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AN ACOUSTIC-TRANSPORT SPLITTING METHOD FOR THE BAROTROPIC

BAER-NUNZIATO TWO-PHASE FLOW MODEL ∗

Katia Ait-Ameur1, Samuel Kokh2, Marica Pelanti3, Marc Massot1 and Teddy
Pichard1

Abstract. This work focuses on the numerical approximation of the barotropic Baer-Nunziato two-
phase flow model. The scheme relies on an operator splitting method corresponding to a separate
treatment of fast propagation phenomena due to the acoustic waves on the one hand and slow prop-
agation phenomena due to the fluid motion on the other. We propose to extend the implicit-explicit
schemes developed in [7]. These methods enable the use of time steps that are no longer constrained
by the sound velocity thanks to an implicit treatment of the acoustic waves, and maintain accuracy
in the subsonic regime thanks to an explicit treatment of the material waves. In the present setting,
a particular attention will be also given to the discretization of the non conservative terms in the
Baer-Nunziato model. We prove that the proposed numerical strategy preserve positive values of the
volume fractions and densities and we illustrate its behaviour with several relevant test cases.

Résumé. Ce travail porte sur l’approximation numérique du modèle de Baer-Nunziato barotrope.
Le schéma se base sur une méthode de splitting correspondant à un traitement séparé des ondes
acoustiques d’une part et des ondes matières d’autre part. Nous proposons d’étendre les schémas
implicites-explicites développés dans [7]. Ces méthodes permettent d’utiliser des pas de temps qui ne
sont plus contraints par la vitesse du son grâce à un traitement implicite des ondes acoustiques, et de
conserver une précision dans le régime subsonique grâce à un traitement explicite des ondes matières.
Dans ce travail, une attention particulière sera également portée à la discrétisation des termes non
conservatifs dans le modèle de Baer-Nunziato. Nous montrons que les méthodes numériques proposées
préservent la positivité des densités et des fractions volumiques et nous illustrons leurs comportements
à l’aide de plusieurs cas tests représentatifs des difficultés numériques liées à ce modèle.

1. Introduction

We are interested in the computation of compressible two-phase flows with the two-fluid Baer-Nunziato (BN)
model [4]. From a numerical point of view, the BN model raises some issues. One difficulty comes from the
presence of non conservative products and more precisely the fact that the model cannot be equivalently recast
in full conservative form. However, the non conservative products naturally vanish when the void fractions αk
are locally constant in space, and the model coincides in that case with two (decoupled) gas dynamics systems.
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A second difficulty is related to the total boiling or condensation of one phase that arise a singularity in the
model. The absent phase is called vanishing phase or ghost phase. It poses a difficulty in the two-fluid model
for the computation of the velocity for the ghost phase. Several schemes have already been proposed in the
literature in order to build consistent and stable approximations of the Baer-Nunziato model, among which we
may cite those relying on time-explicit, exact or approximate Riemann solver (see for instance [2,3,17,21]). We
also mention some other finite volume techniques that have been used. In [14], the authors extend Rusanov’s
scheme and the VFRoe method to the context of non conservative systems. Other schemes rely on relaxation
techniques (see for instance [1, 12]).

For stability reasons, the time steps ∆t involved in such methods are subject to a usual CFL condition
that depends on the material velocities and the sound speeds. It is then clear that the definition of ∆t is
driven by the fastest eigenvalues, associated with the acoustic waves. In many applications, the acoustic waves
are not predominant physical phenomena. A CFL condition based on the most influent waves, the contact
waves associated to the material velocities would be more adapted. The idea is then to propose a time-implicit
treatment of the acoustic waves, in order to get rid of a too restrictive CFL condition, together with an explicit
treatment of the contact waves in order to preserve accuracy. This idea has already been used earlier within
the framework of Euler equations and Shallow Water equations (see for instance [7, 9, 13]) using a Lagrange-
Projection approach, but also for two-phase flows models (see [5, 8, 11,16,19,22]).

The paper is organized as follows. In Section 2, we present the set of partial differential equations of the Baer-
Nunziato two-phase flow model in the barotropic framework, and we recall its main mathematical properties. In
Section 3, we propose an operator splitting method for this model, and, in Section 4, we describe the numerical
treatment of each step. In Section 5, we build an explicit and semi-implicit numerical schemes based on this
operator splitting method for the solution of the Baer Nunziato model. Finally, Section 6 is devoted to the
numerical experiments, where representative test cases have been implemented.

2. The Baer-Nunziato model

In the present work, we consider the compressible barotropic one-dimensional BN model where balance
equations account for the evolution of mass and momentum of each phase. There are five unknowns that
describe the evolution of the two-phase flow: the velocities of each phase uk, where k ∈ {1, 2}, the densities of
each phase ρk and the phase fractions αk (knowing that α1 + α2 = 1). We also assume a barotropic pressure
law for each phase ρk → pk(ρk), k ∈ {1, 2} such that the sound speed is defined by c2k = p′k(ρk) > 0. The 1D
barotropic BN model reads:

