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Abstract—Cloud gaming applications have gained great adop-
tion on the Internet particularly benefiting from the wide
availability of broadband access networks. However, they still
fail to meet users’ quality requirements when accessed using
cellular networks due to common wireless channel degradations.
Machine Learning (ML) techniques can be leveraged to detect
such anomalies during users’ cloud gaming sessions. In this
respect, unsupervised ML approaches are particularly interesting
since they do not require labeled datasets. In this work, we
investigate these approaches to understand their performance
and their robustness. Our dataset consists of game sessions played
on the public Google Stadia Cloud Gaming servers. The game
sessions are played using a 4G network emulation replicating the
capacity variations sampled on a commercial 4G network. We
compare different models ranging from traditional approaches
to deep learning and we evaluate their default performance while
varying the level of contamination in their training datasets. Our
experiments show that Auto-Encoders models achieve the best
performance without contamination while the OC-SVM and the
Isolation Forest are the most robust to data contamination.

Index Terms—cloud gaming, anomaly detection, unsupervised
learning, AI, QoE, mobile networks

I. INTRODUCTION

Many emerging low-latency applications (cloud-gaming,
tactile internet, metaverse...) are being widely deployed on
Internet. In the area of Cloud Gaming (CG) for instance, tech
giants like Google, Microsoft and Amazon have lunched their
platforms, respectively Stadia1, xCloud2 and Luna3.

The stringent bandwidth, latency and jitter requirements
of these applications and the expected increase of traffic in
the forthcoming years [1], exacerbate the high strain on cur-
rent network infrastructures, even more on cellular networks.
Many gaming blogs and discussions4 point on network issues
encountered when using cloud gaming. Therefore, Internet
Service Providers (ISP), to provide cloud gaming users their
expected quality of experience, need to deploy proper mecha-
nisms for detecting and mitigating the possible anomalies that
can hinder the quality of cloud gaming sessions such as drops
in resolution, frame rate changes or screen freeze occurrences,
which are clearly noticeable to cloud gaming users.

Detecting abnormal network behaviors traditionally requires
experts knowledge. With the increasing complexity of con-

1https://stadia.google.com/
2https://www.xbox.com/fr-FR/xbox-game-pass/cloud-gaming
3https://www.amazon.com/luna/landing-page
4https://www.snapt.net/content-hub/the-challenge-of-cloud-gaming

temporary networks and the increase of network data, tradi-
tional approaches have become impractical. Recently, Machine
Learning (ML) based-approaches have proven to be effective
in anomaly detection. Among the ML-based approaches, su-
pervised learning, require large labeled samples for training to
be efficient. However, data labeling by network experts is a
cumbersome process and faulty samples are scarce in produc-
tion networks [2]. To bypass the need for labeled observations,
Unsupervised Learning approaches are progressively adopted
for anomaly detection since they learn to identify anomalies
from unlabelled data.

In the literature, only few works have focused on the
detection of CG session quality degradation leaving out many
open questions. This paper aims at addressing some of these
questions. Specifically, it presents an evaluation of unsuper-
vised machine learning approaches for the detection of cloud
gaming performance degradation. A particular emphasis of our
study is on the detection of anomalies based on multivariate
time-series KPIs datasets of cloud gaming sessions under
different 4G network conditions. The game sessions are played
on the public Google Stadia platform and the game traffic
is routed through the Internet to be processed by Stadia’s
servers. The 4G network conditions are emulated with the
Mahimahi tool [3], based on real cellular network conditions
from a commercial french ISP. We assess the ability of the
models to efficiently detect anomalous behaviours as well as
their robustness against data contamination. Unsupervised ML
approaches for anomaly detection assume that the data used
for training is free from anomalies and contain only normal
instances. However, the data collected in real-life scenarios is
rarely clean and it can be very cumbersome to remove the
anomalous samples from the training data. In this paper, we
also show how different data splitting strategies and evaluation
procedures can impact the achievable results.

