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where despite the name being shared with the computer science community, the meanings, the objectives, and the tools of common use are adapted to the control area [START_REF] Li | Cooperative control of multi-agent systems: a consensus region approach[END_REF]. An agent is defined as an autonomous dynamical system, e.g., Unmanned Aerial Vehicles (UAVs), or satellites, among others. Nevertheless, multi-agent systems can be subject to external disturbance and measurement noise which compromise the synchronization and coordination of the agents. It is therefore necessary to consider these exogenous inputs in the dynamic modeling of the multi-agent system in order to be able to develop a robust control of these external disturbances and measurement noise. This is why it is essential to add robustness to the distributed control and observer because external disturbance (and sensor noise) affect their performance [START_REF] Antonio | Robust formation control based on leader-following consensus in multi-agent systems with faults in the information exchange: Application in a fleet of unmanned aerial vehicles[END_REF]. Different works in the literature have addressed this problem. A robust finite-time problem for a second-order multi-agent system is addressed in [START_REF] Tian | Robust finite-time consensus control for multi-agent systems with disturbances and unknown velocities[END_REF] for rejecting external disturbances. Also, a sliding mode leader-following control for multiple UAVs is proposed in [START_REF] Valencia | Multiple quadrotors flight formation control based on sliding mode control and trajectory tracking[END_REF], where the system remains insensitive to external disturbances. Alternatively, in [START_REF] Sun | Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation[END_REF], a leader-following sliding mode formation control approach for underactuated surface vehicles considering model uncertainties and external disturbance is developed. In [START_REF] Ahmed | Consensus control of multi-agent systems with input and communication delay: A frequency domain perspective[END_REF], a robust controller using 𝐻 2 performance is implemented in a system with communication and input time delays presented in the frequency domain minimizing the error and the disturbance effect. In [START_REF] Lin | Robust optimal formation control of heterogeneous multi-agent system via reinforcement learning[END_REF], the robust optimal formation control problem for heterogeneous multi-agent systems considering external disturbances is addressed based on reinforcement learning. An adaptive semi-global bipartite consensus assuming a connected switching topology graph under input saturation and external disturbance is proposed in [START_REF] Xu | Semi-global adaptive bipartite output consensus of multi-agent systems subject to input saturation and external disturbance under switching network[END_REF].

In this paper, the main contribution is the design of the distributed leader-following control law based on state estimates of the neighboring agents to coordinated linear multi-agent systems, where the robust control and observer gains are computed simultaneously based on linear matrix inequalities (LMIs). The main difference concerning previous work is the distributed robust observer-based leader-following control for linear multi-agent systems under external disturbance and measurement noise, where the main objective is to follow the trajectories described by a virtual leader and maintain consensus between followers despite the external disturbance and the sensor noise.

Problem Statement and system description

Consider a linear homogeneous multi-agent system, which means that 𝐴, 𝐵, and 𝐶 matrices are identical for each agent, as follows:

𝑥 𝑖 (𝑡) = 𝐴𝑥 𝑖 (𝑡) + 𝐵𝑢 𝑖 (𝑡) + 𝐷 𝑢 𝑑 𝑢 𝑖 (𝑡), 𝑦 𝑖 (𝑡) = 𝐶𝑥 𝑖 (𝑡) + 𝐷 𝑦 𝑑 𝑦 𝑖 (𝑡), (1) 
where 𝑖 = 1, 2, . . . , 𝑁; 𝑁 is the total number of agents;

