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Modélisation Mathématique et Analyse Numérique

1

NONLINEAR METHODS FOR MODEL REDUCTION ∗
2

Andrea Bonito1, Albert Cohen2, Ronald DeVore1, Diane Guignard1, 3, Peter3

Jantsch1,3 and Guergana Petrova1
4

Abstract. Typical model reduction methods for parametric partial differential equations (PDEs) con-
struct a linear space Vn which approximates well the solution manifold M consisting of all solutions u(y)
with y the vector of parameters. In many problems of numerical computation, nonlinear methods such
as adaptive approximation, n-term approximation, and certain tree-based methods may provide improved
numerical efficiency over linear methods. Nonlinear methods for model reduction replace the linear space
Vn by a nonlinear space Σn. Little is known in terms of performance guarantees, and most existing nu-
merical experiments use a parameter dimension of only one or two. In this work, we make a step towards
a more cohesive theory for nonlinear model reduction. Framing these methods in the general setting of
library approximation, we give a first comparison of their performance with those of standard linear ap-
proximation for any compact set. We then study these methods for solution manifolds of parametrized
elliptic PDEs. We study a specific example of library approximation where the parameter domain is split
into a finite number N of rectangular cells, with affine spaces of dimension m assigned to each cell, and
give performance guarantees with respect to accuracy of approximation versus m and N .
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1. Introduction5

Complex systems are frequently described by parametrized partial differential equations (PDEs) that take the6

general form7

P(u, y) = 0, (1.1)

where y ranges over some parameter domain Y , and u = u(y) is the corresponding solution which is assumed to be8

uniquely defined in some Hilbert space V for every y ∈ Y . We denote by ‖ · ‖ = ‖ · ‖V and 〈·, ·〉 the norm and inner9

product of V , respectively. In what follows, we assume that the parameters are countably infinite and have been10

rescaled so that Y = [−1, 1]N. The case of a finite dimensional parameter y = (y1, . . . , yJ) can always be recast in11

this setting by considering that u(y) does not depend of the variable yj for j > J .12

There are three main problem areas associated with parametric PDEs:13

(i) building forward solvers to efficiently compute approximations to u(y) for any given y ∈ Y ;14

(ii) estimating the state u(y) from data observation when the parameter y is unknown;15
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(iii) estimating the parameter y that can give rise to an observed state u.16

One commonly used approach to tackle these three ranges of problems in a numerically efficient way is reduced17

modeling. In its most usual form, it is based on introducing a linear space Vn of low dimension n which is tailored to18

provide an accurate approximation to all solutions u(y) as y varies in Y , or equivalently, to the solution manifold,19

M := {u(y) : y ∈ Y }. (1.2)

1.1. Linear reduced models20

There are two common approaches to finding a reduced model Vn. The first one is to establish that the forward21

map y 7→ u(y) has a certain analyticity in y, and thereby admits a Taylor series representation22

u(y) =
∑
ν∈F

tνy
ν , tν ∈ V. (1.3)

Here F denotes the set of ν = (ν1, ν2, . . . ) which have finite support and whose entries are nonnegative integers.23

Quantitative bounds for the size of the Taylor coefficients tν allow one to prove that for each ε, there is a finite set24

Λ = Λ(ε) ⊂ F such that25

sup
y∈Y
‖u(y)−

∑
ν∈Λ

tνy
ν‖V ≤ ε. (1.4)

The space Vn := span{tν : ν ∈ Λ} provides the reduced model with n = #(Λ). In this case, an approximation of26

u(y) in Vn is readily provided by the function27

û(y) :=
∑
ν∈Λ

tνy
ν , (1.5)

that is, using the yν as the coefficients of û in the basis tν . Quantitative bounds on the cardinality of Λ(ε) are28

known under various assumptions on the coefficients of the PDE [7].29

The second approach to finding a reduced model is to judiciously select certain snapshots u(y1), . . . , u(yn) of u30

via a greedy procedure, and use the space Vn := span{u(y1), . . . , u(yn)} as the reduced model. In this case, the31

approximation of u(y) in Vn requires a projection step.32

Recent results show that there is a numerical advantage in the Taylor coefficient approach to finding a reduced33

basis, at least in the case of elliptic and certain parabolic PDEs, in the sense that it is sometimes possible to a34

priori find the set Λ by exploiting the parametric form of the diffusion coefficients [1]. This avoids computationally35

expensive search algorithms that are a component of greedy reduced basis selections. On the other hand, greedy36

procedures have the advantage that they are provably near-optimal for finding a linear space to approximate u, in37

the sense that their convergence rates are similar to those of the optimal linear spaces for approximatingM, see [2].38

Moreover, as we illustrate further in this paper, numerical experiments show that for a prescribed target accuracy,39

the greedy generated spaces that meet this accuracy are of significantly lower dimension then their polynomial40

counterparts.41

There is a rigorous theory that quantifies the approximation performance of both of these reduced models; see [7]42

for a summary of known results. The theory is most fully developed in the case of elliptic PDEs of the form43

− div (a∇u) = f, (1.6)

set on a physical domain D ⊂ Rd, say with Dirichlet boundary conditions u|∂D = 0, and where the diffusion44

function a has an affine parametrization45

a(y) = ā+
∑
j≥1

yjψj , (1.7)

for some given functions ā and (ψj)j≥1 in L∞(D). These functions are assumed to satisfy the condition46 ∥∥∥∥
∑
j≥1 |ψj |
ā

∥∥∥∥
L∞(D)

< 1, (1.8)
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which is equivalent to the following assumption.47

Uniform Ellipticity Assumption (UEA): There exist 0 < amin ≤ amax <∞ such that48

0 < amin ≤ a(y) ≤ amax <∞, y ∈ Y. (1.9)

Lax-Milgram theory then ensures that whenever f ∈ V ′ = H−1(D), for each y ∈ Y , the corresponding solution49

u(y) is uniquely defined in the Hilbert space V := H1
0 (D) endowed with the norm ‖ · ‖V := ‖∇ · ‖L2(D).50

1.2. Nonlinear reduced models51

It is known that in many contexts, numerical methods based on nonlinear approximation outperform linear52

methods, in the sense of requiring a much reduced computational cost to achieve a prescribed error tolerance [9].53

This motivates us to consider replacing the linear space Vn by a nonlinear space Σn depending on n parameters.54

We call such a space Σn a nonlinear reduced model. This idea has already been suggested and studied in certain55

settings; see e.g. [11,13,16]. However, up till now, there has not been a unified study of nonlinear model reduction.56

The purpose of the present paper is to provide a formal theory for such methods of nonlinear model reduction and57

to prove some first results that quantify the performance of these nonlinear methods.58

The nonlinear reduced models studied in this paper can be placed into the form of what is sometimes called library59

approximation. Given a Banach space X, a library L is a finite collection of affine spaces L1 := x1 +X1, . . . , LN :=60

xN + XN , where each Xj is a linear space of dimension at most m, and each xj ∈ X, j = 1, . . . , N . We set each61

Xj = {0} in the case m = 0. For an element x ∈ X, the error of approximation of x by the library L is62

E(x,L) := inf
L∈L

dist(x, L)X . (1.10)

In other words, given x, we choose the best of the affine spaces Lj = xj + Xj , j = 1, . . . , N , to approximate x.63

Given a library L and a compact set K ⊂ X, we define64

EL(K) := sup
x∈K

E(x,L). (1.11)

Here, in the context of reduced models for parametric PDEs, the idea is to keep m small when compared to the65

dimension n used in linear models Vn, while retaining the same accuracy of the reduced model.66

For parametric PDEs, we take X = V and K =M := {u(y) : y ∈ Y } to be the solution manifold of the PDE.67

A library L would then consist of affine spaces68

Lj := uj + Vj , (1.12)

where each uj ∈ V and each Vj ⊂ V has dimension at most m. Then, the best approximation to u(y) from Lj is69

uj + PVj (u(y)− uj), (1.13)

where PVj is the V -orthogonal projection onto Vj . In this context, when presented with a parameter y for which70

we wish to compute an online approximation to u(y), the choice of which space Lj to use from a given library L71

could be decided in several ways, among which we mention:72

(1) searching for a computable bound for dist(u(y), Lj)V = ‖u−uj−PVj (u(y)−uj)‖V , and choosing the value73

of j that minimizes this surrogate quantity;74

(2) building an a priori partition of the parameter domain Y into cells Qj and construct an Lj for each cell.75

Then the choice of Lj for approximating u(y) is determined by the cell Qj containing y.76

Only the latter procedure is considered in this paper.77

Returning back to the case of a general Banach space X, we denote by  Lm,N =  Lm,N (X) the collection of all78

libraries L = {L1, . . . , LN} containing N affine spaces of dimension at most m. If we fix the values of m and N ,79

then the best performance of a library with these fixed values is80

dm,N (K) := inf
L∈  Lm,N

EL(K). (1.14)
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We call dm,N the library width of K. This definition slightly differs from that introduced in [15] in which the spaces81

