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Distributed observer-based leader-following
consensus control robust to external disturbance
and measurement sensor noise for LTI
multi-agent systems

Jesus A. Vazquez Trejo, Jean-Christophe Ponsart, Manuel Adam-Medina,
Guillermo Valencia-Palomo, Juan A. Vazquez Trejo.

Abstract A robust observer-based leader-following consensus control for linear
multi-agent systems subject to external disturbance and measurement noise is devel-
oped. The 𝐻∞ criterion is implemented to guarantee stability and robustness of the
synchronization error and estimation error through the Lyapunov approach. A set
of linear matrix inequalities are obtained to compute the control and observer gain
matrices. To show its effectiveness, the proposed strategy is carried out to solve the
leader-following formation control consensus-based problem in a fleet of unmanned
aerial vehicles under the effect of wind turbulence and measurement noise.

1 Introduction

In recent years, multi-agent systems have attracted the attention of researchers [1].
Multi-agent systems in this work are handled as found in the control community,
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where despite the name being shared with the computer science community, the
meanings, the objectives, and the tools of common use are adapted to the control area
[2]. An agent is defined as an autonomous dynamical system, e.g., Unmanned Aerial
Vehicles (UAVs), or satellites, among others. Nevertheless, multi-agent systems
can be subject to external disturbance and measurement noise which compromise
the synchronization and coordination of the agents. It is therefore necessary to
consider these exogenous inputs in the dynamic modeling of the multi-agent system
in order to be able to develop a robust control of these external disturbances and
measurement noise. This is why it is essential to add robustness to the distributed
control and observer because external disturbance (and sensor noise) affect their
performance [3]. Different works in the literature have addressed this problem. A
robust finite-time problem for a second-order multi-agent system is addressed in [4]
for rejecting external disturbances. Also, a sliding mode leader-following control for
multiple UAVs is proposed in [5], where the system remains insensitive to external
disturbances. Alternatively, in [6], a leader-following sliding mode formation control
approach for underactuated surface vehicles considering model uncertainties and
external disturbance is developed. In [7], a robust controller using 𝐻2 performance
is implemented in a system with communication and input time delays presented in
the frequency domain minimizing the error and the disturbance effect. In [8], the
robust optimal formation control problem for heterogeneous multi-agent systems
considering external disturbances is addressed based on reinforcement learning. An
adaptive semi-global bipartite consensus assuming a connected switching topology
graph under input saturation and external disturbance is proposed in [9].

In this paper, the main contribution is the design of the distributed leader-following
control law based on state estimates of the neighboring agents to coordinated linear
multi-agent systems, where the robust control and observer gains are computed
simultaneously based on linear matrix inequalities (LMIs). The main difference
concerning previous work is the distributed robust observer-based leader-following
control for linear multi-agent systems under external disturbance and measurement
noise, where the main objective is to follow the trajectories described by a virtual
leader and maintain consensus between followers despite the external disturbance
and the sensor noise.

2 Problem Statement and system description

Consider a linear homogeneous multi-agent system, which means that 𝐴, 𝐵, and 𝐶
matrices are identical for each agent, as follows:

¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) + 𝐷𝑢𝑑𝑢𝑖 (𝑡),
𝑦𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡) + 𝐷𝑦𝑑𝑦𝑖 (𝑡),

(1)

where 𝑖 = 1, 2, . . . , 𝑁; 𝑁 is the total number of agents; 𝑥𝑖 (𝑡) ∈ R𝑛, 𝑢𝑖 (𝑡) ∈ R𝑚,
𝑦𝑖 (𝑡) ∈R𝑝 , 𝑑𝑢𝑖 (𝑡) ∈R𝑚, 𝑑𝑦𝑖 (𝑡) ∈R𝑝 , are the state, input, output, external disturbance
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and noise vectors respectively; 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑝×𝑛, 𝐷𝑢 ∈ R𝑛×𝑚, and
𝐷𝑦 ∈ R𝑝×𝑛 are constant matrices of the system. Graph theory [2] can be used for
the communication description of multi-agent systems. In this way, the Laplacian
matrix L describes the dynamics of the multi-agent system through the adjacency
matrix A. Let us consider a directed graph G(V, E, A) where V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }
is a set of nodes (agents), E = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ V} ⊆ V × V is a set of edges. The
adjacency matrix A = [𝑎𝑖 𝑗 ] ∈ R𝑁×𝑁 is defined as 𝑎𝑖𝑖 = 0, 𝑎𝑖 𝑗 = 1 if and only if
the pair (𝑖, 𝑗) ∈ E otherwise 𝑎𝑖 𝑗 = 0. When the graph is undirected, also, 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 ,
∀𝑖 ≠ 𝑗 and A = A𝑇 . The Laplacian matrix L ∈ R𝑁×𝑁 is defined as L𝑖𝑖 =