𝑥 𝑖 (𝑡) ∈ R 𝑛 , 𝑢 𝑖 (𝑡) ∈ R 𝑚 , 𝑦 𝑖 (𝑡) ∈ R 𝑝 , 𝑑 𝑢 𝑖 (𝑡) ∈ R 𝑚 , 𝑑 𝑦 𝑖 (𝑡) ∈ R 𝑝 ,
are the state, input, output, external disturbance and noise vectors respectively; 𝐴 ∈ R 𝑛×𝑛 , 𝐵 ∈ R 𝑛×𝑚 , 𝐶 ∈ R 𝑝×𝑛 , 𝐷 𝑢 ∈ R 𝑛×𝑚 , and 𝐷 𝑦 ∈ R 𝑝×𝑛 are constant matrices of the system. Graph theory [START_REF] Li | Cooperative control of multi-agent systems: a consensus region approach[END_REF] can be used for the communication description of multi-agent systems. In this way, the Laplacian matrix L describes the dynamics of the multi-agent system through the adjacency matrix A. Let us consider a directed graph G(V, E, A) where V = {𝑣 1 , 𝑣 2 , . . . , 𝑣 𝑁 } is a set of nodes (agents), E = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ V} ⊆ V × V is a set of edges. The adjacency matrix A = [𝑎 𝑖 𝑗 ] ∈ R 𝑁 × 𝑁 is defined as 𝑎 𝑖𝑖 = 0, 𝑎 𝑖 𝑗 = 1 if and only if the pair (𝑖, 𝑗) ∈ E otherwise 𝑎 𝑖 𝑗 = 0. When the graph is undirected, also, 𝑎 𝑖 𝑗 = 𝑎 𝑗𝑖 , ∀𝑖 ≠ 𝑗 and A = A 𝑇 . The Laplacian matrix L ∈ R 𝑁 × 𝑁 is defined as L 𝑖𝑖 = 𝑗≠𝑖 𝑎 𝑖 𝑗 and L 𝑖 𝑗 = -𝑎 𝑖 𝑗 . The neighbors of i-th agent are denoted as 𝑗 ∈ N 𝑖 . The following assumptions are held in this paper: The main objective of this work is the design of a robust leader-following control for multi-agent systems consensus-based, where the virtual leader dynamics is presented as follows:

𝑥 𝑙 (𝑡) = 𝐴𝑥 𝑙 (𝑡), (2) 
where 𝑥 𝑙 (𝑡) ∈ R 𝑛 is the state vector of the virtual leader. Let 𝛿 𝑖 = 𝑥 𝑖 -𝑥 𝑙 , then, the dynamics of the synchronization error between each agent 𝑖 and the leader is:

𝛿 𝑖 (𝑡) = 𝐴𝛿 𝑖 (𝑡) + 𝐵𝑢 𝑖 (𝑡) + 𝐷 𝑢 𝑑 𝑢 𝑖 (𝑡). (3) 
In order to estimate the states of each agent, the following distributed observer is proposed:

x𝑖 (𝑡) = 𝐴 x𝑖 (𝑡) + 𝐵𝑢 𝑖 (𝑡) + 𝐿(𝑦 𝑖 (𝑡) -𝐶 x𝑖 (𝑡)), ŷ𝑖 (𝑡) = 𝐶 x𝑖 (𝑡), (4) 
where x𝑖 (𝑡) ∈ R 𝑛 is the estimated state vector, 𝐿 ∈ R 𝑛× 𝑝 is the observer gain to be designed, and ŷ𝑖 (𝑡) ∈ R 𝑝 is the estimated output vector. The dynamics of the estimation error 𝑒 𝑖 = 𝑥 𝑖 -x𝑖 is computed as follows:

𝑒 𝑖 (𝑡) = ( 𝐴 -𝐿𝐶)𝑒 𝑖 (𝑡) + 𝐷 𝑢 𝑑 𝑢 𝑖 (𝑡) -𝐿𝐷 𝑦 𝑑 𝑦 𝑖 (𝑡). (5) 
The considered observer-based leader-following consensus control law is ( [START_REF] Chen | Observerbased consensus control against actuator faults for linear parameter-varying multiagent systems[END_REF]):

