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AN ACOUSTIC-TRANSPORT SPLITTING METHOD FOR THE BAROTROPIC

BAER-NUNZIATO TWO-PHASE FLOW MODEL ∗

Katia Ait-Ameur1, Samuel Kokh2, Marc Massot1, Marica Pelanti3 and Teddy
Pichard1

Abstract. This work focuses on the numerical approximation of the barotropic Baer-Nunziato two-
phase flow model. We propose a numerical scheme that relies on an operator splitting method cor-
responding to a separate treatment of the acoustic and the material transport phenomena. In the
subsonic case, this also corresponds to a separate treatment of the fast and the slow propagation phe-
nomena. This approach follows the lines of the implicit-explicit schemes developed in [8]. The operator
splitting enable the use of time steps that are no longer constrained by the sound velocity thanks to an
implicit treatment of the acoustic waves, while maintaining accuracy in the subsonic regime thanks to
an explicit treatment of the material waves. In the present setting, a particular attention will be also
given to the discretization of the non-conservative terms that figure in the two-phase model. We prove
that the proposed numerical strategy is positivity preserving for the volume fractions and the par-
tial masses. The scheme is tested against several one-dimensional test cases including flows featuring
vanishing phases.

Résumé. Ce travail porte sur l’approximation numérique du modèle de Baer-Nunziato barotrope.
Le schéma se base sur une méthode de splitting correspondant à un traitement séparé des ondes
acoustiques d’une part et des ondes matières d’autre part. Nous proposons d’étendre les schémas
implicites-explicites développés dans [8]. Ces méthodes permettent d’utiliser des pas de temps qui ne
sont plus contraints par la vitesse du son grâce à un traitement implicite des ondes acoustiques, et de
conserver une précision dans le régime subsonique grâce à un traitement explicite des ondes matières.
Dans ce travail, une attention particulière sera également portée à la discrétisation des termes non
conservatifs dans le modèle de Baer-Nunziato. Nous montrons que les méthodes numériques proposées
préservent la positivité des densités et des fractions volumiques et nous illustrons leurs comportements
à l’aide de plusieurs cas tests représentatifs des difficultés numériques liées à ce modèle.

1. Introduction

We are interested in the computation of compressible two-phase flows with a two-velocity two-pressure model
derived after the Baer-Nunziato (BN) model [3]. The (BN) model was initially dedicated to modeling a gas-solid
flow for the simulation of detonation phenomena [3]. Its range of applications has since been extended to a wider
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range of two-material flows like liquid-gas flows (see for example [11,14,18,20,22,23,25]). In the present work,
we adopt a simplified version of the (BN) model that involves only mass and momentum equations equipped
with a barotropic pressure law (as in [15, 16]): the pressure pk of each component k = 1, 2 is assumed to only
depend on the phasic density ρk. A specific feature of this model that is inherited from the full (BN) model lies
in the presence of non-conservative terms that drive the coupling between both fluids. These terms involve so-
called interfacial velocity and interfacial pressure. The definition of these parameters require additional closure
relations. This choice is not straightforward and has important consequences on the mathematical properties
of the model, like the ability to define weak-solutions or to equip the model with an entropy evolution equation
(see for example [19]).

From a numerical point of view, the barotropic (BN) model raises several issues. A first difficulty comes from
the presence of non-conservative terms and how they may interact with conservative fluxes. A second difficulty
occurs when the volume fraction of one of the component tends to zero in some regions of the computational
domain. This situation is referred to as a vanishing phase and may cause severe problem as numerical methods
often fail to compute the phasic quantities associated with the vanishing phase [15].

One may find in the literature several papers devoted to the numerical resolution of two-fluid two-pressure
models and the question of how to discretize the non conservative terms. Most of them deal with the non
barotropic case. The reader is referred to [1,2,26,29] for the numerical methods relying on time-explicit, exact
or approximate Riemann solver and the references therein. We also mention some other finite volume techniques
that have been used. In [19], the authors extend Rusanov’s scheme and the VFRoe method to the context of
non conservative systems. Other schemes rely on relaxation techniques (see for instance [1, 15]).

The discretization of the full (BN) model has been investigated by many authors in the literature (see for
example [1,6,14–16,19,25,26,29]) but in most contributions, for stability reasons, the time steps ∆t is subject to a
CFL condition that depends on the material velocity and the sound velocity of each material. For configurations
where the sound velocities are much larger than the material velocities, this can lead to very small time steps
although the acoustic waves are not driving phenomena in the flow. A CFL condition based on the most influent
waves, the contact waves associated to the material velocities would be more adapted. The idea is then to propose
a time-implicit treatment of the acoustic waves, in order to get rid of a too restrictive CFL condition, together
with an explicit treatment of the contact waves in order to preserve accuracy. This strategy has already been
exploited earlier within the framework of Euler equations and Shallow Water equations (see for instance [8,10,17])
using a Lagrange-Projection approach, but also for two-phase flows models (see [6, 9, 16,24,28,30]).

The paper is organized as follows. In Section 2, we present the set of partial differential equations (PDEs) of
barotropic (BN) model, and we recall its main mathematical properties. In Section 3, we propose an operator
splitting method for approximating the solutions of the model. In Section 4, we describe the numerical treatment
of each step. In Section 5, we build explicit and semi-implicit numerical schemes based on this operator splitting
method for the solution of the barotropic (BN) model. Finally, Section 6 is devoted to the numerical experiments,
where one-dimensional test cases are presented.

2. The barotropic Baer-Nunziato model

Let us consider two compressible materials k = 1, 2, equipped with a barotropic Equation Of State (EOS) of
the form ρk 7→ ek(ρk), where ek and ρk respectively denote the specific barotropic potential energy and density
of the fluid k. The pressure pk is defined by pk(ρk) = ρ2

kdek/dρk. We assume the sound velocity ck of the fluid
k to be real-valued and defined by c2k = p′k(ρk) > 0.
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We denote αk the volume fraction associated with the component k and impose that α1 + α2 = 1. If uk is
the velocity of the fluid k = 1, 2, for one-dimensional problems the barotropic BN model reads:

∂tα1 + uI∂xα1 = 0,

∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1 + α1p1)− pI∂xα1 = 0,

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2p2)− pI∂xα2 = 0,

(1)

where uI and pI are the interfacial velocity and pressure for which one must provide closure laws. This system
involves two evolution equations for both the partial mass and momentum of the fluid k = 1, 2 supplemented
by an equation for the volume fraction α1 = 1− α2.