Lj are taken to be linear instead of affine.82

Library widths include the two standard approximation concepts of widths and entropy. Recall that if K is a83

compact set in a Banach space X then its Kolmogorov m width is84

dm(K) := dm(K)X := inf
dim(Y )=m

dist(K,Y )X , (1.15)

where the infimum is taken over all linear spaces Y of dimension m. Thus the Kolmogorov m width of K is the85

smallest error that can be obtained by approximation by linear spaces of dimension m. It follows that we can86

sandwich the library width dm,1(K)X between Kolmogorov widths by87

dm+1(K) ≤ dm(K0) = dm,1(K) ≤ dm(K), (1.16)

where K0 = K − x0 for some suitable x0 ∈ X. At the other extreme,88

d0,2n(K) = εn(K), (1.17)

where εn(K) is the n-th entropy number of K that is, the smallest number ε such that K can be covered by 2n89

balls in X of radius ε.90

One of the motivations for using library approximation in the context of parametric PDEs with a small value91

of m is that the current construction of linear reduced models via greedy algorithms has offline cost that increases92

exponentially as the dimension of the reduced space increases. This is due to the fact that the greedy algorithm93

needs to search for the reduced basis elements through a large training set which should in principle resolve the94

solution manifold M to the same accuracy ε that is targeted for the reduced basis space Vn. For example, it is95

known that if the Kolmogorov n width dn(M) decays like O(n−s) for some s > 0, then taking ε = n−s, this training96

set should have cardinality O(eCε
−1/s

), or equivalently O(ecn), for some fixed constants C, c > 0. The resulting97

offline cost becomes prohibitive as ε is getting small (or n is getting large). The reader can find a detailed analysis98

of this cost of greedy constructions in [7] or [6]. We should note that it was recently shown in [6] that the offline99

cost of greedy constructions (under certain model assumptions on the parametric coefficients) can be reduced to100

polynomial growth in ε by using random training set, provided we are now willing to accept results that hold with101

high probability. In order not to confuse various issues, we put this aside when going further in this paper.102

Because of the offline cost, it may be impossible to build a linear model using a greedy algorithm when the user103

prescribed error is too small. On the other hand, by choosing m small and an appropriate partitioning (Qj)j=1,...,N104

for Y , the offline cost is moderate and a nonlinear reduced model may be constructed provided N is not too large.105

Keeping m small may also be useful in other contexts such as saving in the online cost for the forward problem106

and numerical savings for state and parameter estimation. In fact the latter is one of our main motivations for107

nonlinear reduced models.108

1.3. Outline of the paper109

We begin the next section by giving some general remarks on library approximation. We show that if K is a110

compact set in a Banach space X whose Kolmogorov n widths decay like n−r for some r > 0, then given any111

target accuracy ε and writing ε = n−r for a suitable integer n, we have dm,N (K) ≤ ε provided N ≥ 2c(n−m), with112

c depending only on r. Thus, this result gives a bound on how many spaces would be needed in the library if113

we restrict the dimension of the component spaces Xj to be at most m. While quantitative, this estimate is very114

pessimistic since, as is well known, nonlinear methods are not beneficial for certain compact sets.115

The remainder of our paper is directed at using library approximation for reduced models for parametric PDEs.116

We take K =M where M is the solution manifold of a parametric elliptic PDE with affine coefficients (1.7). As117

already indicated, the library approximation studied in this paper can be viewed as first partitioning the parameter118

set into N cells Qj and assigning an affine space Lj = uj + Vj with Vj of dimension at most m on each cell. The119

main issues therefore are how to choose the cells and how to design the spaces Vj . Given a target accuracy ε and120

a prescribed target m for the dimension of the spaces in the library, we are interested in strategies for generating121

a good partition of Y into N cells with a bound on the number N of cells needed to guarantee the prescribed122

accuracy.123
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In §3, we consider libraries where each of the Lj is generated from a local polynomial expansion with m+1 terms.124

We give a tensor product strategy for subdividing the parameter domain into cells Qj which are hyperrectangles125

and finding a polynomial space of dimension m+1 associated with each cell. Thus, the reduced model can be viewed126

as a piecewise polynomial (in y) approximation to u(y). We give bounds on N which are a significant improvement127

over those in §2 and show how these results can be used to give concrete bounds when specific assumptions are128

made on the affine representation (1.7).129

In §4, we present the results of various numerical tests that confirm our theoretical results. First, we compare130

the performance (on the entire parameter domain Y ) of the two primary linear reduced models, namely polynomial131

and greedy. These results show that the gain in using greedy algorithms is typically dramatic. Then we implement132

our numerical methods for partitioning in the case of piecewise polynomial nonlinear models, where our examples133

show that suitable error can be achieved with a reasonable number of cells provided m is not too small. We then134

provide a discussion and numerical experiments of nonlinear models based on piecewise polynomials in the setting135

of data assimilation.136

Finally in §5, we conclude with remarks on the possible advantages and disadvantages of library-based reduced137

models for applications such as online solvers, data assimilation, and parameter estimation. This section also gives138

us an opportunity to mention several areas where further research is needed for a better understanding of nonlinear139

model reduction.140

2. General remarks on library approximation141

We begin by making some general remarks on library approximation. The central issue we address in this section142

is the size of the library needed to achieve a given target accuracy when we require dimension m of the spaces in143

the library. The following theorem gives a first, very pessimistic, bound for the size of the library, which we denote144

by N .145

Theorem 2.1. Let K be a compact set in a Banach space X. If for some x0 ∈ X the Kolmogorov widths of146

K0 = K − x0 satisfy147

dk(K0)X ≤Mk−r, k ≥ 1, (2.1)

for some M > 0, then for any 0 ≤ m ≤ n, one has148

dm,N (K) ≤ (1 + 22r)Mn−r, (2.2)

provided N ≥ Bn−mr with Br depending only on r. In other words, we can obtain the same accuracy as in (2.1) by149

using spaces of the lower dimension m, provided we take N of them.150

Proof. Since K = K0 + x0 and since the definition dm,N (K) uses libraries of affine spaces, it is sufficient to prove151

the theorem for x0 = 0 and thus K0 = K.152

Let us first note that there is a nested sequence of spaces Xk ⊂ Xk+1 with dim(Xk) = k and153

dist(K,Xk)X ≤ 22rMk−r, k ≥ 1. (2.3)

Indeed, from (2.1), there are linear spaces Lj , j ≥ 0, of dimension 2j , and

dist(K,Lj)X ≤M2−jr.

The spaces Yj := L0 + · · ·+ Lj have dimension nj with 2j ≤ nj ≤ 2j+1 and satisfy154

dist(K,Yj)X ≤M2−jr = 22rM2−(j+2)r ≤ 22rMn−rj+1, j ≥ 0. (2.4)

Since the spaces Yj are nested, and n0 ≤ . . . ≤ nj ≤ . . ., we can find functions φ1, φ2, . . . , such that for each j, the
functions φ1, . . . , φnj are a basis for Yj . The spaces

X0 := {0}, Xk := span{φ1, . . . , φk}, k ≥ 1,
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provide such a nested sequence, since for nj ≤ k ≤ nj+1 we have Yj ⊂ Xk ⊂ Yj+1 and

dist(K,Xk)X ≤ dist(K,Yj)X ≤ 22rMn−rj+1 ≤ 22rMk−r, k ≥ 1.

Case 1: We fix m and first consider the case when n = m + 2j with j = −1, 0, 1, . . . , where for the purposes of
this proof we replace 2−1 by 0 when j = −1. We proceed by induction on j and use the nested spaces Xk defined
above. We define W := Xm which is a space of dimension m and for each j ≥ 0, we further define

Zj := span{φm+1, . . . , φm+2j}, dim(Zj) = 2j , and thus W + Zj = Xm+2j .

We show by induction that for each j ≥ −1, there is a set Sj ⊂ Zj such that:155

(1) the library Lj := {s+W, s ∈ Sj} provides the approximation error156

ELj (K) ≤ (1 + 22r)M [m+ 2j ]−r, j ≥ −1; (2.5)

(2) for each j ≥ −1, the cardinality of Sj is157

#(Sj) =: Nj ≤ (1 + 2r+1R)2j+1

, R := 1 + 22r+1. (2.6)

When j = −1, we can take the set S−1 = {0}. We obtain the desired error bound because of (2.3) and we know158

that N−1 = 1.159

Suppose now that we have established (i) and (ii) for a value of j. To advance the induction to j + 1 we do the160

following. Let X̂ := X/W denote the quotient space of X modulo W with elements [x] = x+W , x ∈ X. We equip161

this space with its usual norm162

‖[x]‖X̂ := dist(x,W )X . (2.7)

We then have the finite dimensional spaces Ẑj := {[z] : z ∈ Zj}, j = 0, 1, . . . . For each z` ∈ Sj ⊂ Zj , we define

B` = B([z`], R0) := {[z] ∈ Ẑj+1 : ‖[z]− [z`]‖X̂ ≤ R0}, R0 := RM [m+ 2j ]−r,

the ball in Ẑj+1 with center [z`] and radius R0. It is known (see [14], p.63) that for any ε > 0, the covering number163

Nε(U) for the unit ball U in Ẑj+1 satisfies164

Nε(U) ≤ (1 + 2/ε)2j+1

.

We next set ε := M [m+ 2j+1]−r. It follows that the covering number of B` satisfies165

Nε(B`) ≤ (1 + 2RM [m+ 2j ]−r/ε)2j+1

≤ (1 + 2r+1R)2j+1

, ` = 1, . . . , Nj . (2.8)

We now take Sj+1 ⊂ Zj+1 as a collection {s} of representatives of the centers [s] of the totality of all the balls of
radius ε needed to cover all of the balls B`, ` = 1, . . . , Nj , that is

Nj⋃
`=1

B` ⊂
⋃

s∈Sj+1

B([s], ε).