The remainder of this paper is organised as follows. Section
II discusses previous works on cloud gaming performance
analysis studies and unsupervised ML methods for anomaly
detection. Section III presents the experimental protocol used
to collect the datasets while Section IV describes our method-
ology for the evaluation of the ML algorithms. We present
the evaluation results in Section V and conclude the paper by
outlining future work in Section VI.



II. RELATED WORKS AND BACKGROUND

A. Cloud gaming performance analysis studies

There are significant works on cloud gaming in the litera-
ture. Carrascosa et al. [4] analyzed Google Stadia, to show how
it works and the characteristics of its traffic under normal and
limited networks conditions. Di Domenico et al [5] and Graff
et al. [6] went farther by performing a comparative analysis
of the behaviour of different cloud gaming platforms (Stadia,
GeForce Now and PS Now for the former and by including
XCloud for the latter). They introduced artificial network
impairments and showed that each platform can exhibit a
different behaviour regarding its downlink bitrate adaptation.
These previous studies focused mainly on the behavior of the
CG platforms and how they react to network changes. Ta-
Chen et al. [7] proposed a latency measurement approach that
can be used on closed and proprietary CG platforms. They
measured the game delay, which is the time elapsed between
pressing the ESC key and the display of the menu on the
screen. Their method was applied to Cloud-Union, a Chinese
CG platform (now outdated) to characterize the video latency
and unveil internal insights on this platform. However, Iqbal
et al. [8] showed that the method of Ta-Chen et al. end up
underestimating the game delay. They therefore proposed an
automatic tool, DECAF, to measure efficiently the game delay,
with a bot inserting timestamps at each input commands and
recording the screen. This way, they were able to characterize
and dissect the game delay and the video performance of
Stadia, GeForce Now and Luna platforms.

The aforementioned works, were mainly centered on wired
networks. Works on cloud gaming in cellular networks are
rare. Kämäräinen et al. [9] performed measurement studies on
the latency experienced by the users on a mobile cloud gaming
platform. They showed by breaking the game latency into its
components that the mobile device and the access network are
the impactful components in a 4G network. Di Domenico et al.
[5] conducted many experiments on 3G/4G mobile networks
to measure the network capacity, under different signal quality,
by using speed test measurements to observe if it could
sustain a game session on Stadia. They also measured the
performance of Stadia (frame rate, resolution) under emulated
mobile networks. One of the most recent works is Bhuyan
et al. [10], where the authors conducted an end-to-end study
of mobile cloud-gaming applications under 5G network and
WiFi. By using an open-source application, they measured
the latency, frame-rate, PSNR (Peak Signal to Noise Ratio)
and energy consumption under different network scenarios and
assessed the effect of 5G and WiFi on the QoS and the video
streaming performance of CG applications. Also worth noting
are the works on cloud VR (Virtual Reality) gaming, which
is a low-latency application with stringent requirements on
bandwidth and latency, on mobile networks. Tan et al. [11]
showed in their measurement study that the main bottlenecks
that affect latency and prevent from playing cloud VR games
in 4G networks are LTE’s signaling operations like inter-
protocol incoordination and single-protocol overhead. Zhang

et al. [12] setup a real testbed of a simplified cloud VR
streaming application over a 4G networks. They collected
network traces and LTE network signaling traces and showed
the impact of congestion, radio configurations and scheduling
algorithm on the network latency.

Previous works mostly focused on performance evalua-
tions of cloud-gaming applications under different networks
conditions through measurements campaigns. They analyzed
how network conditions can harm the performance of those
applications. There is however, to the best of our knowledge,
no works on the detection of performance degradation of CG
applications induced by networks conditions.

