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Abstract

WGrin is a Matlab toolbox aimed at studying Whispering Gallery Modes (WGM) in
graded index (GRIN) optical micro-resonators. Such resonators have a dielectric cavity with
a spatially varying refractive index. The WGrin toolbox deals with dielectric cavities the
shape of which is a disk or a sphere and the refractive index varies with the radial position.
For these two geometries, the resonance problem can be formulated in the unique form of
a one-dimensional problem in the radial variable. This resonance problem is solved by the
Finite Difference Method with Perfectly Matched Layer (PML). The WGrin toolbox allows
the computation of resonance wavelengths and the visualization of WGM in GRIN micro-disk
and micro-sphere resonators.
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1 Introduction

1.1 A unified problem formulation for micro-disks and micro-spheres

Mathematical modeling of WGM in a dielectric cavity obeys a general framework given by har-
monic Maxwell’s equations, see Appendix A.1. In the cases of a micro-disk or micro-sphere, this
general framework can be considerably simplified taking advantage of geometrical symmetries
as detailed in Appendix A.2 and Appendix A.3. In the sequel, we will denote by R the radius
of the micro-disk (resp. of the micro-sphere) and we will denote by N the function defining the
refractive index, assumed to be dependent of the radial variable only in the cavity and to be
equal to 1 outside the cavity. Although the mathematical developments are rather different in
the case of a micro-disk and in the case of a micro-sphere, the final expression of the two reso-
nance problems can be gathered into a unique formulation uniting the two cases. Namely, the
resonance problems (A.13) and (A.24) (see Appendix A) obtained respectively for a micro-disk
and for a micro-sphere can be combined into the following unique problem for the purpose of
the numerical approximation by the Finite Difference Method: Find (kq, uq) ∈ C× D(R+, rdr)
such that Im(kq) < 0, uq 6= 0 and

−
(
a(r)u′q(r)

)′
+ b(r)uq(r) = k2

q c(r)uq(r) in ]0, R[ and ]R,+∞[

uq(0) = 0

[uq(R)] = 0[
a(R)u′q(R)

]
= 0

(1a)

(1b)

(1c)

(1d)

where D(R+, rdr) denotes the functional space

D(R+, rdr) = {v ∈ L2
loc(R+, rdr) | v|]0,R] ∈ H2(]0, R[, rdr), v|[R,+∞[ ∈ H2

loc(]R,+∞[, rdr)}

with L2
loc(R+, rdr) denoting the Lebesgue set of locally square integrable functions in R+ with

respect to the measure rdr and H2(]0, R[, rdr) (resp. H2
loc(]R,+∞[, rdr)) denoting the Sobolev

space of square integrable functions in ]0, R[ (resp. in ]R,+∞[) with all derivatives up to order 2
in L2(]0, R[, rdr) (resp. in L2

loc(]R,+∞[, rdr)), and where

- for a micro-disk: q = m is the polar mode index and we have
a : r ∈]0,+∞[ 7→ rNp−1(r) , b : r ∈]0,+∞[ 7→ m

r N
p−1(r) , c : r ∈]0,+∞[ 7→ rNp+1(r);

- for a micro-sphere: q = ` is the polar mode index and we have
a : r ∈]0,+∞[ 7→ Np−1(r) , b : r ∈]0,+∞[ 7→ `(`+1)

r2
Np−1(r) , c : r ∈]0,+∞[ 7→ Np+1(r).

Note that with the usual convention for naming TE and TM modes in a micro-disk and in a
micro-sphere [3], the value of the parameter p in the definition of the coefficient functions a, b
and c is as follows:

- for a micro-disk, p = −1 for TE modes and p = 1 for TM modes;

- for a micro-sphere, p = −1 for TM modes and p = 1 for TE modes.

For a micro-disk, uq coincides with the solution um to problem (A.13) whereas for a micro-disk,
uq coincides with the solution S` to problem (A.24). The condition at infinity reads

- for a micro-disk: uq(r) = um(r) ∝ H
(1)
m (kr) as r → +∞, where H

(1)
m denotes Hankel

function of the first kind [1, 2];

- for a micro-sphere: uq(r) = S`(r) ∝ ξ`(kr) as r → +∞, where ξ` denotes Riccati–Bessel

function [1, 2] defined by ξ`(z) =
√

πz
2 H

(1)

`+ 1
2

(z).
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Figure 1: Notation used for defining the PML. In the WGrin toolbox, the choice R0 = R is
made.

Details on the way mode indexes for a micro-disk and a micros-sphere are defined can be
found in the appendix, respectively on p. 33 and on p. 36.

For a general radial varying refractive index function N , it is not possible to find closed-form
solutions to problem (1) and a numerical approximation method is mandatory to compute ap-
proximate solutions to problem (1). Among the classical numerical methods for such a boundary
value problem are the Finite Element Method (FEM) and the Finite Difference Method (FDM).
In the WGrin toolbox, we have chosen to implement the Finite Difference Method because of
its simplicity.

1.2 Use of a Perfectly Matched Layer

Since the resonance problem (1) is set in an unbounded domain, it is mandatory to bound the
computational domain in order to use the FDM. This can be done by introducing a fictitious
boundary at a given distance from the dielectric cavity boundary and by imposing a homogeneous
Dirichlet boundary condition as in [4]. This approach has one major drawback: the resonances
for the new problem set in the bounded domain are real numbers. This means that there is
no way to approximate the imaginary part of the resonances in proceeding in this way. An
alternative approach consists in using Perfectly Matched Layer (PML) that are now widely used
to approximate solutions of wave-propagation problems in unbounded domains [5]. The WGrin
toolbox uses the PML method investigated in [6] for resonance problems, see also [7]. Let us
sketch the method. Let R0 be a positive number defining the PML inner side such that R0 ≥ R
and let R1 be another positive number defining the PML outer side such that R1 > R0, see
Fig. 1. The PML approximation can be thought of as a formal complex shift in coordinate

system [5]. We define a complex shift variable r̃
def
= r(1 + iσ̃(r)) where the function σ̃ satisfies

σ̃(r) =

 0 for 0 ≤ r ≤ R0

σ0

σ1

∫ r

R0

fℵ(t) dt for R0 < r ≤ R1
(2)

where σ0 > 0 is a parameter of the PML, σ1 =
∫ R1

R0
fℵ(t) dt and fℵ is the polynomial function

t ∈ R 7→ (t−R0)ℵ(R1−t)ℵ where the integer ℵ ≥ 2 is an other adjustable parameter of the PML.
One can show that the regularity of σ̃ is directly related to the value of ℵ since σ̃ ∈ Cℵ([0, R1]).
The condition ℵ ≥ 2 is imposed for the complex shift in coordinates detailed below to hold.

We shall use the following notations for r ≥ 0

d̃(r)
def
= 1 + iσ̃(r)

σ(r)
def
=

∂
(
rσ̃(r)

)
∂r

= σ̃(r) + r
∂σ̃(r)

∂r
=

{
0 r ≤ R0

σ̃(r) + r
σ0

σ1
fℵ(r) R0 < r < R1

With these notations, we have r̃(r) = rd̃(r) and

d(r)
def
=

∂r̃(r)

∂r
= 1 + iσ(r).
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Note that the complex shift operates for r > R0 and leaves unchanged the variable in [0, R0]
(i.e. r̃ = r). Equation (1a) in the shift variable r̃ reads

− ∂r̃
(
a(r̃) ∂r̃uq(r̃)

)
+ b(r̃)uq(r̃) = k2

q c(r̃)uq(r̃) (3)

We introduce as new unknown the function ũq defined by ũq(r) = uq(r̃), ∀r ≥ 0, and we denote

by Ñ the function such that Ñ(r) = N(r̃),∀r ≥ 0. Equation (3) for ũq reads

−
(
ã(r) ũ′q(r)

)′
+ b̃(r)uq(r) = k2

q c̃(r)uq(r)

where

- for a micro-disk: ã : r ∈]0,+∞[ 7→ r d̃(r)
d(r) N

p−1(rd̃(r)), b̃ : r ∈]0,+∞[ 7→ m2

r
d(r)

d̃(r)
Np−1(rd̃(r)),

c̃ : r ∈]0,+∞[ 7→ rd̃(r)d(r)Np+1(rd̃(r));

- for a micro-sphere: ã : r ∈]0,+∞[ 7→ 1
d(r) N

p−1(rd̃(r)), b̃ : r ∈]0,+∞[ 7→ `(`+1)
r2

d(r)

d̃2(r)
Np−1(rd̃(r)),

c̃ : r ∈]0,+∞[ 7→ d(r)Np+1(rd̃(r)).

An important question to be addressed is where the PML has to be placed. Although it can be
theoretically placed at any position outside the cavity, numerical investigations have shown us
that less spurious resonances are obtained in the extreme case when R0 = R, that is to say when
the PML adjoins the dielectric cavity. This is therefore the situation envisaged in the WGrin
toolbox.

The interface conditions (1c) and (1d) at the dielectric cavity boundary become

ũq(R
−) = ũq(R

+) (4a)

ã(R−) ũ′q(R
−) = ã(R+) ũ′q(R

+) (4b)

where we have used the notation uq(R
−) = limr↗R uq(r) and uq(R

+) = limr↘R uq(r). (Note
that the same notations will be used throughout the paper.) At the PML end, we impose the
Dirichlet boundary condition ũq(R1) = 0.

Finally, we have to deal with the following approximate problem deduced from (1) where the
computational domain is bounded at r = R1 and a PML is used in the interval [R,R1]: Find
(k̃q, ũq) ∈ C×D([0, R1], rdr) such that Im(k̃q) < 0, ũq 6= 0 and

−
(
ã(r) ũ′q(r)

)′
+ b̃(r)uq(r) = k̃2

q c̃(r)uq(r) in ]0, R[ and ]R,R1[

ũq(R
−) = ũq(R

+)

ã(R−) ũ′q(R
−) = ã(R+) ũ′q(R

+)

ũq(0) = 0

ũq(R1) = 0

(5a)

(5b)

(5c)

(5d)

(5e)

From now on, the solutions to problem (5) will be denoted by (kq, uq) for the sake of simplicity.

