
HAL Id: hal-03884245
https://hal.science/hal-03884245v1

Submitted on 5 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Generalized Keisler Theorems for First-order Logic and
Protologics

Guillaume Aucher

To cite this version:
Guillaume Aucher. Generalized Keisler Theorems for First-order Logic and Protologics. Université
de Rennes 1 (UR1). 2022. �hal-03884245�

https://hal.science/hal-03884245v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Generalized Keisler Theorems for First-order Logic and
Protologics

Guillaume Aucher
Univ Rennes, IRISA, IRMAR

263, Avenue du Général Leclerc
35042 Rennes Cedex, France

guillaume.aucher@univ-rennes1.fr

December 4, 2022

Abstract
The Keisler theorems dealing with the definability in first-order logic of classes of struc-

tures are generalized and adapted to non-classical logics. On the one hand, we generalize
and prove by completely different means an analogue of the Keisler-Shelah isomorphism
theorem for first-order logic and countable languages, where the notion of isomorphism is
replaced in that theorem by a variant of partial isomorphism. On the other hand, we adapt
the Keisler theorems for first-order logics to protologics, i.e. logics such that the truth con-
ditions of their connectives are expressible by first-order formulas. Our results are based
on similar theorems for atomic and molecular logics proved in a companion article [5]. We
indeed show in this present article that first-order logic and protologics are as expressive as
some atomic and molecular logics.

1 Introduction
The model theory of non-classical logics is often developed on a case by case basis by consid-
ering each logic independently, and similar theorems are proved for each non-classical logic by
frequently adapting the same proof method. For example, for modal logic, temporal logic and
XPath, a number of model-theoretical results dealing with the definability of classes of models by
means of a set of formulas or a single formula have been proved [9, 19, 1] by adapting the Keisler
theorems of first-order logic (FOL for short) [10]. This type of theorems provides conditions of
definability of classes of models in a specific logic. More precisely, they state that a class of
models is definable in a given logic if this class of models and its complement are both closed
under a specific construction called ultraproduct and under a specific notion of bisimulation as-
sociated to the logic. Similar adaptations to other logics have been made for the van Benthem
characterization theorem of modal logic [25, 19, 7, 18, 11]. A natural question that comes up to
mind is to wonder whether the Keisler theorems of FOL transfer to an arbitrary logic. We shall
see in that paper that the Keisler theorems do transfer to any protologic, i.e. any logic such that
the truth conditions of its connectives are expressible by first-order formulas, if these connectives
are so-called ‘normal’.

To prove our results, we will resort to the framework of atomic and molecular logics introduced
in [6]. This framework is based on Dunn’s gaggle theory [12, 13]. Atomic logics generalize “gaggle
logics” by adding types to formulas. Gaggle logics were introduced in [4] where it is also shown

1

guillaume.aucher@univ-rennes1.fr

that a very large number of non-classical logics are actually gaggle logics and therefore also
atomic logics (see Figures 6-11 in that article). Atomic and molecular logics are a generalization
of gaggle logics which behave as ‘normal form’ logics. We will indeed show that every non-
classical logic such that the truth conditions of its connectives are expressible in first-order logic
is as expressive as an atomic or molecular logic.

Moreover, as it turns out, an appropriate notion of bisimulation can be automatically associ-
ated to any atomic or molecular logic from the truth conditions of its connectives [5]. On the one
hand, our embedding of FOL into atomic logics will allow us to automatically derive our notion
of invariance for FOL, that we call ‘predicate bisimulation’ and ‘first-order bisimulation’, and to
obtain our generalization of the Keisler theorems for FOL. Our notion of predicate bisimulation
turns out to be a slight and natural variant of the classical notion of partial isomorphism. On
the other hand, our embedding of protologics into molecular logics will allow us to obtain au-
tomatically invariance notions for any protologic and our generalization of the Keisler theorems
for protologics.

Structure of the article We start in Section 2 by recalling first–order logics and in Section
3 modal logic. In Section 4, we introduce a specific notion of equi-expressivity for logics which
are not based on the same classes of models. In Section 5 we introduce atomic logics, in Section
6 molecular logics and in Section 7 their Boolean versions with Boolean connectives. In Section
9, we show how notions of bisimulations can be automatically defined from the truth conditions
of the connectives of atomic and molecular logics, after some formal preliminaries in Section 8
where we introduce universal and existential connectives. In Section 10, we adapt the notions
of ultraproducts and ultrapowers to atomic and molecular logics. In Section 11, we show that
first-order logics are as expressive as atomic logics. This leads us in Section 12 to apply our
general results for atomic logics to first-order logics. In doing so, we generalize and (re)discover
an analogue of the Keisler theorems. Likewise, in Section, 13, we recall and show how every
protologic is as expressive as some molecular logic. This leads us in Section 14 to prove similar
results for protologics. Finally, we show in Section 15 that bisimulations of schematically equally
expressive logics are equivalent. We conclude in Section 16. Unless otherwise stated, all the
proofs of this paper are in this appendix or in the appendix of the companion article [5].

2 First-Order Logics
In this section, we recall FOL. In the sequel, all logics will always be semantically presented by
following a tri-partite representation: language, class of models, satisfaction relation.

The set P , {R1, . . . ,Rn, . . .} is a set of predicate symbols of arity k1, . . . , kn, . . . respectively
(one of them can be the identity predicate = of arity 2), F , {f1, . . . , fn, . . .} is a set of function
symbols, V , {v1, . . . , vn, . . .} is a set of variables and C , {c1, . . . , cn, . . .} is a set of constants.
Each of these sets can be finite or infinite. v1, v2, v3, . . . are the names of the variables and we use
the expressions x, x1, x2, . . . , y, y1, y2, . . . , z, z1, z2, . . . to refer to arbitrary variables or constants,
which can be for example v42, v5, c101, c21, . . . Arity(P,F) is the set of all arities of predicate and
function symbols. The first-order language LPFFOL is defined inductively by the following grammars
in BNF:

T : t ::= x | c | ft . . . t
LPFFOL : ϕ ::= Rt . . . t | ⊥ | (ϕ→ ϕ) | ∀xϕ

where x ∈ V, c ∈ C, f ∈ F , t ∈ T and R ∈ P. Elements of T are called terms and elements of
LPFFOL are called first–order formulas. Formulas of the form Rt1 . . . tk are called atomic formulas

2

and first–order formulas without function symbols are called pure predicate formulas.
If ϕ ∈ LPFFOL, the Boolean negation of ϕ, denoted ¬ϕ, is defined by the abbreviation ¬ϕ ,

(ϕ → ⊥). We also use the abbreviations > , ¬⊥, (ϕ ∨ ψ) , (¬ϕ → ψ), (ϕ ∧ ψ) , ¬(¬ϕ ∨ ¬ψ)
and (ϕ ↔ ψ) , (ϕ → ψ) ∧ (ψ → ϕ) as well as the abbreviations ∃xϕ , ¬∀x¬ϕ, ∀x1 . . . xnϕ ,
∀x1 . . . ∀xnϕ, ∃x1 . . . xnϕ , ∃x1 . . . ∃xnϕ and ∀xϕ , ∀x1 . . . xnϕ if x = (x1, . . . , xn) is a tuple of
variables.

Let ϕ ∈ LPFFOL. An occurrence of a variable x in ϕ is free (in ϕ) if, and only if, x is not within
the scope of a quantifier of ϕ. We say that a formula of LPFFOL is a sentence (or is closed) when it
contains no free variable. We denote by ϕ(x1, . . . , xk) a formula of LPFFOL whose free variables or
constants coincide exactly with x1, . . . , xk. We assume that these variables and constants are all
distinct. In doing so, we depart from the literature in which this notation means that the free
variables of ϕ are included in {x1, . . . , xk}.

We denote by LPFOL the fragment of LPFFOL whose formulas do not contain function symbols.
We denote by LPFOL(x) (resp. LPFFOL(x)) the fragment of LPFOL (resp. LPFFOL) whose formulas all
contain at least one free variable or constant. For all k ∈ N∗ and x = (x1, . . . , xk) ∈ (V ∪C)k, we
denote by LPFOL(x, k) the fragment of LPFOL whose formulas all contain exactly k free variables or
constants and these variables or constants are x. If X ⊆ V ∪ C is a non-empty set, we denote by
LPFOL(X) (resp. LPFFOL(X)) the fragment of LPFOL (resp. LPFFOL) whose formulas are such that their
free variables and constants are all contained in X. We denote by LPFOL(∅) (resp. LPFFOL(∅)) the
set of sentences of LPFOL (resp. LPFFOL) without constants. A language LFOL ⊆ LPFFOL is countable if
its set of predicate symbols, function symbols, variables and constants is countable.

A structure is a tuple M , (W, {R1, . . . , Rn, . . . , f1, . . . , fn, . . . , c1, . . . , cn, . . .}) where:

• W is a non-empty set called the domain;

• R1, . . . , Rn, . . . are relations over W with the same arity as R1, . . . ,Rn, . . . respectively;

• f1, . . . , fn, . . . are functions over W with the same arity as f1, . . . , fn, . . . respectively;

• c1, . . . , cn, . . . ∈W are elements of the domain called distinguished elements.

An assignment over M is a mapping s : V ∪ C → W such that for all ci ∈ C, s(ci) = ci. If
s is an assignment, s[x := w] is the same assignment as s except that the value of the variable
x ∈ V is assigned to w. A pair of structure and assignement (M, s) is called a pointed structure.
The class of all pointed structures (M, s) is denotedMFOL. If K is a class of pointed structures,
K is MFOL −K.

