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Abstract—This document describes a new methodology for
building surrogate model dedicated to EMC analysis of printed
circuit boards. Stochastic approaches have recently showed their
interests for EMC phenomena simulations because of their ability
to replace costly computations. The proposed method is composed
of two process stages. The first one is a pre-processing step
which consists in filtering inputs that are not significant regarding
output variations. The second one consists in an iterative learning
technique of the surrogate model avoiding the requirement for
prior determination of the sample size. The method is tested
from a representative scenario of an EMC problem. The gain
in computation time offered by the method makes it possible to
build surrogate models more efficiently.

Index Terms—Surrogate model, EMC risk analysis, Morris
analysis, kriging.

I. INTRODUCTION

This paper deals with a methodology which aims at ef-
ficiently training a surrogate model in order to study the
electromagnetic behavior of a printed circuit board (PCB). The
design of sophisticated multilayer PCBs with huge number of
interconnections requires the determination of strict guidelines
to reduce the risk of non-compliant EMC tests. Investigation
about guidelines often requires numerical simulations. Re-
garding radiated emission they are based on solving Maxwell
equations with 3D numerical solvers. However, using such
solvers can be very time and resource consuming especially
when carrying out parametric analysis with a large number
of parameters. One way to overcome this problem is to use
a replacement model called a surrogate-model (SM) or meta-
model. SMs are a set of mathematical tools that approximate or
interpolate a true function using known experiments. SMs have
become very popular in many engineering fields to efficiently
evaluate model output(s) as a function of its inputs only [1].
SMs can be used for problem optimization [2], dimension
reduction [3], sensitivity analysis [4] and for visualization of
output(s). Different types of SMs can be found in the literature
such as support vector machine (SVM), Gaussian process,
polynomial chaos or neural networks, to name a part of them.
Here we focus on a technique called kriging (or Gaussian
process). One of its main advantages is its ability to determine

a prediction error. Furthermore, kriging has already shown
promising performances for EMC problems [5] [6] [7] [8].

Nevertheless, kriging has also drawbacks regarding high
dimension problems as many other SMs. This is classically
designated as the curse of dimensionality. More specifically,
kriging is associated with the calculation of a covariance
matrix whose size increases with the number of input vari-
ables. This inevitably leads to an increase in the computation
time of the covariance matrix inversion. Furthermore, kriging
involves the optimization of the hyper-parameters (one per
input) requiring the computation of the covariance matrix
several times. Recent works have attempted to solve these
problems. For instance, [9] proposed a method combining
partial least squares regression and kriging to reduce the
number of hyper-parameters. Another work [10] proposed a
simplification of the model using additivity. In addition to the
above limitation, the question of the size of the learning sample
arises when constructing a SM. Indeed, the amount of data
required to build an accurate SM is not known in advance.
One possible answer is to use a design of experiment (DOE)
whose size is increased gradually until a certain criterion is
met. Different types of enrichment are possible. In [11], an
iterative latin hypercube samplig (iLHS) technique was applied
in assocation with a neural network. More complex techniques
that optimize the placement of the next point also exist [12].

In this article, we present a new strategy for kriging-SM
construction technique using on the one hand a pre-processing
of the inputs based on Morris sensitivity analysis and on
the other hand an iterative enrichment of the DOE. The pre-
processing is potentially useful in the frame of EMC analysis
for which non essential parameters could be rapidly discarded
reducing the dimensional of the problem at the same time.
The proposed and simple iterative DOE enrichment is then
relevant to avoid the determination of a badly chosen sample
size. Section II details the proposed method whereas Section
III describes the validation criteria of the method and its
application to a test case, looking at extreme values of the
total radiated power.



II. ITERATIVE KRIGING SURROGATE MODEL COMBINED
WITH MORRIS SENSITIVITY ANALYSIS

A. Kriging and Morris sensitivity analysis

The advanced SM construction method introduced in this
paper is based on a iterative kriging approach and takes ad-
vantage of the Morris method for sensitivity analysis. Kriging
approach and Morris analysis are briefly described in the
following paragraphs.