𝑢 𝑖 (𝑡) = 𝐾       ∑︁ 𝑗 ∈ N 𝑖 𝑎 𝑖 𝑗 ( x𝑖 (𝑡) -x 𝑗 (𝑡)) + 𝛼 𝑖 ( x𝑖 (𝑡) -𝑥 𝑙 (𝑡))       , (6) 
where 𝐾 ∈ R 𝑛× 𝑝 is the control gain to be designed, 𝑎 𝑖 𝑗 are the elements of the adjacency matrix, x𝑖 (𝑡) is the estimated state vector of the i-th agent, and x 𝑗 (𝑡) is the estimated state vector of the neighboring agents, 𝛼 𝑖 represents the communication between the leader and the followers, where 𝛼 𝑖 > 0 if there is a directed edge from the leader to the i-th agent, otherwise 𝛼 𝑖 = 0. The considered problem is the design of a robust control gain 𝐾 and a robust observer gain 𝐿 to steer the multi-agent system (1) subject to external disturbance and sensor noise, to follow the virtual leader's trajectories.

Observer-based leader-following consensus robust controller

In this section, the LMI conditions to guarantee the existence of the robust control and observer gains based on the Lyapunov stability analysis are presented. 

𝑒(𝑡) = (𝐼 𝑁 ⊗ ( 𝐴 -𝐿𝐶))𝑒(𝑡) + (𝐼 𝑁 ⊗ 𝐷 𝑢 )𝑑 𝑢 (𝑡) -(𝐼 𝑁 ⊗ 𝐿𝐷 𝑦 )𝑑 𝑦 (𝑡). (7) 
Replace ( 6) in ( 3) and let 𝛿(𝑡) = 𝛿 1 (𝑡) 𝑇 , 𝛿 2 (𝑡) 𝑇 , . . . , 𝛿 𝑁 (𝑡) 𝑇 𝑇 , and L = L + Λ where L is the Laplacian matrix and Λ = 𝑑𝑖𝑎𝑔(𝛼 1 , 𝛼 2 , . . . , 𝛼 𝑁 ) is the communication exchange between the virtual leader and the followers. Then, the synchronization error of the multi-agent system is rewritten as:

𝛿(𝑡) = (𝐼 𝑁 ⊗ 𝐴 + L ⊗ 𝐵𝐾)𝛿(𝑡) -(L ⊗ 𝐵𝐾)𝑒(𝑡) + (𝐼 𝑁 ⊗ 𝐷 𝑢 )𝑑 𝑢 (𝑡). (8) 
Let 𝑧(𝑡) = [𝛿(𝑡) 𝑇 , 𝑒(𝑡) 𝑇 ] 𝑇 then, system (1) can be expressed by:

𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐷 𝑢 𝑑 𝑢 (𝑡) -𝐷 𝑦 𝑑 𝑦 (𝑡), (9) 
where

𝐴 = 𝐼 𝑁 ⊗ 𝐴 + L ⊗ 𝐵𝐾 -L ⊗ 𝐵𝐾 0 𝐼 𝑁 ⊗ ( 𝐴 -𝐿𝐶) , 𝐷 𝑢 = 𝐼 𝑁 ⊗ 𝐷 𝑢 𝐼 𝑁 ⊗ 𝐷 𝑢 , 𝐷 𝑦 = 0 𝐼 𝑁 ⊗ 𝐿𝐷 𝑦 . (10)
The distributed 𝐻 ∞ criterion is considered as in [START_REF] Chen | Observerbased consensus control against actuator faults for linear parameter-varying multiagent systems[END_REF], in order to guarantee the existence of robust control and observer gains able to reject the effect of the external disturbances and sensor noise, then, the following theorem is proposed.