If (M, s) is a pointed structure, we extend the assignment s from variables and constants to
terms and define the extended assignment s : T →W as follows:

s(x) , s(x)
s(c) , s(c)

s(ft1 . . . tk) , f(s(t1), . . . , s(tk)).

The satisfaction relation FOL ⊆MFOL × LPFFOL is defined inductively as follows. Below, we
write (M, s) ϕ for ((M, s), ϕ) ∈ FOL.

(M, s) ⊥ never;
(M, s) Rit1 . . . tk iff (s(t1), . . . , s(tk)) ∈ Ri;
(M, s) (ϕ→ ψ) iff if (M, s) ϕ then (M, s) ψ;
(M, s) ∀xϕ iff (M, s[x := w]) ϕ for all w ∈W.

In the literature [10], (M, s) ϕ(x1, . . . , xk) is sometimes denoted M ϕ(x1, . . . , xk)[w1, . . . , wk],
M ϕ[w1/x1, . . . , wk/xk] or simply M ϕ[w1, . . . , wk], with w1 = s(x1), . . . , wk = s(xk). Some

3

other times [14], it is denoted M ϕ(x1, . . . , xn)[s], M, s ϕ(x1, . . . , xn) or simply M ϕ[s]. In
that case, we say that (M, s) makes ϕ true. We depart from the literature by treating constants
on a par with variables: the denotation of constants is usually not dealt with by means of
assignments.

We say that the formula ϕ ∈ LPFFOL is realized in M when there is an assignment s such that
(M, s) ϕ.

A triple of the form (LFOL, EFOL, FOL) is called the first–order logic associated to LFOL and
EFOL. If LFOL = LPFOL, the triple

(
LPFOL, EFOL, FOL

)
is called pure predicate logic (associated to

EFOL), if LFOL = LPFOL(x), the triple (LPFOL(x), EFOL, FOL) is called pure predicate logic with
free variables and constants (associated to EFOL). When EFOL is MFOL, they are simply called
respectively pure predicate logic and pure predicate logic with free variables and constants.

3 Modal Logic
In this section, A is a set of propositional letters which can be finite or infinite. The set I is a set
of indices which can be finite or infinite. The multi-modal language LML is defined inductively
by the following grammar in BNF:

LML : ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 3jϕ | 2jϕ

where p ∈ A and j ∈ I.
We present the so-called possible world semantics of modal logic. A Kripke model M is a

tuple M , (W, {R1, . . . , Rm, . . . , P1, . . . , Pn, . . .}) where

• W is a non-empty set whose elements are called possible worlds;

• R1, . . . , Rm, . . . ⊆W ×W , m ∈ I are binary relations over W called accessibility relations;

• P1, . . . , Pn, . . . ⊆W are unary relations interpreting the propositional letters of A.

We write w ∈M for w ∈W by abuse and the pair (M,w) is called a pointed Kripke model. The
class of all pointed Kripke models is denoted EML.

We define the satisfaction relation ML ⊆ EML × LML inductively by the following truth
conditions. Below, we write (M,w) ϕ for ((M,w), ϕ) ∈ ML. For all (M,w) ∈ EML, all
ϕ,ψ ∈ LML, all pi ∈ A and all j ∈ I,

(M,w) pi iff Pi(w) holds;
(M,w) ¬pi iff Pi(w) does not hold;
(M,w) (ϕ ∧ ψ) iff (M,w) ϕ and (M,w) ψ;
(M,w) (ϕ ∨ ψ) iff (M,w) ϕ or (M,w) ψ;
(M,w) 3jϕ iff there exists v ∈W such that Rjwv and (M,v) ϕ;
(M,w) 2jϕ iff for all v ∈W such that Rjwv, (M, v) ϕ.

The triple (LML, EML, ML) forms a logic, that we call modal logic. Bisimulations for modal
logic can be found in [9].

3.1 Common Logical Notions
In the present section, we define a number of notions which are common to all logics and in
particular to the logics introduced beforehand. The way we define logics is different from many
proposals considered in universal logic [8] such as pairs of Suzsko’s abstract logics, Tarski’s

4

consequence operators or logical structures. Often a logic is viewed as a pair of a language
together with a consequence relation on this language. Our approach to defining logics is somehow
more ‘semantic’ in that respect than the usual proposals. It corresponds in fact to the “abstract
logics” of Garćıa-Matos & Väänänen [15] or to the “rooms” of Mossakowski et al. [23].

A logic is a triple L , (L, E ,) where

• L is a logical language defined as a set of well-formed expressions built from a set of
connectives C and a set of propositional letters A;

• E is a class of pointed models;

• is a satisfaction relation which relates in a compositional manner elements of L to
models of E by means of so-called truth conditions.

Let L = (L, E ,) be a logic and let Γ ⊆ L, ϕ ∈ L and M ∈ E . We write M Γ when for
all ψ ∈ Γ, we have M ψ. Then, we say that

• ϕ is true (satisfied) at M or M is a model of ϕ when M ϕ;

• ϕ is a logical consequence of Γ, written Γ Lϕ, when for all M ∈ E , if M Γ then M ϕ;

• ϕ is valid, written Lϕ, when for all models M ∈ E , we have M ϕ;

• ϕ is satisfiable when there is a model M ∈ E such that M ϕ.

If Γ is a singleton Γ = {ψ}, we also write by abuse ψ ϕ for {ψ} ϕ.
A set of formulas of L is called a theory. A set ∆ of formulas of L is said to be a set of

axioms for a theory Γ iff Γ and ∆ have the same logical consequences. A theory is called finitely
axiomatizable iff it has a finite set of axioms. A logic L is axiomatizable if its set of validities is
finitely axiomatizable.

4 On the Relative Expressivity of Logics
When two logics L1 = (L1, E1, 1) and L2 = (L2, E2, 2) are interpreted over different classes
of models E1 and E2, there is no canonical way to compare their relative expressiveness, even if
some proposals have already been made [15, 23]. We are now going to propose some new notions
to deal with that issue.

Given a logic (L, E ,), for all ϕ,ψ ∈ L, we write ϕ ≡ ψ when for all M ∈ E , it holds that
M ϕ iff M ψ and for all M,N ∈ E , we write M ≡ N when for all ϕ ∈ L, it holds M ϕ iff
N ϕ. IfM,N ⊆ E , we writeM≡ N when for all M ∈M there is N ∈ N such that M ≡ N ,
and vice versa.

Definition 1 (Equi-expressivity). A logic L1 = (L1, E1, 1) is as expressive as a logic L2 =
(L2, E2, 2), written L1 ≡ L2, when the following hold:

1. there is a mapping Tϕ1 : L1 → L2 and a mapping TM1 : E1 → E2 such that for all ϕ1 ∈ L1
and all M1 ∈ E1, it holds that M1 ϕ1 iff TM1 (M1) Tϕ1 (ϕ1);

2. there is a mapping Tϕ2 : L2 → L1 and a mapping TM2 : E2 → E1 such that for all ϕ2 ∈ L2
and all M2 ∈ E2, it holds that M2 ϕ2 iff TM2 (M2) Tϕ2 (ϕ2);

3. for all M1 ∈ E1 and all M2 ∈ E2, it holds that TM2 (TM1 (M1)) ≡ M1 and TM1 (TM2 (M2)) ≡
M2.

5

Let L1 and L2 be two classes of logics. We say that L1 is as expressive as L2, written L1 ≡ L2,
when for all L1 ∈ L1 there is L2 ∈ L2 such that L1 ≡ L2, and vice versa.

Our third condition states that TM2 and TM1 are inverse bijections of each other (modulo
some natural congruence). Hence, our definition is set in such a way that we compare the
relative expressivity of each logic by comparing them over their whole class of models, taking
into account the specificities of all the models of each logic in the comparison.

Our proposal is different from the one of Garćıa-Matos & Väänänen [15]. However, they deal
with a more general notion of embedding between logics based on different classes of models,
that is an embedding in only one direction, of one logic into another. If two logics L1 and L2
are essentially equally expressive in our sense then there exist two “model-expansive corridors”
from L1 to L2 and from L2 to L1 in the sense of Mossakowski et al. [23] (with the proviso that
the surjection holds modulo the congruence ≡). Thus, our notion of equi-expressivity is more
demanding and stronger than the one of Mossakowski et al. [23]. On the other hand, our “logics”
can in fact be seen as institutions [23]. In that case, one can prove that two logics are “equally
expressive” in our sense if, and only if, they are “equivalent” in the sense of institutions [24,
Definition 3.5].1

5 Atomic Logics
Atomic logics are logics such that the truth conditions of their connectives are defined
by first-order formulas of the form ∀x1 . . . xn(±1Q1x1 ∨ . . . ∨ ±nQnxn ∨ ±Rx1 . . . xnx) or
∃x1 . . . xn(±1Q1x1 ∧ . . . ∧ ±nQnxn ∧ ±Rx1 . . . xnx) where the ±is and ± are either empty or
¬. Likewise, propositional letters are defined by first-order formulas of the form ±Rx. We will
represent the structure of these formulas by means of so–called skeletons whose various argu-
ments capture the different features and patterns from which they can be redefined completely.
Atomic logics are also generalizations of our gaggle logics [4] with types associated to formulas.