Clearly,166

#(Sj+1) ≤ Nj(1 + 2r+1R)2j+1

≤ (1 + 2r+1R)2j+2

, (2.9)

where we have used the induction hypothesis (ii) in the least inequality. This advances the induction assumption167

for the bound on #(Sj).168

We now check that the library Lj+1 := {s+W, s ∈ Sj+1} provides the desired approximation error bound. Let169

x ∈ K. Then, it follows from (2.3) that there is a z ∈ Zj+1 such that170

‖[x]− [z]‖X̂ ≤ 22rM [m+ 2j+1]−r. (2.10)
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We also know from our induction hypothesis (i) that there is a z` ∈ Sj ,such that

‖[x]− [z`]‖X̂ ≤ (1 + 22r)M [m+ 2j ]−r.

Hence,171

‖[z]− [z`]‖X̂ ≤ ‖[x]− [z]‖X̂ + ‖[x]− [z`]‖X̂ ≤ (1 + 22r+1)M [m+ 2j ]−r,

and so [z] is in the ball B`. Therefore, there is an s ∈ Sj+1 such that

‖[z]− [s]‖X̂ ≤M [m+ 2j+1]−r.

Combining this with (2.10), we obtain172

‖[x]− [s]‖X̂ ≤ (1 + 22r)M [m+ 2j+1]−r. (2.11)

This advances our induction hypothesis on the error bound.173

Case 2: We consider any n, not necessarily of the form m+ 2j . For any j such that m+ 2j ≥ n, the library Lj will174

provide the error (1 + 22r)Mn−r because of (2.5). So, we choose j as the smallest integer such that 2j ≥ n −m.175

For this value of j, we have 2j−1 ≤ n−m and from (2.6), we obtain the bound176

Nj ≤ (1 + 2r+1R)2j+1

= B2j−1

r ≤ Bn−mr , (2.12)

with Br := (1 + 2r+1R)4. �177

Remark 2.2. We may restate Theorem 2.1 as follows. If178

dk(K0) ≤Mk−r, k ≥ 1,

then for any ε > 0 and m ≥ 0, there exists a library L of m dimensional affine spaces which approximates K to179

accuracy ε, and has cardinality180

N = #(L) ≤ exp(αε−1/r − βm),

with β = ln(Br) and α = ln(Br)
[
M(1 + 22r)

]1/r
. In particular, the library widths of K satisfy181

dm,N (K) ≤ ε, whenever N ≥ exp(αε−1/r − βm).

Theorem 2.1 is very pessimistic since it holds for all compact sets K and general Banach spaces X. As we182

know in other settings, some compact model classes do not benefit from nonlinear approximation. Also, note that183

in the proof of the theorem, we use the same space W of dimension m for each of the affine spaces Lj , thereby184

never taking advantage of any local behavior of the set K. In the following sections of this paper, we study library185

approximation for the purpose of creating a nonlinear model reduction for parametric elliptic PDEs. We exploit186

known theorems on the smoothness of the mapping y 7→ u(y) to give explicit non-uniform and anisotropic tensor187

product partitions of the parameter domain Y into N cells and create a library of affine spaces that achieves a188

prescribed target error and whose size obeys much better bounds than those given in this section.189

3. Piecewise polynomial approximation for parametric PDE190

Before beginning our analysis, we first remark on what we can expect as quantitative results. Nonlinear methods191

are most effective when the target function, in our case u, is not smooth; for example when it has point singularities192

or singularities on lower dimensional sets, or it is piecewise smooth. For the parameter to solution map y 7→ u(y)193

associated to the elliptic equation (1.6) with affine parametrization (1.7), singularities occur when the function194

a(y) is not strictly positive. The uniform ellipticity assumption (1.9) ensures that the singularities of u are located195

outside the parameter domain Y . However, as amin/amax becomes small, they get closer to the boundary of Y , and196

the use of nonlinear methods becomes more relevant in those cases.197

We shall see that the bounds on the number of cells necessary in a partition generated by the nonlinear method198

remain modest when a reasonable number of terms m in the polynomial approximation are used on each cell; see199
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Table 1. In the final section of this paper, we discuss the advantages this fact provides for online solvers and state200

estimation.201

3.1. Polynomial approximation error202

If Λ ⊂ F is a finite set of indices, we denote by PΛ the linear space of all V valued polynomials203

P (y) =
∑
ν∈Λ

cνy
ν , (3.1)

where the coefficients cν are in V . Here and later we use standard multivariate notation, for example, yν = yν1
1 · · ·204

when ν has finite support. We always assume that the set Λ is a downward closed (or lower) set, that is,205

ν ∈ Λ and µ ≤ ν =⇒ µ ∈ Λ, (3.2)

where µ ≤ ν means that µj ≤ νj for all j. In particular, the null multi-index is contained in Λ. Once the coefficients206

cν are fixed, each P (y) is in the affine space207

c0 + span{cν ∈ V : ν ∈ Λ∗}, Λ∗ := Λ \ {0}, (3.3)

which has dimension no more than #(Λ∗) = #(Λ)− 1. A typical choice for the cν are the Taylor coefficients in the208

expansion (1.3).209

There are two types of assumptions on the diffusion coefficient commonly employed when proving results on210

polynomial approximation to u. The first one is to assume a decay rate for the sequence (‖ψj‖L∞(D))j≥1. The211

second type of assumption (and the one we employ here), described in [1], is to assume a local interaction bound212

on how the supports of the ψj overlap. One could derive bounds similar to those given below in the first setting as213

well.214

We assume throughout this section that u(y) is the solution to (1.6) with diffusion coefficient a(y) given by (1.7)215

and that there is a positive sequence (ρj)j≥1 such that216

κ := min
j≥1

ρj > 1, (3.4)

and217

δ :=

∥∥∥∥
∑
j≥1 ρj |ψj |
ā

∥∥∥∥
L∞(D)

< 1. (3.5)

The following theorem gives a bound for the error of approximation of u by polynomials from PΛ.218

Theorem 3.1. Assume that (3.4) and (3.5) hold with (ρ−1
j )j≥1 ∈ `q(N) for 0 < q < 2. For each m ≥ 1, there is a219

set Λ with #(Λ) = m such that the V valued polynomial P (y) :=
∑
ν∈Λ tνy

ν , y ∈ Y , satisfies220

sup
y∈Y
‖u(y)− P (y)‖V ≤ C(δ, ρ, q)‖(ρ−1

j )j≥1‖`qm−r, r = 1/q − 1/2, (3.6)

where C(δ, ρ, q) := C(ρ, q)Cδ with221

C(ρ, q) := β
1
q exp

(β
q
‖(ρ−1

j )j≥1‖q`q
)
, β := − ln(1− κ−q)κq, C2

δ :=
(2− δ)amax

(2− 2δ)a3
min

‖f‖2V ′ . (3.7)

The set Λ can be chosen to be a lower set and is derived explicitly in the proof.222

Proof. The proof follows from a general summability result established in [1] together with concrete estimates for223

the constants given in [4]. For the completeness and clarity of the present paper, we provide the details. We first224

choose Λ to be the set of indices in F that correspond to the m largest of the numbers ρ−ν . Ties are handled in225
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such a way that Λ is a lower set, see [4]. Then, for P (y) :=
∑
ν∈Λ tνy

ν we have by Hölder’s inequality that for any226

y ∈ Y ,227

‖u(y)− P (y)‖V ≤
∑
ν /∈Λ

‖tν‖V ≤
(∑
ν∈F

ρ2ν‖tν‖2V
) 1

2
(∑
ν /∈Λ

ρ−2ν
) 1

2

. (3.8)

From the proof of Theorem 2.2 in [1], we know also that228

∑
ν∈F

ρ2ν‖tν‖2V ≤
(2− δ)‖ā‖L∞(D)

(2− 2δ) infx∈D ā(x)3
‖f‖2V ′ ≤ C2

δ , (3.9)

where Cδ is defined in (3.7). Moreover, we have229 ∑
ν /∈Λ

ρ−2ν =
∑
ν /∈Λ

ρ−ν(2−q)ρ−νq ≤
(

sup
ν /∈Λ

ρ−ν(2−q)
)∑
ν /∈Λ

ρ−νq. (3.10)

We now let (γk)k≥1 be a non-increasing rearrangement of the sequence (ρ−ν)ν∈F . We note that γ1 = ρ−0 = 1230

due to the fact that ρ1 > 1 and (ρj)j≥1 is non-decreasing. Then we have231

sup
ν /∈Λ

ρ−νq = γqm+1 ≤ m−1
m+1∑
k=2

γqk ≤ m
−1
∑
k≥2

γqk = m−1
∑
ν 6=0

ρ−qν , (3.11)

and hence232

sup
ν /∈Λ

ρ−ν(2−q) ≤
(
m−1

∑
ν 6=0

ρ−qν
) 2−q

q

. (3.12)

Using (3.9) and (3.12) with (3.10) in (3.8), we get233

‖u(y)− P (y)‖V ≤ Cδ

(
m−1

∑
ν 6=0

ρ−qν
) 2−q

2q
(∑
ν /∈Λ

ρ−νq
) 1

2

≤ Cδm
− 1
q+ 1

2

(∑
ν 6=0

ρ−νq
) 1
q

. (3.13)