B. Unsupervised Learning models for anomaly detection

Anomaly detection is a well-covered subject and many sur-
veys [13], [14] proposed different taxonomies encompassing
many of the existing approaches. Blazquez-Garcia et al. [15]
proposed a taxonomy of anomaly detection approached for
time-series data in an unsupervised learning context. They
categorized different approaches based on the nature of the
input data, the type of anomaly (referred to as outlier in the
survey) and the type of method. Focusing on unsupervised
learning approaches for multivariate time-series data, Audibert
et al. [16], proposed a different taxonomy by classifying the
methods into conventional methods, machine-learning meth-
ods and deep-learning methods. The conventional methods,
such as VAR (Vector Auto Regressive) model, PCA (Principal
Components Analysis) or SSA (Singular Spectrum Analysis),
rely on statistical rules or assume that the time-series data
come from a (linear) model whose parameters are estimated.
For instance, the PCA performs a lossy reconstruction of the
data by using the first p principal components to decompose
and reconstruct the data. The reconstruction error is defined
as the squared error between the original data and the recon-
structed data.

The traditionally used machine learning methods rely on
different categories ranging from distance-based ones like
k-nearest neighbors, isolation-based ones like the Isolation
Forest [17] to classification-based ones like OC-SVM (One-
Class Support Vector Machine) [18]. Isolation Forest (iForest)
detects anomalies by isolating them. It builds an ensemble of
Isolation Trees by recursively performing a random partition of
the observations until the anomalous observations are isolated.
OC-SVM learns the smallest hypersphere that encompasses all
normal data. The anomalous samples are those that lie beyond
that hypersphere.

Due to their performance on different learning tasks, the
methods that have more interest in the literature are those
based on neural networks and deep-learning methods. Recent
methods that obtain state-of-the-art results on benchmark
time-series datasets are based on Auto-Encoders (AE). Auto-
Encoders learn how to reconstruct input data from a low-
dimensional representation (referred as latent variable) by
minimizing the reconstruction error and use an anomaly score
(that is the reconstruction error) to identify anomalies. Many
variants of Auto-Encoders were developed for anomaly detec-



tion. For instance, the LSTM-VAE [19] uses a LSTM (Long
Short-Term Memory) neural network architecture, to model
temporal dependencies in the data, and a VAE (Variational
Auto-Encoder) to estimate the latent variable and the distri-
bution of the data. The anomalous samples are those with a
low log-likelihood. DAGMM (Deep Auto-encoder Gaussian
Mixture Model) [20] model combines an auto-encoder with a
Gaussian mixture model and then can model the probability
distribution of the output samples. OmniAnommaly [21] uses
a VAE, a planar NF (Normalizing Flows), a Gaussian state
model and a GRU (Gated Recurrent Units which is a LSTM
variant) to learn temporal dependencies and stochasticity of
the multivariate time-series for anomaly detection.

The methods discussed above were applied to detect anoma-
lies based on time-series datasets for different application do-
mains (industry, server machines, engines, web applications...).
To the best of our knowledge, none of these works evaluated
anomaly detection in cloud gaming sessions which is the focus
of this paper.

III. EXPERIMENTAL SETUP

The following section describes our experimental setup to
generate the emulated 4G network conditions and our testbed
to collect the CG sessions datasets.

A. 4G network conditions measurements

The LinkShell tool5 from Mahimahi platform [3] can be
used to emulate fixed or time-varying network conditions
through log files called transmission opportunities (txops)
files. However, the txops files available on Mahimahi Github
repository6 are not representative of current 4G networks
capacities (dated from 2016 with a maximum capacity of about
5-10 Mbps). We thus generate new txops files, by using the
Saturator tool developped by Winstein et al. [22].

The Saturator tool7 allows to capture the behavior of a
commercial base station for one user, by saturating the radio
link between a client and a server. We use a Ubuntu 20.04
laptop (client) and a cloud Ubuntu 18.04 (server) that exchange
packets using a 4G connection provided by 2 Xiaomi User
Equipments (UE). By recording the timestamps of the packets
sent and the acknowledgements received, we can generate the
uplink and downlink txops files where each line matches a
time in milliseconds when the real base station can deliver a
MTU-sized packet.