The eigenstructure of (1) consists of five real eigenvalues

Sp = {uI , u1 ± c1, u2 ± c2, } .

The barotropic BN model is hyperbolic under the following conditions:

α1α2 6= 0, |uk − uI | 6= ck, k = 1, 2.

When (1) is hyperbolic, one can easily check that similarly to the classical gas dynamics equations, the
characteristic fields associated with the eigenvalues uk ± ck are genuinely nonlinear.

The choice of the closure law for uI has an important impact on the evolution of αk as it may not be possible
to obtain a maximum principle for αk if the field associated with uI is not linearly degenerate. Moreover, the
choice of both uI and pI affects the availability of weak solutions and a companion entropy evolution equation
for the system. For these reasons, as in [15,16] we restrict our study to the following closure relations

uI = (1− µ)u1 + µu2, µ = χα1ρ1
χα1ρ1+(1−χ)α2ρ2

, χ ∈
{

0, 1
2 , 1
}
,

pI = µp1 + (1− µ)p2,
(2)

that issued from [12, 19]. This choice ensures that the field associated with uI is linearly degenerate, it also
provides a complete set of jump relations that enables a full definition of weak solutions and an entropy evolution
equation. As a consequence, smooth solutions of (1) with (2) also verify the following conservation equation

∂t

{
2∑
k=1

αkρkek(ρk) + αkρk
u2
k

2

}
+ ∂x

{
2∑
k=1

αkρkek(ρk)uk + αkρk
u3
k

2
+ αkpk(ρk)uk

}
= 0. (3)

Let us underline that for the numerical results presented in the last section, we will restrict our choice to the
case χ = 0, µ = 1 so that

(uI , pI) = (u2, p1). (4)

Finally, we denote U = (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2) the unknown vector that is expected to belong to the
set of admissible states:

Ω =
{
U ∈ R5, 0 < αk < 1, ρk > 0, k ∈ {1, 2}, α1 + α2 = 1

}
. (5)

System (1) takes the following condensed form

∂tU + ∂xF (U) + C(U)∂xU = 0, x ∈ R, t > 0, (6)



4 ESAIM: PROCEEDINGS AND SURVEYS

where

F (U) =


0

α1ρ1u1

α1ρ1u
2
1 + α1p1(ρ1)
α2ρ2u2

α2ρ2u
2
2 + α2p2(ρ2)

 , C(U)∂xU =


uI∂xα1

0
−pI∂xα1

0
−pI∂xα2

 . (7)

3. Operator splitting acoustic-transport

Before going further on, we recall that this idea has already been used earlier within the framework of Euler
equations (see for instance [17]) using a Lagrange-Projection approach, but also for the Baer-Nunziato model
(see [6,16]). In [6], the authors propose an operator splitting with three steps for the Baer Nunziato model with
energy equations. Both first steps correspond to the acoustic and transport parts of the Euler equations for
each phase. The third step gathers the non conservative terms that couple both phases. In [16], the authors
propose an operator splitting in two steps where the coupling terms are distributed in the two subsytems. In
this case, the transport part arises a weakly hyperbolic system and a careful treatment has to be made for the
numerical discretization. In this section, we introduce an operator splitting for the barotropic BN model in two
steps where the two subsystems account for the coupling terms like [16] while preserving the hyperbolicity of
each subsystem as in [6].

The first step corresponds to the propagation of acoustic waves:
∂tα1 = 0,

∂t(αkρk) + (αkρk)∂xuk = 0, k ∈ {1, 2},
∂t(αkρkuk) + (αkρkuk)∂xuk + ∂x(αkpk)− pI∂xαk = 0, k ∈ {1, 2}.

(8)

The second step considers the propagation of both material waves and the evolution of αk:
∂tα1 + uI∂xα1 = 0,

∂t(αkρk) + uk∂xαkρk = 0, k ∈ {1, 2},
∂t(αkρkuk) + uk∂x(αkρkuk) = 0, k ∈ {1, 2}.

(9)

3.1. Properties of the acoustic sub-system

If we note τk = ρ−1
k the specific volume, the acoustic system (8) takes the form ∂tα1 = 0,

ρk∂tτk − ∂xuk = 0,
ρk∂t(αkuk) + ∂x(αkpk)− pI∂xαk = 0.

(10)

Granted that c1 6= c2, the acoustic system (10) is strictly hyperbolic and the eigenstructure of the system
is composed of five fields associated with the eigenvalues {±c1, 0,±c2}. The waves associated with ±ck are
genuinely nonlinear. The wave associated with 0 is linearly degenerate.

We propose further approximations for the acoustic system (8) by freezing the time dependence of ρk in front
of ρk∂t(·) in (10) and by using a Suliciu-type relaxation approximation of (10) (see [7, 13, 27]). We proceed by
introducing new independent variables πk and rk that respectively act as surrogate pressure and densities for
k = 1, 2. If one considers smooth solutions of (8), the pressure pk verifies

ρk∂t(αkpk) + αk(ck/τk)2∂xuk = 0. (11)

The variables πk are evolved according to their own partial differential equations, whose purpose is to implement
a linearized version of (11). The new variables rk are associated with a stationary wave. Therefore, within the
time interval t ∈ [tn, tn + ∆t[, we propose to consider the following relaxation system
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∂tα1 = 0,
∂trk = ν (ρk − rk) ,
∂t(rkτk) − ∂xuk = 0,
∂t(rkαkuk) + ∂x(αkπk) = πI∂xαk,
∂t(rkπk) + a2

k∂xuk = ν (pk − πk) rk,

(12)

where ν is a relaxation parameter and ak is a constant approximation of the acoustic impedance of the fluid k.
In the limit regime ν →∞, we formally retrieve the solution of (8). In order to provide a stable approximation
of (8), the constants ak must be chosen in agreement with the Whitham subcharacteristic condition

a2
k > max

ρk

(
ρ2
kc

2
k(ρk)

)
, k = 1, 2, (13)

where the max is taken over all the density values ρk in the solution of (12). We adopt the classic method that
allows to reach the regime ν →∞: at each time step, we enforce the equilibrium relations (πk)nj = pEOSk ((ρk)nj ),
(rk)nj = (ρk)nj and solve (12) with ν = 0.
For ν = 0, the relaxation system can take the compact form:{

∂tα1 = 0,
∂tWk + ∂xGk(Wk) = (πI∂xαk)E, k ∈ {1, 2}, (14)

with the unknown Wk = (rk, rkτk, rkαkuk, rkπk), the flux Gk(Wk) =
(
0,−uk, αkπk, a2

kuk
)

and E = (0, 0, 1, 0).
Let us discuss a few properties of (14). Straightforward computations (see Appendix A) provide the following
property on the characteristic fields of the relaxation system.