The final step of the proof is giving an upper bound of the term
∑
ν 6=0 ρ

−qν . For this, let α := κ−q < 1, so that234

ρ−qj ≤ α for all j ≥ 1. Now define β ≥ 1 so that 1 − α = e−βα, i.e., β is the same as defined in (3.7). Then, β235

depends only on κ, and q, and by the convexity of e−βx, we have 1 − x ≥ e−βx for 0 ≤ x ≤ α. It follows that236

(1− ρ−qj )−1 ≤ eβρ
−q
j , and therefore237

∑
ν 6=0

ρ−qν =

∞∏
j=1

(1− ρ−qj )−1 − 1 ≤ eβb − 1 ≤ βbeβb, b := ‖(ρ−1
j )j≥1‖q`q . (3.14)

Taking the qth root in (3.14) and inserting into (3.13) gives (3.6). �238

Remark 3.2. An important point is that the lower set Λ guaranteed in the above theorem can be described a priori239

by choosing the indices corresponding to the n largest of the numbers ρ−ν with ties handled properly; see also [8]240

and [4].241

We next want to derive a local version of the last theorem, namely we want to derive an estimate for how well the242

Taylor series centered at a general point ȳ ∈ Y approximates u near ȳ. Suppose that Qλ(ȳ) ⊂ Y is a hyperrectangle243

centered at some ȳ ∈ Y with sidelength 2λj in direction j, i.e.,244

Qλ(ȳ) := {y ∈ RN : |yj − ȳj | ≤ λj , j ≥ 1}. (3.15)
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We refer to the sequence λ := (λj)j≥1 as the sidelength vector for this set.245

A first local error estimate for the Taylor series at ȳ is given in the following corollary. In preparation for the246

proof of that corollary, let us note that for y ∈ Qλ(ȳ), we have247

a(y) = a(ȳ) +

∞∑
j=1

(yj − ȳj)
λj

(λjψj) = a(ȳ) +

∞∑
j=1

ỹjψ̃j =: ã(ỹ), (3.16)

where ỹj :=
yj−ȳj
λj
∈ [−1, 1] and ψ̃j := λjψj . Therefore,248

u(y) = ũ(ỹ), y ∈ Qλ(ȳ),

with ũ(ỹ) the solution to249

−div (ã(ỹ)∇ũ(ỹ)) = f, ỹ ∈ Y, (3.17)

in D with Dirichlet homogeneous boundary conditions.250

We can now apply Theorem 3.1 to this new problem (3.17) as long as the assumptions of that theorem hold for251

this new problem.252

Corollary 3.3. Suppose the assumptions of Theorem 3.1 hold for κ and δ as in (3.4) and (3.5). Consider any253

hyperrectangle Q := Qλ(ȳ) ⊂ Y as in (3.15) with center ȳ ∈ Y and sidelength vector λ. If there is a sequence254

(ρ̃j)j≥1 (depending on Q) for which255

(1) ρ̃j ≥ κ for j ≥ 1;256

(2) ‖(ρ̃−1
j )j≥1‖`q ≤ ‖(ρ−1

j )j≥1‖`q ;257

(3)

∥∥∥∥∑
j≥1 ρ̃j |ψ̃j |
a(ȳ)

∥∥∥∥
L∞(D)

≤ δ,258

then for each m ≥ 1, there is a polynomial P (depending on Q) with m terms (whose indices are given by a lower259

set) such that260

sup
y∈Q
‖u(y)− P (y)‖V ≤ C(δ, ρ, q)‖(ρ̃−1

j )j≥1‖`qm−r, r = 1/q − 1/2, (3.18)

where C(δ, ρ, q) is the constant from Theorem 3.1.261

Proof. This follows from Theorem 3.1 applied to the new problem (3.17). We obtain the same constant because of262

the assumptions (i)-(iii) placed on the sequence (ρ̃j)j≥1. �263

3.2. An upper bound on the library size264

We now turn to the central issue of given m, and a desired accuracy ε, how can we partition the parameter265

domain Y into a finite number of cells such that u can be approximated to this accuracy by a piecewise polynomial266

on this partition, where each polynomial has m+ 1 terms? Deriving such a partition and bounding its size requires267

some preparatory work. Let C := C(δ, ρ, q) be the constant of Theorem 3.1. We assume without loss of generality268

that269

C‖(ρ−1
j )j≥1‖`q (m+ 1)−r > ε, (3.19)

since otherwise the parameter domain Y does not need to be partitioned. Namely, from Theorem 3.1, there is270

a polynomial with m + 1 terms which approximates u on Y to accuracy ε. Since (ρ−1
j )j≥1 ∈ `q(N), we define271

J := J(ε,m) ≥ 1 to be the smallest integer such that272 ∑
j≥J+1

ρ−qj ≤
1

2
C−q(m+ 1)qrεq. (3.20)

We will see that the directions J + 1, J + 2, J + 3, ..., contribute at most ε/2 to the total error and we will not273

need to subdivide in these directions. For the first J directions, the strategy we use distributes the remaining error274

equally. To that purpose, we define the quantity275

σq :=
1

2J
C−q(m+ 1)qrεq. (3.21)
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With this notation, we can rewrite (3.19) and (3.20), respectively, as276

‖(ρ−1
j )j≥1‖q`q > 2Jσq, and

∑
j≥J+1

ρ−qj ≤ Jσ
q. (3.22)

We begin with the following lemma.277

Lemma 3.4. Suppose Q ⊂ Y is a hyperrectangle with center z = (z1, . . . , zJ , 0, 0, . . . ) and sidelength vector278

λ = (λ1, . . . , λJ , 1, 1, . . . ). If279

λj ≤ σ(ρj − |zj |) j = 1, . . . , J, (3.23)

then here exists a V valued polynomial PQ with m+ 1 terms such that280

‖u(y)− PQ(y)‖V ≤ ε, y ∈ Q. (3.24)

Proof. We define281

ρ̃j :=

{
σ−1, if 1 ≤ j ≤ J,
ρj , otherwise,

(3.25)

and verify that (ρ̃j)j≥1 satisfies the assumptions (i)-(iii) of Corollary 3.3 for Q.282

We start with (i). It follows from the definition (3.4) of κ and from (3.22) that

σq <
1

2J
‖(ρ−1

j )j≥1‖q`q =
1

2J

 J∑
j=1

ρ−qj +
∑

j≥J+1

ρ−qj

 ≤ 1

2
κ−q +

1

2
σq,

and so σ−1 > κ. Since we already know ρj ≥ κ for all j, this verifies condition (i).283

We now focus on (ii). We set η := C−1ε(m+ 1)r and use the choice of J in (3.20) to write284

‖(ρ̃−1
j )j≥1‖q`q = Jσq +

∑
j≥J+1

ρ−qj ≤ Jσ
q +

1

2
ηq = ηq. (3.26)

Moreover, if we combine (3.26) with (3.22), we obtain

‖(ρ̃−1
j )j≥1‖q`q ≤ η

q < ‖(ρ−1
j )j≥1‖q`q ,

and so (ii) holds.285

Finally, to prove (iii), recall that ψ̃j = λjψj and therefore from the inequalities (3.25) and (3.23) we have

ρ̃j |ψ̃j | = ρ̃jλj |ψj | ≤ (ρj − |zj |)|ψj |.

This gives286 ∥∥∥∥∥
∑
j≥1 ρ̃j |ψ̃j |
a(z)

∥∥∥∥∥
L∞(D)

≤

∥∥∥∥∥
∑
j≥1 ρj |ψj | −

∑
j≥1 |zj ||ψj |

ā−
∑
j≥1 |zj ||ψj |

∥∥∥∥∥
L∞(D)

≤ δ. (3.27)

In view of the definition of δ, see (3.5), the last inequality follows from

0 ≤
∑
j≥1

|zj ||ψj(x)| <
∑
j≥1

ρj |ψj(x)| ≤ ā(x), x ∈ D,

and the inequality
∣∣∣α−βγ−β

∣∣∣ ≤ ∣∣∣αγ ∣∣∣ which is valid for any 0 ≤ β < α ≤ γ. Thus, (iii) has been established.287

We can now use Corollary 3.3 to guaranteed the existence of the polynomial PQ to complete the proof. �288

We are now in position to state the main theorem of this section.289
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Theorem 3.5. Let 0 < q < 2 and (ρ−1
j )j≥1 ∈ `q(N) be a nondecreasing sequence which satisfies (3.4) and (3.5).290

Let ε > 0, m ≥ 0 and assume that (3.19) holds. Then, there exists a tensor product partition of Y into a collection291

R of N hyperrectangles such that on each Q ∈ R there is a V valued polynomial PQ with m+ 1 terms such that292

‖u(y)− PQ(y)‖V ≤ ε, y ∈ Q. (3.28)

Furthermore, if J := J(ε,m) is as in (3.20), then the partition is obtained by only subdividing in the first J293

directions and the number of cells N in this partition satisfies294

N ≤
J∏
j=1

(
σ−1| ln(1− ρ−1

j )|+ C(σ)
)

for some C(σ) ∈ (1, 2). (3.29)

Proof. To define our tensor product grid, for each j = 1, . . . , J , we define how we subdivide [−1, 1] into (2kj + 1)
intervals