The new txops files are generated on 6 different conditions
(5 static ones and one in a mobility scenario on the highway)
on Orange 4G network in Lannion (France). The static con-
ditions differ in the mean downlink throughput that can be
achieved (from 40 Mbps to 220 Mbps). The txops files data
and further details of this experiment are available on this
website8.

5http://mahimahi.mit.edu/
6https://github.com/ravinet/mahimahi
7https://github.com/keithw/multisend/
8https://cloud-gaming-traces.lhs.loria.fr/cellular.html

Fig. 1. CG measurements testbed.

B. Testbed and data collection

With the txops files collected, we perform the measurements
of the CG time-series KPIs. We set up a testbed, depicted
in Fig. 1, consisting of a Windows 10 laptop client (where
the games are played through the Chromium desktop) and
a Ubuntu 20.04 laptop as a network emulator (where the
Mahimahi platform is installed). The latter can access the
cloud gaming servers through a FTTH (Fiber-To-The-Home)
Internet connection to avoid shifting the bottleneck from the
network emulator to the WAN interface. Thereby, during the
game sessions, the incoming uplink/downlink packets in the
network emulator are queued and released by the LinkShell
tool, in accordance with the transmission opportunities files
representing the behavior of the 4G collected network condi-
tions.

We perform the measurements on Google Stadia, playing 15
minutes the racing game Dirt 4 in each of the 6 network con-
ditions. We use Google Stadia on the Chrome browser which
uses WebRTC API for real-time communication. The CG KPIs
are collected through the Chromium WebRTC API provided
by the DECAF tool [8]. Redundant information are removed
from the KPIs and only meaningful ones for CG quality are
kept. For our evaluation, we use 14 metrics (from DECAF and
ours) including frame rate, resolution, bitrate, network RTT,
freeze occurrences, frames dropped, video rendering jitters,
client-processing delays and txops downlink throughput.

IV. METHODOLOGY

In this section, we formulate the problem addressed in this
paper and we describe our data splitting strategies, our training
and evaluation procedure with the selected metrics.

A. Problem formulation

According to Chandola et al. [13], anomalies (or outliers)
can be classified into three classes: point anomalies (individual
anomalous observations), contextual anomalies (observations
considered as anomalous in a specific context) and collective
anomalies (group of anomalous observations). In this work,
we focus on point anomalies in cloud gaming sessions and
leave the other classes of anomalies for future work.

To detect anomalies, we use unlabelled KPIs datasets com-
posed of multivariate time-series which are sequences of data



observations x = {x1, x2, ..., xT } where T is the length of x,
and an observation xt ∈ Rm corresponds to a m-dimensional
vector at the time t. Unsupervised Learning anomaly detection
task on multivariate data consists of learning a model given
the set of normal observations x and assigning for each unseen
observation x̃t a binary variable yt ∈ {0; 1} based on a
anomaly score that measures how much the unseen observation
differs from the set of normal observations. Hence, yt = 1 if
the observation is an anomaly and yt = 0 otherwise.

Since our goal is to compare different unsupervised learning
approaches, ground truths are required to assess the perfor-
mance of each model using well-known ML performance
metrics (F1-score, Precision, Recall). Hence, we choose to
define as an anomaly, the observation that satisfies the follow-
ing criteria, recommended by CG platforms for high quality
streaming9 10: either the frame rate is below 60 FPS, the
resolution is below 1080p or a freeze occurs.

B. Data processing and splitting strategies

The features of our datasets are the DECAF metrics and ours
related to the 4G emulated network. The DECAF metrics are
logged and stored on the instrumented Chromium, each time
a video frame finishes the frame processing pipeline stage in
WebRTC. Since we include our own metrics which do not have
the same temporal alignment, we need to resample the data to
have a fixed time-step of 5ms between each observation. The
features of the datasets are normalized by removing the mean
and scaling to unit variance with Standard Scaler11 before the
training step.