1) Kriging: Kriging was introduced by Danie Gerhardus
Krige and formalised by George Matheron [13]. This method
was first used in the field of geology and was then extended
as a meta-modeling technique. The kriging method consists in
approaching the response of a model with M inputs variables
described by an input vector X of the corresponding size. The
response f(X) is then evaluated from:

∀x ∈ DM , f(X) = µ(X) + ε(X) (1)

In this equation, µ is a deterministic function of X and
represents the mean or the trend of the process. For an ordinary
kriging, it is considered as a known constant. The term ε is a
Gaussian process of random variables which is found by opti-
mizing hyperparameters from known values. Hyperparameters
are tunable parameters of the Gaussian Process. The process ε
is supposed to be stationary (regarding the first and the second
moment), which means that the dependence function between
random variables ε(X1) and ε(X2) does not depend on their
local coordinates in the input space. It is generally defined as a
function of the Euclidean distance between X1 and X2 only.
Thus, the correlation function C can be written as:

∀X1,X2 ∈ DM ×DM , C(∥X1 −X2∥θ) = C(hθ) (2)

where θ is the vector of hyperparameters. A typical pa-
rameterized correlation function must be selected. These hy-
perparameters will then be determined by optimization. A
commonly used function is the Matérn one:

C(h, θ, ν) =
1

2ν−1Γ(ν)
(2
√
νhθ)

νKν(2
√
νhθ) (3)

where Γ is the Euler function, Kν is the Bessel function, ν
is a scalar parameter. In the rest of this paper, the commonly
used by default Matérn function with ν = 5

2 is selected.
2) Morris sensitivity analysis: The Morris method is a

global method for sensitivity analysis. It was first introduced
in [14]. Its principle is to vary the inputs one at a time and
to measure the corresponding variation of the output. This
method is particularly effective when the number of inputs is
large and the model is expensive in terms of computation time.
Indeed, it allows sensitivity analysis for a limited number of
calls to the model.

Two indices are calculated from a Morris analysis:
• µ which measures the overall influence of inputs on

output. It is the average of elementary effects over all
trajectories as defined below.

• σ which measures the non-linear influence of inputs on
output and the interaction between inputs. It is the stan-
dard deviation of elementary effects over all trajectories.

The Morris method consists in calculating an elementary
effect caused by the variation of a ∆ step of a given input.
The elementary effect for the input xi of X is calculated as
follows:

Ei(X) =
f(x1, ..., xi +∆, ..., xM )− f(x1, ..., xi, ..., xM )

∆
(4)

where X = (x1, ..., xi, ..., xM ) is a given random realisation
of X and ∆ is the experiment step which is equal to a multiple
of 1

p−1 where p is the number of grid levels (grid is built from
input space).

The calculation of elementary effects for all M inputs is
repeated r times to achieve r independent trajectories. Then,
the mean over all trajectories of the absolute value of the
elementary effect of the i-th input parameter and the standard
deviation are calculated such as:

µi =
1

r

r∑
t=1

|Et
i | (5)

σi =

√√√√1

r

r∑
t=1

(
Et
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1

r

r∑
t=1

(Et
i )

)2

(6)

Based on the values of µi and σi, it is possible to classify
input variables into 3 categories: i)negligible effects ii) large
linear effects without interactions iii) large non linear effects.

The total cost of Morris experiment is r(M + 1) (i.e.
the number of calls to the model) where r is the number
of trajectories in the input space [15]. This is the result of
changing one variable at a time for each trajectory once a first
random input vector is initialized.

In the Morris analysis, the main factors influencing the
precision of the result are r and p. In [16], the authors
demonstrated that the choice of p = 4 and r = 10 produces
good results, whereas in [17] a sample with r = 4 is used. In
this paper, we use p = 4 and r = 10.

B. Description of the proposed methodology

The proposed methodology consists in creating efficiently
a kriging-type metamodel based on a sensitivity pre-analysis
and on iterative learning.

It is schematized in Fig. 1. The first step is to define
the case study. This includes the definition of the input
parameters (M ), their domain of definition as well as the
output(s) of interest. The next step is the prior sensitivity
analysis. It allows determining the parameters which influence
the output the most and those with less importance. We can
then consider the unimportant variables as constants, thus
reducing the dimension of the problem treated. From there
we have a scenario with M∗ = M −d parameters, where d is
the number of parameters identified as insignificant regarding
output variations.



The third step is to gradually train a SM while increasing the
size of the training sample until a certain criterion is reached.
This step is called ”iterative training”.

Fig. 1. Global methodology for the creation of a kriging metamodel with
prior Morris analysis

1) Morris Analysis: As described in section II-A2, the
Morris method is a global sensitivity analysis method based
on the quantification of elementary effects observed at the
output with respect to variations at inputs. According to the
values of µi defined in (5), it is possible to classify each input
variable by order of importance. To better identify important
parameters, we first normalize the µi and σi indices.