∂tα1 + uI∂xα1 = 0,

∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1 + α1p1)− pI∂xα1 = 0,

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2p2)− pI∂xα2 = 0,

(1)

where uI and pI are the interfacial velocity and pressure for which one must provide closure laws. So far as
the definitions of uI and pI are concerned, we first observe that the characteristic speeds of (1) are always real
and given by Sp = {uI , uk ± ck, k = 1, 2}, where ck denotes the speed of sound in phase k. When (1) is
hyperbolic, one can easily check that similarly to the classical gas dynamics equations, the characteristic fields
associated with the eigenvalues uk ± ck are genuinely nonlinear. Regarding the characteristic field associated
with uI , it is generally required to be linearly degenerate in practice. This property holds as soon as

uI = βu1 + (1− β)u2, β =
χα1ρ1

χα1ρ1 + (1− χ)α2ρ2
, (2)
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where ξ ∈ [0, 1] is a constant (we refer to [14] for the details). Regarding the interfacial pressure pI , we set
pI = µp1 + (1 − µ)p2, µ ∈ [0, 1]. In the last section, dedicated to the numerical results, the pair of interfacial
velocity and pressure will be given by: χ = 0, µ = 1 such that:

(uI , pI) = (u2, p1). (3)

We denote U = (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2) the unknown vector which is expected to belong to the set
of admissible states:

Ω =
{
U ∈ R5, 0 < αk < 1, ρk > 0, k ∈ {1, 2}, α1 + α2 = 1

}
. (4)

System (1) takes the following condensed form

∂tU + ∂xF (U) + C(U)∂xU = 0, x ∈ R, t > 0, (5)

where

F (U) =


0

α1ρ1u1

α1ρ1u
2
1 + α1p1(ρ1)
α2ρ2u2

α2ρ2u
2
2 + α2p2(ρ2)

 , C(U)∂xU =


uI∂xα1

0
−pI∂xα1

0
−pI∂xα2

 . (6)

3. Operator splitting acoustic-transport

Before going further on, we recall that this idea has already been used earlier within the framework of Euler
equations (see for instance [13]) using a Lagrange-Projection approach, but also for the Baer-Nunziato model
(see [5,11]). In [5], the authors propose an operator splitting with three steps for the Baer Nunziato model with
energy equations. The two first steps correspond to the acoustic and transport part of the Euler equations for
each phase and the third step gathers the non conservative terms that couple the two phases. In [11], the authors
propose an operator splitting in two steps where the coupling terms are distributed in the two subsytems. In
this case, the transport part arises a weakly hyperbolic system and a careful treatment has to be made for the
numerical discretization. In this section, we introduce an operator splitting for the barotropic BN model in two
steps where the two subsystems account for the coupling terms like [11] while preserving the hyperbolicity of
each subsystem like [5].
The first step corresponds to the propagation of acoustic waves:

∂tα1 = 0,

∂tmk + mk∂xuk = 0, k ∈ {1, 2},
∂t(mkuk) + mkuk∂xuk + ∂x(αkpk)− pI∂xαk = 0, k ∈ {1, 2}.

(7)

The second step considers the propagation of material waves due to the fluid motion:
∂tα1 + uI∂xα1 = 0,

∂tmk + uk∂xmk = 0, k ∈ {1, 2},
∂t(mkuk) + uk∂x(mkuk) = 0, k ∈ {1, 2}.

(8)

where mk = αkρk.
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3.1. Properties of the acoustic sub-system

If we note τk = ρ−1
k the specific volume, the acoustic system (7) takes the form ∂tα1 = 0,

ρk∂tτk − ∂xuk = 0,
αkρk∂tuk + ∂x(αkpk)− pI∂xαk = 0.

(9)

The acoustic system (9) is strictly hyperbolic and the eigenstructure of the system is composed of five fields
associated with the eigenvalues {−ck, 0, ck}. The waves associated with ±ck are genuinely nonlinear. The wave
associated with 0 is linearly degenerate.

We carry on with the approximation process of the acoustic system (7) by using a Suliciu-type relaxation
approximation of (9), see [6, 10, 18]. The principle of the pressure relaxation methods consists in introducing a
larger system with linearly degenerate characteristic fields so that the underlying Riemann problem is easier to
solve. To do so, we introduce two new independent variable pressures πk. While the pressures pk verify

ρk∂t(αkpk) + αk(ck/τk)2∂xuk = 0,

the variables πk are evolved according to their own partial differential equations. Within the time interval
t ∈ [tn, tn + ∆t[, we propose to consider the following relaxation system

∂tα1 = 0,
ρk∂tτk − ∂xuk = 0,
αkρk∂tuk + ∂x(αkπk)− πI∂xαk = 0,
ρk∂t(αkπk) + αka

2
k∂xuk = λk (pk − πk) ρkαk,

(10)

where λk are the relaxation parameters and ak is a constant chosen in agreement with the Whitham subchar-
acteristic condition

a2
k > max

τk

(
−∂pk
∂τk

(τk)

)
, k = 1, 2, (11)

where the max is taken over all the specific volumes τk in the solution of (10). We adopt the classic method that
allows to reach the regime λk →∞: at each time step, we enforce the equilibrium relation (πk)nj = pEOSk ((τk)nj )
and solve (10) with λk = 0.
For λk = 0, the relaxation system can take the compact form:

∂tW + ∂xG(W) = (πI∂xα1)E, (12)

where W = (α1, τ1, u1, π1, τ2, u2, π2), G(W) =
(
u1, α1π1, a

2
1u1, u2, α2π2, a

2
2u2

)
, E = (0, 0, 1, 0, 0,−1, 0). Let us

discuss a few properties of (12). Straightforward computation provide the following property on the character-
istic fields of the relaxation system.

Proposition 3.1. For all state vector W = (α1, τ1, u1, π1, τ2, u2, π2) such that ρ1 > 0 and ρ2 > 0, system (12)
has the following characteristic speeds:

Sp = {−akτk, 0, akτk, k ∈ {1, 2}} .