Proposition 3.1. For any state vector (α1,W1,W2), system (14) has the following characteristic speeds:

Sp =

{
±a1

r1
, 0,±a2

r2

}
,

where 0 is of multiplicity five. Moreover, all the characteristic fields are linearly degenerate and system (14) is
hyperbolic.

3.2. Properties of the transport sub-system

We now consider the time evolution corresponding to the transport step. Starting from the output of the
first step U], we want to compute the updated data Un+1 at time tn+1 by approximating the solution of

∂tα1 + uI∂xα1 = 0,

∂t(αkρk) + uk∂x(αkρk) = 0, k ∈ {1, 2},
∂t(αkρkuk) + uk∂x(αkρkuk) = 0, k ∈ {1, 2}.

The eigenstructure of (9) is derived thanks to straightforward computations.

Proposition 3.2. For any state vector (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2) such that ρ1 > 0 and ρ2 > 0, system
(9) has the following characteristic speeds:

Sp = {uI , u1, u2} .

Assuming that the interfacial velocity uI is defined by the closure law (2) then the characteristic field asso-
ciated to the (simple) eigenvalue uI is linearly degenerate. The characteristic fields associated to the (double)
eigenvalues uk are genuinely non linear and system (9) is weakly hyperbolic.
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Remark 3.3. Let us emphasize that the nature of the characteristic field associated with the eigenvalue uI
in (9) depends on the chosen closure law for uI in the complete model (1). For example, assuming a different
closure law as in [21] by setting:

uI = α1u1 + α2u2,

would lead to a genuinely non linear characteristic field associated to the eigenvalue uI in both (1) and (9).

Remark 3.4. The transport system (9) shares a similar structure with the system of pressureless gases (see for
example [4,5]). However, in our case, its sole purpose is to yield a discretization means for the transport terms
of the barotropic BN model (1). Let us underline that in the discretization strategy presented in Section 4.2,
the propagation velocities (9) will be frozen at values u?I and u?k computed at the acoustic step. This will
enable a discretization of (9) that verifies a local maximum principle for αk, αkρk and αkρkuk. Moreover, the
overall discretization is consistent with the barotropic BN model (1). In this sense, possible well-posedness
issues involved with the transport system (9) are not a genuine concern here and will not be investigated.

4. Discretization of the acoustic and transport sub-systems

In this section, we use the operator splitting method in order to derive an implicit-explicit numerical scheme,
the aim being to approximate the solutions of the barotropic BN model (6). Let ∆t be the time step and ∆x
the space step, which we assume here to be constant for simplicity in the notations. The space is partitioned
into cells Cj = [xj− 1

2
, xj+ 1

2
], j ∈ Z where xj+ 1

2
= (j + 1

2 )∆x are the cell interfaces. At the discrete times

tn = n∆t, the cell average of the solution of (6) is approximated on each cell Cj by a constant value denoted by

Unj =
(
(α1)nj , (α1ρ1)nj , (α1ρ1u1)nj , (α2ρ2)nj , (α2ρ2u2)nj

)
.

In the following two sections, we describe the discretization strategy associated with the operator splitting
method in order to calculate the values

(
Un+1
j

)
j∈Z of the approximate solution at time tn+1 from those at time

tn. Section 4.1 displays the numerical treatment of the Lagrangian step (8) while section 4.2 deals with the
material transport step (9).

4.1. Treatment of the first step

We need to propose a discretization strategy for (14). The solution of a Riemann problem for (14) consists
in six constant states separated by five contact discontinuities. We choose to build an approximate Riemann
solver for the relaxation acoustic system (14). We will use in the sequel a discretization of the non conservative
product that is consistent with the term πI∂xαk to derive an approximate Riemann solver for (14). Let
∆xL > 0,∆xR > 0. We consider a piecewise initial data defined by:

α1(x, t = 0) =

{
(α1)L, if x ≤ 0,
(α1)R, if x > 0,

Wk(x, t = 0) =

{
(Wk)L = ((rk)L, (rkτk)L, (rkαkuk)L, (rkπk)L) , if x ≤ 0,
(Wk)R = ((rk)R, (rkτk)R, (rkαkuk)R, (rkπk)R) , if x > 0,

(15)

where the left and right states are defined by:

(πk)L = pEOSk ((τk)L), (πk)R = pEOSk ((τk)R), (rk)L = (ρk)L, (rk)R = (ρk)R.

Note that (πk)L, (πk)R, (rk)L and (rk)R are at equilibrium. Let us now build an approximate Riemann solver
for the relaxed acoustic system (14). We look for a function (Wk)RP composed of six states separated by
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discontinuities as follows:

(Wk)RP

(x
t

; (Wk)L, (Wk)R

)
=


(Wk)L if x

t < −
ak

(rk)L
,

(Wk)?L if − ak
(rk)L

< x
t < 0,

(Wk)?R if 0 < x
t <

ak
(rk)R

,

(Wk)R if x
t >

ak
(rk)R

.

(16)

The function (α1)RP is defined as follows:

(α1)RP

(x
t

; (α1)L, (α1)R

)
=

{
(α1)L if x

t < 0,
(α1)R if x

t > 0.
(17)

The intermediate states in (16) are such that the following properties hold:

(1) (Wk)RP is consistent in the integral sense with the barotropic Baer Nunziato model. More specifically
in our context, if ∆t is such that ak

(rk)R
∆t ≤ min(∆xL,∆xR)/2, then

Gk((Wk)R)−Gk((Wk)L) = − ak
(rk)L

((Wk)?L − (Wk)L) +
ak

(rk)R
((Wk)R − (Wk)?R)

− ∆xL + ∆xR
2

{πI∂xαk}E,
(18)

where {πI∂xαk} is consistent with the non conservative term, in the sense:

lim
∆xL,∆xR → 0,

(Wk)L, (Wk)R → (αk, τk, uk, πk)

{πI∂xαk} = πI(∂xαk)(αk). (19)

(2) We impose that (Wk)L and (Wk)?L (resp. (Wk)R and (Wk)?R) verify the Rankine Hugoniot jump

conditions accross
(
− ak

(rk)L

)
-wave (resp.