µnorm
i =

µi

µtotal
, σnorm

i =
σi

σtotal
, i ∈ [1,M ] (7)

where µtotal and σtotal corresponds to the total mean and
standard deviation over the M input variables, respectively.
Then we plot the Morris graph σnorm

i as a function of µnorm
i .

The higher µnorm
i , the more sensitive is the corresponding i

input. From there, a selection may be performed among all
the variables. To better visualize the impact of parameters
with regard to the output, the cumulative contribution for a
group of parameters is computed by summing their normalized
contributions after sorting them in decreasing order.

If the chosen parameters give a cumulated contribution
µcumulated greater of equal to 80%, we assume that this group
of variables is sufficient to predict the output response. Thus,
the other ones are discarded from the SM construction by
fixing them to their nominal values.

2) Iterative training: After having identified the essential
parameters of the problem, we can build a SM using only
essential parameters. The classical way to build it is first to set
up a DOE of a given size N , then to run the model (typically
a time consuming numerical simulation) as many times to
compute the corresponding output(s). However, there is no a
priori knowledge of the relevant size to be selected. Given that
the size of the DOE greatly influences the quality of the SM,
we propose here a method to construct the SM by increasing
the size of the DOE step by step until reaching a satisfaction
criterion. Several sampling methods exist. The classical LHS
is one of the most common sampling method and is selected
in this study due to its good properties for small sample sizes.
The propose iterative procedure is detailed in the algorithm
Alg. 1.

Nini sets the initial number of experiments contained in the
DOE. A rule of thumb consists of choosing Nini = 10×M .
Nstep defines the number of points added at each iteration. It
can be constant or dynamic. The algorithm is based on LHS
enrichment, which consists in adding new points to an existing
DOE, preserving the LHS nature of the complete sample.

Algorithm 1 Iterative sampling approach
1: Input : A costly function f with M parameters
2: Output : A Kriging surrogate model f̂
3: Generate an initial DOE X = [x1, ..., xNini ]

T of size Ninit

using LHS
4: Call f to compute the output of each experiment of DOE

y = [f(x1), ..., f(xNini)]
T

5: Construct the initial Kriging SM f̂(x) using X and y
6: While stopping criterion is not met do
7: Add new points:
8: Generate Nstep points based on the initial DOE and using

iLHS technique X ′ = [x′
1, ..., x

′
Nstep

]T

9: Call f to compute the output of the added points y′ =
[f(x′

1), ..., f(x
′
Nstep

]T

10: Update information:
11: X = X ∪X ′ and y = y ∪ y′

12: Construct a new Kriging SM using the new DOE with
added points

13: return The final surrogate model f̂(x)

III. VALIDATION OF THE METHOD

A. Validation setup

An application of the iterative kriging surrogate model
combined with Morris sensitivity analysis is now illustrated
and compared to a direct kriging approach. It is applied to a
use-case representative of a typical EMC scenario encountered
for PCB design. The use-case is described in Fig. 2.

Fig. 2. Slot scenario

It represents a simple micro-strip line with a slot inserted in
the ground plane. The total radiated power of the micro-strip
line is observed when it is supplied with a voltage generator
at one of its ports and over the 200 MHz - 2 GHz frequency
range by step of 2 MHz which makes 901 frequencies. The
frequency being not included as a random variable one SM is
built up at each frequency, i.e 901 SMs in total. The total
radiated power is analysed with regard to variations of 7
different inputs (M=7). L and w are the length and the width
of the track, h and h2 are the dielectric and solder mask
thicknesses, Ls and ws are the length and width of the slot and
C is the load capacity. these inputs are considered as random
variables uniformly distributed over their respective intervals
indicated in Fig. 2. The uniform distribution was selected for
geometrical parameters since they can be freely chosen by the
designer within some ranges. Regarding the load capacity, the
uniform distribution is arbitrary.

The total radiated power is computed from a well known
full wave solver using CST microwave studio configured with
temporal solver. We use UQLAB/Matlab to build the kriging



SM and the Morris analysis. The code is interfaced with CST
to obtain data automatically.

From an EMC design point of view we are interested in
studying the set among all input parameters that mostly explain
the fluctuations of the total radiated power. More precisely,
high values of the total radiated power should be avoided.
Once an adequate SM is set up, it may be used to look for
design solution reaching this goal. To do so, we perform a
complete sensitivity analysis and extreme values analysis using
the constructed SM.