1.3 Computation of the modes outside the cavity

We found that an effective way of reducing the number of spurious resonances among the com-
puted resonances was to position the PML entry at the dielectric cavity boundary. This choice
implies that the modes are not computed by the FDM outside the dielectric cavity. Yet, it is
sometimes helpful to have a graphical representation of the modes outside the cavity. This can
be done at a low computational cost from the values of the modes computed at the dielectric
cavity boundary as detailed below.
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1.3.1 Case of a micro-disk

The mathematical modeling for resonances in a disk shaped dielectric cavity is detailed in
Appendix A.2, see problem (A.13). In the exterior domain ]R,+∞[, the unknown uq ≡ um in
problem (1) satisfies

u′′m(r)− 1

r
u′m(r) +

(
m2

r2
− k2

m

)
um(r) = 0. (6)

This second order ordinary differential equation is referred to as a Bessel’s equation of order m
(after the change of variables x = km r). The space of solutions admits a basis formed e.g. by

the two linearly independent Hankel functions of first and second kinds, H
(1)
m and H

(2)
m . As well

known, under the e−iωt convention for harmonic time dependence of the electromagnetic field

adopted here, Hankel function H
(1)
m represents outgoing waves whereas H

(2)
m represents ingoing

waves. Thus, outside the disk, the mode um for a given resonance km can be expressed as

um(r) = um(R)
H

(1)
m (kmr)

H
(1)
m (kmR)

∀r > R. (7)

1.3.2 Case of a micro-sphere

The mathematical modeling for resonances in a spherical dielectric cavity is detailed in Ap-
pendix A.3, see problem (A.24). In the exterior domain ]R,+∞[, the unknown uq ≡ S` in
problem (1) satisfies

− S′′` (r) +

(
`(`+ 1)

r2
− k2

`

)
S`(r) = 0. (8)

This second order ordinary differential equation is referred to a Ricatti-Bessel’s equation of
order ` (consider the change of variables x = k` r). Taking into account the outgoing wave
condition at infinity, the solution to equation (8) can be expressed in terms of Ricatti-Bessel

function ξ` defined as ξ`(x) =
√

πx
2 H

(1)

`+ 1
2

(x). Thus, outside the sphere, the mode S` for a given

resonance k` can be expressed as

S`(r) = S`(R)
ξ`(kr)

ξ`(kR)
∀r > R. (9)

2 Discretization using a Finite Difference scheme

The WGrin toolbox solves problem (5) using the Finite Difference Method (FDM) where the
derivative of a given function v with regularity C1 is approached by the following second-order
of accuracy central difference formula (for a small step-size δr > 0)

v′(r) ≈
v(r + 1

2δr)− v(r − 1
2δr)

δr
. (10)

We introduce a subdivision (rj)j=0,...,J with constant step-size δr = R1/J of the computa-
tional domain [0, R1] satisfying the following constraint: There exists an integer JR such that
R = JRδr, see Fig. 2. This assumption ensures that the cavity boundary located at r = R
coincides with a subdivision node. For j = 1, . . . , J − 1, j 6= JR, using (10) successively with
v = uq and v = au′q, equation (5a) gives rise to the following discrete equation

1

δ2
r

((
ã(rj + δr

2 ) + ã(rj − δr
2 )
)
uj − ã(rj − δr

2 )uj−1 − ã(rj + δr
2 )uj+1

)
+ b̃(rj)uj = k2

q c̃(rj)uj

where uj denotes the approximation of uq(rj) and where from the boundary condition (5d), we
have set u0 = 0.
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Figure 2: Notation used for the discretization. The index j labels the discretization nodes.

The boundary condition (5b) reflects the continuity of the solution ũq across the interface
located at r = R. Therefore, only one unknown is required to describe the solution at the
interface. In order to build a second order approximation of the boundary condition (5c), we
proceed as follows. On the one hand, from Taylor expansion formula, we have with an error
in O(δ2

r ), (
ã u′q

)
(R− δr

2 ) =
(
ã u′q

)
(R−)− δr

2

(
ã u′q

)′
(R−) (11a)(

ã u′q
)
(R+ δr

2 ) =
(
ã u′q

)
(R+) + δr

2

(
ã u′q

)′
(R+) (11b)

and from the finite difference formula (10), we have with an error in O(δ2
r ),(

ã u′q
)
(R− δr

2 ) = ã(R− δr
2 )

uq(R)− uq(R− δ)
δr

(12a)(
ã u′q

)
(R+ δr

2 ) = ã(R+ δr
2 )

uq(R+ δr)− uq(R)

δr
. (12b)

Combining (11) with (12), the boundary condition (5c) gives rise to the relation

ã(R− δr
2 )

uq(R)− uq(R− δ)
δr

+ δr
2

(
ã u′q

)′
(R−) = ã(R+ δr

2 )
uq(R+ δr)− uq(R)

δr

− δr
2

(
ã u′q

)′
(R+). (13)

On the other hand, taking into account the differential equation (5a) in the inner limit when r
tends to R (resp. the outer limit when r tends to R), we obtain(

ã u′q
)′

(R−) = b̃(R−)uq(R)− k2
q c̃(R

−)uq(R) (14a)(
ã u′q

)′
(R+) = b̃(R+)uq(R)− k2

q c̃(R
+)uq(R). (14b)

Finally, combining (13) with (14), we obtain the following relation with an error in O(δ2
r )

1

δ2
r

((
ã(R− δr

2 ) + ã(R+ δr
2 )
)
uq(R)− ã(R− δr

2 )uq(R− δr)− ã(R+ δr
2 )uq(R+ δr)

)
+ 1

2

(
b̃(R−) + b̃(R+)

)
uq(R) = 1

2k
2
q

(
c̃(R−) + c̃(R+)

)
uq(R). (15)

It follows that the boundary condition (5c) is discretized into

1

δ2
r

((
ã(R+ δr

2 ) + ã(R− δr
2 )
)
uJR − ã(R− δr

2 )uJR−1 − ã(R+ δr
2 )uJR+1

)
+ 1

2

(
b̃(R−) + b̃(R+)

)
uJR = 1

2k
2
q

(
c̃(R−) + c̃(R+)

)
uJR . (16)

The discrete resonance problem obtained above can be written in matrix form as the following
eigenvalue problem: Find V ∈ CJ−1, V 6= 0, and kq ∈ C such that

A V = k2
q CV (17)
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where V is the vector of CJ−1 with components u1, . . . , uJ−1, A is the tridiagonal matrix

A =



a1,1 a1,2

a2,1 a2,2 a2,3

. . .
. . .

. . .
. . .

. . .
. . .

aJ−2,J−3 aJ−2,J−2 aJ−2,J−1

aJ−1,J−2 aJ−1,J−1


whose entries out of the three main diagonals, not represented, are zeros and the other entries
are given, for all i ∈ {2, . . . , J − 2} \ {JR}, by

ai,i−1 = − 1
δ2r
ã(rj − δr

2 ) ai,i = 1
δ2r

((
ã(rj + δr

2 ) + ã(rj − δr
2 )
)

+ b̃(rj) ai,i+1 = − 1
δ2r
ã(rj + δr

2 )

and

a1,1 = 1
δ2r

((
ã(3δr

2 ) + ã( δr2 )
)

+ b̃(δr) a1,2 = − 1
δ2r
ã(3δr

2 )

aJR,JR−1 = − 1
δ2r
ã(R− δr

2 ) aJR,JR = 1
δ2r

((
ã(R+ δr

2 ) + ã(R− δr
2 )
)

+ 1
2

(
b̃(R−) + b̃(R+)

)
aJR,JR+1 = − 1

δ2r
ã(R+ δr

2 )

aJ−1,J−2 = − 1
δ2r
ã(R1 − 3δr

2 ) aJ−1,J−1 = 1
δ2r

((
ã(R1 − δr

2 ) + ã(R− 3δr
2 )
)

+ b̃(R1 − δr)

and C is the diagonal matrix with diagonal entries

cj = c̃(rj) ∀j ∈ {1, . . . , J − 1} \ {JR} and cJR = 1
2

(
c̃(R−) + c̃(R+)

)
. (18)

Note that the matrix C is invertible and the generalized eigenvalue problem (17) can be
written as the following standard eigenvalue problem: Find V ∈ CJ−1, V 6= 0, and kq ∈ C such
that

C−1 A V = k2
q V. (19)

The computed resonances kq are therefore such that k2
q is an eigenvalue of the matrix C−1 A.

It can also be noticed that in the discrete formulation of the resonance problem given by (17),
there is no more need for ℵ to be greater than 2. The eigenvalue problem (17) can be solved for
any integer ℵ ≥ 0.

3 The WGrin toolbox

3.1 Contents of the WGrin toolbox

The WGrin toolbox contains the following Matlab files that can be organized as follows:

• Matlab files intended to user:

– wgrin.m : Main file of the WGrin toolbox;

– optindex.m : Contains the definition of the radial varying refractive index (must be
provided by the user following the directions given in the file);

• Matlab functions for graphic representation purposes:

– rdisk.m : Graphic representation of the modes in a micro-disk;

– rsphere.m : Graphic representation of the modes in a micro-sphere;
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– rspurious.m : Graphic representation of the eigenvectors in the cavity and in the
outer PML domain (useful to identify spurious resonances);

– rspectrum.m : Graphic representation of the spectrum of the Finite Difference matrix
(useful to identify spurious resonances);

• Matlab functions for the computation of WGM in a micro-sphere;

– slegend.m : Associated Legendre function with Schmidt semi-normalization Sm` ;

– dslegend.m : Derivative of the associated Legendre function with Schmidt semi-
normalization (Sm` )′;

– hansenm.m : Hansen solution Mm
` of the spherical vectorial wave equation;

– hansenn.m : Hansen solution Nm
` of the spherical vectorial wave equation;

– modefield.m : Computes the amplitude of the electromagnetic field for a mode in a
micro-sphere;

• Low level internal functions:

– matrice.m : Computes the Finite Difference matrix;

– insigmat.m : Computes the PML function σ̃ by quadrature;

– infolog.m : Gives information on the software used (Matlab or Octave) and on
the standard toolboxes available.