(
ak

(rk)R

)
-wave):

ak
(rk)L

((Wk)?L − (Wk)L) + Gk((Wk)?L)−Gk((Wk)L) = 0,

− ak
(rk)R

((Wk)R − (Wk)?R) + Gk((Wk)R)−Gk((Wk)?R) = 0.
(20)

(3) Similarly, across the discontinuity of velocity 0 we impose that:

(uk)?L = (uk)?R = (uk)?, (α1π1)?L + (α2π2)?L = (α1π1)?R + (α2π2)?R. (21)

Relations (20) and (21) do not provide enough information to determine the intermediate states (Wk)?L and
(Wk)?R. Indeed, they provide only seven independent relations while we need eight quantities, namely (uk)?L,
(uk)?R, (αkπk)?L and (αkπk)?R.

We choose to add another jump relation accross the stationary discontinuity of (Wk)RP , we impose

(αkπk)?R − (αkπk)?L =Mk, (22)

where Mk is a function to be specified. Relations (18), (20), (21) and (22) lead to:

αku
?
k = αkuk −

1

2ak
∆(αkπk) +

Mk

2ak
,

π?k = πk − ak
2 ∆uk,

αk(πk)?L = (αk)Rπ
?
k −

Mk

2 ,

αk(πk)?R = (αk)Lπ
?
k + Mk

2 .

(23)
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We now only need to determineMk such that the conditions 1), 2) and 3) are satisfied. The integral consistency
requirement of Condition 1) imposes

Mk = {πI∂xαk}
∆xL + ∆xR

2
. (24)

A simple mean to comply with (24) is to choose:

Mk = π∆
I ((Wk)L, (Wk)R) [(αk)R − (αk)L] ,

where π∆
I ((Wk)L, (Wk)R) is a consistent approximation of πI in the sense that:

π∆
I ((Wk)L, (Wk)R)→ πI if (πI)L, (πI)R → πI .

At last, we choose:

π∆
I ((Wk)L, (Wk)R) = π?1 =

πL1 + πR1
2

− a1
πR1 − πL1

2
. (25)

This yields that

{πI∂xαk} ((Wk)L, (Wk)R,∆xL,∆xR) = 2π∆
I ((Wk)L, (Wk)R)

(αk)R − (αk)L
∆xL + ∆xR

. (26)

By construction, the approximate Riemann solver defined by (23) and (26) verifies the three conditions 1), 2)
and 3). We end up with the following update at the acoustic step:

(α1)]j = (α1)nj ,

(rk)]j = (rk)nj ,

(τk)]j = (τk)nj + ∆t
∆x(rk)nj

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

(uk)]j = (uk)nj − ∆t
∆x(αkrk)nj

(
(αkπk)?j+1/2 − (αkπk)?j−1/2

)
+ ∆t

(αkrk)nj
{πI∂xαk}nj ,

(πk)]j = (πk)nj − ∆t
∆x(rk)nj

a2
k

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

(27)

where (πk)nj = pEOSk ((τk)nj ), (rk)nj = (ρk)nj and

• αkj+1/2(uk)?j+1/2 = αkukj+1/2 −
∆(αkπk)

2ak
+ 1

2ak
{Sk}nj+1/2,

• αkj+1/2(αkπk)?j+1/2 = (αk)j(αk)j+1

(
πk − ak

2 ∆uk
)

+ ∆αk

4 {Sk}
n
j+1/2,

• {Sk}nj = 1
2 {Sk}

n
j+1/2 + 1

2 {Sk}
n
j−1/2, with: {Sk}nj+1/2 = πI j+1/2∆(αk)j+1/2,

where: bj+1/2 =
bj+1+bj

2 , ∆bj+1/2 = bj+1 − bj .

4.2. Treatment of the second step

We now consider the numerical treatment of the time evolution corresponding to the second step. Starting

from the output of the first step U]j , we want to compute the updated data at time tn+1, Un+1
j . Denoting

φk ∈ {mk,mkuk}, we use a standard time-explicit upwind discretization for the transport step by setting

(φk)n+1
j = (φk)]j − ∆t

∆x

(
(uk)?j+1/2(φk)]j+1/2 − (uk)?j−1/2(φk)]j−1/2

)
+ ∆t

∆x (φk)]j

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

(α1)n+1
j = (α1)]j − ∆t

∆x

(
(uI)

?
j+1/2(α1)]j+1/2 − (uI)

?
j−1/2(α1)]j−1/2

)
+ ∆t

∆x (α1)]j

(
(uI)

?
j+1/2 − (uI)

?
j−1/2

)
,

(28)
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where

(φk)]j+1/2 =

{
(φk)]j , if (uk)?j+1/2 ≥ 0,

(φk)]j+1, if (uk)?j+1/2 < 0,
(α1)]j+1/2 =

{
(α1)]j , if (uI)

?
j+1/2 ≥ 0,

(α1)]j+1, if (uI)
?
j+1/2 < 0.

Let us note that the transport update (28) equivalently reads:

(φk)n+1
j = (φk)]jLj − ∆t

∆x

(
(uk)?j+1/2(φk)]j+1/2 − (uk)?j−1/2(φk)]j−1/2

)
,

(α1)n+1
j = (α1)]jL

I
j − ∆t

∆x

(
(uI)

?
j+1/2(α1)]j+1/2 − (uI)

?
j−1/2(α1)]j−1/2

)
,

LIj = 1 + ∆t
∆x

(
(uI)

?
j+1/2 − (uI)

?
j−1/2

)
.

(29)

Let us note that the interface value of the velocity (uk)?j+1/2 coincides with the one proposed in the first step,

which is actually crucial in order for the whole scheme to be conservative.

5. Two-step numerical method

In this section, we now give the details of the two-step process proposed in Section 3 for solving the barotropic
Baer Nunziato model. Let us briefly recall that this two-step process is defined by

• Update Unj to U]j by approximating the solution of (8).