Theorem 1 Consider the closed-loop system [START_REF] Xu | Semi-global adaptive bipartite output consensus of multi-agent systems subject to input saturation and external disturbance under switching network[END_REF]. Given the eigenvalues 𝜆 𝑗 ( L), 𝑗 = 1, 2, . . . , 𝑁; if there exist symmetric matrices P1 > 0 ∈ R 𝑛×𝑛 and 𝑃 2 > 0 ∈ R 𝑛×𝑛 , the tuning scalar variable 𝜇 > 0, and minimizing 𝛾 by the 𝐻 ∞ criterion satisfying the following condition:

            𝜂 1 𝑗 0 𝐷 𝑢 0 -𝜆 𝑗 𝐵𝑁 𝑐 0 * 𝜂 2 𝑃 2 𝐷 𝑢 -𝑀 𝑜 𝐷 𝑦 0 𝐼 * * -𝛾 2 𝐼 𝑁 0 0 0 * * * -𝛾 2 𝐼 𝑁 0 0 * * * * -𝜇 -1 𝑃 1 0 * * * * * -𝜇𝑃 1             < 0, ( 11 
)
the synchronization error [START_REF] Lin | Robust optimal formation control of heterogeneous multi-agent system via reinforcement learning[END_REF] and estimation error [START_REF] Ahmed | Consensus control of multi-agent systems with input and communication delay: A frequency domain perspective[END_REF] 

𝑉 (𝑡) = 𝑧(𝑡) 𝑇 𝐼 𝑁 ⊗ 𝑃 1 0 0 𝐼 𝑁 ⊗ 𝑃 2 𝑧(𝑡), (12) 
where, 𝑃 1 ∈ R 𝑛×𝑛 = 𝑃 𝑇 1 > 0, and

𝑃 2 ∈ R 𝑛×𝑛 = 𝑃 𝑇 2 > 0.
The derivative of the candidate Lyapunov function along the trajectories of ( 9) is given by:

𝑉 (𝑡) =2𝛿(𝑡) 𝑇 (𝐼 𝑁 ⊗ 𝑃 1 𝐴 + L ⊗ 𝑃 1 𝐵𝐾)𝛿(𝑡) -2𝛿(𝑡) 𝑇 (L ⊗ 𝑃 1 𝐵𝐾)𝑒(𝑡) + 2𝑒(𝑡) 𝑇 (𝐼 𝑁 ⊗ 𝑃 2 ( 𝐴 -𝐿𝐶))𝑒(𝑡) + 2𝛿(𝑡) 𝑇 (𝐼 𝑁 ⊗ 𝑃 1 𝐷 𝑢 )𝑑 𝑢 (𝑡) + 2𝑒(𝑡) 𝑇 (𝐼 𝑁 ⊗ 𝑃 2 𝐷 𝑢 )𝑑 𝑢 (𝑡) -2𝑒(𝑡) 𝑇 (𝐼 𝑁 ⊗ 𝑃 2 𝐿𝐷 𝑦 )𝑑 𝑦 (𝑡). (13) 
Let us perform a spectral decomposition of the matrix L, such that L = 𝑇 𝐽𝑇 -1 with an invertible matrix 𝑇 ∈ R 𝑁 × 𝑁 and a diagonal matrix 𝐽 = 𝑑𝑖𝑎𝑔(𝜆 1 , 𝜆 2 , . . . , 𝜆 𝑁 ) ∈ R 𝑁 × 𝑁 . Defining the change of coordinates as 𝜉 = (𝑇 -1 ⊗ 𝐼 𝑁 )𝛿, 𝜖 = (𝑇 -1 ⊗ 𝐼 𝑁 )𝑒, 𝜔 𝑢 = (𝑇 -1 ⊗ 𝐼 𝑁 )𝑑 𝑢 , and 𝜔 𝑦 = (𝑇 -1 ⊗ 𝐼 𝑁 )𝑑 𝑦 . For reasons of space, the notation of the time dependence of certain variables is omitted. Replacing the new coordinates in (13) leads to:

𝑉 =2𝜉 𝑇 (𝐼 𝑁 ⊗ 𝑃 1 𝐴 + 𝐽 ⊗ 𝑃 1 𝐵𝐾)𝜉 -2𝜉 𝑇 (𝐽 ⊗ 𝑃 1 𝐵𝐾)𝜖 + 2𝜖 𝑇 (𝐼 𝑁 ⊗ 𝑃 2 ( 𝐴 -𝐿𝐶))𝜖 + 2𝜉 𝑇 (𝐼 𝑁 ⊗ 𝑃 1 𝐷 𝑢 )𝜔 𝑢 + 2𝜖 𝑇 (𝐼 𝑁 ⊗ 𝑃 2 𝐷 𝑢 )𝜔 𝑢 -2𝜖 𝑇 (𝐼 𝑁 ⊗ 𝑃 2 𝐿𝐷 𝑦 )𝜔 𝑦 . (14) 
Using Lemma 1, ( 14) can be rewritten as follows:

𝑉 = 𝑁 ∑︁ 𝑗=1 𝜉 𝑇 𝑗 𝐻𝑒 𝑃 1 𝐴 + 𝜆 𝑗 𝑃 1 𝐵𝐾 𝜉 𝑗 -2 𝑁 ∑︁ 𝑗=1 𝜉 𝑇 𝑗 𝜆 𝑗 𝑃 1 𝐵𝐾 𝜖 𝑗 + 𝑁 ∑︁ 𝑗=1 𝜖 𝑇 𝑗 𝐻𝑒 { 𝑃 2 𝐴 -𝑃 2 𝐿𝐶 } 𝜖 𝑗 + 2 𝑁 ∑︁ 𝑗=1 𝜉 𝑇 𝑗 𝐻𝑒 { 𝑃 1 𝐷 𝑢 } 𝜔 𝑢 𝑗 + 2 𝑁 ∑︁ 𝑗=1 𝜖 𝑇 𝑗 𝐻𝑒 { 𝑃 2 𝐷 𝑢 } 𝜔 𝑢 𝑗 + 2 𝑁 ∑︁ 𝑗=1 𝜖 𝑇 𝑗 𝐻𝑒 𝑃 2 𝐿𝐷 𝑦 𝜔 𝑦𝑗 , (15) 
then, considering [START_REF] Guerrero-Castellanos | Real-time event-based formation control of a group of vtol-uavs[END_REF] with 𝐻 ∞ criterion, 𝜑 𝑗 (𝑡) = [𝜉 𝑗 (𝑡) 𝑇 , 𝜖 𝑗 (𝑡) 𝑇 , 𝜔 𝑢 𝑗 (𝑡) 𝑇 , 𝜔 𝑇 𝑦 𝑗 ] 𝑇 , and 𝐽 𝑇 ≤ 𝑁 𝑗=1 𝜑(𝑡) 𝑇 𝑗 Ω 𝑗 𝜑(𝑡) 𝑗 , where Ω 𝑗 is defined as follows:

Ω 𝑗 =         𝑄 1 𝑗 + 𝐼 -𝜆 𝑗 𝑃 1 𝐵𝐾 𝑃 1 𝐷 𝑢 0 * 𝑄 2 + 𝐼 𝑃 2 𝐷 𝑢 -𝑃 2 𝐿𝐷 𝑦 * * -𝛾 2 𝐼 0 * * * -𝛾 2 𝐼         < 0, ( 16 
)
where 𝑄 1 𝑗 = 𝐻𝑒 𝑃 1 𝐴 + 𝜆 𝑗 𝑃 1 𝐵𝐾 , and 𝑄 2 = 𝐻𝑒 {𝑃 2 𝐴 -𝑃 2 𝐿𝐶}. Then, ( 16) is pre and post multiplied by 𝑃 1 , where

𝑃 1 = 𝑃 𝑇 1 = 𝑃 -1 1 > 0         Υ 1 𝑗 0 𝐷 𝑢 0 * Υ 2 𝑃 2 𝐷 𝑢 -𝑃 2 𝐿𝐷 𝑦 * * -𝛾 2 𝐼 0 * * * -𝛾 2 𝐼         + 𝐻𝑒                    -𝜆 𝑗 𝐵𝐾 0 0 0         0 𝐼 0 0            < 0, ( 17 
)
where