We recall that N∗ denotes the set of natural numbers without 0 and that for all n ∈ N∗, Sn

denotes the group of permutations over the set {1, . . . , n}. Permutations are generally denoted
σ, τ , the identity permutation Id is sometimes denoted 1 as the neutral element of every permu-
tation group and σ− stands for the inverse permutation of the permutation σ. For example, the
permutation σ = (3, 1, 2) is the permutation that maps 1 to 3, 2 to 1 and 3 to 2 (see for instance
[26] for more details).

Definition 2 (Atomic skeletons and connectives). The sets of atomic skeletons P and C are
defined as follows:

P ,S1 × {+,−} × {∀,∃} × N∗

C ,P ∪
⋃
n∈N∗

{
Sn+1 × {+,−} × {∀,∃} × N∗n+1 × {+,−}n

}
.

P is called the set of propositional letter skeletons and C is called the set of connective skele-
tons. They can be represented by tuples (σ,±,Æ, k,±j) or (σ,±,Æ, k) if it is a proposi-
tional letter skeleton, where Æ ∈ {∀,∃} is called the quantification signature of the skeleton,
k = (k, k1, . . . , kn) ∈ N∗n+1 is called the type signature of the skeleton and ±j = (±1, . . . ,±n) ∈
{+,−}n is called the tonicity signature of the skeleton; (Æ, k,±j) is called the signature of the
skeleton. The arity of a propositional letter skeleton is 0 and its type is k. The arity of a skeleton
? ∈ C is n, its input types are k1, . . . , kn and its output type is k.

1I thank Peter Arndt for proving that result.

6

A (atomic) connective or propositional letter is a symbol generally denoted ? or p to which
is associated a (atomic) skeleton. Its arity, signature, quantification signature, type signature,
tonicity signature, input and output types are the same as its skeleton. By abuse, we sometimes
identify a connective with its skeleton. If C is a set of atomic connectives, its set of propositional
letters is denoted P(C).

Propositional letters are denoted p, p1, p2, etc. and connectives are denoted ?, ?1, ?2, etc.

We need to distinguish between connectives and skeletons because in general we need a
countable number of propositional letters or connectives of the same skeleton, like in some modal
logics, where we need multiple modalities of the same similarity type/skeleton.

Definition 3 (Atomic language). Let C be a set of atomic connectives. The (typed) atomic
language LC associated to C is the smallest set that contains the propositional letters and that
is closed under the atomic connectives. That is,

• P(C) ⊆ LC;

• for all ? ∈ C of arity n > 0 and of type signature (k, k1, . . . , kn) and for all ϕ1, . . . , ϕn ∈ LC
of types k1, . . . , kn respectively, we have that ?(ϕ1, . . . , ϕn) ∈ LC and ?(ϕ1, . . . , ϕn) is of
type k.

Elements of LC are called atomic formulas and are denoted ϕ,ψ, α, . . . The type of a formula
ϕ ∈ LC is denoted k(ϕ).

The skeleton syntactic tree of a formula ϕ ∈ LC is the syntactic tree of the formula ϕ in
which the nodes labeled with subformulas of ϕ are replaced by the skeleton of their outermost
connective.

A set of atomic connectives C is plain if for all ? ∈ C of skeleton
(σ,±,Æ, (k, k1, . . . , kn), (±1, . . . ,±n)) there are atoms p1, . . . , pn ∈ P of types k1, . . . , kn
respectively. In the sequel, we assume that all sets of connectives C are plain.

Our assumption that all sets of connectives C considered are plain makes sense. Indeed, we
want all connectives of C to appear in some formula of LC. If C was not plain then there would
be a connective of C (with input type k) which would be necessarily composed with another
connective of C (of output type k), if we want such a connective to appear in a formula of LC.
Yet, in that case, we should instead view C as a set of molecular connectives (introduced in the
next section).

Definition 4 (C–models). Let C be a set of atomic connectives. A C–model is a tuple M =
(W,R) where W is a non-empty set and R is a set of relations over W such that each n–ary
connective ? ∈ C of type signature (k, k1, . . . , kn) is associated to a k1 + . . .+ kn + k–ary relation
R? ∈ R.

An assignment is a tuple (w1, . . . , wk) ∈ W k for some k ∈ N∗, generally denoted w. The set
of assignments of a C–model M is denoted w(M,C). A pointed C–model (M,w) is a C–model M
together with an assignment w. In that case, we say that (M,w) is of type k. The class of all
pointed C–models is denoted MC.

Note that a C–model can be canonically seen as a (first-order) structure, for some appropriate
set of predicates P associated to the relations of R.

Definition 5 (Atomic logics). Let C be a set of atomic connectives and let M = (W,R) be
a C–model. We define the interpretation function of LC in M , denoted J·KM : LC →

⋃
k∈N∗

W k,

7

Permutations of S2 unary signatures
τ1 = (1, 2) t1 = (∃, (1, 1),+)
τ2 = (2, 1) t2 = (∀, (1, 1),+)

t3 = (∀, (1, 1),−)
t4 = (∃, (1, 1),−)

Permutations of S3 binary signatures
σ1 = (1, 2, 3) s1 = (∃, (1, 1, 1), (+,+))
σ2 = (3, 2, 1) s2 = (∀, (1, 1, 1), (+,−))
σ3 = (3, 1, 2) s3 = (∀, (1, 1, 1), (−,+))
σ4 = (2, 1, 3) s4 = (∀, (1, 1, 1), (+,+))
σ5 = (2, 3, 1) s5 = (∃, (1, 1, 1), (+,−))
σ6 = (1, 3, 2) s6 = (∃, (1, 1, 1), (−,+))

s7 = (∃, (1, 1, 1), (−,−))
s8 = (∀, (1, 1, 1), (−,−))

Figure 1: Permutations of S2 and S3 and ‘families’ of unary and binary signatures

inductively as follows: for all propositional letters p ∈ C of type k, all connectives ? ∈ C of
skeleton (σ,±,Æ, (k, k1, . . . , kn), (±1, . . . ,±n)) of arity n > 0, for all ϕ1, . . . , ϕn ∈ LC,

JpKM ,

{
Rp if ± = +
W k −Rp if ± = −

J?(ϕ1, . . . , ϕn)KM , f?(Jϕ1KM , . . . , JϕnKM)

where the function f? is defined as follows: for all W1 ∈ P(W k1), . . . ,Wn ∈ P(W kn),
f?(W1, . . . ,Wn) ,

{
wn+1 ∈W k | C? (W1, . . . ,Wn, wn+1)

}
where C?(W1, . . . ,Wn, wn+1) is called

the truth condition of ? and is defined as follows:

• if Æ = ∀: “∀w1 ∈W k1 . . . wn ∈W kn
(
w1 t1 W1 ∨ . . . ∨ wn tn Wn ∨R±σ? w1 . . . wnwn+1

)
”;

• if Æ = ∃: “∃w1 ∈W k1 . . . wn ∈W kn
(
w1 t1 W1 ∧ . . . ∧ wn tn Wn ∧R±σ? w1 . . . wnwn+1

)
”;

where, for all j ∈ J1;nK, wj tj Wj ,

{
wj ∈Wj if ±j = +
wj /∈Wj if ±j = −

and

R±σ? w1 . . . wn+1 holds iff ±R?wσ−(1) . . . wσ−(n+1) holds, with the notations +R? , R? and
−R? ,W k+k1+...+kn −R?. If EC is a class of pointed C–models, the satisfaction relation ⊆
EC×LC is defined as follows: for all ϕ ∈ LC and all (M,w) ∈ EC, ((M,w), ϕ) ∈ iff w ∈ JϕKM .
We usually write (M,w) ϕ instead of ((M,w), ϕ) ∈ and we say that ϕ is true in (M,w).

The logic (LC, EC,) is the atomic logic associated to EC and C. The logics of the form
(LC,MC,) are called basic atomic logics.

We stress that the ± sign in R±σ? is the ± sign in (σ,±,Æ, (k, k1, . . . , kn), (±1 , . . . ,±n)).

Example 1 (Modal logic). An example of atomic logic is modal logic where C =
{p,>,⊥,∧,∨,3j ,2j | j ∈ I} is such that

• >,⊥ are connectives of skeletons (Id,+,∃, 1) and (Id,−,∀, 1) respectively;

8

• ∧,∨,3j ,2j are connectives of skeletons (σ1,+, s1), (σ1,−, s4), (τ2,+, t1) and (τ2,−, t2)
respectively;

• the C-models M = (W,R) ∈ EC are such that R∧ = R∨ = {(w,w,w) | w ∈W}, R3j = R2j
and R> = R⊥ = W .

With these conditions on the C–models of EC, for all (M,w) ∈ EC,

w ∈ J3jϕKM iff ∃v(v ∈ JϕKM ∧R3jwv)
w ∈ J2jϕKM iff ∀v(v ∈ JϕKM ∨ −R2jwv)
w ∈ J∧(ϕ,ψ)KM iff ∃vu(v ∈ JϕKM ∧ u ∈ JψKM ∧R∧vuw)

iff w ∈ JϕKM ∧ w ∈ JψKM
w ∈ J∨(ϕ,ψ)KM iff ∀vu(v ∈ JϕKM ∨ u ∈ JψKM ∨ −R∨vuw)

iff w ∈ JϕKM ∨ w ∈ JψKM

Other examples are given in Figure 2 as well as in [4, 6, 5].