Moreover, all the characteristic fields are linearly degenerate and system (12) is hyperbolic.
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3.2. Properties of the transport sub-system

We now consider the time evolution corresponding to the transport step. Starting from the output of the
first step U], we want to compute the updated data at time tn+1, Un+1.

∂tα1 + uI∂xα1 = 0,

∂tmk + uk∂xmk = 0, k ∈ {1, 2},
∂t(mkuk) + uk∂x(mkuk) = 0, k ∈ {1, 2}.

(13)

Again, straightforward computation provides:

Proposition 3.2. For all state vector W = (α1,m1,m1u1,m2,m2u2) such that ρ1 > 0 and ρ2 > 0, system (13)
has the following characteristic speeds:

Sp = {uI , uk, k ∈ {1, 2}} .

Moreover, all the characteristic fields are linearly degenerate and system (13) is hyperbolic.

4. Discretization of the acoustic and transport sub-systems

In this section, we use the operator splitting method in order to derive an implicit-explicit numerical scheme,
the aim being to approximate the solutions of the barotropic Baer Nunziato model (5). Let ∆t be the time
step and ∆x the space step, which we assume here to be constant for simplicity in the notations. The space
is partitioned into cells Cj = [xj− 1

2
, xj+ 1

2
], j ∈ Z where xj+ 1

2
= (j + 1

2 )∆x are the cell interfaces. At the

discrete times tn = n∆t, the cell average of the solution of (5) is approximated on each cell Cj by a constant
value denoted by

Unj =
(
(α1)nj , (α1ρ1)nj , (α1ρ1u1)nj , (α2ρ2)nj , (α2ρ2u2)nj

)
.

In the following two sections, we describe the discretization strategy associated with the operator splitting
method in order to calculate the values of the approximate solution at time tn+1,

(
Un+1
j

)
j∈Z from those at time

tn. Section 4.1 displays the numerical treatment of the Lagrangian step (7) while section 4.2 deals with the
material transport step (13).

4.1. Treatment of the first step

We need to propose a discretization strategy for (12). The solution of a Riemann problem for (12) consists in
six constant states separated by five contact discontinuities. Unfortunately, the classic relaxation solver strategy
cannot be carried on here since the solution of the Riemann problem associated with (12) cannot be defined
easily. However we will see in the sequel that it is possible to derive an approximate Riemann solver for (12)
using a discretization of the non conservative product that is consistent with the term πI∂xαk.

Let ∆xL > 0,∆xR > 0. We consider a piecewise initial data defined by:

Wk(x, t = 0) =

{
(Wk)L = ((αk)L, (τk)L, (uk)L, (πk)L) , if x ≤ 0,
(Wk)R = ((αl)R, (τk)R, (uk)R, (πk)R) , if x > 0,

(14)

where the left and right states are defined by:

(πk)L = pEOSk ((τk)L), (πk)R = pEOSk ((τk)R).

Note that (πk)L and (πk)R are at equilibrium. Let us now build an approximate Riemann solver for the relaxed
acoustic system (12). We look for a function (Wk)RP composed of six states separated by discontinuities as
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follows:

(Wk)RP

(x
t

; (Wk)L, (Wk)R

)
=


(Wk)L if x

t < −
ak

(ρk)L
,

(Wk)?L if − ak
(ρk)L

< x
t < 0,

(Wk)?R if 0 < x
t <

ak
(ρk)R

,

(Wk)R if x
t >

ak
(ρk)R

,

(15)

where the intermediate states are such that the following properties hold:

(1) (Wk)RP is consistent in the integral sense with the barotropic Baer Nunziato model. More specifically
in our context, if ∆t is such that ak

(ρk)R
∆t ≤ min(∆xL,∆xR)/2, then

G((Wk)R)−G((Wk)L) = − ak
(ρk)L

((Wk)?L − (Wk)L) +
ak

(ρk)R
((Wk)R − (Wk)?R)

− ∆xL + ∆xR
2

{πI∂xαk} ,
(16)

where {πI∂xαk} is consistent with the non conservative term, in the sense:

lim
∆xL,∆xR → 0,

(Wk)L, (Wk)R → (αk, τk, uk, πk)

{πI∂xαk} = πI(∂xαk)(αk). (17)

(2) We impose that (Wk)L and (Wk)?L (resp. (Wk)R and (Wk)?R) verify the Rankine Hugoniot jump

conditions accross
(
− ak

(ρk)L

)
-wave (resp.

(
ak

(ρk)R

)
-wave):

ak
(ρk)L

((Wk)?L − (Wk)L) + G((Wk)?L)−G((Wk)L) = 0,

− ak
(ρk)R

((Wk)R − (Wk)?R) + G((Wk)R)−G((Wk)?R) = 0.
(18)

(3) Similarly, across the discontinuity of velocity 0 we impose that:

(uk)?L = (uk)?R = (uk)?, (α1π1)?L + (α2π2)?L = (α1π1)?R + (α2π2)?R. (19)

Relations (18) and (19) do not provide enough information to determine the intermediate states (Wk)?L and
(Wk)?R. Indeed, they provide only seven independent relations while we need eight quantities, namely (uk)?L,
(uk)?R, (αkπk)?L and (αkπk)?R.

We choose to add another jump relation accross the stationary discontinuity of (Wk)RP , we impose

(αkπk)?R − (αkπk)?L =Mk, (20)

where Mk is a function to be specified. Relations (16), (18), (19) and (20) lead to:

αku
?
k = αkuk −

1

2ak
∆(αkπk) +

Mk

2ak
,

π?k = πk − ak
2 ∆uk,

αk(πk)?L = (αk)Rπ
?
k −

Mk

2 ,

αk(πk)?R = (αk)Lπ
?
k + Mk

2 .