3.2 Operating principle of the WGrin toolbox

First of all, in order to use the WGrin toolbox, the user must define the refractive index
profile N in the file optindex.m in the form of a Matlab handle function. For instance, for a
micro-disk or micro-sphere with refractive index

N(r) =
2n0

1 + (r/R)2

with vacuum outside (N = 1), the user must provide in the file optindex.m the following
Matlab handle function:

N=@(r) 2*n0./(1+(r./R).^2).*(r<=R)+(r>R);

The value n0 is provided by the user at the WGrin prompt in the Matlab console.

For a micro-disk or micro-sphere with constant refractive index N = n0 in vacuum (N = 1
outside the cavity), the user must provide in the file optindex.m the following Matlab handle
function:

N=@(r) n0*(r<=R)+(r>R);

It is important to declare the function N such that a vector call is possible, see the Vec-
torization section in the Matlab documentation.1 An important assumption on the refractive
index N is that it must correspond to a smooth function of the radial position. In that respect,
the WGrin program can not deal with the case of a micro-ring considered as a disk with a
piece-wise constant refractive index.2

At the WGrin prompt, the user must indicate the geometry of the cavity (disk or sphere),
its radius and the value n0 of the refractive index at the cavity boundary. He also supplies the
features of the modes : TE or TM, and its polar mode index (m for a disk or ` for a sphere).

1Available online at https://fr.mathworks.com/help/matlab/matlab_prog/vectorization.html
2This could be a subject of future developments of the code.
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The WGrin program builds the matrices A and C resulting from the Finite Difference
discretization of problem (5) and solves the eigenvalue problem (17). Note that the need to
bound the computational domain and the Finite Difference discretization itself are liable for
the presence of spurious resonances among the eigenvalues obtained by solving (17). These
spurious resonances do not have any physical meaning. Moreover, because the step-size δr must
be sufficiently small in order to compute accurate approximation of the resonances, the size of
the matrix C−1 A is large and as a consequence the number of its eigenvalues too. Therefore, it
is expensive and not recommended to compute all the eigenvalues of C−1 A. On the contrary,
we must restrict ourselves to the computation of a few of them, corresponding to the look after
resonances. For this purpose, in the WGrin toolbox the number Nres of eigenvalues to be
computed must be provided by the user as well as a guess λt for the resonance wavelengths
of interest (also referred to as the target value) to indicate the position in the spectrum of
the matrix C−1 A around which the Nres eigenvalues must be computed. Namely, the WGrin
toolbox uses Matlab function eigs with a call in the form eigs(A,Nres,sigma) to compute
the Nres (Nres) eigenvalues the nearest to the numeric value σ = (2π/λt)

2 (sigma). The eigs

subroutine computes eigenvalues using a Krylov method [8] (Matlab documentation on the
algorithm used by the eigs subroutine is rather poor). If the expert mode is not activated in
the WGrin program, a default guess λt for the resonance wavelengths is provided. This default
guess is λt = 2πn0R

q where R is the radius of the cavity, n0 the refractive index at the cavity
boundary and q the polar mode index. This guess is based on the first term of the asymptotic
expansion for the resonances available for a micro-disk [9] and for a micro-sphere [10, 11]. Note
that the eigenvalues computed by Matlab eigs solver corresponds to k2

q , see (17). The WGrin
program then deduces the corresponding values of the resonance wavenumbers kq and resonance
wavelengths λq = 2π/kq and arranges the resonance wavelengths according to their distance to
the guess value λt.

Even if the WGrin program is provided with some default values for the PML parameters,
the user can modify these values inside the WGrin program. For convenience, an expert mode
can be activated in the heading of the WGrin program main file wgrin.m (by setting the variable
expert mode to 1) and the user will be asked by the WGrin prompt in the Matlab console
to enter its own values for all the discretization parameters. Note that in the expert mode, an
empty answer (carriage return) for any of the parameters will proceed to the computation with
the default value. For the PML, these tunable parameters are:

• R1 (variable R1 in the program) that defines the location of the end boundary of the PML
area (the condition R1 > R must be fulfilled);

• σ0 (variable sigma0 in the program), the PML amplification parameter;

• ℵ (variable qpml in the program) that tunes the regularity of the complex shift in coordi-
nates.

Let us provide some criteria on how to choose the PML parameter values. We consider more
specifically the case of a micro-disk but the same reasoning could be done in the case of a micro-
sphere. The aim of the PML is to absorb the outgoing mode while preventing any reflection in
the computational domain. In particular, it is wished that the mode uq tends to zero at the
PML end boundary R1 where a homogeneous Dirichlet boundary condition is imposed. One
can show that the solution ũq to problem (5) is such that, in the PML area, we have

|uq(R1)|
|uq(R)|

≈

∣∣∣∣∣
√

R

R1(1 + iσ0)

∣∣∣∣∣ exp
(
− Re(k(j)

q )R1σ0

)
since σ̃(R) = 0 and σ̃(R1) = σ0. It follows that in order that

|uq(R1)|
|uq(R)| = 10−α with e.g. α = 16,
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Figure 3: Spherical coordinates basis.

we must have

R1σ0 ≈
α log(10)

Re(k
(j)
q )

.

From asymptotic formulas for the resonances in a disk, see [12, 9], we have k
(j)
q ∼

m→+∞
q

n0R
where

n0 = N(R). Thus, R1σ0 must be chosen such that

R1σ0 ≈
α log(10)n0R

q
. (20)

Default values for the PML parameters are: R1 = 2R and σ0 = 16 log(10)n0R
qR1

. We found that the
value of the parameter ℵ has no real impact on the accuracy of the results and the default value
is set to ℵ = 2. Other parameters in the WGrin program that can be changed when the expert
mode is activated, include the number of discretization nodes in the cavity (variable Qi in the
program with default value 104 and denoted by JR in Section 2) and the target wavelength λt
(variable lambdat in the program with default value 2πRn0/q).

The WGrin program computes the resonances for the specified GRIN micro-cavity. It can
also depict the corresponding modes associated to the computed resonances. The representation
of the mode differs according to whether one considers a disk or a sphere cavity.

- For a TE mode in a micro-disk, the WGrin program provides graphical representations
of the radial variation of the modulus, real part and imaginary part of the magnetic field
component Hz together with a bi-dimensional representation of the modulus, real part
and imaginary part of Hz.

- For a TM mode in a micro-disk, the electric field component Ez is represented in a way
similar to TE modes.

- For a TE mode in a micro-sphere, the WGrin program provides graphical representations
of the radial variation of the amplitude3 of the electric field E = Mm

` and the amplitude
of the magnetic field H = − i

ωµ0
kNNm

` , see Appendix A, where Mm
` and Nm

` are the two
Vector Harmonics functions defined in (A.17). It also provides a bi-dimensional represen-
tation of the amplitude of E and H in a azimuth plane ϕ = cste specified by the user
and in a polar plane θ = cste specified by the user, see Fig. 3. By default, these planes
correspond to ϕ = 0 and θ = π

2 .

3The amplitude of the electric field E (resp. magnetic field H) is given by the euclidean norm of the real part
of E (resp. H).
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- For a TM mode in a micro-sphere, the WGrin program similarly provides the amplitude
of the electric field E = Pm

` and the amplitude of the magnetic field H = − i
ωµ0

Mm
` where

Pm
` is defined in terms of u` and the Spherical Surface Harmonics in (A.21).

Note that in all cases, the modes outside the cavity is computed from its values on the cavity
boundary using respectively formula (7) in the case of a micro-disk and formula (9) in the case
of a micro-sphere.

It should be noted that for ` larger than 150, values of the associated Legendre function Pm`
involved in the definition of the Vector Harmonics Mm

` , Nm
` and Pm

` , are not anymore rep-
resentable in the floating point arithmetic in Matlab. As a consequence, we have used the
Schmidt semi-normalized associated Legendre functions Sm` instead of the associated Legendre
functions Pm` in the WGrin toolbox to compute the electromagnetic field. They are related to
each other by the relation [13]

Pm` (x) = D`,m Sm` (x) where D`,m =

{
1 if m = 0

(−1)m
√

(`+m)!/2(`−m)! if m > 0
(21)

In terms of the Schmidt semi-normalized associated Legendre functions, we have

Y m
` (θ, ϕ) = K`,mS

m
` (cos(θ)) eimϕ where K`,m =


2`+ 1

4π
if m = 0

(−1)m
2`+ 1

8π
if m > 0

(22)

The quality of the image display for modes can be adjusted in the expert mode of the WGrin
program. In the 2D mode rendering, a mesh-grid in the radial and angular directions is used to
display the mode with a number of sampling points defined by the variables nbpr (number of
point in the radial direction) and nbpa (number of point in the angular direction). By default
these variables are set to the value 100. When the WGrin program is run in the expert mode,
it is possible to increase these values for a better rendering, for instance when the disk polar
mode index is large. Note however that in this case, memory requirements are higher.

The mode displays can be automatically recorded in files in the raster-graphics file format
PNG (Portable Network Graphics). The user is asked whether he wants the display of the
graphical windows to be saved or not. If so, he is asked to provide the file prefix name (a
character string) that will be supplemented by the number of the mode as it appears in the
WGrin table of results to distinguish between modes. The filename extension is “.png”.

3.3 A comprehensive test run for a micro-disk

We consider the case of a micro-disk with radius R = 10µm and refractive index varying
according to the radial position r as

n(r) =
2n0

1 + r2/R2
where n0 = n(R) = 1.45. (23)

This refractive index profile corresponds to the modified form of “Maxwell’s fish eye” GRIN
studied in [14]. Its value is 1 outside the cavity.

The first step for computing the resonances of this dielectric cavity is to provide the refractive
index function in the file named optindex.m. For this particular example, the file must be as
follows:

% Definition of the refractive index N

% Some useful variables defined in the main program are:

% R is the radius of the cavity

% n0 is the refractive index value at the cavity boundary

N=@(r) 2*n0./(1+(r./R).^2).*(r<=R)+(r>R);

11



Note that the variation of the refractive index will be depicted by the WGrin program, see
Fig. 4.

Then, running the wgrin program, the user provides the characteristics of the cavity (disk
or sphere, radius R and value n0 of the refractive index N at the cavity boundary), the charac-
teristics of the modes (TE or TM modes), the polar mode index q (also denoted m for a disk
and ` for a sphere) and the number of modes to be computed. If the expert mode is activated
(by setting the variable expert mode to 1 in the wgrin program) then the user is also asked to
provide the target value of the resonance wavelength, the number of discretization nodes inside
the cavity for the Finite Difference scheme and the PML parameters: position R1 of the PML
outer side, PML amplification coefficient σ0 and PML regularity parameter ℵ.