Iij , −kj ≤ i ≤ kj
for the coordinate yj . Recall that we do not subdivide any of the coordinate axis when j > J , i.e., kj = 0 and295

I0
j = [−1, 1] when j > J . Also, our partition is symmetric and so I−ij = −Iij , i = 1, . . . , kj .296

We fix j ∈ {1, . . . , J} and describe our partition of [−1, 1] into intervals corresponding to the j-th coordinate.297

Our first interval I0
j is centered at z0

j = 0 and has sidelength λ0
j := σρj provided this number is less than one.298

Otherwise, when σρj ≥ 1, we define λ0
j := 1, and so kj = 0 and our partition consists only of the one interval299

I0
j = [−1, 1]. Note that since (ρj)j≥1 is nondecreasing, when this happens it also happens for all larger values of j.300

Our partition is symmetric with respect to the origin and so we only describe the intervals to the right of the301

origin. Our next interval I1
j has left endpoint the same as the right endpoint of I0

j , has center z1
j and sidelength302

λ1
j , where these numbers are defined by the relationship303

λ1
j = σ(ρj − z1

j ). (3.30)

The only exception to this definition is when the right endpoint of this interval is larger than one. Then we recenter304

the interval so its left endpoint is as before and its right endpoint is one. In this case, we would stop the process305

and kj would be one.306

We continue in this way moving to the right. So, in general, the interval Iij will have its left endpoint equal to307

the right endpoint of Ii−1
j , and will have center zij and sidelength λij which satisfy308

λij = σ(ρj − zij) (3.31)

except in the case that such a choice would give a right endpoint larger than one in which we rescale. It follows309

that the interval Iij always satisfies310

λij ≤ σ(ρj − zij), i = 0, 1, . . . , kj , (3.32)

with equality except for possibly the last interval I
kj
j . We give below a bound for kj which shows this process is311

finite.312

This partitioning gives a tensor product set R of hyperrectangles Q. In view of the property (3.32), each of the313

hyperrectangles satisfies the conditions of Lemma 3.4 and therefore the existence of the polynomials PQ, Q ∈ R314

satisfying the approximation estimate is guaranteed.315

It remains to bound the cardinality of R. For this, we bound kj , 1 ≤ j ≤ J , when kj 6= 0. We obtain the bound316

we want by monitoring the points317

Ri = zij + λij , i = 0, 1, . . . , kj ,

Each Ri is the right endpoint of Iij as long as 0 ≤ i < kj . Also we know that Rkj ≥ 1. Relation (3.31) implies that318

λij is chosen so that319

λij
ρj −Ri + λij

= σ.
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This gives that320

(1− σ)λij = σ(ρj −Ri).

Since Ri = Ri−1 + 2λij , we have321

(1− σ)(Ri −Ri−1) = 2σ(ρj −Ri).
We therefore obtain the recursive formula322

Ri =
1− σ
1 + σ

Ri−1 +
2σ

1 + σ
ρj =: αRi−1 + b, i = 1, 2, . . . ,

where R0 = ρjσ, α := 1−σ
1+σ , b := 2σ

1+σρj . Therefore, we find323

Ri = αiR0 + (1 + α+ . . .+ αi−1)b = αiR0 +
1− αi

1− α
b

= αiρjσ + (1− αi)ρj = ρj(1− αi(1− σ)). (3.33)

The iteration will stop at the smallest integer k = kj such that Rk ≥ 1. Since σ−1 ≥ κ > 1, we have σ < 1 and the
iteration will stop at the smallest integer k such that

αk ≤
1− ρ−1

j

1− σ
.

Note that
1−ρ−1

j

1−σ < 1 because σρj < 1 (otherwise kj = 0 and I0
j = [−1, 1]). We are looking for the smallest integer

k for which

k ≥
ln
(
1− ρ−1

j

)
− ln (1− σ)

lnα
,

which gives324

kj =

⌈
ln(1− ρ−1

j )− ln (1− σ)

lnα

⌉
<

ln(1− ρ−1
j )− ln (1− σ)

lnα
+ 1, j = 1, . . . , J.

Therefore, we have the bound

nj := 2kj + 1 ≤ 2
ln
(
1− ρ−1

j

)
− ln (1− σ)

ln
(

1−σ
1+σ

) + 3 = 2
ln
(
1− ρ−1

j

)
ln
(

1−σ
1+σ

) + C(σ),

where325

C(σ) := −2
ln (1− σ)

ln
(

1−σ
1+σ

) + 3 =
ln
(

(1−σ)
(1+σ)3

)
ln
(

1−σ
1+σ

) ∈ (1, 2). (3.34)

Since ln(1 + x) ≥ 2x
2+x for x ≥ 0, we obtain326

ln

(
1 + σ

1− σ

)
= ln

(
1 +

2σ

1− σ

)
≥ 2σ,

and thus nj ≤ σ−1| ln
(
1− ρ−1

j

)
|+ C(σ), which brings us to the final calculation327

N =

J∏
j=1

nj ≤
J∏
j=1

(
σ−1| ln

(
1− ρ−1

j

)
|+ C(σ)

)
, (3.35)

which completes the proof. �328
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Remark 3.6. It follows from the proof of Theorem 3.5 that a more precise estimate for the number of cells is

N ≤
J0∏
j=1

(
σ−1| ln

(
1− ρ−1

j

)
|+ C(σ)

)
,

where 1 ≤ J0 ≤ J is the largest integer such that σρJ0
< 1. This comes from the fact that kj = 0 for J0 < j ≤ J ,329

i.e., we do not subdivide in the directions J0 + 1. . . . , J .330

Let us reformulate the above result in terms of library widths. As we have remarked earlier (see (3.3)), a331

polynomial approximation with m+ 1 terms is naturally associated with an affine space of dimension at most m.332

We then obtain a library L = ∪Ni=1Li of affine spaces Li = Li(Pi, Qi),333

Li = ci0 + span{ciν ∈ V : ν ∈ Λi, #(Λi) ≤ m}, i = 1, . . . , N,

each associated with the polynomial Pi over a hyperrectangle Qi ⊂ Y ,334

Pi(y) = ci0 +
∑
ν∈Λi

ciνy
ν , y ∈ Qi,

and cardinality

N ≤
J∏
j=1

(
σ−1| ln

(
1− ρ−1

j

)
|+ C(σ)

)
, C(σ) ∈ (1, 2).

Moreover, since supy∈Qi ‖u(y)− Pi(y)‖V ≤ ε for i = 1, . . . , N , we have

EL(M) = max
y∈Y

min
L∈L

dist(u(y), L)V ≤ ε,

and therefore

dm,k(M) ≤ ε, whenever k ≥
J∏
j=1

(
σ−1| ln

(
1− ρ−1

j

)
|+ C(σ)

)
.

3.3. Examples335

To see how how the bounds for N in Theorem 3.5 grow with decreasing ε, we consider the following standard336

example:337

ρj = Mjs, j ≥ 1, (3.36)

where s > 1/2 is fixed. From our overriding assumption that κ = ρ1 > 1, it follows that M > 1. We note at the338

outset that a similar analysis can be done for other growth assumptions on the sequence (ρj)j≥1, e.g., ρj = 1+Mjs339

with M > 0.340

Before beginning our analysis, we wish to orient the reader to what type of results we can expect by reflecting341

on the corresponding results for polynomial approximation. In that case, we know that for each r < s − 1/2 we342

can find V valued polynomials Pn with n terms that satisfy343

max
y∈Y
‖u(y)− Pn(y)‖V ≤ Crn−r, n = 1, 2, . . . . (3.37)

This follows from Theorem 3.1 by choosing a value of q ∈ (1/s, 2) with r = 1/q − 1/2. However, we cannot take344

r = s− 1/2 since the constants Cr tend to infinity as q → 1/s. If we are given a target accuracy ε then we would345

find the minimal number of terms n to reach this accuracy by optimizing over the choice of q. This type of analysis346

is subtle and done in [4].347

We shall obtain similar results for piecewise polynomial approximation where now the main new ingredient is to348

bound the number of cells that are needed. We fix the desired target accuracy ε > 0 and the value m and use the349

a priori bound of Theorem 3.5 to see how many hyperrectangles N are needed to guarantee the accuracy ε using350
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piecewise polynomials with m+ 1 terms to approximate u on each rectangle. We can apply Theorem 3.5 for any q351

that satisfies 1/s < q < 2. We consider any such q, fix it for the moment, and investigate the size of N needed to352

achieve the accuracy ε. Throughout the derivation, we let C denote a constant that depends only on q and may353

change from line to line. Note that C0 := C(δ, ρ, q) depends only on q since ρ and δ are fixed.354

Since we have355 ∑
j≥J+1

ρ−qj = M−q
∑

j≥J+1

j−sq ≤ CJ1−sq,

the condition (3.20) is satisfied if356

J = C (ε(m+ 1)r)
q

1−sq = Cλ
q

1−sq , (3.38)

where357

λ := ε(m+ 1)r, r = r(q) :=
1

q
− 1

2
.