6 Molecular Logics
Molecular logics are basically logics whose primitive connectives are compositions of atomic con-
nectives in which it is possible to repeat the same argument at different places in the connective.
That is why we call them ‘molecular’, just as molecules are compositions of atoms in chemistry.

Definition 6 (Molecular skeleton and connective). The class C∗ of molecular skeletons is the
smallest set such that:

• P ⊆ C∗ and C∗ contains as well, for each k, l ∈ N∗, a symbol idlk of type signature (k, k),
output type k and arity 1;

• for all atomic skeleton ? ∈ C of type signature (k, k0
1, . . . , k

0
n) and all c1, . . . , cn ∈ C∗

of output types or types (if they are propositional letters) k0
1, . . . , k

0
n respectively, c ,

?(c1, . . . , cn) is a molecular skeleton of C∗ of output type k.

If c ∈ C∗, we define its decomposition tree as follows. If c = p ∈ P or c = idlk, then its
decomposition tree Tc is the tree consisting of a single node labeled with p or idlk respectively. If
c = ?(c1, . . . , cn) ∈ C∗ then its decomposition tree Tc is the tree defined inductively as follows:
the root of Tc is c and it is labeled with ? and one sets edges between that root and the roots
c1, . . . , cn of the decomposition trees Tc1 , . . . , Tcn respectively.

If c , ?(c1, . . . , cn) is a molecular skeleton with output type k and k1, . . . , km are the ks of
the different idlks which appear in c1, . . . , cn (in an order which follows the first appearance of
the idlks in the inorder traversal of the decomposition trees of c1, . . . , cn), then the type signature
of c is (k, k1, . . . , km) and its arity is m. We also define the quantification signature Æ(c) of
c = ?(c1, . . . , cn) by Æ(c) , Æ(?).

A molecular connective is a symbol to which is associated a molecular skeleton. Its arity,
type signature, output type, quantification signature and decomposition tree are the same as its
skeleton.

The set of atomic connectives associated to a set C of molecular connectives is the set of labels
different from idlk of the decomposition trees of the molecular connectives of C.

9

Atomic connective Truth condition Connective
in the literature

The conjunction orbit
ϕ (σ1,+, s1) ψ ∃vu (v ∈ JϕK ∧ u ∈ JψK ∧Rvuw) ϕ ◦ ψ [20], ϕ⊗3 ψ [3]
ϕ (σ2,−, s2) ψ ∀vu (v ∈ JϕK ∨ u /∈ JψK ∨ −Rwuv)
ϕ (σ3,−, s2) ψ ∀vu (v ∈ JϕK ∨ u /∈ JψK ∨ −Ruwv) / [20], ϕ ⊂2 ψ [3]
ϕ (σ4,+, s1) ψ ∃vu (v ∈ JϕK ∧ u ∈ JψK ∧Ruvw)
= ψ (σ1,+, s1) ϕ
ϕ (σ5,−, s3) ψ ∀vu (v /∈ JϕK ∨ u ∈ JψK ∨ −Rwvu) \ [20], ϕ ⊃1 ψ [3]
= ψ (σ2,−, s2) ϕ
ϕ (σ6,−, s3) ψ ∀vu (v /∈ JϕK ∨ u ∈ JψK ∨ −Rvwu)
= ψ (σ3,−, s2) ϕ

The but–not orbit
ϕ (σ1,+, s5) ψ ∃vu (v ∈ JϕK ∧ u /∈ JψK ∧Rvuw) ϕ �3 ψ [3]
ϕ (σ2,−, s4) ψ ∀vu (v ∈ JϕK ∨ u ∈ JψK ∨ −Rwuv)
ϕ (σ3,+, s6) ψ ∃vu (v /∈ JϕK ∧ u ∈ JψK ∧Ruwv) ϕ �2 ψ [3]
ϕ (σ4,+, s6) ψ ∃vu (v /∈ JϕK ∧ u ∈ JψK ∧Ruvw) ϕ� ψ [17, 22]
= ψ (σ1,+, s5) ϕ
ϕ (σ5,−, s4) ψ ∀vu (v ∈ JϕK ∨ u ∈ JψK ∨ −Rwvu) ϕ� ψ [17, 22]
= ψ (σ2,−, s4) ϕ ϕ�1 ψ [3]
ϕ (σ6,+, s5) ψ ∃vu (v ∈ JϕK ∧ u /∈ JψK ∧Rvwu) ϕ� ψ [17, 22]
= ψ (σ3,+, s6) ϕ

The stroke orbit
ϕ (σ1,+, s7) ψ ∃vu (v /∈ JϕK ∧ u /∈ JψK ∧Rvuw) ϕ |3 ψ [2, 16]
ϕ (σ2,+, s7) ψ ∃vu (v /∈ JϕK ∧ u /∈ JψK ∧Rwuv)
ϕ (σ3,+, s7) ψ ∃vu (v /∈ JϕK ∧ u /∈ JψK ∧Ruwv)
ϕ (σ4,+, s7) ψ ∃vu (v /∈ JϕK ∧ u /∈ JψK ∧Ruvw)
= ψ (σ1,+, s7) ϕ
ϕ (σ5,+, s7) ψ ∃vu (v /∈ JϕK ∧ u /∈ JψK ∧Rwvu) ϕ |1 ψ [2, 16]
= ψ (σ2,+, s7) ϕ
ϕ (σ6,+, s7) ψ ∃vu (v /∈ JϕK ∧ u /∈ JψK ∧Rvwu) ϕ |2 ψ [2, 16]
= ψ (σ3,+, s7) ϕ

Figure 2: Some binary connectives of atomic logics of type (1, 1, 1)

10

Note that the same label (atomic connective) may appear several times in a decomposition
tree. Note also that the vertices of a decomposition tree are molecular connectives.

Every atomic connective ? of type signature (k, k1, . . . , kn) can be seen as the (specific)
molecular connectives c , ?(id1

k1
, . . . , idnkn). One needs to introduce the connective idlk in order

to deal with molecular connectives whose skeletons are for example of the form ?(p, idlk) where
p ∈ P or with molecular connectives in which the same argument(s) appear at different places,
like for example in ?(id1

k, . . . , id
1
k) which is of arity 1.

Definition 7 (Molecular language). Let C be a set of molecular connectives. The (typed)
molecular language LC associated to C is the smallest set that contains the propositional letters
and that is closed under the molecular connectives while respecting the type constraints. That
is,

• the propositional letters of C belong to LC;

• for all c ∈ C of type signature (k, k1, . . . , km) and for all ϕ1, . . . , ϕm ∈ LC of types k1, . . . , km
respectively, we have that c(ϕ1, . . . , ϕm) ∈ LC and c(ϕ1, . . . , ϕm) is of type k.

Elements of LC are called molecular formulas and are denoted ϕ,ψ, α, . . . The type of a
formula ϕ ∈ LC is denoted k(ϕ). We use the same abbreviations as for the atomic language.

Definition 8 (Molecular logic). If C is a set of molecular connectives, then a C–model M is
a C′–model M where C′ is the set of atomic connectives associated to C. The truth conditions
for molecular connectives are defined naturally from the truth conditions of atomic connectives.
We define the interpretation function of LC in M , denoted J·KM : LC →

⋃
k∈N∗

W k, inductively

as follows: for all propositional letters p ∈ C of skeleton (σ,±,Æ, k), all molecular connectives
?(c1, . . . , cn) ∈ C of arity m > 0 and all k, l ∈ N∗, for all ϕ,ϕ1, . . . , ϕm ∈ LC,

JpKM,±Rp
Jidlk(ϕ)KM,JϕKM

J?(c1, . . . , cn) (ϕ1, . . . , ϕm)KM,f?
(
Jc1(ϕ1

1, . . . , ϕ
1
i1)KM , . . . , Jcn(ϕn1 , . . . , ϕnin)KM

)
where for all j ∈ {1, . . . , n}, the formulas ϕj1, . . . , ϕ

j
ij

are those ϕ1, . . . , ϕm for which there is a
corresponding idlk in cj (the ϕji s appear in the same order as their corresponding idlks in cj).

If EC is a class of pointed C–models, the triple (LC, EC,) is a logic called the molecular
logic associated to EC and C.

As one can easily notice, every atomic logic can be canonically mapped to an equi-expressive
molecular logic: each atomic connective ? of type signature (k, k1, . . . , kn) of the given atomic
logic has to be transformed into the molecular connective of skeleton ?(id1

k1
, . . . , idnkn). Note

that the idlk are in fact specific atomic connectives whose associated relations are the identity
relations.

Examples of specific molecular logics can be found in [6, 5].

7 Boolean Atomic and Molecular Logics
Atomic and molecular logics do not include Boolean connectives as primitive connectives. In
fact, they can be defined in terms of specific atomic connectives, as follows.

11

Definition 9 (Boolean connectives). The Boolean connectives called conjunctions, disjunctions,
negations and Boolean constants (of type k) are the atomic connectives denoted, respectively:

B , {∧k,∨k,¬k,>k,⊥k | k ∈ N∗}

The skeleton of ∧k is (Id,+,∃, (k, k, k), (+,+)), the skeleton of ∨k is (Id,−,∀, (k, k, k), (+,+)),
the skeleton of ¬k is (Id,+,∃, (k, k),−), the skeleton of >k is (Id,+,∃, k) and the skeleton of ⊥k
is (Id,−,∀, k).