∑
𝑗≠𝑖 𝑎𝑖 𝑗

and L𝑖 𝑗 = −𝑎𝑖 𝑗 . The neighbors of i-th agent are denoted as 𝑗 ∈ N𝑖 . The following
assumptions are held in this paper:

Assumption 1. The pair (𝐴, 𝐵) is stabilizable.
Assumption 2. The pair (𝐴,𝐶) is observable.
Assumption 3. The graph G is undirected and connected.

Lemma 1 ([10]) The matrix L̄ has non negative eigenvalues. The matrix L̄ is
positive definite if and only if the graph is connected and undirected.

The main objective of this work is the design of a robust leader-following control for
multi-agent systems consensus-based, where the virtual leader dynamics is presented
as follows:

¤𝑥𝑙 (𝑡) = 𝐴𝑥𝑙 (𝑡), (2)

where 𝑥𝑙 (𝑡) ∈ R𝑛 is the state vector of the virtual leader. Let 𝛿𝑖 = 𝑥𝑖 − 𝑥𝑙 , then, the
dynamics of the synchronization error between each agent 𝑖 and the leader is:

¤𝛿𝑖 (𝑡) = 𝐴𝛿𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) + 𝐷𝑢𝑑𝑢𝑖 (𝑡). (3)

In order to estimate the states of each agent, the following distributed observer is
proposed:

¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) + 𝐿 (𝑦𝑖 (𝑡) − 𝐶𝑥𝑖 (𝑡)),
𝑦̂𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡),

(4)

where 𝑥𝑖 (𝑡) ∈ R𝑛 is the estimated state vector, 𝐿 ∈ R𝑛×𝑝 is the observer gain to
be designed, and 𝑦̂𝑖 (𝑡) ∈ R𝑝 is the estimated output vector. The dynamics of the
estimation error 𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖 is computed as follows:

¤𝑒𝑖 (𝑡) = (𝐴 − 𝐿𝐶)𝑒𝑖 (𝑡) + 𝐷𝑢𝑑𝑢𝑖 (𝑡) − 𝐿𝐷𝑦𝑑𝑦𝑖 (𝑡). (5)

The considered observer-based leader-following consensus control law is ([11]):

𝑢𝑖 (𝑡) = 𝐾

∑︁
𝑗∈N𝑖

𝑎𝑖 𝑗 (𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)) + 𝛼𝑖 (𝑥𝑖 (𝑡) − 𝑥𝑙 (𝑡))
 , (6)

where 𝐾 ∈ R𝑛×𝑝 is the control gain to be designed, 𝑎𝑖 𝑗 are the elements of the
adjacency matrix, 𝑥𝑖 (𝑡) is the estimated state vector of the i-th agent, and 𝑥 𝑗 (𝑡) is the
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estimated state vector of the neighboring agents, 𝛼𝑖 represents the communication
between the leader and the followers, where 𝛼𝑖 > 0 if there is a directed edge from
the leader to the i-th agent, otherwise 𝛼𝑖 =0. The considered problem is the design of
a robust control gain 𝐾 and a robust observer gain 𝐿 to steer the multi-agent system
(1) subject to external disturbance and sensor noise, to follow the virtual leader’s
trajectories.