Defining J by (3.38) gives that the value of σ in the theorem is358

σ = 2−1/qC−1
0 J−1/qλ = CJ−s. (3.39)

Theorem 3.5 says that we obtain a partition into N hyperrectangular cells such that there is a polynomial with359

m+ 1 terms on each cell which achieves the desired accuracy ε. It also gives that the number N = N(q) of these360

cells can be bounded by361

N ≤
J∏
j=1

(
σ−1| ln

(
1− ρ−1

j

)
|+ C(σ)

)
<

J∏
j=1

(
σ−1| ln

(
1− ρ−1

j

)
|+ 2

)
. (3.40)

Since each ρj ≥M > 1, and | ln(1− x)| ≤ x
1−x , for 0 < x < 1, we have362

| ln(1− ρ−1
j )| ≤ (Mjs − 1)−1 ≤ (M − 1)−1j−s, j = 1, 2, . . . . (3.41)

Placing this into (3.40) gives363

N ≤
J∏
j=1

(
(M − 1)−1σ−1j−s + 2

)
=

J∏
j=1

(
CJsj−s + 2

)
≤ CJJsJ [J !]−s ≤ e(C+s)J = eCλ

q
1−sq

, (3.42)

where the last inequality uses Stirling’s formula.364

We examine what this bound guarantees for different values of m:365

Case m = 0: In this case, we are providing the solution manifoldM with an ε approximation net with N elements.
Since λ = ε in this case, the bound (3.42) says we can achieve approximation accuracy ε with such a net with

N ≤ exp
{
Cε−

1
s−1/q

}
elements for any q ∈ (1/s, 2). The best choice of q in this case is to choose q as close to 2 as possible thereby getting366

N ≤ eCε
−1/α

for any 0 < α < s − 1/2. Notice that this is in complete agreement with what we know about the367

entropy of the solution manifold M. Indeed, from Theorem 3.1, we know the Kolmogorov width of M satisfies368

dn(M) ≤ CrMn−r, 0 < r < s− 1/2, (3.43)

where the constants Cr tend to infinity as r gets closer to s − 1/2. From Carl’s inequality we obtain that the ε369

covering number ofM is bounded by eCε
−1/r

provided that r < s− 1/2 which is exactly what the above bound on370

N gives.371

Case of general m: In this case, the partitioning gives a library ofN affine spaces of dimensionm that approximate372

M to accuracy ε. In order to compare our results on piecewise polynomial approximation with those for polynomial373

approximation, we suppose a value of q ∈ (1/s, 2) has been chosen which gives the accuracy Crn
−r, r = r(q) =374
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1/q − 1/2 using polynomials. We obtain the same accuracy ε := Crn
−r using piecewise polynomial with m + 1375

terms and the above estimate says we can do this with376

N ≤ exp

{
C

(
n

m+ 1

) r
s−1/q

}
= exp

{
C

(
n

m+ 1

)α}
, α :=

1/q − 1/2

s− 1/q
,

cells chosen as in Theorem 3.5. In this estimate, notice that rather than the bound eC(n−m) derived in §2 for377

general libraries, we now have the bound eC(n/m)α which gets more favorable as m gets large. Note that we can378

always get α = 1 by taking q = 4
2s+1 , which belongs to the prescribed range (1/s, 2), since s > 1/2 by assumption.379

Moreover, α tends to infinity as q → 1/s and to 0 as q → 2.380

4. Numerical examples381

In this section, we present numerical examples to illustrate the performance of the strategy described above for382

constructing nonlinear reduced models based on partitioning of the parameter domain Y and using piecewise V383

valued polynomials subordinate to the chosen partition. For our numerical tests, we consider the elliptic equations384

(1.6) on the domain D = [0, 1]2 with right-hand side f = 1 and an affine diffusion of the form385

a(x, y) := 1 +

64∑
j=1

yjcjχDj (x), (4.1)

where (Dj)
64
j=1 is a partition of D into 64 square cells of equal size. The indexing is assigned randomly and has386

little effect on the numerical results. Thus, the parameter domain Y = [−1, 1]64.387

We carry out numerical experiments for different sequences (cj)j=1,...,64 that depend on the parameters amin and388

s, namely389

cj = (1− amin)j−s, j = 1, 2, . . . , 64, (4.2)

where s ∈ {2, 3, 4} and amin ∈ {0.1, 0.05, 0.01}. Notice that amin is the true minimum of a on D × Y . Given this390

sequence, we can take391

ρj :=
1− amin/2

1− amin
js, j = 1, 2, . . . , 64, (4.3)

and this gives δ = 1− amin

2 in (3.5). A small value for amin corresponds to a reduction in the domain of analyticity392

of u(y) near the face y1 = −1. So, each numerical experiment corresponds to an assignment of amin and s.393

4.1. Linear reduced models394

We begin this section by considering linear reduced models with the goal of understanding how large the dimen-395

sion of the linear space has to be in order to guarantee a prescribed error ε. We are also interested to see the effect396

of different choices for the linear space. In all of our numerical experiments we take the target error to be397

ε := 10−4.

We consider two choices of linear reduced models:398

• Taylor polynomial space;399

• reduced basis space based on greedily selected snapshots.400

We compare the approximations obtained using a Taylor polynomial with n terms and a reduced basis space of401

dimension n. In particular, we want to see how large n has to be to achieve the target accuracy ε for these two402

choices.403

In the case of a Taylor polynomial space, the approximant ūn is given by404

ūn(y) := t̄0 +
∑
ν∈Λ∗n

t̄νy
ν ∈ t̄0 + Vn−1(T ), Vn−1(T ) := span{t̄ν : ν ∈ Λ∗n}, (4.4)
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where t̄ν is the approximation of tν obtained using a finite element solver of high accuracy (much higher accuracy405

than the target accuracy ε). We consider two methods to generate the lower set Λ∗n of cardinality n−1 which gives406

the indices ν in (4.4).407

The first method, which we refer to as the a priori method, orders the ρ−ν , ν ∈ F , in decreasing order according408

to their size. So ν0 := 0 is the index giving the largest of these numbers, and ν1, ν2, . . . denote the indices409

corresponding to the next largest of the ρ−ν . Ties are handled in such a way that Λn := {ν0, ν1, . . . , νn−1} is a410

lower set, see [4]. We then take Λ∗n := Λn \ {ν0}.411

In the second method, here referred to as the adaptive method, we use the so-called Algorithm LN (largest412

neighbor) described in [5] to generate an index set Λ̃n. It begins with ν0 := 0 and Λ̃0 := {ν0}. Then, for413

k = 0, 1, . . . , n− 1,414

Λ̃k+1 := Λ̃k ∪ {νk}, where νk ∈ argmax
ν∈RΛ̃k

‖t̄ν‖V . (4.5)

Here, RΛ̃k
denotes the reduced margin of the current lower set Λ̃k, namely

RΛ̃k
:= {ν ∈ F \ Λ̃k : ν − ej ∈ Λ̃k for all j with νj > 0}.

We then take Λ∗n := Λ̃n \ {ν0}.415

We compute the error εn for each of these choices by taking a large number of random (with respect to the416

uniform distribution) choices1 of parameters y ∈ Y , as follows. For each choice y, we take an accurate finite417

element approximation ū(y) of u(y) as truth. Note that because Λ∗n ∪ {0} is a lower set, the Taylor coefficients tν ,418

ν ∈ Λ∗n ∪ {0}, can be found recursively, see equations (3.1) and (3.2) in [5]. We calculate ‖ū(y)− ūn(y)‖V and the419

error εn is then computed by maximizing ‖ū(y)− ūn(y)‖V over the random choices of y.420

Figure 1 shows a comparison of the errors obtained using the adaptive and the a priori methods to compute the421

set Λ∗n as n grows for different values of s and amin. We see that the adaptive method to generate Λ∗n outperforms
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Figure 1. Error between ū and the Taylor polynomial approximation ūn versus the number of
terms n for both the a priori method and the adaptive method for constructing Λ∗n. Left: s = 2,
amin = 0.1; middle: s = 4, amin = 0.1; right: s = 4, amin = 0.01.

422

the a a priori method, in that the corresponding approximation error is smaller for the adaptive method. This is423

caused by the fact that ‖t̄ν‖V could be much smaller than ρ−ν . On the other hand, the computational cost to find424

Λ∗n is greater for the adaptive method. In going further in this section, we always compute the set Λ∗n for Taylor425

polynomial indices by using the adaptive method.426

We next discuss greedy basis constructions. In this case, the reduced linear space Vn(G) is constructed by427

starting with the function ϕ0 := u(0) and then use a particular random weak greedy algorithm 2 to generate the428

reduced basis functions ϕ1, . . . , ϕn−1. Each ϕj is a snapshot ϕj = u(y(j)) of the solution at a judiciously chosen429

1In the experiments given the number of random selections of y was 103 and using the Mersenne Twister pseudo random generator

with seed value 515.
2We use a version of the probabilistic weak greedy algorithm given in [6].
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point y(j) ∈ Y . We denote by ϕ̄j an accurate finite element approximation of ϕj , j = 0, 1, . . . , n− 1, and we define430

Vn(G) := span{ϕ̄0, ϕ̄1, . . . , ϕ̄n−1}. The reduced model is now431

ūn(y) := PVn(u(y)). (4.6)

where PVn is the Galerkin projection onto Vn(G), namely for a given y ∈ Y , ūn(y) ∈ Vn(G) is the solution of∫
D

a(·, y)∇ūn(y) · ∇v̄n =

∫
D

fv̄n, v̄n ∈ Vn(G).