To obtain the training set and test set, we use the same
methodology as Zhong et al. [20]: all the data collected are
merged and split into train/test as follows. The training set
contains 50% of the normal samples of the whole dataset
and the remaining 50% are in the test set. The test set
additionally includes p = 60% of the anomalous samples and
the other (1 − p)% are in a set called contamination set. In
the experiments, δ% (with δ ∈ {0, 5, 10, 20, 50, 100}) of the
data coming from this contamination set are fed back into
the training set to identify how the presence of anomalous
samples can impact the training and the performance of the
models. We use this training strategy by assuming that normal
samples in cloud gaming sessions can also be collected in
low throughput network conditions. The models then, learn to
detect anomalous sessions even on 4G network conditions with
lower throughput. In the rest of the paper, this data splitting
strategy is referred to as the mixed-dataset strategy.

We also choose a different data splitting strategy to evaluate
its impact on model performance. We assume that normal
observations in cloud-gaming session occur only at higher
downlink bitrates (> 100 Mbps). The data collected in the
networks conditions with an average downlink throughput
higher than 100 Mbps are used as the training set and all

9https://support.google.com/stadia/answer/9607891?hl=fr/
10https://www.nvidia.com/en-us/geforce/products/geforce-now/system-reqs/
11https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html/

TABLE I
COLLECTED DATASETS

Data split # Train Train Anomalies # Test Test Anomalies
Strategy instances ratio (%) instances ratio (%)

Mixed-dataset 138021 48.8 171704 58.85

High-bitrate dataset 168408 34.56 141318 77.98

the data coming from the other conditions as the test set.
Anomalous samples from the training set are removed and
used as the contamination set from which some samples are
fed back into the training set in the same way as mentioned
previously. The issue with this strategy is that the datasets are
severely imbalanced: the data used for the test set contains
many anomalous samples and the evaluation of the models
on this test set does not allow to assess the performance on
observations coming from the ”best” networks conditions. This
splitting is referred to as the high-bitrate one.

Table I provides a summary of the number of instances of
the train/test set with their respective anomaly ratio for each
splitting strategy.

C. Models training and implementations
This section describes the models implemented and the

details of their implementations.
• PCA: It belongs to the conventional algorithms and we

use it as a baseline model in our evaluation. The training
time of this model is relatively low due to the SVD
(Singular Value Decomposition). We choose a number of
principal components that preserve 90% of the variance
of the data to perform the lossy reconstruction.

• OC-SVM: In the category of ML approaches, OC-SVM
is a shallow model with high performance in the anomaly
detection tasks. We kept the default hyper-parameters like
the radial basis function kernel and ν = 0.5 value as the
upper bound of the fraction of outliers in the training set.

• Isolation Forest: iForest, belongs also in the category
of ML approaches. It achieves good performance with
a nearly linear computational complexity. We kept the
numbers of iTrees at 100 and the ratio of outliers in the
training set at 0.1.

• Auto-Encoder: As mentioned in Section II, the AE is
a popular deep learning approach for anomaly detection.
We implement a feed-forward AE with Tanh activations
functions.

• LSTM-VAE: Among the state-of-the-art anomaly detec-
tion models, we select the LSTM-VAE, that combines a
VAE, an improvement of AE with bayesian inference and
a LSTM, to model temporal dependencies. We write our
custom implementation in PyTorch from different Github
available implementations1213.

For the two DL models (Auto-Encoder, LSTM-VAE), the
Adam optimizer with a learning rate of 10−3 and a batch

12https://github.com/TimyadNyda/Variational-Lstm-Autoencoder
13https://github.com/paya54/Anomaly Detect LSTM VAE



size of 128 are used. To avoid overfitting of the models, an
early stopping strategy with a patience of 10 is implemented.
The base implementations of PCA, IForest and OC-SVM
are from Scikit-Learn while the Auto-Encoder and LSTM-
VAE are from our custom implementation with PyTorch.
The details, the code and the hyper-parameters values of our
implementation are available on Github14.