• Update U]j to Un+1
j by approximating the solution of (9).

We begin with a fully explicit discretization of the Baer Nunziato model, which means that both steps of the
process are solved with a time-explicit procedure, and we will go on with a mixed implicit-explicit strategy for
which the solutions of (8) are solved implicitly in time and the solutions of (9) are solved explicitly. The latter
strategy allows to get rid of the strong CFL restriction coming from the acoustic waves in the subsonic regime
and corresponds to the motivation of the present study.

5.1. Time-explicit discretization

Let us begin with the time-explicit discretization of the acoustic system (8), or equivalently (10). The
acoustic update is achieved thanks to the proposed relaxation approximation and the corresponding approximate
Riemann solver detailed in Section 4.1. More precisely, we propose to simply use a Godunov-type method based
on this approximate Riemann solver. If we focus on the conservative variable: (α1, rk, αkρk, αkρkuk, rkπk), the
discretization (27) yields the following formula for the acoustic update:



(α1)]j = (α1)nj ,

(rk)]j = (rk)nj ,

Lj(αkρk)]j = (αkρk)nj ,

Lj(αkρkuk)]j = (αkρkuk)nj − ∆t
∆x

(
(αkπk)?j+1/2 − (αkπk)?j−1/2

)
+ ∆t {πI∂xαk}nj ,

(rkπk)]j = (rkπk)nj − ∆t
∆xa

2
k

(
(uk)?j+1/2 − (uk)?j−1/2

)
,

Lj = 1 + ∆t
∆x

(
(uk)?j+1/2 − (uk)?j−1/2

)
.

(30)
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Overall Discretization After injecting (30) in (29) one obtains the complete update procedure from tn to
tn+1 for the conservative variables:

(α1)n+1
j = (α1)]jL

I
j − ∆t

∆x

(
(uI)

?
j+1/2(α1)]j+1/2 − (uI)

?
j−1/2(α1)]j−1/2

)
,

(αkρk)n+1
j = (αkρk)nj − ∆t

∆x

(
(uk)?j+1/2(αkρk)]j+1/2 − (uk)?j−1/2(αkρk)]j−1/2

)
,

(αkρkuk)n+1
j = (αkρkuk)nj − ∆t

∆x

(
(uk)?j+1/2(mkuk)]j+1/2 + (αkπk)?j+1/2

− (uk)?j−1/2(mkuk)]j−1/2 − (αkπk)?j−1/2

)
+ ∆t {πI∂xαk}nj ,

LIj = 1 + ∆t
∆x

(
(uI)

?
j+1/2 − (uI)

?
j−1/2

)
.

(31)

The next statement gathers the main properties satisfied by our explicit in time and two-step algorithm.

Proposition 5.1. The fully explicit scheme (27)-(28) satisfies the following:

(1) The discretization of the partial masses αkρk is conservative
(2) The discretization of the total momentum α1ρ1u1 + α2ρ2u2 is conservative.
(3) The constant velocities/pressures profiles are preserved.
(4) Under the Whitham subcharacteristic condition (13) and the CFL conditions

∆t

∆x
max
j∈Z

max
k∈{1,2}

| (akτk)
n
j | <

1

2
,

∆t

∆x
max
j∈Z

(
((uk)?j−1/2)+ − ((uk)?j+1/2)−

)
< 1, (32)

the scheme preserves the maximum principle for the phase fractions: 0 < αk < 1 and positive values of
the densities ρk > 0.

Proof.

(1) This is a straightforward consequence of (31).
(2) Summing the momentum equations in system (31) over k yields:

(α1ρ1u1 + α2ρ2u2)n+1
j = (α1ρ1u1 + α2ρ2u2)nj − ∆t

∆x

(
(α1π1 + α2π2)?Lj+1/2 − (α1π1 + α2π2)?Rj−1/2

+ (u1)?j+1/2(α1ρ1u1)]j+1/2 − (u1)?j−1/2(α1ρ1u1)]j−1/2

+ (u2)?j+1/2(α2ρ2u2)]j+1/2 − (u2)?j−1/2(α2ρ2u2)]j−1/2

)
.

As α1π1 +α2π2 is a Riemann invariant of the standing wave for the relaxation acoustic system (12), we
have (α1π1 + α2π2)?Lj+1/2 = (α1π1 + α2π2)?Rj+1/2, which preserves the conservative form.

(3) Let us consider the state:(
(α1)nj , (αkρk)nj , (αkρkuk)nj

)
=
(
(α1)nj , (αk)nj ρk(p), (αk)nj ρk(p)u

)
, (αk)nj ∈ (0, 1), k = 1, 2,

with constant velocities u and pressures p. Injecting this state in the two-step numerical method (31),
we obtain:(

(α1)n+1
j , (αkρk)n+1

j , (αkρkuk)n+1
j

)
=
(
(α1)n+1

j , (αk)n+1
j ρk(p), (αk)n+1

j ρk(p)u
)
, (αk)n+1

j ∈ (0, 1), k = 1, 2.

(4) Thanks to (30), the CFL condition (32) ensures that (ρk)]j > 0 and 0 < (αk)]j < 1 for j ∈ Z. The CFL

condition (32) yields that (ρk)n+1
j and (αk)n+1

j are convex combinations of (ρk)]l and (αk)]l respectively

for l = j ± 1, j and therefore (ρk)n+1
j > 0 and 0 < (αk)n+1

j < 1.

�
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5.2. Semi-implicit discretization

Let us now consider the last algorithm of this paper. It consists in considering a time-implicit scheme for the
acoustic step and keeping unchanged the transport step. This strategy will allow us to obtain a stable algorithm
under a CFL restriction based on the material velocity uk and not on the sound velocity ck. In order to derive
a time-implicit scheme for the acoustic step, we follow the following standard approach where the numerical
fluxes are now evaluated at time t] , that gives here the same update formulas as in the explicit case but where
the numerical fluxes now involve quantities at time t] apart from the term consistent with {πI∂xαk}, which
writes:

• αkj+1/2((uk)?j+1/2)] = αkuk
]
j+1/2 −

∆(αkπk)]

2ak
+ 1

2ak
{Sk}nj+1/2,

• αkj+1/2((αkπk)?j+1/2)] = (αk)j(αk)j+1

(
πk

] − ak
2 ∆u]k

)
+ ∆αk

4 {Sk}
n
j+1/2.