(21)

We now only need to determine Mk such that Conditions 1), 2) and 3) are satisfied. The integral consistency
requirement of Condition 1) imposes

Mk = {πI∂xαk}
∆xL + ∆xR

2
. (22)
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A simple mean to comply with the conditions is to choose:

Mk = π∆
I ((Wk)L, (Wk)R) [(αk)R − (αk)L] , (23)

where π∆
I ((Wk)L, (Wk)R) has to be chosen such that:

π∆
I ((Wk)L, (Wk)R)→ πI if (πI)L, (πI)R → πI .

At last, we choose:

π∆
I ((Wk)L, (Wk)R) = π?1 =

πL1 + πR1
2

− a1
πR1 − πL1

2
. (24)

This yields that

{πI∂xαk} ((Wk)L, (Wk)R,∆xL,∆xR) = 2π∆
I ((Wk)L, (Wk)R)

(αk)R − (αk)L
∆xL + ∆xR

. (25)

By construction, the approximate Riemann solver defined by (21) and (25) verifies the three conditions 1), 2)
and 3). We end up with the following update at the acoustic step:

(αk)]j = (α1)nj ,

(τk)]j = (τk)nj + ∆t
∆x(ρk)nj

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

(uk)]j = (uk)nj − ∆t
∆x(αkρk)nj

(
(αkπk)?j+1/2 − (αkπk)?j−1/2

)
+ ∆t

(αkρk)nj
{πI∂xαk}nj ,

(πk)]j = (πk)nj − ∆t
∆x(ρk)nj

a2
k

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

(26)

where (πk)nj = pEOSk ((τk)nj ) and

• αkj+1/2(uk)?j+1/2 = αkukj+1/2 −
∆(αkπk)

2ak
+ 1

2ak
{Sk}nj+1/2,

• αkj+1/2(αkπk)?j+1/2 = (αk)j(αk)j+1

(
πk − ak

2 ∆uk
)

+ ∆αk

4 {Sk}
n
j+1/2,

• {Sk}nj = 1
2 {Sk}

n
j+1/2 + 1

2 {Sk}
n
j−1/2, with: {Sk}nj+1/2 = πI j+1/2∆(αk)j+1/2,

where: bj+1/2 =
bj+1+bj

2 , ∆bj+1/2 = bj+1 − bj .

4.2. Treatment of the second step

We now consider the numerical treatment of the time evolution corresponding to the second step. Starting

from the output of the first step U]j , we want to compute the updated data at time tn+1, Un+1
j . Denoting

φk ∈ {mk,mkuk}, we use a standard time-explicit upwind discretization for the transport step by setting

(φk)n+1
j = (φk)]j − ∆t

∆x

(
(uk)?j+1/2(φk)]j+1/2 − (uk)?j−1/2(φk)]j−1/2

)
+ ∆t

∆x (φk)]j

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

(αk)n+1
j = (αk)]j − ∆t

∆x

(
(uI)

?
j+1/2(αk)]j+1/2 − (uI)

?
j−1/2(αk)]j−1/2

)
+ ∆t

∆x (αk)]j

(
(uI)

?
j+1/2 − (uI)

?
j−1/2

)
,

(27)

where

(φk)]j+1/2 =

{
(φk)]j , if (uk)?j+1/2 ≥ 0,

(φk)]j+1, if (uk)?j+1/2 < 0
, (αk)]j+1/2 =

{
(αk)]j , if (uI)

?
j+1/2 ≥ 0,

(αk)]j+1, if (uI)
?
j+1/2 < 0

.
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Let us note that the transport update (27) equivalently reads:

(φk)n+1
j = (φk)]jLj − ∆t

∆x

(
(uk)?j+1/2(φk)]j+1/2 − (uk)?j−1/2(φk)]j−1/2

)
,

(αk)n+1
j = (αk)]jL

I
j − ∆t

∆x

(
(uI)

?
j+1/2(αk)]j+1/2 − (uI)

?
j−1/2(αk)]j−1/2

)
,

LIj = 1 + ∆t
∆x

(
(uI)

?
j+1/2 − (uI)

?
j−1/2

)
.

(28)

Let us note that the interface value of the velocity (uk)?j+1/2 coincides with the one proposed in the first step,

which is actually crucial in order for the whole scheme to be conservative.

5. Two-step numerical method

In this section, we now give the details of the two-step process proposed in Section 3 for solving the barotropic
Baer Nunziato model. Let us briefly recall that this two-step process is defined by

• Update Unj to U]j by approximating the solution of (7).

• Update U]j to Un+1
j by approximating the solution of (13).

In the sequel, if we assume as given the approximate solution {Unj }j at time tn, we introduce the approximate
solution {Wn

j }j at equilibrium in the W variable. We begin with a fully explicit discretization of the Baer
Nunziato model, which means that both steps of the process are solved with a time-explicit procedure, and we
will go on with a mixed implicit-explicit strategy for which the solutions of (7) are solved implicitly in time and
the solutions of (13) are solved explicitly. The latter strategy allows to get rid of the strong CFL restriction
coming from the acoustic waves in the subsonic regime and corresponds to the motivation of the present study.