We provide below an example of execution of the wgrin program in the basic mode to com-
pute TE modes in a micro-disk and then an execution for the same micro-disk in the expert mode
with different PML parameters. Computations were performed on an Intel Core i5 processor
with 8 GO RAM.

>> wgrin

[?] Geometry : sphere (0) or disk (1) : ans = 1

[?] Radius in mu-m: R = 10

[?] Optical index at the boundary: n0 = 1.45

[?] Polar mode index: m = 60

[?] TE or TM mode : TE

[*] TE modes

[?] Number of resonances to compute = 5

[*] PML parameters : R1 = 20, sigma0 = 0.44517, qpml = 2

[*] Computation of the FDM matrices

[*] Solving the generalized eigenvalue problem

[*] CPU time for the computations (sec.): 72.4

Wavenumber #1 = 4.235543978990459-4.19432897415177e-12i mu-m^(-1)

Wavelength #1 = 1.483442348455364+1.469007346983824e-12i mu-m

Wavenumber #2 = 4.369633740207968-9.573664704954836e-11i mu-m^(-1)

Wavelength #2 = 1.437920356885688+3.150416759780281e-11i mu-m

Wavenumber #3 = 4.504389754715657-1.423331090603349e-09i mu-m^(-1)

Wavelength #3 = 1.394902672576614+4.407718804007733e-10i mu-m

Wavenumber #4 = 4.639383995299243-1.665431052923363e-08i mu-m^(-1)

Wavelength #4 = 1.354314562783743+4.861674589927731e-09i mu-m

Wavenumber #5 = 4.774434864118084-1.594548735427607e-07i mu-m^(-1)

Wavelength #5 = 1.316006079463016+4.395150189592987e-08i mu-m

Since spurious resonances may be intruded among the computed resonances, one may want
the WGrin program to detect WGM resonances. This is achieved by comparing the Matlab
2-norm of the associated mode inside and outside the cavity. WGM are located inside the cavity
whereas spurious modes introduced by the numerical discretization are located in the PML area.
Note that this approach do not distinguish between spurious resonances and outer resonances,
see Section 3.5 for details.
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[?] Auto-detection of spurious modes (y/n) ? ans = y

[*] The resonances identified as WGM are :

Wavenumber #1 = 4.235543978990459-4.19432897415177e-12i mu-m^(-1)

Wavelength #1 = 1.483442348455364+1.469007346983824e-12i mu-m

Wavenumber #2 = 4.369633740207968-9.573664704954836e-11i mu-m^(-1)

Wavelength #2 = 1.437920356885688+3.150416759780281e-11i mu-m

Wavenumber #3 = 4.504389754715657-1.423331090603349e-09i mu-m^(-1)

Wavelength #3 = 1.394902672576614+4.407718804007733e-10i mu-m

Wavenumber #4 = 4.639383995299243-1.665431052923363e-08i mu-m^(-1)

Wavelength #4 = 1.354314562783743+4.861674589927731e-09i mu-m

Wavenumber #5 = 4.774434864118084-1.594548735427607e-07i mu-m^(-1)

Wavelength #5 = 1.316006079463016+4.395150189592987e-08i mu-m

It is also possible to visualize some of the computed modes. The user must provide the
value Ro of the radial position of the outer boundary up to which the mode in the exterior
domain must be displayed and he then successively provides the index of the modes he wants a
display. For each of the specified mode, a Matlab figure windows is open for graphical display
of the modes. For a micro-disk, each figure window is shared into six subplots. The first column
corresponds to the radial variation of the modulus, the real part and the imaginary part of the
mode um along the interval [0, Ro] where um denotes the approximated solution to problem (1).
The position of the disk boundary is marked with a black line. The second column provides the
modulus, the real part and the imaginary part of the bi-dimensional representation of the mode
corresponding to the function (r, θ) ∈ [0, Ro] × [0, 2π] 7→ um(r)eimθ. The position of the disk
boundary is marked with a black circle. We show in Fig. 5 and in Fig. 6 the representation
of the modes corresponding to the first resonance and to the third resonance of the previous
execution of the WGrin program. The modes are represented in arbitrarily unit since they
are defined up to a multiplicative complex valued constant. In the WGrin toolbox a mode is
normalized such that its maximum value is 1. The user is successively asked for the index of the
resonances for which the modes must be displayed. He is also asked whether the figures have to
be saved or not. If so, he must provide the prefix of the files name; Each mode is saved in the
PNG format (Portable Network Graphics format) in a file formed by the prefix provided by the
user complemented by the resonance reference number and the extension .png. Note that in
the expert mode, the user is asked to provide the number of sampling points in the radial and
angular directions for the display of the modes. This can be useful, e.g. to improve the quality
of the image by increasing the number of sampling points; However, time for the display and
memory requirements also increase in this case.

[?] Graphical display of the modes (y/n) ? ans = y

[?] Value of the external boundary untill where the mode is displayed = 1.5*R

[?] Name of the figures backup files (if empty, no backup) : disk_fisheye

[?] Index of the computed modes to be displayed = 1

[?] Display another mode (y/n) ? ans = : y

[?] Index of the computed modes to be displayed = 3

[?] Display another mode (y/n) ? ans = : n

Under the expert mode, computation of TE modes with the same micro-disk as in the
previous run, is obtained as follows.
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Figure 4: Figure window of the refractive index profile provided by the wgrin program.

Figure 5: WGrin representation of the mode corresponding to the first resonance of the disk with
radius R = 10µm and radially varying refractive index defined in (23). The first column shows
the radial variation of the magnetic field component Hz: from top to bottom, the modulus, the
real part and the imaginary part of Hz. The second column shows the bi-dimensional variation
of the magnetic field component Hz: from top to bottom, the modulus, the real part and the
imaginary part of Hz.
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Figure 6: WGrin representation of the mode corresponding to the third resonance of the disk
with radius R = 10µm and radially varying refractive index defined in (23).
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>> wgrin

[?] Geometry : sphere (0) or disk (1) : ans = 1

[?] Radius in mu-m: R = 10

[?] Optical index at the boundary: n0 = 1.45

[?] Polar mode index: m = 60

[?] TE or TM mode : TE

[*] TE modes

[?] Number of resonances to compute = 5

[?] Target resonance wavelength in mu-m : lambda = 1.5

[?] Number of discretization sub-intervals inside the cavity: Qi = 1E4

[*] Step-size of the FDM = 0.001

[?] PML outer boundary position = 1.5*R

[?] PML parameter sigma0 = 1

[?] PML regularity = 2

[*] PML parameters : R1 = 15, sigma0 = 1, qpml = 2

[*] Computation of the FDM matrices

[*] Solving the generalized eigenvalue problem

[*] CPU time for the computations (sec.): 54.39

Wavenumber #1 = 4.235543978990701+2.283822661974355e-12i mu-m^(-1)

Wavelength #1 = 1.48344234845528-7.998781903669295e-13i mu-m

Wavenumber #2 = 4.369633740208481-8.405479665891252e-11i mu-m^(-1)

Wavelength #2 = 1.43792035688552+2.766000777080156e-11i mu-m

Wavenumber #3 = 4.504389754716508-1.405907838095475e-09i mu-m^(-1)

Wavelength #3 = 1.39490267257635+4.353763123410803e-10i mu-m

Wavenumber #4 = 4.639383995300634-1.663014863934398e-08i mu-m^(-1)

Wavelength #4 = 1.354314562783336+4.854621326091715e-09i mu-m

Wavenumber #5 = 4.774434864120844-1.594228227396461e-07i mu-m^(-1)

Wavelength #5 = 1.316006079462256+4.394266754103896e-08i mu-m

[?] Auto-detection of spurious modes (y/n) ? ans = n

[?] Graphical display of the modes (y/n) ? ans = n

One can note that the resonance values have not significantly changed in this run with some
new PML parameters. For instance, there are 8 digits in common on the real part of the first
computed resonance wavelength. (Note that the imaginary parts significantly differ in the two
computations; This can be related to the fact that the imaginary part in this particular example
is below the numerical error.) The fact that the resonance values do not significantly change with
a change in the PML parameters indicates, as detailed in Section 3.5, that the above computed
resonances are not spurious resonances.

3.4 A comprehensive test run for a micro-sphere

We consider the case of a micro-sphere with radius R = 500µm and refractive index varying
according to the radial position r as n(r) = n0

√
1 + ε′(R− r) where ε′ = 4 10−3 µm−1 and

n0 = n(R) = 1.45. Such a refractive index profile is investigated in [11]. The value is 1 outside
the cavity.
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The first step for computing the resonances of this dielectric cavity is to provide the refractive
index function in the file named optindex.m. For this particular example, the file must be as
follows:

% Definition of the refractive index N and expression of its derivative dN

% Some useful variables defined in the main program are:

% R is the radius of the cavity

% n0 is the refractive index value at the cavity boundary

epsp=4E-3;

N=@(r) n0*sqrt(1+(epsp/n0^2)*(R-r)).*(r<=R)+(r>R);

Using the WGrin program in the expert mode, the first five resonances corresponding to a
polar mode index ` = 3000 are obtained as illustrated below.