Let us observe that we suggest here to keep on evaluating the interfacial pressure source term at time tn. It is
interesting to see that it is equivalent to the following system written in characteristic variables:

(α1)]j = (α1)nj ,

(rk)]j = (rk)nj ,

(τk)]j = (τk)nj +
λ

(rk)nj

(
(u?k)]j+1/2 − (u?k)]j−1/2

)
,

(
→
Wk)]j = (

→
Wk)nj −

λak
(rk)nj

(
→
Wk)]j +

λak(αk)nj−1

(rk)nj (αk)j−1/2
(
→
Wk)]j−1 −

λak(∆αk)j−1/2

2(rk)nj (αk)j−1/2
(
←
Wk)]j

+
λak

(αk)j−1/2(rk)nj
{S}nj−1/2 ,

(
←
Wk)]j = (

←
Wk)nj −

λak
(rk)nj

(
←
Wk)]j +

λak(αk)nj+1

(rk)nj (αk)j+1/2
(
←
Wk)]j+1 +

λak(∆αk)j+1/2

2(rk)nj (αk)j+1/2
(
→
Wk)]j

− λak
(αk)j+1/2(rk)nj

{S}nj+1/2 ,

(33)

where the new variables
←
Wk and

→
Wk are defined by

→
Wk = πk + akuk,

←
Wk = πk − akuk. These quantities are the

Riemann invariants associated with the characteristic speeds ±akτk of the relaxation system (14). We firstly

compute
←
Wk and

→
Wk. Once this is done, τk variables can be updated explicitly since ((uk)?j±1/2)] is explicitly

known from the knowledge of
←
Wk

]

and
→
Wk

]

by the formulas

(uk)]j =
1

2ak

(
(
→
Wk)]j − (

←
Wk)]j

)
, (πk)]j =

1

2

(
(
→
Wk)]j + (

←
Wk)]j

)
.

Remark 5.2. In the semi-implicit Lagrange projection, we need to solve a linear system to update the solution
at time t]. (

A →
Wk,

→
Wk

A →
Wk,

←
Wk

A ←
Wk,

→
Wk

A ←
Wk,

←
Wk

)( →
Wk
←
Wk

)
=

(
B →
Wk

B ←
Wk

)
, (34)

where the block matrices A →
Wk,

→
Wk

and A ←
Wk,

←
Wk

are bidiagonal and the block matrices A →
Wk,

←
Wk

and A ←
Wk,

→
Wk

are

diagonal. The implementation of this sparse matrix is made by the use of the Python library ”scipy.sparse”
and we solve the linear system (34) with a direct method from ”scipy.sparse.spsolve”.

Proposition 5.3. The implicit-explicit scheme (33)-(28) satisfies the following:

• The discretization of the partial masses αkρk is conservative
• The discretization of the total momentum α1ρ1u1 + α2ρ2u2 is conservative.
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• The constant velocities/pressures profiles are preserved.

Under the Whitham subcharacteristic condition and the CFL conditions,

∆t

∆x
max
j∈Z

(
((uk)?j−1/2)+ − ((uk)?j+1/2)−

)
< 1 (35)

• It preserves the maximum principle for the phase fractions: 0 < αk < 1 and positive values of the
densities ρk > 0.

Proof. The properties are obtained in the same way as in the explicit case. �

6. Numerical results

In this section, we present three test cases that are representative of the numerical challenges of the BN
model: the vanishing phase and the capture of a pure contact discontinuity. Here, we compare the approximate
solution computed with our two-step numerical scheme, with a reference solution. For the first and the second
test cases, the reference solution is computed over a 105 cells mesh with the Rusanov scheme. In the last test
case, the reference solution is the exact solution of the Riemann problem.

These three test cases are Riemann problems defined from the variables V := (α1, ρ1, u1, ρ2, u2) by setting
the initial data as:

V(t = 0, x) =

{
VL if x < 0.5,
VR if x > 0.5.

In these cases, the phasic equations of state are given by the following ideal gas pressure laws:

p1(ρ1) = κ1ρ
γ1
1 , with κ1 = 1 and γ1 = 2,

p2(ρ2) = κ2ρ
γ2
2 , with κ2 = 1 and γ2 = 3.

(36)

The solutions are computed on the domain [0, 1] of the x-space. For all the test cases, a mesh refinement process
is implemented in order to numerically check the convergence of the method. For this purpose, we compute
the discrete L1 error between the approximate solution and a reference solution at the final time T , normalized
by the discrete L1 norm of the reference solution for both tests 1 and 2. For the last test case, the reference
solution is the exact one.

error(∆x) =

∑
j |Vnj − Vref(xj , T )|∑

j |Vref(xj , T )|
, (37)

The calculations have been implemented on several uniform meshes. The coarser mesh is composed of 100 cells
and the more refined one contains 5 × 104 cells. The error (37) is then plotted against ∆x in a log− log scale
in Figures 3, 6, 9.

6.1. Test case 1: a complete Riemann problem

We consider a first test that displays all the waves: acoustic waves and contact discontinuity, with the
following initial data [16],

VL = (0.1, 0.85, 0.4609513139, 0.96, 0.0839315299) if x < 0.5,
VR = (0.6, 1.2520240113, 0.7170741165, 0.2505659851, −0.3764790609) if x > 0.5.

The exact solution is composed of a (u1 − c1)-shock wave, followed by a (u2 − c2)-rarefaction wave, followed by
a u2-contact discontinuity, followed by a (u2 + c2)-shock and finally followed by a (u1 + c1)-rarefaction wave.