Therefore, the cornerstone of this EMC design analysis
is to ensure the construction of a valid SM. Both iterative
kriging and Morris aspects of our methodology are validated
sequentially. For that, 3 different SMs (described in Table I)
will be constructed

TABLE I
DENOMINATION OF SMS

Denomination Nb of
parameter Learning sample size Description

SMreference M = 7 Nreference

SM constructed with
independant sample
in order to validate
SMiterative

SMiterative M = 7 Niterative
SM constructed
iteratively

SMMORRIS−iterative M∗ NMORRIS−iterative

SM with reduced
number of parameter and
constructed iteratively

1) iterative kriging: First, the incremental sampling ap-
proach is validated on a stand-alone basis without resorting
to Morris analysis. To do this, we construct a SM called
SMiterative using iterative sampling approach. N ini

iterative is
chosen at 10 × M = 70. Nstep is chosen to be an increase
of 20% of the previous learning sample size at each step (see
Table II).

TABLE II
EVOLUTION OF SAMPLE SIZE

Iteration 1 Iteration 2 Iteration 3 ... Iteration n
Sample size 70 84 101 ... Nfinal

iterative

N step 0 14 17 ... Nfinal
step

To quantify the quality of a SM, several indicator definitions
exist. We choose to use the leave-one-out error (LOO) which
has the advantage of not requiring any additional sample for
the validation. It consists in leaving one realization aside
building the SM with the remaining N − 1 observations. The
unused observation is then used to validate the SM. It is
repeated N times by permutation. As we build one SM per
frequency, we compute the mean LOO error of all these SMs.
Thus, the stopping criterion defined at line 6 of Alg. 1 is based
on an error threshold. For EMC problems, we assume that an
LOO error of 10% is accurate enough for a qualitative SM
as we are more interested in the tendency of the phenomena.
Nfinal

iterative is the size of the final learning sample size.
Then a second SM called SMreference is constructed using

a new DOE of size Nfinal
iterative. By this way, we ensure that the

two surrogate models are built from two DOEs of the same

size but completely independent. To validate this method, the
two corresponding SM errors ϵiterativeLOO and ϵreferenceLOO are then
compared.

2) Morris approach: Once the incremental approach is
validated, we consider SMiterative as the new reference. The
Morris sensitivity analysis is applied to the slot scenario.
This requires a preliminar sample of size Nmorris evaluated
from the true (CST) model. From that set of simulations
an indication about the relative importance of each of the 7
input parameters is expected. The proposed criterion based on
the cumulated mean of elementary effects will be discussed
to discard the less important one. Then, a new SM called
SMMORRIS−iterative is built using the iterative approach but
discarding irrelevant parameters. The results of extreme value
analysis are then displayed for both models SMiterative and
SMMORRIS−iterative for comparison.

B. Results
1) Iterative learning: First, the iterative sampling method

is applied to the slot scenario. The evolution of the mean error
over the entire frequency range is given in Fig. 3.

Fig. 3. Mean over frequency of LOO error as a function of the number of
learning realizations

The LOO error decreases until reaching the stopping crite-
rion of 10%, with Nfinal

iterative = 361 as the final sample size. A
set of 10 iterations is necessary to achieve this result. Thus, the
SM of reference SMreference is constructed using a new LHS
DOE of size Nfinal

iterative = 361. Fig. 4 shows the LOO errors
as function of frequency for both SMs, i.e. SMreference and
SMiterative. Error curves as a function of the frequency look
very similar. The differences observed are attributable to sta-
tistical fluctuations due to random sampling. We conclude that
the iterative SM constructed with the proposed methodology
is of the same quality as the reference. The LOO error tends
to increase with frequency. This is related to the resonating
behavior of the microstrip line, involving stronger sensitivity
to the combination of input variations.

2) Morris approach: The Morris sensitivity analysis is
computed using r = 10 and N = (M + 1) × r = 80 input
data. A sensitivity analysis is calculated for each frequency.
The mean and standard deviation are calculated to display the
result on a single graph.

Fig. 4 shows the result of Morris analysis. The spread of µ
and σ in frequency are illustrated has horizontal and vertical



Fig. 4. Comparative error of SMreference and SMiterative versus
frequency

bars, respectively with ± the standard deviation. The larger
the value of µ, the more sensitive is the output variation of
the corresponding variable. The parameter σ measures the
linearity of the interaction between the variable and the output.
As seen from this figure, ws is clearly the most important
parameter whereas L shows a large variance, which means
that its influence depends a lot on the considered frequency.