3 Observer-based leader-following consensus robust controller

In this section, the LMI conditions to guarantee the existence of the robust con-
trol and observer gains based on the Lyapunov stability analysis are presented.
Considering the following new variables 𝑒(𝑡) = [𝑒1 (𝑡)𝑇 , 𝑒2 (𝑡)𝑇 , . . . , 𝑒𝑁 (𝑡)𝑇 ]𝑇 ,
the disturbance vector 𝑑𝑢 (𝑡) = [𝑑𝑢1 (𝑡)𝑇 , 𝑑𝑢2 (𝑡)𝑇 , . . . , 𝑑𝑢𝑁 (𝑡)𝑇 ]𝑇 , and noise vector
𝑑𝑦 (𝑡) = [𝑑𝑦1 (𝑡)𝑇 , 𝑑𝑦2 (𝑡)𝑇 , . . . , 𝑑𝑦𝑁 (𝑡)𝑇 ]𝑇 , then, using the Kronecker product ⊗ the
dynamic estimation error can be expressed as:

¤𝑒(𝑡) = (𝐼𝑁 ⊗ (𝐴 − 𝐿𝐶))𝑒(𝑡) + (𝐼𝑁 ⊗ 𝐷𝑢)𝑑𝑢 (𝑡) − (𝐼𝑁 ⊗ 𝐿𝐷𝑦)𝑑𝑦 (𝑡). (7)

Replace (6) in (3) and let 𝛿(𝑡) =
[
𝛿1 (𝑡)𝑇 , 𝛿2 (𝑡)𝑇 , . . . , 𝛿𝑁 (𝑡)𝑇

]𝑇 , and L = L + Λ

where L is the Laplacian matrix and Λ = 𝑑𝑖𝑎𝑔(𝛼1, 𝛼2, . . . , 𝛼𝑁 ) is the communica-
tion exchange between the virtual leader and the followers. Then, the synchronization
error of the multi-agent system is rewritten as:

¤𝛿(𝑡) = (𝐼𝑁 ⊗ 𝐴 + L ⊗ 𝐵𝐾)𝛿(𝑡) − (L ⊗ 𝐵𝐾)𝑒(𝑡) + (𝐼𝑁 ⊗ 𝐷𝑢)𝑑𝑢 (𝑡). (8)

Let 𝑧(𝑡) = [𝛿(𝑡)𝑇 , 𝑒(𝑡)𝑇 ]𝑇 then, system (1) can be expressed by:

¤𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐷𝑢𝑑𝑢 (𝑡) − 𝐷𝑦𝑑𝑦 (𝑡), (9)

where

𝐴=

[
𝐼𝑁 ⊗ 𝐴 + L ⊗ 𝐵𝐾 −L ⊗ 𝐵𝐾

0 𝐼𝑁 ⊗ (𝐴 − 𝐿𝐶)

]
, 𝐷𝑢=

[
𝐼𝑁 ⊗ 𝐷𝑢
𝐼𝑁 ⊗ 𝐷𝑢

]
, 𝐷𝑦 =

[
0

𝐼𝑁 ⊗ 𝐿𝐷𝑦

]
.

(10)
The distributed 𝐻∞ criterion is considered as in [11], in order to guarantee the
existence of robust control and observer gains able to reject the effect of the external
disturbances and sensor noise, then, the following theorem is proposed.

Theorem 1 Consider the closed-loop system (9). Given the eigenvalues 𝜆 𝑗 (L̄), 𝑗 =
1, 2, . . . , 𝑁; if there exist symmetric matrices 𝑃̄1 > 0 ∈ R𝑛×𝑛 and 𝑃2 > 0 ∈ R𝑛×𝑛,
the tuning scalar variable 𝜇 > 0, and minimizing 𝛾 by the 𝐻∞ criterion satisfying
the following condition:
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𝜂1 𝑗
0 𝐷𝑢 0 −𝜆 𝑗𝐵𝑁𝑐 0

∗ 𝜂2 𝑃2𝐷𝑢 −𝑀𝑜𝐷𝑦 0 𝐼

∗ ∗ −𝛾2𝐼𝑁 0 0 0
∗ ∗ ∗ −𝛾2𝐼𝑁 0 0
∗ ∗ ∗ ∗ −𝜇−1𝑃1 0
∗ ∗ ∗ ∗ ∗ −𝜇𝑃1


< 0, (11)

the synchronization error (8) and estimation error (7) are stable; where 𝜂1 𝑗
=

𝐻𝑒

{
𝐴𝑃1 + 𝜆 𝑗𝐵𝑁𝑐

}
, and 𝜂2 = 𝐻𝑒 {𝑃2𝐴 − 𝑀𝑜𝐶} + 𝐼𝑁 , then, the robust control law

can be computed with 𝐾 = 𝑁𝑐𝑃
−1
1 , and the observer gain with 𝐿 = 𝑃−1

2 𝑀𝑜.