In Figures 1, 2, the approximate solution computed with the explicit and implicit-explicit Lagrange projec-
tion schemes are compared with both a reference solution computed over a 105 cells mesh with the Rusanov
scheme and the approximate solution obtained with Rusanov scheme. We first observe that the implicit scheme
is the most diffusive, which was clearly expected from the implicit treatment of the acoustic step. Note also
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that our Lagrange-Projection schemes correctly capture the intermediate states even for this rather coarse mesh
of 1000 cells. It appears that the contact discontinuity is captured more sharply by the explicit Lagrange
projection method than by Rusanov scheme for which the numerical diffusion is larger. The two Lagrange
projection schemes are comparable to the results given by the relaxation scheme introduced in [15] (see page
34). Nevertheless, we observe that the ImEx method generates an overshoot at the contact discontinuity where
the phase fraction αk jumps. This oscillation is reduced on a finer mesh of 10000 cells in Figure 2 and does not
generate an instability. To have a better understanding of this behavior at the contact discontinuity, we study
a Riemann problem with a stationnary contact discontinuity in the last test case. The appearance of all the
waves in this first test case and of their numerical diffusion can make the interpretation of the results difficult.
Figure 3 also shows that the approximate solution computed thanks to the Lagrange Projection schemes con-
verges towards the reference solution. The errors converge towards zero with a rate between ∆x1/2 and ∆x.
The expected order of ∆x1/2 could be otained by implementing the calculation on much more refined meshes
in order to recover this asymptotic order of convergence.
Table 1 gives for each test case the number of iterations needed to perform the computations. As expected, the
gain is important when using the proposed implicit-explicit algorithm and the corresponding CFL restriction
based on the material waves (instead of the acoustic waves as for the explicit scheme).

Test 1 Test 2 Test 3
Rusanov 808 780 688

LP explicit 616 729 672
LP implicit 203 214 398

Table 1. Number of time-iterations for each test case with 1000 cells

6.2. Test case 2: vanishing phase

We now consider a Riemann problem in which one of the two phases vanishes in one of the initial states.
That means that the corresponding phase fraction α1 or α2 is equal to zero. This configuration poses a difficulty
in the two-fluid model owing to its independent velocities. The singularity arises when one computes the absent
phase velocity using the conservative variables uk = αkρkuk

αkρk
.

For this kind of Riemann problem, the uI -contact separates a mixture region where the two phases coexist from
a single phase region with the remaining phase. Assuming for instance that αL1 = 1 and 0 < αR1 < 1, the right
state is a mixture of both phases while the left initial state is composed solely of phase 1. We consider the
following initial data [16],

VL = (1, 1.8, 0.747051068928543, 3.979765198025580, 0.6) if x < 0.5,
VR = (0.4, 2.081142099494683, 0.267119045902047, 5.173694757433254, 1.069067604724276) if x > 0.5.

The exact solution is composed of a (u1 − c1)-shock wave in the left-hand side region where only phase 1 is
present. This region is separated by a uI -contact discontinuity from the right-hand side region where the two
phases are mixed. In this RHS region, the solution is composed of a (u2 + c2)-rarefaction wave followed by a
(u1 + c1)-rarefaction wave. In practice, the numerical method requires values of αL1 and αR1 that lie strictly in
the interval (0, 1). Therefore, in the numerical implementation, we take αL1 = 1− 10−9. The aim here is to give
a qualitative comparison between the numerical approximation and the reference solution. Moreover, there is
theoretically no need to specify left initial values for the phase 2 quantities since this phase is not present in
the LHS region. For the sake of the numerical simulations however, one must provide such values. We choose
to set ρL2 and uL2 to the values on the right of the uI -contact discontinuity. As for the first test case, we can see
in Figures 4,5 that for the same level of refinement, the explicit Lagrange projection scheme is more accurate
than Rusanov scheme. That can be seen especially for phase 1. As regards the region where phase 2 does
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(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 1. Test case 1: Space variations of the physical variables at the final time T = 0.14.
Mesh size: 1000 cells.
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(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 2. Test case 1: Space variations of the physical variables at the final time T = 0.14.
Mesh size: 10000 cells.
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(a) Explicit Lagrange Projection scheme (b) IMEX Lagrange Projection scheme

Figure 3. Test case 1: Convergence study. Mesh size: 100 to 104 cells.

not exist, we can see that the three numerical schemes develop some oscillations when it comes to divisions by
small values of α2. This behavior is also observed with the relaxation scheme in [15] (see page 37). The ImEx
method also generates an oscillation at the location where the phase fraction α2 jumps and is more diffusive for
the capture of the (u1 + c1)-rarefaction wave (see Phase 1 density in Figure 4). The oscillation and numerical
diffusion are lower on a finer mesh of 10000 cells in Figure 2 and ImEx method converges towards the reference
solution.
Figure 6 also shows that the approximate solution computed thanks to the Lagrange Projection schemes con-
verge towards the reference solution. The errors converge towards zero with a rate between ∆x1/2 and ∆x.
The expected order of ∆x1/2 could be otained by implementing the calculation on much more refined meshes
in order to recover this asymptotic order of convergence.

6.3. Test case 3: a pure contact discontinuity

In the last test case, we seek to analyze the behavior of the explicit and ImEx Lagrange Projection (LP)
schemes and the Rusanov scheme for the capture of a pure stationnary contact discontinuity. This Riemann
problem is built following the procedure explained in Appendix B. Here, in the exact solution, all the physical
quantities are transported with the constant velocity uI = 0. The initial data is defined as

VL = (0.8, 7.0710678118654755, 0.4448746176198241, 3.7907146169832258, 0) if x < 0.5,
VR = (0.2, 3.1622776601683795, 3.979079545848609, 3.6840314986403864, 0) if x > 0.5.

(38)

Figures 7 and 8 gather the curves of (α1, ρ1, u1, ρ2, u2) as functions of x and Figure 9 gathers the L1 relative
error compared to the initial state for the variables (α1, ρ1, u1, ρ2), and the L1 absolute error for u2 (as |u2| = 0
everywhere).

The approximation of a pure contact discontinuity represents a challenging test case. Indeed, for all schemes
considered in the present article, including the Rusanov scheme several pathological phenomena can be observed.
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(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 4. Test case 2: Space variations of the physical variables at the final time T = 0.1.
Mesh size: 1000 cells.
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(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 5. Test case 2: Space variations of the physical variables at the final time T = 0.1.
Mesh size: 10000 cells.
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(a) Explicit Lagrange Projection scheme (b) IMEX Lagrange Projection scheme

Figure 6. Test case 2: Convergence study. Mesh size: 100 to 104 cells.

First, none of the numerical schemes succeeded in perfectly preserving the zero-velocity uI = u2 profile. Such
an error on u2 also induces an error on ρ2 as it its profile cannot be kept stationary. Nevertheless, u2 seems to
converge to zero (in L1) with both Acoustic-Transport schemes, but not with the Rusanov scheme.