Fig. 5. Result of the Morris analysis: spread (± the standard deviation) of
mu and σ over the entire frequency range and for each input variable

From this representation of the Morris analysis, it is difficult
to make a decision about the relative importance of each input
variable. Thus, we consider another representation where µ are
normalized as introduced in II-A2. The cumulative contribu-
tion of a group of variables is then plotted, after sorting them
in decreasing order according to µ. No standard criteria have
been defined in the literature to retain the only most important
parameters. We therefore make an arbitrary choice that will be
further validated. Fig. 6 shows two configurations . The first
one is the aggregate of 4 parameters with the highest average
µ (ws, Ls, h and L). The Cl parameter is then added to form
the second one.

We assume that 80% of cumulative contribution is sufficient
to explain output variations. According to Fig. 6 5 parameters
are required to fullfill this condition. Therefore, only the
parameters ws, Ls, h, L and Cl are retained as random
variables for the SM training. Consequently, h2 and w are
discarded from the SM analysis, and chosen to be constant
and fixed at 220 µm and 350 µm.

In this specific scenario, we managed to reduce the problem
dimension from 7 to 5 with only 80 simulations. In case the

Fig. 6. Cumulative contribution for two configurations

Morris analysis does not allow discarding any input variable,
it is worth mentioning that these simulations remain available
for the iterative SM training.

The iterative learning is now applied to the reduced set of re-
maining 5 input random variables. Fig. 7 shows the compared
error evolution as a function of the learning sample size for the
iterative SM and this reduced Morris SM. As a result, the LOO
error decreases much faster with the SMMORRRIS−iterative

SM and the 10% error is reached after 8 iterations with 179
realizations, not including the 80 realizations used for Morris
analysis (instead of 361 for SMiterative SM).

Fig. 7. LOO error as a function of the number of learning realizations for
both SMiterative and SMMORRIS−iterative SMs

Also, SMMORRRIS−iterative allows a significant reduction
of the total computation time. This is composed of the full-
wave solver simulation time and of the learning time to com-
pute SMs is determined for both SMMORRIS−iterative and
SMiterative. For SMMORRIS−iterative, the total computation
time also includes the Morris analysis time and the full-wave
simulation time required for this analysis The synthesis of the
total computation time for each case is given in Table III.

The total computation time of the Morris method is 40%
lower than the total time of the iterative kriging.

Extreme value study is now conducted. It consists in eval-
uating a new LHS DOE of size 100 000 via SM and to
isolate the 5000 (5%) highest values of total radiated power.
Contribution of each parameter to this subset is then studied.
Here we focus only on ws.

First, the distribution function of ws calculated via
SMiterative only is drawn in Fig. 8 for the complete set and
for the set of the 5% extreme values. It clearly evidences that



TABLE III
TIME RESULTS

Time (minutes) iterative Morris-iterative
Simulation of realizations
for MORRIS analysis N/A 1223.4

Morris
analysis N/A 1243.7

Simulation of
learning realizations 5451.1 2665.3

Learning of SM 4595.2 17.1
Total 10046.3 min 5149.5 min

no extreme values are produced if ws ≤ 8 mm . Thus, we
decide to limit possible values of ws to 8 mm.

Fig. 8. ws distribution of all DOE and 5% most radiating realizations for
the iterative SM

We now have to demonstrate that SMMORRIS−iterative and
SMiterative give similar results regarding the consequence of
limiting ws to a lower value. In the following, three empirical
probability density function (epdf) using two independant LHS
DOE are determined:

1) with SMiterative

2) with SMiterative and ws < 8mm
3) with SMMORRIS−iterative and ws < 8mm

Fig. 8 shows the result of such an analysis. Both
SMiterative and SMMORRIS−iterative for ws < 8mm pro-
vide similar distributions and confirm that this restriction
provides a significant decrease of extreme values.

Fig. 9. PDF of SMs output

IV. CONCLUSION

In this article, we presented a new methodology that allows
fast building of kriging SM for EMC studies. It is a based

on the use of a preliminary Morris analysis to retain only
significant input parameters for assessing a SM that is learned
iteratively. The methodology was applied to a 7-parameter
use case representative of a common EMC situation found
on PCBs. The sensitivity analysis has identify that only 5
parameters are necessary to explain the output. Using extreme
value analysis, conclusions about restricting the range of the
slot width variation to decrease the total radiated power allows
to validate the Morris approach.

Further work deals with increasing the complexity of sce-
narios and include other strategies to cope with the problem
of dimensionality.
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