Proof Consider the candidate Lyapunov function as follows:

𝑉 (𝑡) = 𝑧(𝑡)𝑇
[
𝐼𝑁 ⊗ 𝑃1 0

0 𝐼𝑁 ⊗ 𝑃2

]
𝑧(𝑡), (12)

where, 𝑃1 ∈ R𝑛×𝑛 = 𝑃𝑇1 > 0, and 𝑃2 ∈ R𝑛×𝑛 = 𝑃𝑇2 > 0. The derivative of the
candidate Lyapunov function along the trajectories of (9) is given by:

¤𝑉 (𝑡) =2𝛿(𝑡)𝑇 (𝐼𝑁 ⊗ 𝑃1𝐴 + L ⊗ 𝑃1𝐵𝐾)𝛿(𝑡) − 2𝛿(𝑡)𝑇 (L ⊗ 𝑃1𝐵𝐾)𝑒(𝑡)
+ 2𝑒(𝑡)𝑇 (𝐼𝑁 ⊗ 𝑃2 (𝐴 − 𝐿𝐶))𝑒(𝑡) + 2𝛿(𝑡)𝑇 (𝐼𝑁 ⊗ 𝑃1𝐷𝑢)𝑑𝑢 (𝑡)
+ 2𝑒(𝑡)𝑇 (𝐼𝑁 ⊗ 𝑃2𝐷𝑢)𝑑𝑢 (𝑡) − 2𝑒(𝑡)𝑇 (𝐼𝑁 ⊗ 𝑃2𝐿𝐷𝑦)𝑑𝑦 (𝑡).

(13)

Let us perform a spectral decomposition of the matrix L, such that L = 𝑇𝐽𝑇−1 with
an invertible matrix 𝑇 ∈ R𝑁×𝑁 and a diagonal matrix 𝐽 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, . . . , 𝜆𝑁 ) ∈
R𝑁×𝑁 . Defining the change of coordinates as 𝜉 = (𝑇−1 ⊗ 𝐼𝑁 )𝛿, 𝜖 = (𝑇−1 ⊗ 𝐼𝑁 )𝑒,
𝜔𝑢 = (𝑇−1 ⊗ 𝐼𝑁 )𝑑𝑢, and 𝜔𝑦 = (𝑇−1 ⊗ 𝐼𝑁 )𝑑𝑦 . For reasons of space, the notation of
the time dependence of certain variables is omitted. Replacing the new coordinates
in (13) leads to:

¤𝑉 =2𝜉𝑇 (𝐼𝑁 ⊗ 𝑃1𝐴 + 𝐽 ⊗ 𝑃1𝐵𝐾)𝜉 − 2𝜉𝑇 (𝐽 ⊗ 𝑃1𝐵𝐾)𝜖 + 2𝜖𝑇 (𝐼𝑁 ⊗ 𝑃2 (𝐴 − 𝐿𝐶))𝜖
+ 2𝜉𝑇 (𝐼𝑁 ⊗ 𝑃1𝐷𝑢)𝜔𝑢 + 2𝜖𝑇 (𝐼𝑁 ⊗ 𝑃2𝐷𝑢)𝜔𝑢 − 2𝜖𝑇 (𝐼𝑁 ⊗ 𝑃2𝐿𝐷𝑦)𝜔𝑦 .