For each model, we perform 5 training runs, each with
one of the two aforementioned data splitting strategies. This
allows us to report reliable results since the induced variability
of the random sampling in the splitting and the parameters
initialization is taken into consideration.

D. Performance metrics

To evaluate the performance of our models, we select the
Precision (P), the Recall (R) and the F1-Score (F1) computed
as follows:

P =
TP

TP + FP
R =

TP

TP + FN
F1 = 2.

P.R

P +R

were TP denote the True Positives, FP the False Positives
and FN the False Negatives. Our evaluation also includes the
AUC (Area Under the Curve) metric which represents the
probability that the model ranks higher a random anomalous
sample than a random normal sample. To be computed from
anomaly score, those metrics (except the AUC) require a
threshold. A simple threshold like the 3σ rule of thumb (which
is an empirical choice, commonly used in anomaly detection
[23]) is used: during the training phase, the mean µtrain and
the standard deviation σtrain values of the reconstruction error
errortrain are computed and stored. At the testing phase, an
observation is classified as an anomaly if :

∥errortest − µtrain∥ > 3.σtrain

V. EVALUATION AND RESULTS

A. Performance with the mixed-dataset

Table II reports the precision, recall and F1-score of the
five models included in our study, with the different anomaly
contamination ratio δ on the mixed-datasets. The F1-score is a
harmonic mean of the Precision and the Recall. The Precision
assess the ability of the model to precisely detect the anomalies
and the Recall its ability to detect all the anomalies. The best
model will therefore have higher Precision and Recall scores.
All the models have their best F1-score with no contamination
(δ = 0) except for the iForest model. The AE and LSTM-VAE
models have the best score (F1-score = 88%) and this results
from high Precision (= 98%) and Recall (= 80%) values. We
can have high confidence on the detected anomalies but due
to the lower Recall value, some of the anomalies of the test
set may be missed by these models.

The iForest model has the worst F1 score when there is
no contamination (F1= 1%) due to a lower Recall. In fact,
the model does not have the ability to isolate the anomalous
samples since it assumes that there are few anomalies, and they

14https://github.com/joelromanky/cg-ano-detect-eval

TABLE II
OVERALL PERFORMANCE (MEAN AND STANDARD DEVIATIONS OVER THE

5 RUNS) ON THE MIXED-DATASETS STRATEGY. δ IS THE ANOMALY
CONTAMINATION RATIO IN THE TRAINING DATASET.

Mixed-datasets

δ (%) Precision Recall F1-score

PCA

0 82.01±0.14 8.83±0.1 15.94±0.16
5 88.76±4.7 5.77±1.56 10.8±2.79

10 83.92±2.75 5.74±0.9 10.73±1.6
20 73.44±1.07 4.00±0.23 7.59±0.42
50 65.36±0.89 2.97±0.12 5.69±0.22
100 53.72±0.45 1.82±0.02 3.53±0.03

iForest

0 68.18±2.8 1±0.41 1.97±0.8
5 62.18±0.58 89.77±1.96 73.47±0.96

10 63.19±0.35 81.5±3.34 71.15±1.34
20 68.44±1.05 62.53±5.47 65.23±3.32
50 77.21±2.03 20.85±4.29 32.58±5.35
100 74.61±3.25 1.76±0.74 3.43±1.42

OC-SVM

0 59.29±0.01 98.59±0.07 74.01±0.02
5 59.5±0.02 97.82±0.14 74±0.03

10 59.86±0.02 95.52±0.23 73.6±0.07
20 60.51±0.04 88.65±0.25 71.93±0.07
50 60.98±0.05 68.65±0.54 64.59±0.24
100 60.28±0.05 54.47±0.31 57.23±0.19