For the ρ1 profile, both Acoustic-Transport schemes produce an overshoot at the location of the discontinuity.
This results from the computation ρ1 = (α1ρ1)/α1. This overshoot reduces when using a finer mesh. It is not
observed with the Rusanov scheme that is more diffusive. Moreover, on the right-side of the contact discontinuity,
ρ1 seems to evolve as a regular solution over an important part of the computational domain and then finally
reaches a plateau value on the right side of the domain. Even for finer meshes, the solution does not seem to
converge towards the initial state when ∆x → 0. The same problem appears on the u1 profile. Moreover, this
very pathological behavior was also obtained with the relaxation scheme [15] (the simulations with the relaxation
scheme [15] were performed by K. Saleh). Let us mention that the problem of capturing correct profiles for the
coupling wave in BN models has been successfully investigated by [1] by the mean of an approximate Riemann
solver.

7. Conclusions

We proposed in this work an extension of the Lagrange-Projection decomposition for the barotropic BN
model by means of an operator splitting strategy. We studied both a full explicit time discretization and an
implicit-explicit method that enables the use of time steps constrained by CFL conditions that do not involve the
sound velocity of the fluids. Both the full-explicit and implicit-explicit methods are shown to ensure maximum
principle for the volume fractions αk and positive values of the densities ρk. Future work include entropy
analysis through the Lagrange projection splitting, extension of the strategy to multi-dimensional problems and
to the full Baer-Nunziato model with energy equations.

Acknowledgements

This work was supported by a grant from Région Ile-de-France DIM MATHINNOV and the project AID
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(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 7. Test case 3: Structure of the solution and space variations of the physical variables
at the final time T = 0.05. Mesh size: 1000 cells.
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(a) Phase 1 fraction α1 (b) Phase 1 velocity u1

(c) Phase 2 velocity u2 (d) Phase 1 density ρ1

(e) Phase 2 density ρ2

Figure 8. Test case 3: Structure of the solution and space variations of the physical variables
at the final time T = 0.05. Mesh size: 10000 cells.
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(a) Rusanov (b) Explicit Lagrange Projection (c) IMEX Lagrange Projection

Figure 9. Test case 3: Convergence study. Mesh size: 100 to 5× 104 cells.
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A. Eigenstructure of the relaxed acoustic system

Considering smooth solutions, the relaxed acoustic system (14) reads

∂tW +A(W )∂xW = 0, A =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
u1

α1

u1

r1
0 − 1

r1α1
0 0 0 0 0

π1 − πI −α1π1

r1
0 0 α1

r1
0 0 0 0

−a
2
1u1

α1
−a

2
1u1

r1
0

a21
r1α1

0 0 0 0 0

0 0 0 0 0 0 0 0 0
− u2

α2
0 0 0 0 u2

r2
0 − 1

r2α2
0

πI − π2 0 0 0 0 −α2π2

r2
0 0 α2

r2
a22u2

α2
0 0 0 0 −a

2
2u2

r2
0

a22
r2α2

0


(39)

where W = (α1, r1, r1τ1, r1α1u1, r1π1, r2, r2τ2, r2α2u2, r2π2).

The eigenvalues of the matrix A are
{
−a1r1 ,−

a2
r2
, 0, a2r2 ,

a1
r1

}
. We give a basis of right eigenvectors of A in the

case πI = π1 for the sake of simplicity:

• r(1)
0 = (0, 0, 1, 0, 0, 0, 0, 0, 0)

• r(2)
0 =

(
0, 1

π1
, 0, α1u1

π1
, 1, 0, 0, 0, 0

)
• r(3)

0 = (0, 0, 0, 0, 0, 0, 1, 0, 0)

• r(4)
0 =

(
1

r2u2

π2

π1−2π2
, 0, 0, 1

r2u2

π2r1u1

π1−2π2
, 0, 1

α2u2

π1−π2

π1−2π2
, 0, 1, 0

)
• r(5)

0 =
(
− 1
r2

α2

π1−2π2
, 0, 0,− 1

r2
α2r1u1

π1−2π2
, 0,− 1

π1−2π2
, 0, 0, 1

)
• r± a1

r1

=
(

0, 0,− 1
a21
,±α1

a1
, 1, 0, 0, 0, 0

)
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• r± a2
r2

=
(

0, 0, 0, 0, 0, 0,− 1
a22
,±α2

a2
, 1
)

where r
(1)
0 , r

(2)
0 , r

(3)
0 , r

(4)
0 and r

(5)
0 are associated with eigenvalue 0 of multiplicity 5. r± a1

r1

is associated with

±a1r1 and r± a2
r2

with ±a2r2 . The system (39) is thus hyperbolic. All the characteristic fields of (39) are linearly

degenerate.

B. Riemann problem for the stationary contact discontinuity

In this section, we give a procedure to initialize a test case with a stationary contact discontinuity. We recall
the Riemann invariants associated to the uI contact discontinuity of the barotropic Baer Nunziato model:

uI = u2, m1(u2 − u1), m1(u2 − u1)2 + α1p1 + α2p2,
(u2 − u1)2

2
+ e1 +

p1

ρ1
, (40)

where we recall that e1 verifies: de1/dρ1 = p1/ρ
2
1.

We denote [[X]] = XR − XL, the jump accross an interface where XR and XL are the right and left states.
Hence we have the following set of jump relations:

[[m1u1]] = 0, (41)

[[m1u
2
1 +

∑
k

αkpk]] = 0, (42)

[[
u2

1

2
+ e1 +

p1

ρ1
]] = 0. (43)

From (41), we denote m1u1 such that: m1u1 = (m1u1)L = (m1u1)R. From (43), we obtain:

m1u1
2[[

1

2ρ2
1α

2
1

]] + [[e1 +
p1

ρ1
]] = 0. (44)

We seek to define a test case where the initial condition is a stationary contact discontinuity. From given jumps
[[α1]] and [[ρ1]], we deduce the jumps [[ 1

2ρ21α
2
1
]] and [[e1 + p1

ρ1
]]. Assuming m1u1 is positive, we can compute its

expression from (44). Starting from (42) and a given state (p2)R, we can deduce the left state (p2)L with the
following equation:

[[m1u
2
1]] + [[α1p1]] + (α2)R(p2)R = (α2)L(p2)L.
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