In any C-model M = (W,R) containing Boolean connectives, the associated relation of any
∨k or ∧k is R∧k = R∨k , {(w,w,w) | w ∈ W k}, the associated relation of any ¬k is R¬k ,
{(w,w) | w ∈W k} and the associated relation of any >k or ⊥k is R⊥k = R>k ,W

k.
Atomic or molecular logics containing Boolean connectives are called Boolean atomic or

molecular logics. We say that a set of atomic connectives C is complete for conjunctions and
disjunctions when it contains all conjunctions, disjunctions and constants ∧k,∨k,>k,⊥k, for k
ranging over all input types and output types of the atomic connectives of C. We say that a set
of atomic connectives C is complete for Boolean connectives when it contains all conjunctions,
disjunctions, constants as well as negations ∧k,∨k,>k,⊥k,¬k, for k ranging over all input types
and output types of the atomic connectives of C.

Proposition 1. Let C be a set of atomic connectives containing Boolean connectives. and let
M = (W,R) be a C-model. Then, for all k ∈ N∗, all ϕ,ψ ∈ LC, if k(ϕ) = k(ψ) = k, then

J>kKM , W k

J⊥kKM , ∅
J¬kϕKM , W k − JϕKM

J(ϕ ∧k ψ)KM , JϕKM ∩ JψKM
J(ϕ ∨k ψ)KM , JϕKM ∪ JψKM .

It turns out that Boolean negation can also be simulated systematically at the level of atomic
connectives by applying a transformation on them. The Boolean negation of a formula then
boils down to taking the Boolean negation of the outermost connective of the formula. This
transformation is defined as follows.

Definition 10 (Boolean negation). Let ? be a n–ary connective of skeleton
(σ,±,Æ, k,±1, . . . ,±n). The Boolean negation of ? is the connective −? of skeleton
(σ,−±,−Æ, k,−±1, . . . ,−±n) where −Æ , ∃ if Æ = ∀ and −Æ , ∀ otherwise, which is
associated in any C–model to the same relation as ?. If ϕ = ?(ϕ1, . . . , ϕn) is an atomic formula,
the Boolean negation of ϕ is the formula −ϕ , − ? (ϕ1, . . . , ϕn).

Proposition 2 ([6]). Let C be a set of atomic connectives such that −? ∈ C for all ? ∈ C. Let
ϕ ∈ LC of type k and let M = (W,R) be a C–model. Then, for all w ∈ W k, w ∈ J−ϕKM iff
w /∈ JϕKM .

8 Universal and Existential Molecular Connectives
Universal and existential molecular connectives are essentially molecular connectives such that
the quantification patterns of the quantification signatures of their successive atomic connectives
are of the form ∀ . . . ∀ or ∃ . . . ∃ respectively. So, they essentially behave as ‘macroscopic’ atomic
connectives of quantification signatures ∀ or ∃.

12

Definition 11 (Universal and existential molecular connective). A universal (resp. existential)
molecular skeleton is a molecular skeleton c different from any idlk for any k, l ∈ N∗ such that
Æ(c) = ∀ (resp. Æ(c) = ∃) and such that for each node of its decomposition tree labeled with
? = (σ,±,Æ, k, (±1, . . . ,±n)) and each of its jth children labeled with some ?j ∈ C such that
the subtree generated by this jth children contains at least one idlk, we have that Æ(?j) = ±jÆ.
A universal (resp. existential) molecular connective is a molecular connective with a universal
(resp. existential) skeleton.

Example 2. On the one hand, the molecular connective ?(p, idlk) is a universal (resp. existential)
molecular connective if Æ(?) = ∀ (resp. Æ(?) = ∃). Likewise, ⊃ (id1

1,2id
2
1) and ⊗(3id1

1, p) are
universal and existential molecular connectives respectively. On the other hand, the molecular
connectives 23−id1

1 and ⊃ (2id1
1,2id

2
1) are neither universal nor existential molecular connec-

tives.

Just as we have tonicity signatures for atomic connectives, we can also define an adaptation
of this notion for universal and existential molecular connectives, which, we repeat, are some
sort of ‘macroscopic’ atomic connectives.

Definition 12 (Tonicity signature of a molecular connective). Let c be a molecular connective
and let c′ be a molecular subconnective of c. We define the tonicity of c′ w.r.t. c, denoted
tn(c′, c) inductively as follows. If c = c′ then tn(c′, c) = +. Otherwise, if c = ?(c1, . . . , cn) with
? = (σ,±,Æ, k, (±1, . . . ,±n)) and c′ appears in cj then tn(c′, c) = ±jtn(c′, cj). The tonicity
signature of a molecular connective is the tuple (±1, . . . ,±l) of the tonicities tn(idik, c) of the
connectives labeling the leafs of the decomposition tree of c of the form idik (possibly with
repetition).

A molecular connective c is generally represented as ?(c1, . . . , cn) where ? is an atomic con-
nective, but it can also be represented as c0(c1, . . . , cn) where c0 is a molecular connective such
that the idiks which appear in c0 are all distincts. This representation and decomposition in
terms of molecular connectives is equivalent to the original one. For example the modal connec-
tive of weakly agregative modal logic ?(id1

1, . . . , id
1
1) can be represented in terms of molecular

connectives with distinct idiks as follows: ?(id1
1, . . . , id

n
1)(idn+1

1 , . . . , idn+1
1). We now formalize

this idea of decomposition into molecular connectives.

Definition 13 (Decomposition of a molecular connective). Let c be a molecular connective and
let Tc be its decomposition tree. A decomposition of c is an expression of the form c0(c1, . . . , cn)
where c0 is a molecular connective whose decomposition tree is a subtree of Tc with root c and
whose leafs, corresponding to the nodes c1, . . . , cn of Tc, have been replaced by distinct idiks
and where c1, . . . , cn are molecular connectives whose decomposition trees are the subtrees of Tc
generated by the nodes c1, . . . , cn of Tc.

Example 3. For any molecular connective ?(id1
1, . . . , id

n
1) corresponding to an atomic connective

? of arity n, a decomposition is ?(idn+1
1 , . . . , id2n

1)(id1
1, . . . , id

n
1). Likewise, a decomposition of

?(p, idlk) is ?(id1
1, id

2
k)(p, idlk) (if p is of type 1).

Based on this observation, we can decompose molecular connectives into an alternation of
universal and existential molecular subconnectives. That is what the following definition cap-
tures, at least at the first level of alternation depth. In that definition, if c0 is universal and the
tonicity of the jth molecular connective cj is positive for example, then cj will have an existential
quantification signature (and its ‘head’ will behave as an existential molecular connective).

Definition 14 (Maximal decomposition). A decomposition c = c0(c1, . . . , cn) of a molecular
connective c is maximal when c0 is a universal or existential molecular connective of tonicity

13

signature (±1, . . . ,±n) with the idiks all distinct, and we have that Æ(cj) = − ±j Æ(c0) for all
j ∈ J1;nK such that cj is not of the form idlk for some k, l ∈ N∗.

Example 4. The decomposition of ?(p, idlk) in ?(id1
1, id

2
k)(p, idlk) (if p is of type 1) is not maximal

because ?(p, idlk) is already a universal or existential molecular connective. On the other hand,
the decomposition of ?(p, idlk) in ?(p, idlk)(idl

′

k) is maximal.

The alternation of universal and existential molecular subconnectives inherent to any molec-
ular connective is fully captured by the following notion of quantified decomposition tree. It is
an abstraction of the notion of decomposition tree of Definition 6 which considers as first-class
citizens universal and existential molecular (sub)connectives.

Definition 15 (Quantified decomposition tree). If c ∈ C∗ is a molecular skeleton, we define
its quantified decomposition tree T ′c inductively as follows. If c is a propositional letter or idlk
for some k, l ∈ N∗ then its quantified decomposition tree T ′c is the tree consisting of a single
node labeled with c. Otherwise, c admits a maximal decomposition c = c0(c1, . . . , cn). Then,
its quantified decomposition tree T ′c is the tree defined inductively as follows: the root of T ′c is
c and it is labeled with c0 and one sets edges between that root and the roots c1, . . . , cn of the
quantified decomposition trees T ′c1

, . . . , T ′cn respectively. The quantified decomposition tree of a
molecular connective is the quantified decomposition tree of its skeleton.

Note that a propositional letter p can occur as the label of a node only if the quantified
decomposition tree in which it appears consists of this single node only (Example 4 illustrates
this phenomenon).

Definition 16 (Relation associated to a molecular connective). Let C be a set of molecu-
lar connectives and let c = ?(c1, . . . , cn) ∈ C be a molecular connective with ? of skeleton
(σ,±,Æ, (k?, k?1 , . . . , k?n), (±?1, . . . ,±?n)). Assume that the decomposition tree of c has l different
leaves labeled with idiks of output types k1, . . . , kl, in that order. Then, the arity of c is l.

Let M = (W,R) be a C–model. We define the relation Rc inductively as follows. First, we
set R−? = R? if ? is an atomic connective and if ± ∈ {+,−},

±p ,

{
p if ± = +
−p if ± = −

and ± ? (c1, . . . , cn) =
{
?(c1, . . . , cn) if ± = +
− ? (c1, . . . , cn) if ± = −

.