>> wgrin

[?] Geometry : sphere (0) or disk (1) : ans = 0

[?] Radius in mu-m: R = 500

[?] Optical index at the boundary: n0 = 1.45

[?] Polar mode index: ell = 3E3

[?] TE or TM mode : TE

[*] TE modes

[?] Number of resonances to compute = 5

[?] Target resonance wavelength in mu-m : lambda = 1.55

[?] Number of discretization sub-intervals inside the cavity: Qi = 1E4

[*] Step-size of the FDM = 0.05

[?] PML outer boundary position = 1.5*R

[?] PML parameter sigma0 = 0.5

[?] PML regularity = 2

[*] PML parameters : R1 = 750, sigma0 = 0.5, qpml = 2

[*] Computation of the FDM matrices

[*] Solving the generalized eigenvalue problem

[*] CPU time for the computations (sec.): 34.83

Wavenumber #1 = 4.14214533888064-7.258262874179645e-17i mu-m^(-1)

Wavelength #1 = 1.516891560564491+2.658042342178407e-17i mu-m

Wavenumber #2 = 4.14677546565527-1.025334297156278e-16i mu-m^(-1)

Wavelength #2 = 1.515197858967443+3.746487709894812e-17i mu-m

Wavenumber #3 = 4.151356330683101-1.180821678705239e-16i mu-m^(-1)

Wavelength #3 = 1.513525895317614+4.305109092330583e-17i mu-m

Wavenumber #4 = 4.155899669044884-1.516371281094346e-16i mu-m^(-1)

Wavelength #4 = 1.511871269169402+5.516394417209356e-17i mu-m

Wavenumber #5 = 4.160411798907187-1.195507411074092e-16i mu-m^(-1)

Wavelength #5 = 1.51023158544786+4.339697943639473e-17i mu-m

[?] Auto-detection of spurious modes (y/n) ? ans = y

[*] The resonances identified as WGM are :

Wavenumber #1 = 4.14214533888064-7.258262874179645e-17i mu-m^(-1)

Wavelength #1 = 1.516891560564491+2.658042342178407e-17i mu-m
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Wavenumber #2 = 4.14677546565527-1.025334297156278e-16i mu-m^(-1)

Wavelength #2 = 1.515197858967443+3.746487709894812e-17i mu-m

Wavenumber #3 = 4.151356330683101-1.180821678705239e-16i mu-m^(-1)

Wavelength #3 = 1.513525895317614+4.305109092330583e-17i mu-m

Wavenumber #4 = 4.155899669044884-1.516371281094346e-16i mu-m^(-1)

Wavelength #4 = 1.511871269169402+5.516394417209356e-17i mu-m

Wavenumber #5 = 4.160411798907187-1.195507411074092e-16i mu-m^(-1)

Wavelength #5 = 1.51023158544786+4.339697943639473e-17i mu-m

The graphical representation of the refractive index provided by the WGrin program is
given in Fig. 7.
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Figure 7: Figure window of the refractive index profile provided by the wgrin program.

It is also possible to visualize some of the modes.

[?] Graphical display of the modes (y/n) ? ans = y

[?] Value of the external boundary untill where the mode is displayed = 1.1*R

Image display quality

[?] Number of sampling points in the 2 angular directions = 300

[?] Number of sampling points in the radial direction = 200

[?] Azimuthal mode number m = ell-2

Name of the figures backup files (if empty, no backup) :

[?] Azimuthal angle [radian] : phi = 0

[?] Polar angle [radian] : theta = pi/2

[?] Index of the computed modes to be displayed = 1

[?] Display a mode for an other radial mode index n (y/n) ? ans = : n

[?] Display a mode for an other azimuthal mode index m (y/n) ? ans = : n

We have depicted in Fig. 8 the mode with polar mode index ` = 3000 and azimuthal mode
index m = 2998 corresponding to the first resonance (radial mode index j = 1) as provided
by the WGrin program. The graphical representations of the mode provided by the WGrin
program are not clearly legible in this particular test case due to the fact that quality factor of
this resonator is high. However, using Matlab tools available in the graphical windows, one

18



Figure 8: WGrin representation of the mode with polar mode index ` = 3000, azimuthal mode
index m = 2998 and radial mode index n = 1. The first column corresponds to the radial
variation of the amplitude of the electric field E and the amplitude of the magnetic field H. The
second column corresponds to a bi-dimensional representation of the amplitude of E and H in
an azimuth plane ϕ = 0. The third column corresponds to a bi-dimensional representation of
the amplitude of E and H in a polar plane θ = π

2 .

can easily enlarge the display in the vicinity of the cavity boundary to make the figure clearer
as illustrated in Fig. 9.
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Figure 9: WGrin representation of the mode with polar mode index ` = 3000, azimuthal mode
index m = 2998 and radial mode index n = 1. This figure corresponds to an enlargement in the
vicinity of the cavity boundary of the mode depicted in Fig. 8 using Matlab graphical tools.

3.5 Detection of spurious resonances

Spurious resonances, that is to say computed resonances without any physical meaning, are
inherent to the discretization of the resonance problem (1). The use of a PML to bound the
computational domain rather than a Dirichlet boundary condition (perfect electric/magnetic
wall condition) [15, 4, 16] reduces the number of spurious resonances in the vicinity of the
look after resonances and above all it allows an approximation of the imaginary part of the
resonances which is not possible when using a Dirichlet boundary condition (the eigenvalues
are then real). However, it may sometimes remains some spurious resonances among the Nres

resonances computed by the WGrin program and this number may vary depending on the PML
parameters values. The questions are then :

• How to know if a computed resonance is a spurious resonance or a physical resonance?

• What is the impact of the PML parameters values on the number of spurious resonances
among the computed resonances?

There exist some simple criteria to decide whether a resonance is of Whispering Gallery Mode
(WGM) type or not. The first one is that WGM resonances, that are actually the resonance of
primary importance in the study of optical micro-resonators, have a very small imaginary part.
The imaginary part of the resonance takes into account the mode leakage and the smaller is the
imaginary part, the higher is the micro-resonator quality factor. However, it can be sometime
difficult to decide whether the imaginary part of a resonance has to be consider small or not.
Therefore, in the WGrin program an other criterion is used. The Matlab 2-norm of the
computed eigenvector inside and outside the cavity are computed and their values compared.
WGM are localized inside the dielectric cavity, in the vicinity of the cavity boundary, whereas
spurious resonances related to the discretization are localized inside the PML. It is thus easy to
filter WGM resonances automatically at a low computational cost.

The main drawback of these easy-to-use and computational cheap methods is that they do
not distinguish between spurious resonances and outer resonances (i.e. resonances for which
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the mode is located outside the cavity) [17]. So, when outer resonances are expected, one
should distinguish them from spurious modes in an other way, for instance using the approach
described in [7] where a general and reliable criteria has been identified. The method consists
in changing the PML parameters and observing if a resonance value is shifted or not by this
change. The resonance that are not shifted are the physical resonances whereas the values that
change with a change in the discretization parameters correspond to spurious resonances related
to the discretization.

In order to illustrate this point, let us consider the micro-sphere with radius R = 10µm and
constant optical index N = n0 = 1.45. We are looking for the resonances corresponding to TE
modes with polar mode index ` = 60.

>> wgrin

[?] Geometry : sphere (0) or disk (1) : ans = 0

[?] Radius in mu-m: R = 10

[?] Optical index at the boundary: n0 = 1.45

[?] Polar mode index: ell = 60

[?] TE or TM mode : TE

[*] TE modes

[?] Number of resonances to compute = 20

[*] PML parameters : R1 = 20, sigma0 = 0.4415, qpml = 2

[*] Computation of the FDM matrices

[*] Solving the generalized eigenvalue problem

[*] CPU time for the computations (sec.): 42.98

Wavenumber #1 = 4.588033246292139-1.73396316455934e-08i mu-m^(-1)

Wavelength #1 = 1.369472488512894+5.175670537866828e-09i mu-m

Wavenumber #2 = 4.993674552899072-7.067196909528906e-06i mu-m^(-1)

Wavelength #2 = 1.258228833418731+1.780682907710654e-06i mu-m

Wavenumber #3 = 5.338411612710144-0.0003504458750686014i mu-m^(-1)

Wavelength #3 = 1.17697654956827+7.726391420748446e-05i mu-m

Wavenumber #4 = 5.650863394760268-0.003979956466311404i mu-m^(-1)

Wavelength #4 = 1.111897731631917+0.0007831200752417359i mu-m

Wavenumber #5 = 5.67424549190582-0.7041785208049409i mu-m^(-1)

Wavelength #5 = 1.090521304655885+0.135334588592312i mu-m

Wavenumber #6 = 5.947343139611172-0.01400180736026578i mu-m^(-1)

Wavelength #6 = 1.056463421396866+0.002487227819603042i mu-m

Wavenumber #7 = 5.377900045247969-1.128823266236945i mu-m^(-1)

Wavelength #7 = 1.119031846283636+0.2348852104198617i mu-m

Wavenumber #8 = 5.124066330206219-1.456371272620318i mu-m^(-1)

Wavelength #8 = 1.13455881209127+0.3224663293852132i mu-m

Wavenumber #9 = 4.891014078864517-1.730853406721978i mu-m^(-1)

Wavelength #9 = 1.141663335385394+0.4040168033701797i mu-m

Wavenumber #10 = 4.672681946446131-1.968882408085997i mu-m^(-1)

Wavelength #10 = 1.141921724494184+0.4811604171941994i mu-m

Wavenumber #11 = 4.207979950209577-1.85783394314159i mu-m^(-1)

Wavelength #11 = 1.249584804123375+0.5516948966970998i mu-m
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Wavenumber #12 = 4.041476238831348-1.784322396836121i mu-m^(-1)

Wavelength #12 = 1.301066054103875+0.5744240873656707i mu-m

[The other resonances values are not provided for the sake of conciseness.]

[?] Auto-detection of spurious modes (y/n) ? ans = y

[*] The resonances identified as WGM are :

Wavenumber #1 = 4.588033246292139-1.73396316455934e-08i mu-m^(-1)

Wavelength #1 = 1.369472488512894+5.175670537866828e-09i mu-m

Wavenumber #2 = 4.993674552899072-7.067196909528906e-06i mu-m^(-1)

Wavelength #2 = 1.258228833418731+1.780682907710654e-06i mu-m

Wavenumber #3 = 5.338411612710144-0.0003504458750686014i mu-m^(-1)

Wavelength #3 = 1.17697654956827+7.726391420748446e-05i mu-m

Wavenumber #4 = 5.650863394760268-0.003979956466311404i mu-m^(-1)

Wavelength #4 = 1.111897731631917+0.0007831200752417359i mu-m

Wavenumber #6 = 5.947343139611172-0.01400180736026578i mu-m^(-1)

Wavelength #6 = 1.056463421396866+0.002487227819603042i mu-m

[?] Graphical display of the modes (y/n) ? ans = n

The WGrin program has identified five resonances as WGM resonances among the twenty
resonances computed. Using the program rspurious provided in the WGrin toolbox, one can
compare the behavior of the mode uq = S` solution to problem (1) for the various computed
resonances.