AE

0 99.02±0.05 79.65±0.06 88.28±0.03
5 95.55±0.43 7.86±0.07 14.52±0.12

10 94.09±0.79 5.02±0.08 9.53±0.14
20 91.45±1.28 3.00±0.07 5.80±0.14
50 80.61±1.86 1.44±0.04 2.83±0.07
100 77.68±1.12 1.28±0.03 2.52±0.06

LSTM-VAE

0 98.44±0.76 80.27±1.3 88.42±0.83
5 98.58±0.7 2.25±1.02 4.38±1.95

10 98.43±4.01 1.15±0.8 2.25±1.56
20 83.95±25.31 0.83±0.43 1.65±0.83
50 88.83±14.22 0.72±0.37 1.43±0.74
100 95.37±2.21 0.75±0.26 1.48±0.51

are different from normal samples in the training dataset. It
uses this information to isolate the anomalies. The OC-SVM,
similar to iForest, assumes a certain proportion of anomalies
in the training set and performs better with no contamination
(F1= 74%). It efficiently detects most of the anomalies in the
test set (R= 98%) but identifies some normal observations as
anomalous (P= 59%). It presents the best Recall score among
all the evaluated models. The PCA model also presents bad
performance due to a low ability to detect all the anomalies
in the test set (R= 8%).

Nevertheless, the results of all the models, except the
iForest, drop with the increase of the contamination ratio. The
performance of the AE and LSTM-VAE plummets as soon as
anomalies are injected (from 88% to 1%) while the results of
the PCA remain low and decrease as the contamination ratio
increases. The bad results of the PCA, AE and LSTM-VAE
could be explained by the fact that those models need only
normal samples to be efficiently trained. With the increase of
anomalous samples, the models can not detect all of them in
the test set. This leads to low Recall values. For our evaluation,
we use the 3σ rule for the anomaly detection threshold, but this
rule assumes that the reconstruction errors can be modelled
by a normal distribution, which is not always the case. With



Fig. 2. Comparison of F1-Score and AUC.

Fig. 3. Models mean training time with the standard deviations over 5 runs

the presence of anomalies in the training set, this threshold
turns out to be too high, and thus prevents the models from
detecting all the anomalies. Previous works such as [16], [24],
tested different thresholds and reported those that led to the
best F1-score which explains why they got better results. On
the other hand, the performance of iForest model reaches the
same performance level as OC-SVM but decreases afterwards
with the increase of the contamination ratio.

We compare in Fig 2 the F1-score and the AUC score
of the models. Our results show high AUC score while the
F1-score drops when the contamination ratio increases. For
instance the AUC scores for the AE are from 95% to 56%
while the F1-scores are from 88% to 2%. This shows how
misleading the AUC score can be even if our test set is not
too much imbalanced (58% of anomaly ratio) and confirms
the conclusions drawn in [25] about the use of AUC with
imbalanced datasets.

Apart from the performance of the models on the anomaly
detection tasks, we also evaluate the training time of each
model in a given configuration. These results are depicted
in Fig 3. The OC-SVM has the largest training time and its
inference time is also in the same magnitude. The PCA and the
iForest have the smallest fitting time since the PCA performs
only one SVD and the iForest has a log-linear complexity. The
training time of AE and LSTM-VAE can be highly variable
(high standard deviations values in Fig 3) and this is the
result of the early stopping strategy that prevents the model

TABLE III
OVERALL PERFORMANCE (MEAN AND STANDARD DEVIATIONS OVER THE

5 RUNS) ON THE HIGH-BITRATE TRAINING SET STRATEGY. δ IS THE
ANOMALY CONTAMINATION RATIO IN THE TRAINING DATASET.

High-bitrate training datasets

δ (%) Precision Recall F1-score

PCA

0 98.01±0 10.89±0 19.6±0
5 95.36±3.64 7.38±0.24 13.7±0.42

10 97.84±1.25 8.1±0.65 14.96±1.11
20 90.90±2.87 7.89±0.21 14.51±0.36
50 89.88±0.34 5.85±0.2 10.99±0.36
100 92.21±0 5.93±0 11.14±0

iForest

0 88.92±1.33 38.21±4.47 53.33±4.56
5 98.18±0.42 88.94±0.56 93.33±0.26

10 98.63±0.48 88.21±0.4 93.13±0.16
20 98.56±0.15 89.16±0.51 93.62±0.26
50 99.37±0.13 87.5±0.29 93.06±0.12
100 99.16±0.48 78.3±4.26 87.43±2.57