We compute the error for approximating u(y) using random samples of the parameter y in a similar manner to the432

Taylor case already discussed.433

Figure 2 gives a comparison of the performance of the greedy basis and the (adaptive) Taylor for different values434

of s and amin. This graph shows that the greedy basis produces a much more accurate reduced model than the
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Figure 2. Error between ū and ūn versus n for both the (adaptive) Taylor and greedy reduced
models. Left: s = 2, amin = 0.1; middle: s = 4, amin = 0.1; right: s = 4, amin = 0.01.

435

Taylor basis given the same allocation n for the dimension of the reduced space.436

4.2. Nonlinear models based on piecewise polynomials437

The next set of experiments numerically implements a strategy for generating a nonlinear reduced model based438

on piecewise polynomials similar to that described in §3. We consider the same diffusion coefficients as above and439

the same values of s and amin. We again fix a target accuracy ε = 10−4, and a target value of m for the dimension440

of the polynomial space on each cell of the partition. We will see that it is not always possible to achieve a partition441

of reasonable size if m is chosen to be too small. This is heuristically clear from the entropy considerations provided442

in §2 and §3.3.443

Our strategy for generating the partitioning of Y into cells is motivated by the theoretical results of §3. However,444

we make some modifications of this strategy which we now explain. Since in our numerical examples u has singularity445

near y = −1 because cj > 0 for all j = 1, . . . , 64, we now grade the partition to be finer near −1 when we refine446

a coordinate direction. This is in contrast to the theoretical description, which partitions in a symmetric way for447

each coordinate yj .448

On the other hand, we have found that prescribing ε and m and then implementing the theoretical partitioning449

strategy actually produces a partition with much better accuracy than ε, and thus we have used too many cells.450

So instead of viewing the target error and m as the parameters to determine the partition, we introduce a single451

parameter η to generate a partition. We then select η to give the required accuracy ε = 10−4 and a good control452

on m and the number of cells N . To be precise, we take q = 1 and given η > 0, we generate a partition as follows.453

Construction of the partition for a given η and a non-decreasing sequence (ρj)j≥1:454

Choose J ≥ 0 as the smallest integer such that
∑64
j=J+1 ρ

−1
j ≤ 1

2η and set σ = η
2J , j = 1;455

While σρj < 1 do456
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y0
j =

1−σρj
1+σ , λ0

j = σ(ρj + y0
j ), i = 0;457

While yij − λij > −1458

Increment i;459

Compute λij = σ
1+σ (ρj + yi−1

j − λi−1
j ) = 1−σ

1+σλ
i−1
j and yij = yi−1

j − λi−1
j − λij ;460

End do461

If yij − λij < −1 set λij = 1
2

(
yi−1
j − λi−1

j + 1
)

and yij = 1
2

(
yi−1
j − λi−1

j − 1
)
;462

Increment j;463

End do464

Set y0
l = 0, λ0

l = 1 for l = j, ..., J .465

The algorithm generates a tensor product partition with cells Qλ(ȳ) of the form (3.15). For each cell Qλ(ȳ) from
this partition we define a sequence (ρ̃j)j≥1, where

ρ̃j :=

{
ρj+ȳj
λj

, when σρj < 1,

ρj , otherwise.

It is easy to check that conditions similar to those in Corollary 3.3 are satisfied. Namely, ρ̃j ≥ κ, j = 1, . . . , 64, and

‖(ρ̃−1
j )64

j=1‖`q ≤ ‖(ρ
−1
j )64

j=1‖`q . Moreover, we have

δ̃ := max
j=1,...,64

∣∣∣∣ρjcj + ȳjcj
1 + ȳjcj

∣∣∣∣ < 1,

since ρjcj = 1 − amin/2 < 1, but not necessarily that δ̃ ≤ δ. However, we can still get the error bound (3.18) of466

Corollary 3.3, but with constant C(δ, ρ, q) replaced by the potentially larger constant C(δ̃, ρ, q). A uniform error467

bound can be obtained by taking the constant associated to the largest δ̃ over all cells in the partition.468

Table 1 shows the number of terms m needed in the Taylor expansion on each of the N cells from our partition469

to meet our error criteria. We see that allowing partitioning can significantly reduce the number m of polynomial

amin = 0.1 amin = 0.01
# of cells s = 2 s = 3 s = 4 # of cells s = 2 s = 3 s = 4
N = 1 102 68 61 N = 1 666 614 603
N = 3 29 13 9 N = 3 48 30 27
N = 8 22 8 5 N = 10 24 11 8

Table 1. Number of terms m needed to meet the target accuracy ε = 10−4 on each cell using the
piecewise (adaptive) Taylor polynomial approximations.

470

terms needed to meet the target accuracy. For example, in the case N = 1 (i.e., no partitioning), we need to471

take m = 603 whereas using only ten cells the necessary m is reduced to eight. Note however, that reducing m472

even further may cause a considerable growth in the number of cells N . Finally, we mention that J = 1 in all the473

examples above.474

Remark 4.1. In the above numerical examples, we have not considered the case of using nonlinear models based on475

piecewise greedy bases. The reason for this is that we do not have an a priori way to generate a good partition of Y476

into cells when greedy bases rather than polynomial bases are used on each cell. An appropriate strategy would seem477

to be to do the partitioning in tandem with the local greedy constructions. Strategies for doing this are currently478

under investigation.479

4.3. State estimation using linear and nonlinear reduced models480

As remarked in the introduction, we anticipate that one of the major advantages of using library approximation481

occurs in the problem of state estimation from data observations. In this section, we recall the state estimation prob-482

lem and execute several numerical experiments indicating the performance of piecewise polynomial approximations483

for this problem.484
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In state estimation, we are given measurements of an unknown state u(y∗) where u is the solution to (1.6) with485

the model a for the diffusion known to us. We assume that the data is of the form486

wj = lj(u(y∗)), j = 1, . . . , L,

where the lj are linear functionals defined on V . Each linear functional lj has a Riesz representation487

lj(v) = 〈v, ωj〉V , j = 1, . . . , L.

The functions ωj , j = 1, . . . , L, span a subspace W of V . Without loss of generality, we can assume that the488

dimension of W is L since otherwise there is redundancy in the measurements.489

We want to use these data observations together with the known model a for diffusion in order to construct490

an approximation û to the state u(y∗). Note that y∗ and u(y∗) are not necessarily uniquely determined by the491

measurements. One way of proceeding, as was proposed in [12], is to employ a reduced model based on a linear492

space Vn to approximate M. The algorithm in [12] constructs an approximation ûn to u(y∗) by solving a least493

squares fit to the data from Vn. This algorithm was shown to be optimal in a certain sense (see [2, 10]) once Vn is494

chosen. The performance of this algorithm is upper bounded by495

‖u(y∗)− ûn‖V ≤ µnεn, where εn := dist(M, Vn)V . (4.7)

Here εn := dist(M, Vn)V and µn = µ(W,Vn) ≥ 1 is a certain inf-sup constant which can be interpreted as the
reciprocal of the angle between Vn and the space W [3], namely

µn = µ(W,Vn) :=

(
inf
v∈Vn

sup
w∈W

〈v, w〉V
‖v‖V ‖w‖V

)−1

.

This motivates choosing a nested sequence V1 ⊂ V2 ⊂ · · · of spaces with dim(Vj) = j and selecting a space from496

this sequence which minimizes the right side of (4.7). Note that while εn decreases when increasing n, the constant497

µn increases and is in fact infinite if n > L.498

For our numerical experiments in state estimation we use the same models for the diffusion a as described in499

(4.1)-(4.3). For the measurements, we take linear functionals which emulate point evaluation. Specifically, each lj500

is of the form501

lj(u) :=

∫
D

u(x)K(x− xj) dx, K(x) := exp(−λ|x|2), (4.8)

where |x| is the Euclidean norm of x and λ = 227.5̄.502

In our numerical experiments, we set y∗ = 0.5384, but of course operate as if y∗ is unknown to us. We take503

L = 20 measurements of the form (4.8), where the centers xj are chosen at random, applied to the solution u(·, y∗)504

of (1.6) with a satisfying (4.1)-(4.3) with s = 4 and amin = 0.1. We only see these measurements and not the entire505

function u(·, y∗).506

Our first numerical experiment is to compute the behavior of µn, the recovery error ‖ū(y∗) − ûn‖V and its507

upper bound µnεn, see (4.7), for different choices of Vn, where Vn is the (adaptive) Taylor with n terms and εn508

is the approximation error computed as discussed in §4.1. The values obtained for n = 1, 2, . . . , 20 when L = 20,509

s = 4 and amin = 0.1 are provided in Figure 3. The important thing to observe in this figure is that increasing510

the value of n (in order to improve the approximation error) causes µ to increase greatly and thereby limiting511

the recovery accuracy. We shall see in the next experiments that this can be circumvented by using piecewise512

polynomial approximations.513

Notice that the dimension n of Vn is limited by n ≤ L since otherwise µn is infinite. This motivates the use514

of library approximation with the spaces in the library of small dimension m ≤ L. We do such a numerical515

experiment using piecewise Taylor polynomial approximation obtained via the adaptive method. We partition Y516

into 8 cells. This partition corresponds to only subdividing the first coordinate direction y1. Each cell gives rise to517

a “local” value of the inf-sup constant µjm := µ(W,V jm), j = 1, 2, ..., 8, where the V jm’s are the spaces in the library518

associated with the partition of Y . Finally, we use m = 5 which ensures that the local approximation error satisfies519

εjm ≤ ε = 10−4 for j = 1, 2, ..., 8, see Table 1. Figure 4 gives the value of µjm, the upper bound µjmε
j
m and the520
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10 5.48266× 108 5.82909× 106 7.82917× 103

15 2.31818× 1010 1.43338× 108 4.74617× 101

Figure 3. The constant µn, the upper bound µnεn and the recovery error ‖ū(y∗) − ûn‖V for
the (adaptive) Taylor approximation when L = 20, s = 4 and amin = 0.1. Left: graphs for
n = 1, 2 . . . , 20; right: values for n = 5, 10, 15.

recovery error ‖ū(y∗)− ûjm‖V , ûjm ∈ V jm, for each cell j = 1, 2, ..., 8. Notice that the values of µ do not depend on521

y∗. Also note that the “local” constant µ for the various cells does not exceed 12 while it was about 230 for the
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Figure 4. Results of the piecewise (adaptive) Taylor polynomial approximation on each cell when
L = 20, s = 4 and amin = 0.1. Left: the constant µjm; middle: µjmε

j
m; right: recovery error

‖ū(y∗)− ûjm‖V .