Υ 1 𝑗 = 𝐻𝑒 𝐴𝑃 1 + 𝜆 𝑗 𝐵𝐾 𝑃 1 + 𝑃 1 𝑃 1 , and Υ 2 = 𝐻𝑒 {𝑃 2 𝐴-𝑃 2 𝐿𝐶} + 𝐼.
Applying the Young relation [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], the following inequality is obtained:

        Υ 1 𝑗 0 𝐷 𝑢 0 * Υ 2 𝑃 2 𝐷 𝑢 -𝑃 2 𝐿𝐷 𝑦 * * -𝛾 2 𝐼 0 * * * -𝛾 2 𝐼         + 𝜇         -𝜆 𝑗 𝐵𝐾 0 0 0         𝑃 -1 1 
(-𝜆 𝑗 𝐵𝐾 ) 𝑇 0 0 0

+ 𝜇 -1 𝐼 0 0 0 𝑇 𝑃 -1 1 0 𝐼 0 0 < 0, ( 18 
)
where 𝜇 > 0. Using the Schur complement in (18), choosing 𝑁 𝑐 = 𝐾 𝑃 1 , and 𝑀 𝑜 = 𝑃 2 𝐿, the proof is complete.

Simulation results: application to a team of UAVs

In this section, the simulation results for an application to leader-following robust consensus control of a team of homogeneous UAVs are presented. The dynamic model of each UAV is:

𝑥 𝑖 = (𝑐 𝜓 𝑖 𝑠 𝜃 𝑖 𝑐 𝜙 𝑖 + 𝑠 𝜓 𝑖 𝑠 𝜙 𝑖 ) 1 𝑚 𝑖 𝑇 𝑖 , 𝑦 𝑖 = (𝑠 𝜓 𝑖 𝑠 𝜃 𝑖 𝑐 𝜙 𝑖 -𝑐 𝜓 𝑖 𝑠 𝜙 𝑖 ) 1 𝑚 𝑖 𝑇 𝑖 , 𝑧 𝑖 = -𝑔 + (𝑐 𝜃 𝑖 𝑐 𝜙 𝑖 ) 1 𝑚 𝑖 𝑇 𝑖 , 𝜙 𝑖 = 𝜃 𝑖 𝜓 𝑖 𝐽 𝑦 -𝐽 𝑧 𝐽 𝑥 + 1 𝐽 𝑥 𝑅 𝑖 , 𝜃 𝑖 = 𝜙 𝑖 𝜓 𝑖 𝐽 𝑧 -𝐽 𝑥 𝐽 𝑦 + 1 𝐽 𝑦 𝑃 𝑖 , 𝜓 𝑖 = 𝜃 𝑖 𝜙 𝑖 𝐽 𝑥 -𝐽 𝑦 𝐽 𝑧 + 1 𝐽 𝑧 𝑌 𝑖 , (19) 
where the shorthand notation 𝑐 {•} and 𝑠 {•} is cos(•) and sin(•) respectively; 𝑥 𝑖 , 𝑦 𝑖 , and 𝑧 𝑖 are the position of the i-th UAV in the euclidean space, 𝜙 𝑖 , 𝜃 𝑖 , and 𝜓 𝑖 , are the Euler angles roll, pitch, and yaw respectively, 𝑅 𝑖 , 𝑃 𝑖 , and 𝑌 𝑖 are the rotor torques, 𝑚 𝑖 is the total mass of the UAVs, 𝑔 is the gravitational acceleration, 𝐽 𝑥 , 𝐽 𝑦 , and 𝐽 𝑧 represents the moments of inertia in their respectively axis, 𝑇 𝑖 is the thrust of the UAVs rotors. The parameters used in the simulations were taken from [START_REF] Luis | Design of a trajectory tracking controller for a nano quadcopter[END_REF].