>> rspurious

[?] Index of the computed modes to be displayed = 4

[?] Display another mode (y/n) ? ans = : y

[?] Index of the computed modes to be displayed = 5

[?] Display another mode (y/n) ? ans = : n

(a) (b)

Figure 10: Mode uq = S` solution to problem (1) for the fourth (a) and fifth (b) computed
resonances.

We have depicted in Fig. 10 the mode uq = S` solution to problem (1) for the fourth (a) and
fifth (b) computed resonances. The fourth one is of WGM type and the mode is located in the
dielectric cavity. One can also identify that the radial mode index for this resonance is j = 4:
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the modulus of uq has four local maxima inside the cavity. Note that in the PML area this is
not the mode uq that is depicted but the mode under the coordinate stretching, that is to say
ũq with the notation introduce in Section 1.2. One can observe that the PML fulfilled its role:
the mode outside the cavity is absorbed by the PLM without any reflection in the cavity. The
fifth resonance is not of WGM type since the mode is located outside the dielectric cavity. It
can be either an outer resonance or a spurious resonance.

In order to identify the type of the fifth resonance (outer resonance or spurious resonance), we
use the approach described in [7] that consists in a second execution with new PML parameters.
If the fifth resonance value is shifted by this change of the dicretization parameters, this will
indicate that it is a spurious resonance. On the contrary, if the fifth resonance value remains
unchanged (up to the computational accuracy) this will show that it is an outer resonance.

>> wgrin

[?] Geometry : sphere (0) or disk (1) : ans = 0

[?] Radius in mu-m: R = 10

[?] Optical index at the boundary: n0 = 1.45

[?] Polar mode index: ell = 60

[?] TE or TM mode : TE

[*] TE modes

[?] Number of resonances to compute = 20

[?] Target resonance wavelength in mu-m : lambda = 1.4

[?] Number of discretization sub-intervals inside the cavity: Qi = 1E4

[*] Step-size of the FDM = 0.001

[?] PML outer boundary position = 2*R

[?] PML parameter sigma0 = 1

[?] PML regularity = 2

[*] PML parameters : R1 = 20, sigma0 = 1, qpml = 2

[*] Computation of the FDM matrices

[*] Solving the generalized eigenvalue problem

[*] CPU time for the computations (sec.): 44.32

Wavenumber #1 = 4.588033246302807-1.732415768625441e-08i mu-m^(-1)

Wavelength #1 = 1.36947248850971+5.171051747946207e-09i mu-m

Wavenumber #2 = 4.993674552911803-7.067179371720165e-06i mu-m^(-1)

Wavelength #2 = 1.258228833415523+1.780678488795937e-06i mu-m

Wavenumber #3 = 5.338411612730631-0.0003504458351444487i mu-m^(-1)

Wavelength #3 = 1.176976549563754+7.726390540468686e-05i mu-m

Wavenumber #4 = 5.650863394719128-0.003979956399148256i mu-m^(-1)

Wavelength #4 = 1.111897731640031+0.0007831200620377285i mu-m

Wavenumber #5 = 5.674245476260446-0.704178511034266i mu-m^(-1)

Wavelength #5 = 1.090521308030529+0.1353345875064554i mu-m

Wavenumber #6 = 5.947343139542304-0.0140018073699966i mu-m^(-1)

Wavelength #6 = 1.056463421409091+0.00248722782138917i mu-m

Wavenumber #7 = 5.377899980543093-1.128823198748748i mu-m^(-1)

Wavelength #7 = 1.119031864257551+0.2348852029757196i mu-m

Wavenumber #8 = 6.237542250106264-0.02460767420896846i mu-m^(-1)

Wavelength #8 = 1.007301797225336+0.003973897644670414i mu-m

Wavenumber #9 = 5.124066299947559-1.456371088852832i mu-m^(-1)
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Wavelength #9 = 1.134558839190339+0.3224662983022196i mu-m

Wavenumber #10 = 6.521228368764321-0.0321075598875408i mu-m^(-1)

Wavelength #10 = 0.9634738492565768+0.004743706640187283i mu-m

Wavenumber #11 = 4.891015995724708-1.730852514760547i mu-m^(-1)

Wavelength #11 = 1.141663118504647+0.4040163600774204i mu-m

Wavenumber #12 = 4.670737168546394-1.969544899442375i mu-m^(-1)

Wavelength #12 = 1.142137753590133+0.4816138236577537i mu-m

Wavenumber #13 = 4.459262018127697-2.181502027992055i mu-m^(-1)

Wavelength #13 = 1.136926027216357+0.5561921286452673i mu-m

Wavenumber #14 = 4.2542904580112-2.372205616899279i mu-m^(-1)

Wavelength #14 = 1.126616564061441+0.628204906960605i mu-m

Wavenumber #15 = 2.31241876379066-2.312419437404983i mu-m^(-1)

Wavelength #15 = 1.358573882736076+1.358574278492606i mu-m

Wavenumber #16 = 2.206698605662269-2.206699026508928i mu-m^(-1)

Wavelength #16 = 1.423661594014404+1.423661865525531i mu-m

Wavenumber #17 = 2.096259504480139-2.096259740942331i mu-m^(-1)

Wavelength #17 = 1.498665738901962+1.498665907954402i mu-m

Wavenumber #18 = 1.979046909029419-1.979047021140842i mu-m^(-1)

Wavelength #18 = 1.587426988863956+1.587427078790423i mu-m

Wavenumber #19 = 1.850991812678877-1.85099185167617i mu-m^(-1)

Wavelength #19 = 1.69724823517992+1.697248270938094i mu-m

Wavenumber #20 = 1.701204571165077-1.701204578069632i mu-m^(-1)

Wavelength #20 = 1.846687161607911+1.846687169102925i mu-m

[?] Auto-detection of spurious modes (y/n) ? ans = n

[?] Graphical display of the modes (y/n) ? ans = n

We can conclude that the resonance number 5 is not a spurious resonances but an outer res-
onance. Its value has not significantly changed with the change of the PLM parameter. One can
also note that the resonance with number 11 in the first computation (k = 4.207979950209577−
i1.85783394314159µm−1) is not found in this second computation. It is therefore a spurious
resonance.

It can be useful to have a wider view of the spectrum of the Finite Difference matrix C−1 A
to identify the spurious resonances. This can be obtained easily with the WGrin toolbox in
two steps. The first step consists in a first computation of the resonances. Let us consider
the previous example of the micro-sphere where 200 resonances are computed by the WGrin
program.

>> wgrin

[?] Geometry : sphere (0) or disk (1) : ans = 0

[?] Radius in mu-m: R = 10

[?] Optical index at the boundary: n0 = 1.45

[?] Polar mode index: ell = 60

[?] TE or TM mode : TE

[*] TE modes

[?] Number of resonances to compute = 200
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[*] PML parameters : R1 = 20, sigma0 = 0.4415, qpml = 2

[*] Computation of the FDM matrices

[*] Solving the generalized eigenvalue problem

[*] CPU time for the computations (sec.): 61.85

Wavenumber #1 = 4.588033246292139-1.733963161272877e-08i mu-m^(-1)

Wavelength #1 = 1.369472488512894+5.175670528057133e-09i mu-m

[The other resonances values are not provided for the sake of conciseness.]

[?] Auto-detection of spurious modes (y/n) ? ans = n

[?] Graphical display of the modes (y/n) ? ans = n

In a second step, using the program entitled rspectrum in the WGrin toolbox, a second
computation is achieved where one of the PML parameter can be changed: the location of the
PML end R1, the PML amplification coefficient σ0 or the PML regularity parameter ℵ. Once
these new computation is achieved, the spectrum of the finite Difference matrix C−1 A in the
two cases is depicted. The eigenvalues of the matrix are represented by a mark in the complex
plane and the kind of mark and its color are different in the two executions. As mentioned
before, when two marks are superimposed at the same location, its means that this eigenvalue
corresponds to a true resonance (either a WGM or an outer resonance). On the contrary, when
a mark is alone, it corresponds to a spurious resonance. Instead of displaying the spectrum of
the finite Difference matrix C−1 A with eigenvalues k2

q , for an easier analysis of the results, the
rspectrum program displays, in the complex plane, the values of the resonance wavenumbers kq
and the values of the resonance wavelengths λq = 2π/kq in two separated graphic windows.

>> rspectrum

[?] Select the PML parameter to modify :

(1) R1 (2) sigma0 (3) qpml : rep = 2

[?] New value of the PML amplification coefficient : sigma0 = 1

[*] PML parameters : R1 = 20, sigma0 = 1, qpml = 2

[*] Computation of the FDM matrices for the new set of PML parameters

[*] Solving the generalized eigenvalue problem

[?] Modify another PML parameter (y/n) ? ans = : n

>> figure(2)

>> xlim([2,10])

>> ylim([-8,0])

>> figure(3)

>> xlim([0.3,1.6])

>> ylim([0,1.3])

The result is depicted in Fig. 11. Note that the target (or guess) resonance value is marked
with a black star.