522

one cell case, see Figure 3-right. Moreover, we observe that for all the cells, the upper bound µjmε
j
m is smaller than523

1.1× 10−3, which ensures that the recovery error (unknown in practice) is less than 1.1× 10−3. Note however that524

we are not providing an algorithm for determining to which cell the parameter y∗ is most likely belong to.525

5. Conclusions526

In this section, we briefly discuss the possible advantages and disadvantages of using nonlinear reduced models527

in the context of parametric PDEs. We consider only the case of elliptic PDEs (1.6) with affine diffusion coefficients528

(1.7). We suppose that for the given (ψj)j≥1, there is a nondecreasing sequence (ρj)j≥1 with ρ1 > 1 satisfying (3.5).529

Quantitative theorems for constructing online solvers with performance guarantees are proven using assumptions on530

the growth of the sequence (ρj)j≥1. A typical assumption that gives a performance guarantee is that the sequence531

(ρ−1
j )j≥1 is in `q(N) for some q < 2 (see [1, 4]). We assume that we have such a sequence with a fixed value of q.532

Our discussion is guided by both the theoretical and numerical results of this paper.533
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5.1. Offline cost for constructing the solver for linear reduced models534

Let us first consider the case where our interest is to construct an online solver for the parametric PDE which535

performs with a guaranteed approximation error ε. There is a distinction in the offline cost of constructing such a536

solver, depending on whether it is based on Taylor expansions or on a greedy basis expansion.537

When using a Taylor polynomial approximation, we need to find a lower set Λ = Λ(ε) of indices used in the538

Taylor polynomial expansion (1.3), where the approximation to the solution belongs to the space PΛ. Recall that539

we presented two methods for finding such an index set Λ, which we referred to as the a priori and the adaptive540

method. The a priori method is numerically cheap since it only requires us to sort the ρ−ν to identify the largest541

of these numbers (see [4] for one such sorting algorithm). Once the set Λ is identified, the Taylor coefficients t̄ν542

can be computed recursively with finite element solvers as already discussed. The adaptive method to build the543

set Λ may seem more expensive as it requires the computation of all t̄ν in the reduced margin of the adaptively544

constructed monotone set, while only a few may be included in the set Λ∗n; compare for instance (7.104) and (7.105)545

in [7]. However, this algorithm is preferred in our numerical experiments presented because it generates sets Λ546

with eventually smaller cardinality by assessing precisely the magnitude of ‖t̄ν‖V instead of using its upper bound547

Cuρ
−ν (see [7, Lemma 3.14]).548

Consider next the linear reduced model based on the Galerkin projection onto a linear space Vn of dimension549

n constructed by a weak greedy selection of snapshots from the solution manifold. The advantage of such a550

greedy construction is that n may be much smaller than the number of terms #Λ used in the Taylor polynomial551

approximation (see Figure 2). Yet, the deficiencies in such greedy algorithms are that the offline cost for the552

selection of the greedy basis using an ε-net training set grows like O(ε−c/reCε
−1/r

) (see for instance (8.89) together553

with (8.108) from [7]) which may be prohibitive for small ε. This of course was one of the main motivations for554

using nonlinear models in place of linear models.555

5.2. Offline cost for constructing a solver using nonlinear reduced models556

We discuss next the offline cost in the construction of nonlinear reduced models. Let us first consider reduced557

models based on piecewise Taylor polynomials. We have given a priori recipes for the tensor product partitioning of558

Y into cells Q based on the knowledge of the sequence (ρj)j≥1, and thus the main issue is building the appropriate559

basis for each cell Q of this partition. This requires the computation of the finite element approximation of the560

appropriate Taylor coefficients on each cell. Note that these computations can be done in parallel. The total cost561

of this offline construction is governed by the total number N of cells in the partition and the number of terms m562

used on each cell. In our numerical examples, these constructions were not an issue because the number of cells N563

was reasonable for moderate values of m.564

We have given a priori bounds on the number of cells needed for the partition in §3.2. Recall that if we are in565

a situation where linear methods (such as polynomial or greedy) give an approximation rate Mn−r then we can566

guarantee an approximation error ε = n−r by using piecewise polynomials with m terms and N ≤ eC(n/m)α cells.567

If we think of the cost of creating a polynomial approximation with m terms to scale like ecm, which we know is the568

case for greedy constructions, then the cost for constructing the piecewise polynomial is bounded by eC(n/m)α+cm.569

By choosing m < n appropriately, this is always less than the cost of the approximation without partitioning, which570

is eCn. For example, if α = 1 then we could choose m =
√
n and get the total piecewise polynomial cost to be571

eC
√
n as compared with the eCn if we do not partition. In our numerical examples, we have seen that the a priori572

bounds on the number of cells is quite pessimistic, and we actually get better performance than that predicted by573

the a priori estimates for the number of cells.574

5.3. Online cost for constructing the approximate solution for linear reduced models575

If we use a linear reduced model based on Taylor polynomials, then once the index set Λ is found and the Taylor576

coefficients t̄ν , ν ∈ Λ, are computed, the reduced model is577

ū(y) =
∑
ν∈Λ

t̄νy
ν .

Thus, given a parameter query, the online cost for the evaluation of ū(y) is trivial.578
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If in place of a Taylor polynomial space for the reduced model, we use a greedily generated linear space V of579

dimension n there are additional online costs. Given a parameter query y one must find the Galerkin projection of580

u(y) onto V . This entails the inversion of an n× n dense matrix where the matrix depends on y. In certain cases,581

such as when the diffusion coefficient is affine, this can be somewhat mitigated by precomputing certain matrices582

(see the discussion in [7]). Therefore, there is a balancing between having a smaller dimensional reduced model583

(when compared with the polynomial case) and the additional cost of matrix inversion in an online solver.584

Notice also that the accuracy of the online performance given above for reduced models using Taylor polynomials585

can be improved by using a Galerkin projection onto the polynomial space in place of the plug in formula. However,586

this projection would also involve an expensive matrix inversion.587

5.4. Online cost for constructing the approximate solution for nonlinear reduced models588

Building an online solver based on piecewise Taylor polynomial approximations proceeds by building a linear589

solver for each cell of the partition. An additional step is required to determine which space from the library of590

spaces should be used for the query y. This only requires the identification of the cell which contains y, and is591

easily determined from the knowledge of the partition since the cells are hyperrectangles.592

5.5. Storage costs593

The storage cost for the online solver is dominated by the storage of the basis functions. They are typically594

large vectors depending on ε, D and f in (1.6). We observe from our numerical experiments that the storage595

cost is higher for linear reduced models using Taylor polynomials compared to the greedy reduced basis algorithm;596

see Figure 2. Moreover, the costs for Taylor polynomial reduced models and piecewise Taylor polynomial reduced597

models are quite comparable. For example, from Table 2 we realize that for a target accuracy ε = 10−4 and s = 3,598

amin = 0.01, the linear reduced model uses 614 basis functions t̄ν while the piecewise Taylor construction has 48599

cells with m = 9 terms on each cell, and hence requires the storage of 432 vectors.600

5.6. Summary601

The advantages of a Taylor polynomial based linear reduced model are:602

• possible simple identification of the set Λ with no need for optimization or search algorithms;603

• fast computation of the online solver ū(y).604

The deficiency in such constructions is that to reach a small target accuracy ε the dimension m = #Λ may be very605

large and thus affect the offline construction. A large value of m would also affect storage costs.606

The advantage of a greedily chosen linear reduced model is that the dimension required for it to reach a target607

accuracy is typically much smaller than what is required when using Taylor polynomials. The disadvantage is the608

large offline cost to construct the greedy basis when the required dimension is large, along with the higher cost of609

executing an online solver. There is, however, a savings in storage because the dimension of the greedy space is610

small.611

A piecewise polynomial nonlinear reduced model has the advantage of being able to achieve a better accuracy612

than linear reduced models while still taking m small, provided that the number of cells N in the piecewise613

construction is moderate. In this paper, we have given both a priori bounds on the necessary size of N as well as614

numerical bounds. Both bounds show the advantage of this approach. The potential deficiency of this approach is615

a large storage cost if N is large. Our numerical examples suggest that N is considerably smaller than the a priori616

bounds thereby making this a viable approach when the desired accuracy ε is small.617
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