5.1. Time-explicit discretization

Let us begin with the time-explicit discretization of the acoustic system (7), or equivalently (9). The acous-
tic update is achieved thanks to the proposed relaxation approximation and the corresponding approximate
Riemann solver detailed in Section 4.1. More precisely, we propose to simply use a Godunov-type method
based on this approximate Riemann solver. If we focus on the conservative variable: (αk,mk,mkuk, ρkπk), the
discretization (26) yields the following formula for the acoustic update:

(αk)]j = (α1)nj ,

Lj(mk)]j = (mk)nj ,

Lj(mkuk)]j = (mkuk)nj − ∆t
∆x

(
(αkπk)?j+1/2 − (αkπk)?j−1/2

)
+ ∆t {πI∂xαk}nj ,

Lj(ρkπk)]j = (ρkπk)nj − ∆t
∆xa

2
k

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

Lj = 1 + ∆
∆x

(
(uk)?j+1/2 − (uk)?j−1/2

)
.

(29)

Overall Discretization After injecting (29) in (28) one obtains the complete update procedure from tn to
tn+ for the conservative variables:

(αk)n+1
j = (αk)]jL

I
j − ∆t

∆x

(
(uI)

?
j+1/2(αk)]j+1/2 − (uI)

?
j−1/2(αk)]j−1/2

)
,

(mk)n+1
j = (mk)nj − ∆t

∆x

(
(uk)?j+1/2(mk)]j+1/2 − (uk)?j−1/2(mk)]j−1/2

)
,

(mkuk)n+1
j = (mkuk)nj − ∆t

∆x

(
(uk)?j+1/2(mkuk)]j+1/2 + (αkπk)?j+1/2

− (uk)?j−1/2(mkuk)]j−1/2 − (αkπk)?j−1/2

)
+ ∆t {πI∂xαk}nj ,

LIj = 1 + ∆
∆x

(
(uI)

?
j+1/2 − (uI)

?
j−1/2

)
.

(30)
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The next statement gather the main properties satisfied by our explicit in time and two-step algorithm.

Proposition 5.1. The fully explicit scheme (26)-(27) satisfies the following:

• The discretization of the partial masses mk is conservative
• The discretization of the total momentum m1u1 +m2u2 is conservative.
• The constant velocities/pressures profiles are preserved.

Under the Whitham subcharacteristic condition and the CFL conditions,

∆t

∆x
max
j∈Z

max
k∈{1,2}

| (akτk)
n
j | <

1

2
,

∆t

∆x
max
j∈Z

(
((uk)?j−1/2)+ − ((uk)?j+1/2)−

)
< 1 (31)

• It preserves the maximum principle for the phase fractions: 0 < αk < 1 and positive values of the
densities ρk > 0.

Proof. • This is a straightforward consequence of (30).
• Summing the momentum equations in system (30) over k yields:

(m1u1 +m2u2)n+1
j = (m1u1 +m2u2)nj − ∆t

∆x

(
(α1π1 + α2π2)?Lj+1/2 − (α1π1 + α2π2)?Rj−1/2

+ (u1)?j+1/2(m1u1)]j+1/2 − (u1)?j−1/2(m1u1)]j−1/2

+ (u2)?j+1/2(m2u2)]j+1/2 − (u2)?j−1/2(m2u2)]j−1/2

)
.

As α1π1 +α2π2 is a Riemann invariant of the standing wave for the relaxation acoustic system (10), we
have (α1π1 + α2π2)?Lj+1/2 = (α1π1 + α2π2)?Rj+1/2, which preserves the conservative form.

• Let us consider the state:(
(α1)nj , (τ1)nj , (u1)nj , (p1)nj , (τ2)nj , (u2)nj , (p2)nj

)
=
(
(α1)nj , τ , u, p, τ , u, p

)
, (α1)nj ∈ (0, 1),

with constant velocities u and pressures p. Injecting this state in the two-step numerical method (30),
we obtain:(

(α1)n+1
j , (τ1)n+1

j , (u1)n+1
j , (p1)n+1

j , (τ2)n+1
j , (u2)n+1

j , (p2)n+1
j

)
=
(
(α1)n+1

j , τ , u, p, τ , u, p
)
, (α1)n+1

j ∈ (0, 1).

• Thanks to (29), the CFL condition (31) ensures that (ρk)]j > 0 and 0 < (αk)]j < 1 for j ∈ Z. The CFL

condition (31) yields that (ρk)n+1
j and (αk)n+1

j are convex combinations of (ρk)]l and (αk)]l respectively

for l = j ± 1, j and therefore (ρk)n+1
j > 0 and 0 < (αk)n+1

j < 1.
�

5.2. Semi-implicit discretization

Let us now consider the last algorithm of this paper, which consists in considering a time-implicit scheme
for the acoustic step and keeping unchanged the transport step. This strategy will allow us to obtain a stable
algorithm under a CFL restriction based on the material velocity uk and not on the sound velocity ck. In order
to derive a time-implicit scheme for the acoustic step, we follow the following standard approach where the
numerical fluxes are now evaluated at time t] , which gives here the same update formulas as in the explicit case
but where the numerical fluxes now involve quantities at time t] apart from the term consistent with {πI∂xαk},
which writes:

• αkj+1/2((uk)?j+1/2)] = αkuk
]
j+1/2 −

∆(αkπk)]

2ak
+ 1

2ak
{Sk}nj+1/2,

• αkj+1/2((αkπk)?j+1/2)] = (αk)j(αk)j+1

(
πk

] − ak
2 ∆u]k

)
+ ∆αk

4 {Sk}
n
j+1/2.
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Let us observe that we suggest here to keep on evaluating the interfacial pressure source term at time tn. It is
interesting to see that it is equivalent to the following system written in characteristic variables:

(α1)]j = (α1)nj ,

(τk)]j = (τk)nj +
λ

(ρk)nj

(
(u?k)]j+1/2 − (u?k)]j−1/2

)
,

(
→
Wk)]j = (

→
Wk)nj −

λak
(ρk)nj

(
→
Wk)]j +

λak(αk)nj−1

(ρk)nj (αk)j−1/2
(
→
Wk)]j−1 −

λak(∆αk)j−1/2

2(ρk)nj (αk)j−1/2
(
←
Wk)]j

+
λak

(αk)j−1/2(ρk)nj
{S}nj−1/2 ,

(
←
Wk)]j = (

←
Wk)nj −

λak
(ρk)nj

(
←
Wk)]j +

λak(αk)nj+1

(ρk)nj (αk)j+1/2
(
←
Wk)]j+1 +

λak(∆αk)j+1/2

2(ρk)nj (αk)j+1/2
(
→
Wk)]j

− λak
(αk)j+1/2(ρk)nj

{S}nj+1/2 ,

(32)

where the new variables
←
Wk and

→
Wk are defined by

→
Wk = πk + akuk,

←
Wk = πk − akuk. These quantities are the

Riemann invariants associated with the characteristic speeds ±akτk of the relaxation system (12). We firstly

compute
←
Wk and

→
Wk. Once this is done, τk variables can be updated explicitly since ((uk)?j±1/2)] is explicitly

known from the knowledge of
←
Wk

]

and
→
Wk

]

by the formulas

(uk)]j =
1

2ak

(
(
→
Wk)]j − (

←
Wk)]j

)
, (πk)]j =

1

2

(
(
→
Wk)]j + (

←
Wk)]j

)
.

Remark 5.2. In the semi-implicit Lagrange projection, we need to solve a linear system to update the solution
at time t]. (

A →
Wk,

→
Wk

A →
Wk,

←
Wk

A ←
Wk,

→
Wk

A ←
Wk,

←
Wk

)( →
Wk
←
Wk

)
=

(
B →
Wk

B ←
Wk

)
, (33)

where the block matrices A →
Wk,

→
Wk

and A ←
Wk,

←
Wk

are bidiagonal and the block matrices A →
Wk,

←
Wk

and A ←
Wk,

→
Wk

are

diagonal. The implementation of this sparse matrix is made by the use of the Python library ”scipy.sparse”
and we solve the linear system (33) with a direct method from ”scipy.sparse.spsolve”.

Proposition 5.3. The implicit-explicit scheme (32)-(27) satisfies the following:

• The discretization of the partial masses mk is conservative
• The discretization of the total momentum m1u1 +m2u2 is conservative.
• The constant velocities/pressures profiles are preserved.

Under the Whitham subcharacteristic condition and the CFL conditions,

∆t

∆x
max
j∈Z

(
((uk)?j−1/2)+ − ((uk)?j+1/2)−

)
< 1 (34)

• It preserves the maximum principle for the phase fractions: 0 < αk < 1 and positive values of the
densities ρk > 0.

Proof. The properties are obtained in the same way as in the explicit case. �
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6. Numerical results

In this section, we present three test cases that are representative of the numerical challenges of the BN
model: the vanishing phase and the capture of a pure contact discontinuity. Here, we compare the approximate
solution, computed with our two-step numerical scheme, with a reference solution.

In these cases, the phasic equations of state are given by the following ideal gas pressure laws:

p1(ρ1) = κ1ρ
γ1
1 , with κ1 = 1 and γ1 = 3,

p2(ρ2) = κ2ρ
γ2
2 , with κ2 = 1 and γ1 = 1.5.

(35)

The solutions are computed on the domain [0, 1] of the x-space.

6.1. Test case 1: a complete Riemann problem

We consider a first test that displays all the waves: acoustic waves and contact discontinuity, with the
following initial data [11],

UL = (0.1, 0.85, 0.4609513139, 0.96, 0.0839315299) if x < 0,
UR = (0.6, 1.2520240113, 0.7170741165, 0.2505659851,−0.3764790609) if x > 0.

The exact solution is composed of a (u1 − c1)-shock wave, followed by a (u2 − c2)-rarefaction wave, followed by
a u2-contact discontinuity, followed by a (u2 + c2)-shock and finally followed by a (u1 + c1)-rarefaction wave.

In Figures 1, 2, the approximate solution computed with the explicit and implicit-explicit Lagrange projection
schemes are compared with both a reference solution computed over a 105 cells mesh with the Rusanov scheme
and the approximate solution obtained with Rusanov scheme. We first observe that the implicit scheme is the
most diffusive, which was clearly expected from the implicit treatment of the acoustic step. Note also that
our Lagrange-Projection schemes correctly capture the intermediate states even for this rather coarse mesh
of 1000 cells. It appears that the contact discontinuity is captured more sharply by the explicit Lagrange
projection method than by Rusanov scheme for which the numerical diffusion is larger. The two Lagrange
projection schemes are comparable to the results given by the relaxation scheme introduced in [12] (see page
34). Nevertheless, we observe that the ImEx method generates an overshoot at the contact discontinuity where
the phase fraction αk jumps. This oscillation is reduced on a finer mesh of 10000 cells in Figure 2 and does not
generate an instability. To have a better understanding of this behavior at the contact discontinuity, we study
a Riemann problem with a stationnary contact discontinuity in the last test case. The appearance of all the
waves in this first test case and of their numerical diffusion can make the interpretation of the results difficult.
Table 1 gives for each test case the number of iterations needed to perform the computations. As expected, the
gain is important when using the proposed implicit-explicit algorithm and the corresponding CFL restriction
based on the material waves (instead of the acoustic waves as for the explicit scheme).

