is likely to 
be explained by the higher genetic structure in the half-
diallel, or because the half-diallel is in better health than 
the diversity panel, which is older and overgrafted. Actu-
ally, it was surprising that NIRS could capture genetic 
structure, i.e., in our case the subpopulation effect in 
the diversity panel and the cross effect in the half-dial-
lel. Although variance components for subpopulation 
and cross remained moderate (Fig. 1), adding the corre-
sponding BLUP effects to genotypic effects led to a sharp 
increase in correlation between NIRS and SNP matrices 
(Additional file  1: Fig. S2). Further in-depth studies are 
required to better understand whether this observation 
could be specific to some subpopulations or families.

Optimizing PP
Among the parameters tested, some had substantial 
impact on PA, while others had only negligible impact. 
Namely, using NIRS via BLUP analysis instead of merely 
average spectra per genotype led to a strong increase 
in PA (Fig.  3). This was probably associated with the 
strong x effect we observed in variance analysis. Such a 
difference had never been reported before, as studies 
obtained PP results either from base (such as [6, 24]) or 
BLUE (such as [15, 16]) spectra, without comparing both 
configurations.

Surprisingly, the prediction method also had notable 
impact on PA: using rrBLUP or GBLUP models gave differ-
ent PA in the half-diallel, while differences in PA between 
methods were lower in the diversity panel (Fig.  3). Yet, 
GBLUP and rrBLUP models are expected to perform simi-
larly when the regularization parameter in ridge regression 
is equal to σ 2

e /σ
2
g  [14]. In our analysis, this parameter value 

was chosen by cross-validation using cv.glmnet function. 
The higher relatedness between genotypes within the half-
diallel than within the diversity panel (Brault et al. [4], Fig. 1a) 
may boost GBLUP models compared to rrBLUP in this 
population. In future investigations, one could use variable 
selection method such as LASSO to select the most relevant 
wavelengths for computing the relationship matrix from 
NIRS BLUP. Such variable selection was performed by Galán 
et al. [12] and resulted in higher PA.

On the opposite, using single-year, single tissue, multi-year, 
or multi-tissue NIRS BLUPs and all pre-processes except 
smooth gave very similar results over all traits and crosses 
(Fig. 4), with a slight superiority of multi-year model over-
all. This was consistent with the results of co-inertia analysis 
(Additional file  1: Fig. S3). In Rincent et al. [24], the multi-
tissue analysis for wheat with leaf and grain combined gave 
similar PA as for single-tissue analysis. As the combination 

of two tissues for PP was only done in one other study [24], 
further work needs to be done to assess these conclusions.

For a given trait, both tissues tested gave similar PA for 
the diversity panel (Additional file  1: Fig. S5A). For the half-
diallel, more differences were observed between tissues, 
and much larger differences were observed between crosses 
(Additional file  1: Fig. S5B). However, no cross was con-
sistently well or poorly predicted for all traits, suggesting a 
strong cross × trait interaction. These large disparities among 
crosses were consistent with the GP results obtained in the 
same population by Brault et al. [4].

Comparison between PP and GP
PP is supposed to better account for G × E than GP. How-
ever, it was shown in Rincent et al.  [24] that PP could still 
reach good PA values when NIRS for TS were taken in an 
environment different from the one in which VS was pheno-
typed, i.e., when accounting for G × E was not possible. In 
this study, we could not assess whether PP accuracy partly 
relied on location-related G × E , because phenotypes and 
NIRS came from a single location. Nevertheless, pheno-
types were measured in 2011-2012 and 2013-2017 in the 
diversity panel and half-diallel populations, respectively, 
whereas NIRS were measured in 2020-2021 in both popula-
tions. Vintage (year) effect is also part of G × E and it is likely 
that 2020 or 2021 could display some differences in terms of 
weather with phenotyping years. For training and validation 
model, we used genotypic BLUPs of both phenotypic data, 
thereby removing year and geno:year effects. We found that 
PA seemed not to be impacted by NIRS year for all traits 
studied, suggesting that vintage has a negligible effect on PA 
when genotypic BLUPs are used.

We found that PP could compete with GP for some traits 
in both populations, despite moderate genetic variance esti-
mated from NIRS. However, the number of traits for which 
PP outperformed GP remained low. These results were close 
to those of Rincent et  al.  [24] on poplar. In our case, one 
explanation could be that NIRS came from tissues sampled 
in 2020 and 2021, while phenotypes were measured in 2011-
2012 and 2013-2017 in the diversity panel and half-diallel, 
respectively. Thus, we couldn’t take into account for G × E 
from vintage effect. As a perspective, it would be interesting 
to compare PA when spectra are measured the same year as 
phenotyping or not. In such case, one could explicitly model 
vintage effects in spectra to further increase PA.

Implementation of PP in perennial breeding programs
What we tested (spectra and phenotypes collected sev-
eral years apart) is a novelty compared to existing studies 
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in phenomic prediction. Indeed, spectra are usually col-
lected the same years as phenotypes. Hence, phenomic 
prediction is relying both on genetics and G × E interac-
tions. We intentionally excluded G × E interactions and 
maximized the genetic signal in spectra. Thus, we did not 
expect that PP could outperform GP, as the genetic signal 
in spectra is most likely less precise than genotyping. We 
measured the predictive ability of phenomic prediction, 
that relies only on genetics. Such measure is crucial for 
the implementation of phenomic prediction in breeding 
program, especially in perennial species, since we expect 
to predict genotypic values several years before pheno-
typing. A further step would be to confirm that spec-
tra from seedlings and mature plants provide the same 
amount of genetic information.

Nevertheless, even when PP does not outperform GP, it 
may still be interesting in breeding, because of its lower 
cost and increased throughput compared to genotyp-
ing. Moreover, when a trait was well-predicted with GP, 
we found that it was also well-predicted with PP, with a 
global shift of -0.2 in PA (Fig.  6). This suggests that PP 
PA truly relies on genetic variability and that PP could be 
applied indifferently for all traits. Even though this study 
is the first one implementing PP on so many traits (15), 
these conclusions remain to be confirmed on other spe-
cies and traits. Based on a simulated breeding program 
from Rincent et  al.  [24] and on the relative GP and PP 
reliability that we observed, we are still expecting a posi-
tive genetic gain by switching from GP to PP, under a 
constant breeding program budget.

We implemented that setting, in order to test whether 
combining NIRS and SNP could increase PA compared 
to GP, by taking other genetic effects into account. How-
ever, as we used NIRS BLUPs, we only maximized the 
genetic variance part of spectra, we thus intentionally 
excluded G × E . Therefore, the fact that adding NIRS to 
GP model did not result in any increase in PA is consist-
ent with our spectra processing. Cuevas et  al.  [6] and 
Galán et al. [12] found slight to noticeable improvement 
in PA when NIRS was added to the model, compared to 
GP model with SNPs only; difference in PA was at most 
0.01 in Cuevas et al. [6] and up to 0.1 in Galán et al. [12]. 
Both studies are however so different than ours that it is 
difficult to explain these different behaviors.

As a conclusion, we provided the first implementation 
of PP in grapevine. The number of traits studied allowed 
us to put forward a correlation between PA of GP and PP, 
suggesting that PP relies on a genetic basis. Such a cor-
relation was never reported before. We expect that the 
shift of PA between PP and GP of -0.2 would be reduced 
if year of phenotyping and spectra measurement are the 
same. Still, PP has shown its interest for breeding over a 
wide range of traits.
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