• If the arity l of c is 0 then Rc = JcKM ;

• If the arity l of c is greater than 0 and Æ = ∃ then for all w ∈W k, w1 ∈W k1 , . . . , wl ∈W kl ,
we set

Rcw1 . . . wlw iff ∃v1 ∈W k?1 , . . . , vn ∈W k?n(
R±σ? v1 . . . vnw ∧R±?1c1w

1
1 . . . w

1
i1v1 ∧ . . . ∧R±?ncnw

n
1 . . . w

n
invn

)
where, for all j ∈ J1;nK, the tuples wj1, . . . , w

j
ij

are those associated to the leafs of the
decomposition tree of c which are also leafs in the decomposition (sub)tree of cj (the wji s
appear in the same order as their corresponding leafs in the decomposition tree of cj).
Moreover, we set Ridi

k
vw iff R−idi

k
vw iff v = w.

• If the arity l of c is greater than 0 and Æ = ∀ then for all w ∈W k, w1 ∈W k1 , . . . , wl ∈W kl ,
we set

14

Rcw1 . . . wlw iff ∀v1 ∈W k?1 , . . . , vn ∈W k?n(
R±σ? v1 . . . vnw ∨R±?1c1w

1
1 . . . w

1
i1v1 ∨ . . . ∨R±?ncnw

n
1 . . . w

n
invn

)
where, for all j ∈ J1;nK, the tuples wj1, . . . , w

j
ij

are defined as above. However, for that
universal case, we set Ridi

k
vw iff R−idi

k
vw iff v 6= w.

Unsurprisingly, the semantics of universal and existential molecular connectives is similar
to the semantics of atomic connectives of quantification signature ∀ and ∃ respectively. That is
what the following proposition shows. In this proposition and the definition above, the molecular
connective c = ?(c1, . . . , cn) yields three different values: n,m and l. They can be all different
in general. The value m is the arity of c, n is the arity of ? and l is the number of leaves of
the decomposition tree Tc of c. The value m is also the number of different labels idik of the
leafs of the decomposition tree Tc. Hence, the size l of the tuple of the tonicity signature of a
molecular connective c is larger than the arity m of c because in the former case we take into
account repetitions of the same idiks.

Proposition 3. Let C be a set of molecular connectives and let c = ?(c1, . . . , cn) ∈ C be a
molecular connective of type signature (k, k1, . . . , km) and tonicity signature (±1, . . . ,±l) with
? = (σ,±,Æ, k, (±?1, . . . ,±?n)). Assume that the decomposition tree of c has l > 0 different leaves
labeled by some idik. Let M = (W,R) be a C–model and let w ∈W k.

• If c is an existential molecular connective then

w ∈ Jc(ϕ1, . . . , ϕm)KM iff ∃w1 . . . wl
(
w1 t1 Jϕi1K

M ∧ . . . ∧ wl tl JϕilKM ∧Rcw1 . . . wlw
)

• If c is a universal molecular connective then

w ∈ Jc(ϕ1, . . . , ϕm)KM iff ∀w1 . . . wl
(
w1 t1 Jϕi1K

M ∨ . . . ∨ wl tl JϕilKM ∨Rcw1 . . . wlw
)

where the Rcs are defined in Definition 16 and for all j ∈ J1; lK,

wj tj Jϕij K
M ,

{
wj ∈ Jϕij KM if ±j = +
wj /∈ Jϕij KM if ±j = −

and i1, . . . , il ∈ J1;mK are those indices corre-

sponding to the m different idiks appearing in c (we basically map the l leafs of the decomposition
tree of c to their labels idiks in this tree).

9 Automatic Bisimulations for Atomic and Molecular Log-
ics

In this section, we are going to see that notions of bisimulations can be automatically defined
for atomic and molecular logics on the basis of the definition of the truth conditions of their
connectives, not only for plain atomic logics but also for molecular logics. These notions are such
that they preserve the truth of the formulas of the atomic logic considered between models.

9.1 Atomic Logics
Definition 17 (C–bisimulation for atomic connectives). Let C be a set of atomic connectives,
let ? ∈ C and let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. A binary relation

15

Z ⊆
⋃
k∈N∗

(W k
1 ×W k

2) ∪ (W k
2 ×W k

1) is a C–bisimulation between M1 and M2 when it is non-

empty and for all ? ∈ C, if {M,M ′} = {M1,M2}, then for all w1, . . . , wn, w′1, . . . , w′n, w, w′ ∈
w(M,C) ∪ w(M ′,C),

1. if ? is a propositional letter p then, if wZw′ and w ∈ JpK then w′ ∈ JpK;

2. if ? has skeleton (σ,±,∃, k, (±1, . . . ,±n)) and we have wZw′ and R±σ? w1 . . . wnw, then
∃w′1, . . . , w′n(w1 ./ w′1 ∧ w2 ./ w′2 ∧ . . . ∧ wn ./ w′n ∧R

′±σ
? w′1 . . . w′nw′);

3. if ? has skeleton (σ,±,∀, k, (±1, . . . ,±n)) and we have wZw′ and −R
′±σ
? w′1 . . . w′nw′, then

∃w1, . . . , wn(w1 ./ w′1 ∧ w2 ./ w′2 ∧ . . . ∧ wn ./ w′n ∧ −R±σ? w1 . . . wnw);

where, for all j ∈ J1;nK, we define wj ./ w′j ,
{
wjZw′j if ±j = +
w′jZwj if ±j = −

.

When such a C–bisimulation Z exists and wZw′, we say that (M,w) and (M ′, w′) are C–
bisimilar and we write it (M,w)→C (M ′, w′).

Note that case 1. is a particular instance of cases 2. and 3. with n = 0. Importantly, note
also that the clause(s) defining a C-bisimulation allow us to define back the atomic connective(s)
that led to their definition(s): we can recover the skeleton of the connectives considered (tonicity
signature, quantification signature, type signature, etc) from the mere expression of the clauses
of a given C-bisimulation. Hence, in that sense, a C–bisimulation completely characterizes a
given (atomic) logic.
Example 5 (Modal logic). Let us consider the connectives of modal logic: C = {p,¬p,∧,∨,3,2}
where p has skeleton (Id,+,∃, 1), ¬p has skeleton (Id,−,∀, 1), 3 has skeleton (τ2,+, t1) and 2
has skeleton (τ2,−, t2) . Let M1 = (W1, {R1, P1}) and M2 = (W2, {R2, P2}) be two Kripke mod-
els (they are also C-models). A binary relation Z betweenM1 andM2 is a C–bisimulation between
M1 and M2 when for all M,M ′ ∈ {M1,M2} with M = (W, {R,P}) and M ′ = (W ′, {R′, P ′}),
all w, v ∈M and all w′, v′ ∈M ′,
• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if wZw′ and w′ ∈ JpK then w ∈ JpK (condition for ¬p);

• if wZw′ and Rwv then there is v′ ∈ W ′ such that vZv′ and R′w′v′ (condition for
3 = (τ2,+, t1));

• if wZw′ and R′w′v′ then there is v ∈ W such that vZv′ and Rwv (condition for
2 = (τ2,−, t2)).

Note that every C–bisimulation can be canonically extended into a symmetric C–bisimulation:
one sets w′Zw when wZw′ already holds.
Proposition 4. Let C = {p,¬p,∧,∨,3,2} be the connectives of Example 5 and let M and M ′
be two C–models. Then, a C–bisimulation between M and M ′ is a modal bisimulation between
M and M ′ and vice versa.
Definition 18. Let C be a set of atomic connectives. Let (M,w) and (M ′, w′) be two pointed C–
models. We write (M,w) C (M ′, w′) when for all ϕ ∈ LC, (M,w) ϕ implies (M ′, w′) ϕ.
Proposition 5 (Truth preservation of C-bisimilar pointed C-models). Let C be a set of atomic
connectives and let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. Let Z be a C–
bisimulation between M1 and M2. Then, if {M,M ′} = {M1,M2} then for all w ∈ w(M,C), all
w′ ∈ w(M ′,C), if wZw′ then (M,w) C (M ′, w′).

16

9.2 Molecular Logics
Definition 19 (C–bisimulation for molecular connectives). Let C be a set of molecular connec-
tives and let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. For all c0 ∈ C, let V ′c0

be the
vertices of the quantified decomposition tree of c0. We associate to each vertex c ∈ V ′c0

of output
type or type (if it is a propositional letter) k a relation Zc ⊆ (W k

1 ×W k
2)∪ (W k

2 ×W k
1) such that

i. Z ,
⋃{

Zidi
k
| idik appears in some c ∈ C

}
is non-empty;

ii. for all w,w′ of size k such that wZw′, we also have that for all c ∈ C of output type or type
(if it is a propositional letter) k that wZcw′.

We say that this set of relations
{
Zc | c ∈ V ′c0

, c0 ∈ C
}

is a C–bisimulation between M1 and M2
when for all c0 ∈ C, all vertice c ∈ V ′c0

whose label is different from any idlk, if {M,M ′} =
{M1,M2} then for all w1, . . . , wn, w′1, . . . , w′n, w, w′ ∈ w(M,C) ∪ w(M ′,C),

1. if c is of arity 0 then, wZcw′ and w ∈ JcK imply w′ ∈ JcK;

2. if c is of arity greater than 0 and is maximally decomposed into c = c0(c1, . . . , cn), with
c0 an existential molecular connective of tonicity signature (±1, . . . ,±n), and we have that
wZcw′ and Rc0w1 . . . wnw, then there are w′1w′2 . . . w′n such that Rc0w

′1 . . . w′nw′ and

i. for all j ∈ J1;nK such that ±j = +, there is i ∈ J1;nK such that cj = ci and wiZcjw
′
j ;

ii. for all j ∈ J1;nK such that ±j = −, there is i ∈ J1;nK such that cj = ci and w′jZcjwi.