AE

0 99.68±0.11 86.77±0.22 92.77±0.08
5 99.43±0.12 8.48±1.87 15.57±3.26

10 99.28±0.29 3.95±0.52 7.58±0.97
20 99.23±0.08 1.82±0.27 3.58±0.53
50 99.03±0.28 0.77±0.02 1.53±0.04
100 99.17±0.01 0.76±0.01 1.51±0.01

LSTM-VAE

0 99.79±0.1 86.59±0.72 92.72±0.41
5 97.5±3.47 7.59±11.53 12.03±16.95

10 89.7±19.85 1±0.54 1.98±1.06
20 99.49±0.16 1.12±0.54 2.21±1.06
50 94.32±9.62 0.93±0.3 1.83±0.59
100 99.49±0.27 1.55±1.43 3.02±2.72

to overfit the data during the training phase. The training is
indeed stopped if the validation loss does not improve during
10 consecutive epochs.

Take-away: The best models without data contamination
are the AE and LSTM-VAE but they show poorer performance
with data contamination. Since in real-life situations, the
collected data always contain anomalies, the OC-SVM or the
iForest should be preferred although the OC-SVM has a longer
training time.

B. Impact of the splitting dataset strategy

The performance of the models on the high-bitrate datasets
is reported in Table III. We do not test the OC-SVM on this
data splitting strategy due to the large training time of this
model. The same findings, as those in the previous section, can
be made. However, we note the better performance of iForest
regarding the contamination ratio and the better performance
of AE and LSTM-VAE when δ = 0. Those results can be
explained by the significant difference between the training
set and the test set. The downlink bitrates of the training
set are about 120-200 Mbps while those of the test sets are
lower (40-80Mbps). This difference seems to favor iForest
allowing it to easily isolate the anomalous samples. For the
AE and LSTM-VAE, the performance reported here can be
misleading about the efficiency of those models in dealing with
the datasets, since as mentioned previously, the used threshold
is sub-optimal and does not allow to catch all the anomalies.
Consequently, the models can not be fairly compared and we



need to perform more evaluations and compare using the best
configuration of each model. The variation of the performance
from one splitting strategy to another raises the problem of
how to define anomalous situations for cloud gaming session
quality. A low resolution at lower bitrates can be interpreted
as a normal situation because it is the best that the network
architecture can provide at this given situation.

Take-away: The high-bitrate splitting strategy improves the
Recall of the AE, LSTM-VAE and the iForest models. iForest
is the most robust to data contamination while reconstruction-
based approaches show poorer performance.

VI. CONCLUSION

This paper presented a comparative evaluation of unsuper-
vised machine learning models for anomaly detection in cloud
gaming sessions. It presents our analysis of the performance
of different ML algorithms and our assessment of the robust-
ness of these models in the face of contaminated datasets.
Our results show that the OC-SVM is the most robust to
the contamination but requires longer time for training and
inference, while the iForest model requires the presence of
contamination to be efficient. Our comparative study also
shows that reconstruction-based approaches do not perform
well with an empirical rule of thresholding as they fail to catch
all the anomalies in the data. They require a good threshold
value to be assessed fairly in a comparative study. For the
detection of cloud gaming quality, we found that a thorough
attention must be given to the data splitting and also to the
definition of an anomalous situation.

As future work, we plan to perform additional evaluations
of ML approaches, especially deep-learning approaches, with
the goal of finding the optimal configuration leading to the
best performance and robustness in anomaly detection in CG
applications.
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