(14)

Using Lemma 1, (14) can be rewritten as follows:

¤𝑉 =

𝑁∑︁
𝑗=1
𝜉𝑇𝑗 𝐻𝑒

{
𝑃1𝐴 + 𝜆 𝑗𝑃1𝐵𝐾

}
𝜉 𝑗 − 2

𝑁∑︁
𝑗=1
𝜉𝑇𝑗 𝜆 𝑗𝑃1𝐵𝐾𝜖 𝑗 +

𝑁∑︁
𝑗=1
𝜖 𝑇𝑗 𝐻𝑒 {𝑃2𝐴 − 𝑃2𝐿𝐶 } 𝜖 𝑗

+ 2
𝑁∑︁
𝑗=1
𝜉𝑇𝑗 𝐻𝑒 {𝑃1𝐷𝑢 } 𝜔𝑢 𝑗

+ 2
𝑁∑︁
𝑗=1
𝜖 𝑇𝑗 𝐻𝑒 {𝑃2𝐷𝑢 } 𝜔𝑢 𝑗

+ 2
𝑁∑︁
𝑗=1
𝜖 𝑇𝑗 𝐻𝑒

{
𝑃2𝐿𝐷𝑦

}
𝜔𝑦 𝑗

,

(15)

then, considering (15) with 𝐻∞ criterion, 𝜑 𝑗 (𝑡) = [𝜉 𝑗 (𝑡)𝑇 , 𝜖 𝑗 (𝑡)𝑇 , 𝜔𝑢 𝑗
(𝑡)𝑇 , 𝜔𝑇𝑦 𝑗 ]

𝑇 ,
and 𝐽𝑇 ≤ ∑𝑁

𝑗=1 𝜑(𝑡)𝑇𝑗 Ω 𝑗𝜑(𝑡) 𝑗 , where Ω 𝑗 is defined as follows:
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Ω 𝑗 =


𝑄1 𝑗

+ 𝐼 −𝜆 𝑗𝑃1𝐵𝐾 𝑃1𝐷𝑢 0
∗ 𝑄2 + 𝐼 𝑃2𝐷𝑢 −𝑃2𝐿𝐷𝑦
∗ ∗ −𝛾2𝐼 0
∗ ∗ ∗ −𝛾2𝐼

 < 0, (16)

where 𝑄1 𝑗
= 𝐻𝑒

{
𝑃1𝐴 + 𝜆 𝑗𝑃1𝐵𝐾

}
, and 𝑄2 = 𝐻𝑒 {𝑃2𝐴 − 𝑃2𝐿𝐶}. Then, (16) is pre

and post multiplied by 𝑃1, where 𝑃1 = 𝑃
𝑇

1 = 𝑃−1
1 > 0

Υ1 𝑗
0 𝐷𝑢 0

∗ Υ2 𝑃2𝐷𝑢 −𝑃2𝐿𝐷𝑦
∗ ∗ −𝛾2𝐼 0
∗ ∗ ∗ −𝛾2𝐼

 + 𝐻𝑒



−𝜆 𝑗𝐵𝐾

0
0
0


[
0 𝐼 0 0

] < 0, (17)

where Υ1 𝑗
= 𝐻𝑒

{
𝐴𝑃1 + 𝜆 𝑗𝐵𝐾𝑃1

}
+ 𝑃1𝑃1, and Υ2 = 𝐻𝑒 {𝑃2𝐴− 𝑃2𝐿𝐶} + 𝐼.

Applying the Young relation [12], the following inequality is obtained:
Υ1 𝑗

0 𝐷𝑢 0
∗ Υ2 𝑃2𝐷𝑢 −𝑃2𝐿𝐷𝑦

∗ ∗ −𝛾2𝐼 0
∗ ∗ ∗ −𝛾2𝐼

 + 𝜇

−𝜆 𝑗𝐵𝐾

0
0
0

 𝑃
−1
1

[
(−𝜆 𝑗𝐵𝐾 )𝑇 0 0 0

]
+ 𝜇−1 [

𝐼 0 0 0
]𝑇
𝑃

−1
1

[
0 𝐼 0 0

]
< 0,

(18)

where 𝜇 > 0. Using the Schur complement in (18), choosing 𝑁𝑐 = 𝐾𝑃1, and
𝑀𝑜 = 𝑃2𝐿, the proof is complete.