One can identify in Fig. 11, close to the real axis, a first family of resonances that remains
unchanged in the two computations (circles and crosses are superimposed) and other branches
of resonances that are shifted depending on the value of σ0. Since the values of this latter
family of resonances change with the PML parameters values, they are PML dependent and can
therefore be related to the numerical approximation method. On the contrary, the first family of
resonances that remains unchanged are the sought out resonances. We can also identify a short
branch of resonances that remain unchanged but these resonances have a large imaginary part.
They correspond to outer resonances [17]. Note that numerical investigations have shown that
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Figure 11: Shape of the spectrum of the Finite Difference matrices obtained for two computations
with different values of the PML amplification coefficient σ0: Blue crosses correspond to a
computation with σ0 = 0.445 whereas red circles correspond to a computation with σ0 = 1.

modifying the value of the PML regularity parameter ℵ do not imply a shift in the resonance
values large enough to clearly distinguish between spurious and physical resonances.
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Appendix

A Physical and mathematical backgrounds

A.1 Maxwell’s equations in a GRIN micro-resonator

A Whispering Gallery Mode (WGM) is characterized by a sinusoidal time varying electromag-
netic field. The electric field E and magnetic field H can be represented in phasor notation
as

E(x, t) = Re
(
E(x) e−iωt

)
(A.1a)

H(x, t) = Re
(
H(x) e−iωt

)
(A.1b)

where ω denotes the optical wave frequency, t the time and x the position. The frequency ω is
not imposed by sources but it is one of the unknown of the resonance problem with E and H.
In the sequel we denote by Ω the bounded domain occupied by the dielectric cavity, by Σ its
boundary and by Ωe the exterior domain: Ωe = R3\Ω. The electric field E and magnetic field H
are complex valued solutions to the harmonic Maxwell’s equations in R3:

curl E− iωµ0 H = 0 (A.2a)

div H = 0 (A.2b)

div(εr E) = 0 (A.2c)

curl H + iωε0 εr E = 0 (A.2d)

where µ0 and ε0 denote respectively the magnetic permeability and the dielectric permittivity
of vacuum and εr denotes the relative dielectric permittivity. We have εr = 1 in Ωe and εr > 1
in the cavity Ω. In Ω, the relative dielectric permittivity εr is generally position dependent.
Equations (A.2) can be handled in R3 when E and H refer to Schwartz’s distributions or as
regular functions in Ω and Ωe with the following conditions at the interface Σ:[

H · ν
]

= 0
[
εrE · ν

]
= 0 (A.3a)[

H ∧ ν
]

= 0
[
E ∧ ν

]
= 0 (A.3b)

where ν denotes the unit outward normal to the boundary of Ω, and the brackets refer to the
jump across the interface of the quantity inside the brackets. We also need to specify some
condition at infinity for H and E, typically an outgoing wave condition.

By taking the curl of equation (A.2a) and combining it with equation (A.2d), we obtain

curl curl E(x)− k2N2(x)E(x) = 0

where k2 = ω2µ0ε0 and N is the refractive index function defined by εr(x) = N2(x). From
(A.2c) and the vector identity div(εr E) = εr div E + E · ∇εr we deduce that

div E = −∇N
2

N2
·E.

Then, using the vector identity curl curl E = −∆E + ∇ div E, where ∆ refers to the vector
Laplace operator, we finally obtain the following propagation equation in Ω and Ωe

∆E +∇
(

E · ∇N
2

N2

)
+ k2N2 E = 0. (A.4)

Similarly, by taking the curl of equation (A.2d) and by using the vector identity curl(εrE) =
εr curl E +∇εr ∧E and equation (A.2a), we obtain that

− curl curl H +
∇N2

N2
∧ curl H + k2N2 H = 0.
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(a) Cylindrical coordinates basis. (b) Spherical coordinates basis.

Figure 12: Notations for the cylindrical coordinates basis (left) and for the spherical coordinates
basis (right).

Since H is divergence free, the propagation equation for H also reads

∆H +
∇N2

N2
∧ curl H + k2N2 H = 0. (A.5)

Our concern is the computation of WGM in a graded index micro-disk or micro-sphere where
the refractive index N varies with the radial position r = |x| by solving equations (A.4) and
(A.5) taking advantage of simplifications induced by the geometry of a sphere or a disk. An
other assumption on the refractive index N is that it is represented by a smooth function of the
radial position r. The mathematical approach for solving equations (A.4) and (A.5) is actually
different for a micro-disk with radius R and for a micro-sphere with radius R, but the two
formulations can be combined into a unique framework for the numerical approximation by the
Finite Difference Method. We start by presenting the mathematical formulation for a micro-disk
and then the formulation for the micro-sphere will be discussed.

A.2 Mathematical model for WGM in a GRIN micro-disk

When the dielectric micro-cavity is a disk with a radial varying refractive index N , it is quite nat-
ural to exploit this feature by introducing the cylindrical coordinates basis (r, θ, z), see Fig. 12a.
In the cylindrical vector basis (er, eθ, ez), we have

∇N2

N2
=

2

N
∂rN(r) er = ∂r

(
ln(N2)

)
er.

Then, considering the expression of the vector Laplace operator in cylindrical coordinates,
we obtain that component-wise equation (A.4) reads

∆Er −
2

r2
∂θEθ −

1

r2
Er + ∂rEr ∂r

(
ln(N2)

)
+ Er∂

2
r ln(N2) + k2N2Er = 0 (A.6a)

∆Eθ +
2

r2
∂θEr −

1

r2
Eθ +

1

r
∂θEr∂r

(
ln(N2)

)
+ k2N2Eθ = 0 (A.6b)

∆Ez + ∂zEr∂r
(

ln(N2)
)

+ k2N2Ez = 0 (A.6c)

where ∂r, ∂θ and ∂z refer respectively to partial derivation with respect to the variables r, θ
and z, and ∆ refers to the scalar Laplace operator in polar coordinates. Similarly, we find that
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equation (A.5) for H reads

∆Hr −
2

r2
∂θHθ −

1

r2
Hr + k2N2Hr = 0 (A.7a)

∆Hθ +
2

r2
∂θHr −

1

r2
Hθ −

1

r
∂r
(

ln(N2)
)
∂r(rHθ)

+
1

r
∂r
(

ln(N2)
)
∂θHr + k2N2Hθ = 0 (A.7b)

∆Hz + ∂r
(

ln(N2)
)(
∂zHr − ∂rHz

)
+ k2N2Hz = 0. (A.7c)

The main assumption in the model is that the electromagnetic field does not depend on the
height variable z and the 3D geometrical problem setting can be reduced to a 2D one. This
assumption and the resulting 2D problem can be seen as an approximation of the 3D one
resulting from the use of the Effective Index Method [18]. Under this assumption, the magnetic
field component Hz satisfies the following equation deduced from (A.7c)

∆Hz − ∂r
(

ln(N2)
)
∂rHz + k2N2Hz = 0

and this equation can be recast into

div

(
1

N2
∇Hz

)
+ k2Hz = 0.

Once Hz is known, the components Er and Eθ of the electric field can be deduced from Maxwell’s
equation (A.2d). Namely,

Er(r, θ) =
i

ωεr
∂θHz(r, θ) (A.8a)

Eθ(r, θ) =
i

ωε
∂rHz(r, θ). (A.8b)

We deduce from the boundary conditions (A.3b) combined with (A.8b) that Hz satisfies the
following interface conditions across the cavity boundary Σ:[

Hz

]
= 0,

[ 1

N2

∂Hz

∂ν

]
= 0.

Similarly, equation (A.6c) can be recast into

∆Ez(r, θ) + k2N2(r)Ez(r, θ) = 0

and, under the assumption that the electromagnetic field does not depend on the height vari-
able z, the components Hr and Hθ of the magnetic field can be deduced from Maxwell’s equa-
tion (A.2a) as

Hr(r, θ) =
1

iωµ0r
∂θEz(r, θ) (A.9a)

Hθ(r, θ) = − 1

iωµ0
∂rEz(r, θ). (A.9b)

Moreover, we deduce from the boundary conditions (A.3b) combined with (A.9b) that Ez sat-
isfies the following interface conditions across the cavity boundary Σ:[

Ez

]
= 0,

[∂Ez
∂ν

]
= 0.

Thus, as well known, we obtain that Maxwell’s equations in polar coordinates split into two
independent subsystems of equations. The first one involves the electromagnetic field compo-
nents Hz, Er and Eθ and it is referred as the TE modes subsystem. The second one involves
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the electromagnetic field components Ez, Hr and Hθ and it is referred as the TM modes subsys-
tem. Moreover, it is well known [19, 6] that the resonances wave-numbers are complex numbers
with a negative imaginary part under the e−iωt convention for harmonic time dependence of the
electromagnetic field, see (A.1).

In the sequel, for the purposes of notation, Ω (resp. Ωe) will designate the trace of the
three-dimensional micro-disk cavity Ω (resp. of the exterior domain Ωe) in the plane z = 0. We
denote by L2

loc(R2) the Lebesgue set of locally square integrable functions in R2 and by H2(Ω)
(resp. by H2

loc(Ωe)) the Sobolev space of square integrable functions in Ω (resp. locally square
integrable functions in Ωe) with all derivatives up to order 2 in L2(Ω) (resp. in L2

loc(Ωe)). We
introduce the space of functions

D(R2) = {u ∈ L2
loc(R2) | u|Ω ∈ H2(Ω), u|Ωe ∈ H2

loc(Ωe)}. (A.10)

For a varying refractive index N , the resonance problems for TE and TM modes in the cavity Ω
can be gathered into a unique form by introducing a mode selection index p such that p = −1 for
TE modes and p = +1 for TM modes. This resonance problem reads: find (k, u) ∈ C × D(R2)
such that u 6= 0, Im(k) < 0 and

−div(Np−1∇u)− k2Np+1 u = 0 in Ω and Ωe (A.11a)[
u
]

= 0 across Σ (A.11b)[
Np−1∂u

∂ν

]
= 0 across Σ (A.11c)

with an appropriate outgoing wave condition at infinity. For TE modes, in the cylindrical basis,
the unknown u is the component Hz of the magnetic field whereas for TM modes the unknown u
is the component Ez of the magnetic field and the resonance wavelength λ is connected to the
resonance wave-number k through the relation λ = 2π/k.

When considering a disk shaped cavity with a radially varying refractive index N , the Fourier
approach can be used to solve the resonance problem (A.11). The eigenfunction u for a solution
(k, u) to problem (A.11) is expanded in polar coordinates as

u(r, θ) =
∑
m∈Z

um(r) eimθ. (A.12)

We can deduce from (A.11) the problem satisfied by um. To this end, let L2
loc(R+, rdr) denotes

the Lebesgue set of locally square integrable functions in R+ with respect to the measure rdr
and let H2(R+, rdr) (resp. H2

loc(]R,+∞[, rdr)) denotes the Sobolev space of square integrable
functions in ]0, R[ (resp. locally square integrable functions in ]R,+∞[) with all derivatives up
to order 2 in L2(]0, R[, rdr) (resp. in L2

loc(]R,+∞[, rdr)). We introduce the space of functions

D(R+, rdr) = {v ∈ L2
loc(R+, rdr) | v|]0,R] ∈ H2(]0, R[, rdr), v|[R,+∞[ ∈ H2

loc(]R,+∞[, rdr)}.