The main objective of the multi-agent system, where each UAV is associated to one agent, is to follow the trajectories of a virtual leader and maintain a desired shape, where 𝐻 = [ℎ 𝑇 1 , ℎ 𝑇 2 , . . . , ℎ 𝑇 𝑁 ] 𝑇 contains the desired distance column vectors ℎ 𝑖 of every agent. To solve the formation control problem, a second order representation of each agent [START_REF] Yang | Consensus of secondorder multi-agent systems with exogenous disturbances[END_REF] is used to find a solution for the LMIs presented in Theorem 1:

𝑝 𝑖 (𝑡) = 𝑣 𝑖 (𝑡), 𝑣 𝑖 (𝑡) = 𝑢 𝑖 (𝑡). (20) 
However, it is noted that for the simulations the complete nonlinear model ( 19) is used. Considering 𝑝 𝑖 (𝑡), 𝑣 𝑖 (𝑡), 𝑢 𝑖 (𝑡) the position, velocity and acceleration respectively of agent i, ŝ𝑖 (𝑡) = [ p𝑖 (𝑡) 𝑇ℎ 𝑇 𝑖 , v𝑖 (𝑡) 𝑇 ] 𝑇 the estimated states of agent i, s𝑙 (𝑡) = [ 𝑝 𝑙 (𝑡) 𝑇 , 𝑣 𝑙 (𝑡) 𝑇 ] 𝑇 the virtual leader states, ℎ 𝑖 is a vector of matrix 𝐻 of the respective agent, then, the control law ( 6) is rewritten as:

𝑢 𝑖 (𝑡 ) = 𝐾 ∑︁ 𝑗 ∈N𝑖 𝑎 𝑖 𝑗 ( ŝ𝑖 (𝑡 ) -ŝ𝑗 (𝑡 ) ) + 𝛼 𝑖 𝐾 ( ŝ𝑖 (𝑡 ) -s𝑙 (𝑡 ) ) , ( 21 
)
where 𝐾 is the control gain to be designed. Considering δ𝑖 (𝑡) = ŝ𝑖 (𝑡) -s𝑙 (𝑡) equation ( 21) is rewritten as follows:

𝑢 𝑖 (𝑡 ) = 𝐾 ∑︁ 𝑗 ∈N𝑖 𝑎 𝑖 𝑗 ( δ𝑖 (𝑡 ) -δ 𝑗 (𝑡 ) ) + 𝛼 𝑖 𝐾 δ𝑖 (𝑡 ). (22) 
Since the dynamic of each UAV is considered as a particle, the desired Euler angles 𝜃 𝑑𝑖 , 𝜙 𝑑𝑖 , and 𝜓 𝑑𝑖 are computed as in [START_REF] Guerrero-Castellanos | Real-time event-based formation control of a group of vtol-uavs[END_REF] to control the position of the UAVs, where the consensus protocol ( 22) and the desired Euler angles are related as follows:

𝜙 𝑑𝑖 = arctan -𝑢 2𝑖 √︃ 𝑢 2 1𝑖 + (𝑢 3𝑖 + 𝑔) 2 , 𝜃 𝑑𝑖 = arctan 𝑢 1𝑖 𝑢 3𝑖 + 𝑔 , 𝜓 𝑑𝑖 = 0, ( 23 
)
and the thrust of the UAVs rotors is computed by 𝑇 𝑖 = 𝑚 𝑖 (𝑢 2 1𝑖 + 𝑢 2 2𝑖 + (𝑢 3𝑖 + 𝑔) 2 ) 1/2 . The communication topology of the multi-agent system is depicted in Fig. 1 (where a UAV represents an agent and the arrows the flow of information), and the Laplacian matrix L: 

L =             5 -1 -1 -1 -1 -1 -1 2 -1 0 0 0 -1 -1 2 0 0 0 -1 0 0 2 -1 0 -1 0 0 -1 3 -1 -1 0 0 0 -1 2             (24)
𝐻 and Λ matrices are the following:

𝐻 =       0 4 6 4 0 -2 0 0 2 √ 3 4 √ 3 4 √ 3 2 √ 3 0 0 0 0 0 0       , Λ =           
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

           . ( 25 
)
The first simulation result in Fig. 2, shows that the formation control problem is solved and the multi-agent system follows the trajectories of the virtual leader. All the UAVs reach the trajectories of the virtual leader while maintaining the rigid formation of a hexagon. This first result does not include external disturbance or measurement sensor noise.