Test 1 Test 2 Test 3
Rusanov 808 780 688

LP explicit 616 729 672
LP implicit 203 214 398

Table 1. Number of time-iterations for each test case with 1000 cells

6.2. Test case 2: vanishing phase

We now consider a Riemann problem in which one of the two phases vanishes in one of the initial states, which
means that the corresponding phase fraction α1 or α2 is equal to zero. This configuration poses a difficulty in
the two-fluid model owing to its independent velocities. The singularity arises when one computes the absent
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(a) Wave structure of the exact Riemann solution (b) Phase 1 fraction α1

(c) Phase 1 velocity u1 (d) Phase 2 velocity u2

(e) Phase 1 density ρ1 (f) Phase 2 density ρ2

Figure 1. Test case 1: Structure of the solution and space variations of the physical variables
at the final time T = 0.14. Mesh size: 1000 cells.
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(a) Wave structure of the exact Riemann solution (b) Phase 1 fraction α1

(c) Phase 1 velocity u1 (d) Phase 2 velocity u2

(e) Phase 1 density ρ1 (f) Phase 2 density ρ2

Figure 2. Test case 1: Structure of the solution and space variations of the physical variables
at the final time T = 0.14. Mesh size: 10000 cells.
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phase velocity using the conservative variables uk = αkρkuk

αkρk
.

For this kind of Riemann problem, the uI -contact separates a mixture region where the two phases coexist from
a single phase region with the remaining phase. Assuming for instance that αL1 = 1 and 0 < αR1 < 1, the right
state is a mixture of both phases while the left initial state is composed solely of phase 1. We consider the
following initial data [11],

UL = (1, 1.8, 0.747051068928543, 3.979765198025580, 0.6) if x < 0,
UR = (0.4, 2.081142099494683, 0.267119045902047, 5.173694757433254, 1.069067604724276) if x > 0.

The exact solution is composed of a (u1 − c1)-shock wave in the left-hand side region where only phase 1 is
present. This region is separated by a uI -contact discontinuity from the right-hand side region where the two
phases are mixed. In this RHS region, the solution is composed of a (u2 + c2)-rarefaction wave followed by a
(u1 + c1)-rarefaction wave. In practice, the numerical method requires values of αL1 and αR1 that lie strictly in
the interval (0, 1). Therefore, in the numerical implementation, we take αL1 = 1− 10−9. The aim here is to give
a qualitative comparison between the numerical approximation and the reference solution. Moreover, there is
theoretically no need to specify left initial values for the phase 2 quantities since this phase is not present in
the LHS region. For the sake of the numerical simulations however, one must provide such values. We choose
to set ρL2 and uL2 to the values on the right of the uI -contact discontinuity. As for the first test case, we can see
in Figures 3,4 that for the same level of refinement, the explicit Lagrange projection scheme is more accurate
than Rusanov scheme, which can be seen especially for phase 1. As regards the region where phase 2 does
not exist, we can see that the three numerical schemes develop some oscillations when it comes to divisions by
small values of α2. This behavior is also observed with the relaxation scheme in [12] (see page 37). The ImEx
method also generates an oscillation at the location where the phase fraction α2 jumps and is more diffusive for
the capture of the (u1 + c1)-rarefaction wave (see Phase 1 density in Figure 3). The oscillation and numerical
diffusion are lower on a finer mesh of 10000 cells in Figure 2 and ImEx method converges towards the reference
solution.

6.3. Test case 3: a pure contact discontinuity

In the last test case, we seek to analyze the behavior of the explicit and ImEx Lagrange Projection (LP)
schemes and the Rusanov scheme for the capture of a pure stationnary contact discontinuity. This Riemann
problem is built following the procedure explained in Appendix A. Here, in the exact solution, all the physical
quantities are transported with the constant velocity uI = 0. The initial data is defined as

UL = (0.8, 7.0710678118654755, 0.4448746176198241, 3.7907146169832258, 0) if x < 0,
UR = (0.2, 3.1622776601683795, 3.979079545848609, 3.6840314986403864, 0) if x > 0.

Figures 5 and 6 show that the stationnary contact is not correctly captured by all the schemes: Rusanov,
explicit and ImEx LP schemes. The explicit Lagrange Projection scheme is much more accurate than the
Rusanov scheme especially for the approximation of the interfacial velocity uI = 0. The ImEx scheme generates
an additional error compared to the explicit: this can be explained by the truncation error made by the ImEx
scheme that is greater than the one made by the explicit scheme. Note that, to our knowledge, there exists
no solver that is able to capture exactly a moving contact discontinuity (see [15] for a finite volume scheme on
a staggered grid that preserves some Riemann invariants and [20] for the capture of stationary contacts), and
our scheme compares rather well with other schemes. In this test case, we have isolated the error made by the
splitting method at the contact discontinuity. This error is present in the explicit LP scheme and is amplified
with ImEx schemes due to its greater truncation error. Hence, the oscillations we observe in the two previous
test cases with the ImEx scheme might be present even for the explicit scheme but are damped by the numerical
diffusion of the other waves, in the explicit case. In future works, we would like to propose another splitting
strategy that allows to reduce the error made by the ImEx scheme at the contact discontinuity.
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(a) Wave structure of the exact Riemann solution (b) Phase 1 fraction α1

(c) Phase 1 velocity u1 (d) Phase 2 velocity u2

(e) Phase 1 density ρ1 (f) Phase 2 density ρ2

Figure 3. Test case 2: Structure of the solution and space variations of the physical variables
at the final time T = 0.1. Mesh size: 1000 cells.
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(a) Wave structure of the exact Riemann solution (b) Phase 1 fraction α1

(c) Phase 1 velocity u1 (d) Phase 2 velocity u2

(e) Phase 1 density ρ1 (f) Phase 2 density ρ2

Figure 4. Test case 2: Structure of the solution and space variations of the physical variables
at the final time T = 0.1. Mesh size: 10000 cells.
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(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 5. Test case 3: Structure of the solution and space variations of the physical variables
at the final time T = 0.05. Mesh size: 1000 cells.