From (A.12), it is found that solutions to problem (A.11) are obtained from the solutions to the
following family of 1D problems: Find (k, um) ∈ C × D(R+, rdr) such that Im(k) < 0, um 6= 0
and

−u′′m(r)− 1

r

(
1 + (p− 1)r

N ′(r)

N(r)

)
u′m(r)

+

(
m2

r2
− k2

mN
2(r)

)
um(r) = 0 in ]0, R[ and ]R,+∞[ (A.13a)[

um(r)
]
r=R

= 0 (A.13b)[
Np−1(R)u′m(R)

]
r=R

= 0 (A.13c)

32



where here the prime symbol refers to the derivative of a function of a real variable. Note that
for m 6= 0, the singularity m

r2
in (A.13a) implies that the solution must satisfy the Dirichlet

condition um(0) = 0. For m = 0, um must satisfy instead the Neumann boundary condition
u′m(0) = 0. In the sequel, we will only consider the case when m 6= 0 since the case m = 0 is of
poor practical interest.

In the exterior domain ]R,+∞[, equation (A.13a) reads

u′′m(r)− 1

r
u′m(r) +

(
m2

r2
− k2

m

)
um(r) = 0 (A.14)

Introducing the variable x = k r and the new unknown vm(x) = um(r), equation (A.14) in the
new variable x for vm reads

x2 v′′m(x) + x v′m(x) + (x2 −m2) vm(x) = 0. (A.15)

This second order ordinary differential equation is referred to as Bessel’s equation of order m.
The space of solutions admits a basis formed e.g. of the two linearly independent Hankel

functions H
(1)
m and H

(2)
m . As well known, under the e−iωt convention for harmonic time dependence

of the electromagnetic field, see (A.1), Hankel function H
(1)
m represents outgoing waves whereas

H
(2)
m represents ingoing waves. Since WGM correspond to outgoing waves, the condition at

infinity for problem (A.13) reads

um(r) ∝ H(1)
m (kmr) as r → +∞ (A.16)

where the notation ∝ means “proportional to”.

Mode indexes for a micro-disk

A solution (km, um) to problem (A.13)–(A.16) is referred to as a mode of the micro-disk cavity
with polar mode index m. For a given mode index m, problem (A.13) has a sequence of solu-
tions, indexed by a second index j, termed the radial mode index. Moreover, one can see from
problem (A.13) that in a GRIN micro-disk resonator the resonances have multiplicity 2 since
the two indexes ±m provide the same resonance wave-number k, the modes being expressed as
a linear combination of um(r) eimθ and its complex conjugate um(r) e−imθ. Thus, we will restrict
the discussion to positive integer values of m.

We have depicted in Fig. 13 the electric field amplitude of the TE mode with mode indexes
m = 20 and j = 3 in a micro-disk with constant refractive index. Note that the evanescent part
of the field is not represented. (A similar pattern is obtained for the magnetic field amplitude
and for the TM mode.) We can observe that 2m is the number of lobes (local extrema) whereas j
is the number of lobes in the radial direction.

A.3 Mathematical model for WGM in a GRIN micro-sphere

It is well known that for a dielectric sphere with constant dielectric permittivity, Maxwell’s
harmonic equations (A.2) can be solved analytically using Hansen’s method [20]. When the
refractive index N of the dielectric sphere varies in the radial direction, it is still possible to
construct solutions to the vector Helmholtz equation (A.4) and (A.5). Drawing on Hansen
approach for the dielectric sphere with constant refractive index, we define for ` ∈ N and m ∈ Z
such that −` ≤ m ≤ `, the following Vector Harmonics

Mm
` (r, θ, ϕ) = curl

(
v(r)Y m

` (θ, ϕ)er
)

(A.17a)

Nm
` (r, θ, ϕ) = 1

kN(r) curl Mm
` (r, θ, ϕ) (A.17b)
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Figure 13: Electric field amplitude of the TE mode with mode indexes m = 20 and j = 3 in a
micro-disk with constant refractive index.

where v denotes at this stage an unknown function and Y m
` the Spherical Surface harmonics of

degree ` and order m [21] defined in terms of Associated Legendre function Pm` as

Y m
` (θ, ϕ) = C`m Pm` (cos(θ)) eimϕ where C`m =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
(A.18)

for all integers ` and m such that −` ≤ m ≤ `.
In the spherical coordinates basis, we have

Mm
` =

1

r


0

1

sin(θ)
v ∂ϕY

m
`

−v ∂θY m
`


and, since ∆Y m

` + `(`+1)
r2

Y m
` = 0, we find that

curl curl Mm
` =


0

− 1
r sin(θ)

(
∂2
r (rv)− `(`+ 1)1

rv
)
∂ϕY

m
`

1
r

(
∂2
r (rv)− `(`+ 1)1

rv
)
∂θY

m
`

 .

It follows that if v solves the scalar equation

− 1

r
∂2
r

(
rv(r)

)
+
(`(`+ 1)

r2
− k2N2(r)

)
v(r) = 0 (A.19)

then curl curl Mm
` − k2N2Mm

` = 0. Moreover,

div
(
εrM

m
`

)
= Mm

` · ∇εr + εr div Mm
` = ∂rεrM

m
` · er = 0.

Therefore Mm
` solves problem (A.2) for the electric field E in the two domains Ω and Ωe. From

(A.2a), the magnetic field is then expressed as H = − i
ωµ0

kNNm
` . Such a solution corresponds
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to the so-called TE modes for the dielectric sphere [3]. Equation (A.19) is to be considered in
Ω and Ωe (where N = 1) together with the following conditions across the sphere boundary for
v deduced from (A.3): [

v(r)
]
r=R

= 0,
[
v′(r)

]
r=R

= 0. (A.20)

A similar development can be done by considering the Vector Harmonics

Pm
` =

1

kN
Nm
` =


`(`+1)
k2N2

v
rY

m
`

1
k2N2

1
r∂θY

m
` ∂r(rv)

1
k2N2

1
r sin(θ)∂ϕY

m
` ∂r(rv)

 . (A.21)

We obtain that if v solves the scalar equation

−1

r
∂2
r

(
rv(r)

)
+

2

r

N ′(r)

N(r)
∂r(rv(r)) +

(`(`+ 1)

r2
− k2N2(r)

)
v(r) = 0 (A.22)

then curl curl Pm
` − k2N2Pm

` = 0. Moreover,

div
(
εrP

m
`

)
=

1

k2
div
(
curl Mm

`

)
= 0.

Therefore, Pm
` also solves problem (A.2) for the electric field E and from (A.2a), the magnetic

field is found to be H = − i
ωµ0

Mm
` . Such a solution corresponds to the so-called TM modes

for the dielectric sphere [3]. Equation (A.22) is to be considered in Ω and Ωe (where N = 1)
together with the following conditions across the sphere boundary for v deduced from (A.3):[

v(r)
]
r=R

= 0,
[ 1

N2
∂r
(
r v
)]
r=R

= 0. (A.23)

Both for TE and TM modes, at infinity, v must satisfy the following outgoing radiation

condition: v(r) ∝ h(1)
` (kr) as r → +∞ where h

(1)
` denotes the Spherical Hankel’s function of the

first kind [1, 2].

For a varying refractive index N , the resonance problems for TE and TM modes in the
cavity Ω can be gathered into a unique form by introducing a mode selection index p such
that p = 1 for TE modes and p = −1 for TM modes. Introducing as new unknown the so-
called Debye potential S` [22] such that S`(r) = kr v(r), the resonance problem reads: find
(k, S`) ∈ C×D(R+, rdr) such that Im(k) < 0, S` 6= 0 and

S′′` (r) + (p− 1)
N ′(r)

N(r)
S′`(r)

+

(
k2N2(r)− `(`+ 1)

r2

)
S`(r) = 0 in ]0, R[ and ]R,+∞[ (A.24a)[

S`(r)
]
r=R

= 0 (A.24b)[
Np−1(r)S′`(r)

]
r=R

= 0 (A.24c)

At infinity, S` must satisfy the following outgoing radiation condition: S`(r) ∝ kr h
(1)
` (kr) =

ξ`(kr) as r → +∞, where h
(1)
` denotes the Spherical Hankel’s function of the first kind and ξ`

denotes the Ricatti-Bessel function.
Note that for ` 6= 0, the singularity `(`+1)

r2
in (A.24a) implies that the solution must satisfy

the Dirichlet condition S`(0) = 0 and for ` = 0, S` must satisfy instead the Neumann boundary
condition S′`(0) = 0.
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(a) View in the azimuth plane ϕ = 0. (b) View in the polar plane θ = π
2 .

Figure 14: Electric field amplitude of the TE mode with mode indexes ` = 20, m = 17 and
n = 3 in a micro-sphere with constant refractive index.

Mode indexes for a micro-sphere

A mode (k, S`) is described in terms of three integers. The first two are the integer ` involved
in (A.24a) and the integer m involved in the expression of the electromagnetic field of the mode,
see (A.17). Note that this underscores a mode degeneracy since there exist 2` + 1 modes with
the same values of ` and therefore with the same resonance k, but with a different value for m
and therefore with a different expression for the electromagnetic field. The polar mode number
` (we use the terminology introduced in [3]) corresponds to the number of wavelengths taken to
travel around the sphere. The index m is called the azimuthal mode number. It can take 2`+ 1
values from −` to ` and it is related to the sinusoidal variation of the mode with the azimuthal
angle ϕ, see Fig 12b. The third integer, denoted by n, labels the solutions to problem (A.24) for
a fixed value of `. It is referred to as the radial mode number and corresponds to the number of
intensity maxima of the mode in the radial direction er.

We have depicted in Fig. 14 the electric field amplitude of the TE mode with mode indexes
` = 20, m = 17 and n = 3 in a micro-sphere with constant refractive index. Note that the
evanescent part of the field is not represented. (A similar pattern is obtained for the magnetic
field amplitude and for the TM mode.) More precisely, Fig. 14a shows the electric field amplitude
in the azimuth plane ϕ = 0 and Fig. 14b shows the electric field amplitude in the polar plane
θ = π

2 . We can observe in Fig. 14b that 2` is the number of lobes (local extrema) in the equatorial
plane θ = π

2 whereas n is the number of lobes in the radial direction. One can also observe in
Fig. 14a that `+ 1− |m| = 4 is the number of lobes in a meridian plane. (We can also observe
in Fig. 14a that n is the number of lobes in the radial direction.)
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