Fig. 2: Formation without disturbance or sensor noise and distances between followers.

The considered external disturbance is modeled as the Dryden wind turbulence presented in [START_REF] Ae Rodríguez-Mata | Discontinuous high-gain observer in a robust control uav quadrotor: Real-time application for watershed monitoring[END_REF], and the sensor noise was added as a random function with normal distribution, mean value of zero, and standard deviation of 0.8 m/s, in order to verify the robustness of the control law (22). If the measurement noise or the external disturbance magnitudes increase, the control law ( 22) is not able to maintain the desired formation or to follow the virtual leader. To overcome the disturbance and noise problem, the LMI presented in ( 11) is computed with the Sedumi Toolbox [START_REF] Jos | Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones[END_REF], where the LMI variable 𝛾 value obtained with 𝜇 = 0.1 is 𝛾 = 1. The computed control and observer gains are: 

           . ( 26 
)
The robustness of the distributed control and estimation implemented in the team of UAVs has been verified by solving the leader-follower formation control problem. The effectiveness of the proposed work is shown in Fig. 3, where each UAV achieves its desired position in the rigid formation of a hexagon while following the trajectory of the virtual leader because the external disturbance and the measurement sensor noise are rejected.

Fig. 3: Formation with disturbance and sensor noise using the control law (22) and observer (4) with gains 𝐾, and 𝐿 (26) computed using Theorem 1.

Conclusions

A distributed robust leader-following consensus control observer-based for LTI multi-agent systems was presented. The objective of the multi-agent system is to follow the trajectories described by a virtual leader's dynamics and to maintain a desired rigid formation between followers. This was exemplified with the simulation of a team of UAVs where the agents were able to reject external disturbance and measurement sensor noise. As further work, this approach will be extended to LPV multi-agent systems.

Fig. 1 :

 1 Fig. 1: Directions of the communication links between agents.

  Considering the following new variables 𝑒(𝑡) = [𝑒 1 (𝑡) 𝑇 , 𝑒 2 (𝑡) 𝑇 , . . . , 𝑒 𝑁 (𝑡) 𝑇 ] 𝑇 , the disturbance vector 𝑑 𝑢 (𝑡) = [𝑑 𝑢 1 (𝑡) 𝑇 , 𝑑 𝑢 2 (𝑡) 𝑇 , . . . , 𝑑 𝑢 𝑁 (𝑡) 𝑇 ] 𝑇 , and noise vector 𝑑 𝑦 (𝑡) = [𝑑 𝑦 1 (𝑡) 𝑇 , 𝑑 𝑦 2 (𝑡) 𝑇 , . . . , 𝑑 𝑦 𝑁 (𝑡) 𝑇 ] 𝑇 , then, using the Kronecker product ⊗ the dynamic estimation error can be expressed as:

  are stable; where 𝜂 1 𝑗 = 𝐻𝑒 𝐴𝑃 1 + 𝜆 𝑗 𝐵𝑁 𝑐 , and 𝜂 2 = 𝐻𝑒 {𝑃 2 𝐴 -𝑀 𝑜 𝐶} + 𝐼 𝑁 , then, the robust control law can be computed with 𝐾 = 𝑁 𝑐 𝑃 , and the observer gain with 𝐿 = 𝑃 -1 2 𝑀 𝑜 . Proof Consider the candidate Lyapunov function as follows:
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