4 Simulation results: application to a team of UAVs

In this section, the simulation results for an application to leader-following robust
consensus control of a team of homogeneous UAVs are presented. The dynamic
model of each UAV is:

¥𝑥𝑖 = (𝑐𝜓𝑖 𝑠𝜃𝑖 𝑐𝜙𝑖 + 𝑠𝜓𝑖 𝑠𝜙𝑖 )
1
𝑚𝑖
𝑇𝑖 ,

¥𝑦𝑖 = (𝑠𝜓𝑖 𝑠𝜃𝑖 𝑐𝜙𝑖 − 𝑐𝜓𝑖 𝑠𝜙𝑖 )
1
𝑚𝑖
𝑇𝑖 ,

¥𝑧𝑖 =−𝑔 + (𝑐𝜃𝑖 𝑐𝜙𝑖 )
1
𝑚𝑖
𝑇𝑖 ,

¥𝜙𝑖 = ¤𝜃𝑖 ¤𝜓𝑖
(
𝐽𝑦 − 𝐽𝑧
𝐽𝑥

)
+ 1
𝐽𝑥
𝑅𝑖 ,

¥𝜃𝑖 = ¤𝜙𝑖 ¤𝜓𝑖
(
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

)
+ 1
𝐽𝑦
𝑃𝑖 ,

¥𝜓𝑖 = ¤𝜃𝑖 ¤𝜙𝑖
(
𝐽𝑥 − 𝐽𝑦
𝐽𝑧

)
+ 1
𝐽𝑧
𝑌𝑖 ,

(19)

where the shorthand notation 𝑐{ ·} and 𝑠{ ·} is cos(·) and sin(·) respectively; 𝑥𝑖 , 𝑦𝑖 ,
and 𝑧𝑖 are the position of the i-th UAV in the euclidean space, 𝜙𝑖 , 𝜃𝑖 , and 𝜓𝑖 , are the
Euler angles roll, pitch, and yaw respectively, 𝑅𝑖 , 𝑃𝑖 , and 𝑌𝑖 are the rotor torques,
𝑚𝑖 is the total mass of the UAVs, 𝑔 is the gravitational acceleration, 𝐽𝑥 , 𝐽𝑦 , and 𝐽𝑧
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represents the moments of inertia in their respectively axis, 𝑇𝑖 is the thrust of the
UAVs rotors. The parameters used in the simulations were taken from [13].

The main objective of the multi-agent system, where each UAV is associated to
one agent, is to follow the trajectories of a virtual leader and maintain a desired shape,
where 𝐻 = [ℎ𝑇1 , ℎ

𝑇
2 , . . . , ℎ

𝑇
𝑁
]𝑇 contains the desired distance column vectors ℎ𝑖 of

every agent. To solve the formation control problem, a second order representation
of each agent [14] is used to find a solution for the LMIs presented in Theorem 1:

¤𝑝𝑖 (𝑡) = 𝑣𝑖 (𝑡), ¤𝑣𝑖 (𝑡) = 𝑢𝑖 (𝑡). (20)

However, it is noted that for the simulations the complete nonlinear model (19)
is used. Considering 𝑝𝑖 (𝑡), 𝑣𝑖 (𝑡), 𝑢𝑖 (𝑡) the position, velocity and acceleration re-
spectively of agent i, ˆ̄𝑠𝑖 (𝑡) = [𝑝𝑖 (𝑡)𝑇 − ℎ𝑇

𝑖
, 𝑣̂𝑖 (𝑡)𝑇 ]𝑇 the estimated states of agent i,

𝑠𝑙 (𝑡) = [𝑝𝑙 (𝑡)𝑇 , 𝑣𝑙 (𝑡)𝑇 ]𝑇 the virtual leader states, ℎ𝑖 is a vector of matrix 𝐻 of the
respective agent, then, the control law (6) is rewritten as:

𝑢𝑖 (𝑡 ) = 𝐾
∑︁
𝑗∈N𝑖

𝑎𝑖 𝑗 ( ˆ̄𝑠𝑖 (𝑡 ) − ˆ̄𝑠 𝑗 (𝑡 ) ) + 𝛼𝑖𝐾 ( ˆ̄𝑠𝑖 (𝑡 ) − 𝑠𝑙 (𝑡 ) ) , (21)

where 𝐾 is the control gain to be designed. Considering ˆ̄𝛿𝑖 (𝑡) = ˆ̄𝑠𝑖 (𝑡)− 𝑠𝑙 (𝑡) equation
(21) is rewritten as follows:

𝑢𝑖 (𝑡 ) = 𝐾
∑︁
𝑗∈N𝑖

𝑎𝑖 𝑗 ( ˆ̄
𝛿𝑖 (𝑡 ) − ˆ̄

𝛿 𝑗 (𝑡 ) ) + 𝛼𝑖𝐾 ˆ̄
𝛿𝑖 (𝑡 ) . (22)

Since the dynamic of each UAV is considered as a particle, the desired Euler angles
𝜃𝑑𝑖 , 𝜙𝑑𝑖 , and 𝜓𝑑𝑖 are computed as in [15] to control the position of the UAVs, where
the consensus protocol (22) and the desired Euler angles are related as follows:

𝜙𝑑𝑖 = arctan
©­­«

−𝑢2𝑖√︃
𝑢2

1𝑖 + (𝑢3𝑖 + 𝑔)2

ª®®¬ , 𝜃𝑑𝑖 = arctan
(
𝑢1𝑖

𝑢3𝑖 + 𝑔

)
, 𝜓𝑑𝑖 = 0, (23)

and the thrust of the UAVs rotors is computed by 𝑇𝑖 =𝑚𝑖 (𝑢2
1𝑖 + 𝑢

2
2𝑖 + (𝑢3𝑖 + 𝑔)2)1/2.

The communication topology of the multi-agent system is depicted in Fig. 1 (where
a UAV represents an agent and the arrows the flow of information), and the Laplacian
matrix L:

Fig. 1: Directions of the commu-
nication links between agents.

L =



5 −1 −1 −1 −1 −1
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 2 −1 0
−1 0 0 −1 3 −1
−1 0 0 0 −1 2


(24)
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𝐻 and Λ matrices are the following:

𝐻 =


0 4 6 4 0 −2
0 0 2

√
3 4

√
3 4

√
3 2

√
3

0 0 0 0 0 0

 , Λ =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (25)

The first simulation result in Fig. 2, shows that the formation control problem is
solved and the multi-agent system follows the trajectories of the virtual leader. All
the UAVs reach the trajectories of the virtual leader while maintaining the rigid
formation of a hexagon. This first result does not include external disturbance or
measurement sensor noise.

Fig. 2: Formation without disturbance or sensor noise and distances between follow-
ers.

The considered external disturbance is modeled as the Dryden wind turbulence
presented in [16], and the sensor noise was added as a random function with normal
distribution, mean value of zero, and standard deviation of 0.8 m/s, in order to verify
the robustness of the control law (22). If the measurement noise or the external
disturbance magnitudes increase, the control law (22) is not able to maintain the
desired formation or to follow the virtual leader. To overcome the disturbance and
noise problem, the LMI presented in (11) is computed with the Sedumi Toolbox
[17], where the LMI variable 𝛾 value obtained with 𝜇 = 0.1 is 𝛾 = 1. The computed
control and observer gains are:

𝐾 =


−0.756 0 0 −2.651 0 0

0 −0.756 0 0 −2.651 0
0 0 −0.756 0 0 −2.651

 , 𝐿 =



3.208 0 0
0 3.208 0
0 0 3.208

0.836 0 0
0 0.836 0
0 0 0.836


. (26)

The robustness of the distributed control and estimation implemented in the team of
UAVs has been verified by solving the leader-follower formation control problem.
The effectiveness of the proposed work is shown in Fig. 3, where each UAV achieves
its desired position in the rigid formation of a hexagon while following the trajectory
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of the virtual leader because the external disturbance and the measurement sensor
noise are rejected.

Fig. 3: Formation with disturbance and sensor noise using the control law (22) and
observer (4) with gains 𝐾 , and 𝐿 (26) computed using Theorem 1.

5 Conclusions

A distributed robust leader-following consensus control observer-based for LTI
multi-agent systems was presented. The objective of the multi-agent system is to
follow the trajectories described by a virtual leader’s dynamics and to maintain a
desired rigid formation between followers. This was exemplified with the simulation
of a team of UAVs where the agents were able to reject external disturbance and
measurement sensor noise. As further work, this approach will be extended to LPV
multi-agent systems.
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