3. if c is of arity greater than 0 and is maximally decomposed into c = c0(c1, . . . , cn), with
c0 a universal molecular connective of tonicity signature (±1, . . . ,±n), and we have that
wZcw′ and −Rc0w

′1 . . . w′nw′, then there are w1w2 . . . wn such that −Rc0w1 . . . wnw and

i. for all j ∈ J1;nK such that ±j = +, there is i ∈ J1;nK such that cj = ci and wjZcjw
′
i;

ii. for all j ∈ J1;nK such that ±j = −, there is i ∈ J1;nK such that cj = ci and w′iZcjwj .

When we have that wZw′, we say that (M,w) and (M ′, w′) are C–bisimilar and we write it
(M,w)→C (M ′, w′).

Note that if we consider molecular connectives of the form c , ?(id1
k1
, . . . , idnkn), rep-

resenting the atomic connective ? of type signature (k, k1, . . . , kn), then the definition of a
C–bisimulation for these kind of molecular connectives is identical to the definition of a C–
bisimulation for the associated atomic connectives. Hence, our definition of C–bisimulation for
molecular connectives is a genuine generalization of our definition of C–bisimulation for atomic
connectives. The bisimulation relation Z in the atomic case corresponds in the molecular case
to
⋃{

Zidi
k
| idik appears in some c ∈ C

}
.

Definition 20. Let C be a set of molecular connectives. For all c0 ∈ C and all vertex c of the
quantified decomposition tree Tc0 , we define the language LcC as follows:

LcC ,

{
{c(ϕ1, . . . , ϕn) | ϕ1, . . . , ϕn ∈ LC} if c is of arity n > 0
{c} if c is of arity 0

Let (M,w) and (M ′, w′) be two pointed C–models. We write (M,w) cC (M ′, w′) when for all
ϕ ∈ LcC, (M,w) ϕ implies (M ′, w′) ϕ. We also write (M,w) C (M ′, w′) when for all
ϕ ∈ LC, (M,w) ϕ implies (M ′, w′) ϕ.

17

Proposition 6 (Truth preservation of C-bisimilar pointed C-models). Let C be a set of molecular
connectives and let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. Let C0 ⊆ C and for all
c ∈ C0, let Dc be the vertices of the quantified decomposition tree Tc. Let

{
Zc | c ∈ V ′c0

, c0 ∈ C0
}

be a C0–bisimulation between M1 and M2. If {M,M ′} = {M1,M2} then for all c0 ∈ C0 and all
c ∈ V ′c0

, for all w ∈ w(M,C) and all w′ ∈ w(M ′,C), if wZcw′ then (M,w) cC0 (M ′, w′). In
particular, if wZw′ then (M,w) C0 (M ′, w′).

Definition 21 (Normal connectives). A molecular connective is normal when its molecular
skeleton can be decomposed maximally into a molecular skeleton c0(c1, . . . , cn) such that for all
i ∈ J1;nK,

1. ci is either idik or c′i(idik, . . . , idik) with c′i either universal or existential,
and in that case we note id(ci) the unique idik appearing in ci;

2. if id(ci) = id(cj) then ci = cj .

In the above definition, since the decomposition c0(c1, . . . , cn) is maximal, we have in partic-
ular, by definition, that if c0 is of tonicity signature (±1, . . . ,±n), then Æ(ci) = −±i Æ(c0).

Example 6. The molecular connectives of modal intuitionistic logic, weakly aggregative modal
logic and temporal logic [6, 5] are normal.

10 Ultrafilters, Ultraproducts and Ultrapowers
In this section, we are going to recall and generalize to molecular logics a number of key notions
and results of model theory, such as ultrafilters and ultraproducts. Our definitions are basically
the same as those of FOL [10].

Definition 22 (Filter and ultrafilter). Let I be a non–empty set. A filter F over I is a set
F ⊆ P(I) such that I ∈ F ; if X,Y ∈ F then X ∩ Y ∈ F ; if X ∈ F and X ⊆ Z ⊆ I then Z ∈ F .
A filter is called proper if it is distinct from P(I). An ultrafilter over I is a proper filter U such
that for all X ∈ P(I), X ∈ U iff I −X /∈ U . A countably incomplete ultrafilter is an ultrafilter
which is not closed under countable intersections.

In the rest of this section, I is a non-empty set and U is an ultrafilter over I.

Definition 23 (Ultraproduct of sets). For each i ∈ I, let Wi be a non-empty set. For all
(wi)i∈I , (vi)i∈I ∈

∏
i∈I

Wi, we say that (wi)i∈I and (vi)i∈I are U -equivalent, written (wi)i∈I ∼U

(vi)i∈I , if {i ∈ I | wi = vi} ∈ U . Note that ∼U is an equivalence relation on
∏
i∈I

Wi. The equiva-

lence class of (wi)i∈I under ∼U is denoted
∏
U

wi ,

{
(vi)i∈I ∈

∏
i∈I

Wi | (vi)i∈I ∼U (wi)i∈I

}
.

The ultraproduct of (Wi)i∈I modulo U is
∏
U

Wi ,

{∏
U

wi | (wi)i∈I ∈
∏
i∈I

Wi

}
. When Wi =

W for all i ∈ I, the ultraproduct is called the ultrapower of W modulo U , written
∏
U

W .

18

Definition 24 (Ultraproduct and ultrapower). Let C be a set of molecular connectives and let
(Mi, wi)i∈I be a family of pointed C–models. The ultraproduct

∏
U

(Mi, wi) of (Mi, wi) modulo

U is the pointed C–model
(∏

U

Mi,
∏
U

wi

)
where

∏
U

Mi = (WU ,RU) and
∏
U

wi are defined by:

• WU =
∏
U

Wi;

• for all n + 1–ary relations Ri? of Mi, the n + 1–ary relation
∏
U

R? ∈ RU is defined for all∏
U

w1
i , . . . ,

∏
U

wn+1
i ∈WU by

∏
U

R?
∏
U

w1
i . . .

∏
U

wn+1
i iff

{
i ∈ I | Ri?w1

i . . . w
n+1
i

}
∈ U ;

•
∏
U

wi ,

(∏
U

w1
i , . . . ,

∏
U

wki

)
if (wi)i∈I = (w1

i , . . . , w
k
i)i∈I .

If (Mi, si)i∈I is a family of pointed structures, the ultraproduct
∏
U

(Mi, si) is the pointed

structure
(∏

U

Mi,
∏
U

si

)
where

∏
U

Mi is defined as above (the Mi are viewed as C–models) and

∏
U

si : V →
∏
U

Wi is the assignment such that for all x ∈ V,
(∏

U

si

)
(x) =

∏
U

si(x).

If for all i ∈ I, (Mi, wi) = (M,w) (and (Mi, si) = (M, s)) then
∏
U

(Mi, wi) is also called an

ultrapower of (M,w) (resp. (M, s)) modulo U , also denoted
∏
U

(M,w) (resp.
∏
U

(M, s)).

11 First-Order Logics in Atomic Logics
In this section, we introduce predicate atomic logics, which are, as we will show, as expressive
as the predicate atomic logics introduced in [6]. That is why we call both of them with the same
name.

Definition 25 (Predicate atomic connectives). Let P be a set of predicate symbols. The set of
predicate atomic connectives associated to P is CP , P ∪ {⊥, U} ∪ {2k,⊃k| k ∈ N∗} ∪ {[f lk] |
k, l ∈ N∗ and f lk : J1; lK→ J1; kK is a mapping} where, for all k, l ∈ N∗,

• R has skeleton (Id,+,∀, k) if R ∈ P is of arity k;

• ⊥ has skeleton (Id,−,∀, 1);

• U has skeleton (Id,−,∀, (1, 1),+);

• 2k has skeleton (Id,−,∀, (k, k + 1),+);

• ⊃k has skeleton (Id,−,∀, (k, k, k), (−,+));

• [f lk] has skeleton (Id,−,∀, (k, l),+).

19

Definition 26 (Predicate atomic logic). Let P be a set of predicate symbols. A predicate
CP–model is a CP–model M = (W,R) such that:

• for all k ∈ N∗, the connectives R of type k are associated to k–ary relations R over W ;

• the connective ⊥ is associated to the 1–ary relation R⊥ ,W ;

• for all k, l ∈ N∗ and all mappings f lk : J1; lK → J1; kK, the connective [f lk] is associated
to the k + l–ary relation R[f l

k
] such that for all w1, . . . , wk, v1, . . . , vl ∈ W , we have that

R[f l
k

]v1 . . . vlw1 . . . wk iff for all i ∈ J1; lK, vi = wf l
k

(i);

• for all k ∈ N∗, the connectives ⊃k are associated to the 3k–ary relation Rk ⊆W 3k such that
for all w1 ∈W k, all w2 ∈W k and all w3 ∈W k, we have that Rkw1w2w3 iff w1 = w2 = w3;

• for all k ∈ N∗, the connectives 2k are associated to the 2k + 1–ary relation R2k ⊆ W 2k+1

such that for all v ∈ W k+1 and all w ∈ W k, we have that R2kvw iff v = (w, u) for some
u ∈W ;

• U is associated to the 2–ary relation RU ,W
2.