18 ESAIM: PROCEEDINGS AND SURVEYS

(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 6. Test case 3: Structure of the solution and space variations of the physical variables
at the final time T = 0.05. Mesh size: 10000 cells.
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7. Conclusions

The explicit and implicit-explicit schemes presented here provide convergent aproximations of discontinuous
solutions of the barotropic Baer-Nunziato model, while preserving the maximum principle on the values of the
volume fractions αk and positive values of the densities ρk . We have proposed a large time step scheme and
proved stability properties under a time step CFL restriction based on the material velocities uk and not on
the sound velocities ck as it is customary. The Lagrange-Projection decomposition proved to be efficient on a
variety of test cases, but may be more diffusive than a direct Eulerian approach. We believe that the proposed
implicit-explicit strategy is especially well adapted for subsonic flows but even more for low Mach numbers,
which is our very motivation and the purpose of an ongoing work in several space dimensions. A sequel of this
work consists in using the same fractional step strategy in order to derive an implicit-explicit numerical method
for the Baer Nunziato model with energy equations, and thus to get rid of a rather constraining CFL condition
due to the propagation of fast acoustic waves.
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A. Riemann problem for the stationary contact discontinuity

In this section, we give a procedure to initialize a test case with a stationary contact discontinuity. We recall
the Riemann invariants associated to the uI contact discontinuity of the barotropic Baer Nunziato model:

uI = u2, m1(u2 − u1), m1(u2 − u1)2 + α1p1 + α2p2,
(u2 − u1)2

2
+ e1 +

p1

ρ1
. (36)

We denote [[X]] = XR − XL, the jump accross an interface where XR and XL are the right and left states.
Hence we have the following set of jump relations:

[[m1u1]] = 0, (37)

[[m1u
2
1 +

∑
k

αkpk]] = 0, (38)

[[
u2

1

2
+ e1 +

p1

ρ1
]] = 0. (39)

From (37), we denote m1u1 such that: m1u1 = (m1u1)L = (m1u1)R. From (39), we obtain:

m1u1
2[[

1

2ρ2
1α

2
1

]] + [[e1 +
p1

ρ1
]] = 0. (40)

We seek to define a test case where the initial condition is a stationary contact discontinuity. From given jumps
[[α1]] and [[ρ1]], we deduce the jumps [[ 1

2ρ21α
2
1
]] and [[e1 + p1

ρ1
]]. Assuming m1u1 is positive, we can compute its

expression from (40). Starting from (38) and a given state (p2)R, we can deduce the left state (p2)L with the
following equation:

[[m1u
2
1]] + [[α1p1]] + (α2)R(p2)R = (α2)L(p2)L.
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43(6):1063–1097, 2009.

[2] A. Ambroso, C. Chalons, and P.-A. Raviart. A Godunov-type method for the seven-equation model of compressible two-phase

flow. Computers & Fluids, 54:67–91, 2012.
[3] N. Andrianov and G. Warnecke. The Riemann problem for the Baer-Nunziato two-phase flow model. Journal of Computational

Physics, 195(2):434–464, 2004.

[4] M.R. Baer and J.W. Nunziato. A two-phase mixture theory for the deflagration-to-detonation transition DDT in reactive
granular materials. International Journal of Multiphase Flow, 12(6):861–889, 1986.

[5] C. Chalons, F. Coquel, S. Kokh, and N. Spillane. Large Time-Step Numerical Scheme for the Seven-Equation Model of

Compressible Two-Phase Flows. In Finite Volumes for Complex Applications VI, pages 225–233, 2011.
[6] C. Chalons and J.-F. Coulombel. Relaxation approximation of the Euler equations. Journal of Mathematical Analysis and

Applications, 348(2):872–893, 2008.
[7] C. Chalons, M. Girardin, and S. Kokh. Large time step and asymptotic preserving numerical schemes for the gas dynamics

equations with source terms. 35(6):A2874–A2902, 2013.

[8] C. Chalons, M. Girardin, and S. Kokh. An all-regime Lagrange-Projection like scheme for 2d homogeneous models for two-phase
flows on unstructured meshes. Journal of Computational Physics, 335:885–904, 2017.

[9] C. Chalons, P. Kestener, S. Kokh, and M. Stauffert. A large time-step and well-balanced Lagrange-Projection type scheme for

the shallow-water equations. Communications in Mathematical Sciences, 15(3):765–788, 2017.
[10] F. Coquel, E. Godlewski, and N. Seguin. Relaxation of fluid systems. Mathematical Models and Methods in Applied Sciences,

22(8):1250014, 2012.

[11] F. Coquel, J.-M. Hérard, and K. Saleh. A splitting method for the isentropic Baer Nunziato two-phase flow model. ESAIM:
Proceedings, 38:241–256, 2012.

[12] F. Coquel, J.-M. Hérard, K. Saleh, and N. Seguin. A robust entropy-satisfying finite volume scheme for the isentropic

Baer-Nunziato model. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse
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