The class of all pointed predicate CP–models is denoted MCP . The satisfaction relation
⊆ MCP × LCP is then defined following Definition 5. If ECP is a specific class of pointed

CP–model, the triple (LCP , ECP ,) is called the predicate atomic logic associated to ECP and
P. We also define LCP (k) , {ϕ ∈ LCP | k(ϕ) = k}. A predicate atomic logic of type k is a triple
(LCP (k), ECP (k),) such that all pointed CP–models of ECP (k) are of type k.

Our connectives [f lk] are a generalization of the connectives �σ of multi-dimensional modal
logics [21]. In fact, if k = l then [fkk] is exactly �fk

k
.

Definition 27 (Translation from FOL to predicate atomic logics). Let P be a set of predicate
symbols.
Syntax. For all k ∈ N and all x = (x1, . . . , xk) ∈ (V ∪ C)k, we define the mappings Tx :
LPFOL(x, k) → LCP (k) and T∅ : LPFOL(∅) → LCP (1) inductively on the formula ϕ(x1, . . . , xk) ∈
LPFOL (with or without free variables) as follows.

• if ϕ = ⊥ then we define T∅(⊥) , ⊥;

• if ϕ = Rxi1 . . . xil with k ≤ l (some variables or constants can be the same and variables and
constants may be in a different order than (x1, . . . , xk)) then there is a unique (surjective)
mapping f lk : J1; lK→ J1; kK such that for all j ∈ J1; lK, we have that f lk(j) = ij . Finally, we
define
Tx(Ry1 . . . yl) ,

[
f lk
]

R;

• if ϕ = (ϕ1 → ϕ2) where ϕ1 and ϕ2 are both sentences, then we define
T∅(ϕ) ,⊃1 (T∅(ϕ1), T∅(ϕ2))
if ϕ = (ϕ1 → ϕ2(x)) where ϕ1 is a sentence, then we define
T(x)(ϕ) ,⊃1

(
T∅(ϕ1), T(x)(ϕ2(x))

)
if ϕ = (ϕ1(x)→ ϕ2) where ϕ2 is a sentence, then we define
T(x)(ϕ) ,⊃1

(
T(x)(ϕ1(x)), T∅(ϕ2)

)
if ϕ = (ϕ1 → ϕ2(x1, . . . , xk)) where ϕ1 is a sentence and k > 1 , then we define

20

Tx(ϕ) ,⊃k
(
[f1
k]T∅(ϕ1), T(x1,...,xk)(ϕ2(x1, . . . , xk))

)
where f1

k : {1} → J1; kK is defined by f1
k (1) = 1;

if ϕ = (ϕ1(x1, . . . , xk)→ ϕ2) where ϕ2 is a sentence and k > 1, then we define
Tx(ϕ) ,⊃k

(
T(x1,...,xk)(ϕ1(x1, . . . , xk)), [f1

k]T∅(ϕ2)
)

where f1
k is defined as above;

if ϕ = (ϕ1(xi1 , . . . , xik1
)→ ϕ2(yj1 , . . . , yjk2

)) then we define

Tx(ϕ) ,⊃k
(
Expx(ϕ1(xi1 , . . . , xik1

)),Expx(ϕ2(xj1 , . . . , xjk2
))
)

where

Expx(ϕ1(xi1 , . . . , xik1
)) ,

{
T(x1,...,xk)(ϕ1(xi1 , . . . , xik1

)) if k1 = k[
fk1
k

]
T(xi1 ,...,xik1

)(ϕ1(xi1 , . . . , xik1
)) if k1 < k

where for all j ∈ J1; k1K, we have that fk1
k (j) = ij . The definition is similar for

Expx(ϕ2(xj1 , . . . , xjk2
)), one only needs to replace i by j and k1 by k2.

• if ϕ = ∀xψ(x) where ϕ is a sentence, then we define
T∅(ϕ) , UT(x)(ψ(x));
if ϕ = ∀xψ(x1, . . . , xk, x) with k ≥ 1, then we define
Tx(ϕ) , 2kT(x1,...,xk,x)(ψ(x1, . . . , xk, x)).

Semantics. Let M = (W, {R1, . . . , Rn, . . . , c1, . . . , cn, . . .}) be a structure without functions. We
define the CP–model T (M) = (W,R) by adding to the relations of M the relations defined in
Definition 26. If x = (x1, . . . , xk) is a tuple of k variables then we define Tx(M, s) , (T (M),
(s(w1), . . . , s(wk))) and T∅(M, s) , (T (M), (s(x0))) for an arbitrary x0 ∈ V.

Lemma 1. Let ϕ ∈ LPFOL, let x be the tuple of free variables and constants of ϕ (possibly empty)
and let (M, s) be a pointed structure. Then, we have that

(M, s) ϕ iff Tx(M, s) Tx(ϕ).

Definition 28 (Translation from predicate atomic logics to FOL).
Syntax. For all k ∈ N∗ and all tuples x = (x1, . . . , xk) of variables or constants, we define the
mappings STx : LkCP → L

P
FOL, where LkCP is the set of formulas of LCP of type k, inductively as

follows:
STx(R) , Rx
STx(⊥) , ⊥

STx([f lk]ϕ) , ST(x
fl
k

(1),...,xfl
k

(l))(ϕ)
STx(⊃k (ϕ1, ϕ2)) , (STx(ϕ1)→ STx(ϕ2))

STx(2kϕ) , ∀xST(x,x)(ϕ)
ST(x)(Uϕ) , ∀xST(x)(ϕ)

where t is an arbitrary term of LPFOL (we recall that ∨ is here an abbreviation).
Semantics. Let (M, (w1, . . . , wk)) be a pointed CP–model of type k and let x = (x1, . . . , xk) be
a tuple of free variables or constants of size k. The (pointed) structure associated to (M,w),
denoted STx(M,w) , (ST (M), swx), is defined as follows. The assignment swx is such that for all
i ∈ {1, . . . , k}, s(xi) = wi and for all x ∈ V−{x1, . . . , xk}, s(x) = w1 and ST (M) is the structure
ST (M) = (W,ST (R)) where ST (R) is the set R to which we remove the relations stemming
from Definition 26.

21

Lemma 2. Let (M,w) be a pointed predicate CP–model of type k, let ϕ ∈ LCP of type k and let
x ∈ (V ∪ C)k. Then,

(M,w) ϕ iff STx (M,w) STx(ϕ).

Moreover, for all pointed structures (M, s) without distinguished elements, we have that
STx (Tx(M, s)) ≡x (M, s) and for all pointed predicate CP–model (M,w), we have that
Tx (STx(M,w)) ≡k (M,w).

Proposition 7. Let P be a set of predicate symbols and k ∈ N∗. If ECP is a class of pointed
CP–model, the predicate atomic logic (of type k) associated to ECP and P is as expressive as a
predicate atomic logic (of type k) as defined in [6, Definition 18], and vice versa.

Therefore, [6, Theorem 1] and [6, Corollary 1] hold as well for the versions of predicate atomic
logics introduced in the present article.

12 Generalized Keisler Theorems for First-Order Logics
In that section, we assume that the first–order languages are countable.

12.1 Bisimulations for Pure Predicate Logic
Applying our Definition 17 to our predicate atomic logics of Section 11 we obtain the following
conditions: for all M,M ′ ∈ {M1,M2} with M = (W,R) and M ′ = (W ′,R′), all w, v, u ∈
w(M,C), all w, v ∈W and all w′, v′, u′ ∈ w(M ′,C), all w′, v′ ∈W ′, all R ∈ P,

• condition for R: if wZw′ and Rw then R′w′, for all relations R and R′ both associated to
R (in the associated structure);

• condition for ⊥: if wZw′ and R′⊥(w′) then R⊥(w), this condition always holds;

• condition for [f lk]: for all k, l ∈ N∗ and all mappings f lk, if wZw′ and R′[f l
k

]w
′v′ then there

is v ∈ w(M,C) such that vZv′ and R[f l
k

]wv,

that is, if wZw′ then f lk(w)Zf lk(w′), where for all w = (w1, . . . , wk), f lk(w) ,
(wf l

k
(1), . . . , wf l

k
(l));

• condition for ⊃k: for all k ∈ N∗, if wZw′ and Rkv′u′w′ then there are v, u ∈ w(M,C) such
that v′Zv, uZu′ and Rkvuw,
that is, if wZw′ then w′Zw;

• condition for 2k: for all k ∈ N∗, if wZw′ and R′2kv′w′ then there is v ∈ w(M,C) such that
vZv′ and R2kvw,
that is, if wZw′ then for all v′ ∈W ′ there is v ∈W such that (w, v)Z(w′, v′);

• condition for U : if wZw′ and v′ ∈W ′ then there is v ∈W such that vZv′,
that is, for all w′ ∈W ′ there is w ∈W such that wZw′.

If we combine the conditions above, we obtain the following definition.

22

Definition 29 (Predicate bisimulation). A predicate bisimulation between two structures M1
and M2 is a non–empty relation Z between finite sequences of the same length of M1 and M2
or M2 and M1 such that for all M,M ′ ∈ {M1,M2} with M = (W,R) and M ′ = (W ′,R′), all
m,n ∈ N∗, all w1, . . . , wn ∈W , all w′1, . . . , w′n ∈W ′,

1. if (w1, . . . , wn)Z(w′1, . . . , w′n) then for all n–ary relations R ∈ R and R′ ∈ R′ associated to
the same predicate R, if Rw1 . . . wn then R′w′1 . . . w

′
n;

2. if (w1, . . . , wn)Z(w′1, . . . , w′n) then for all w ∈ M there is w′ ∈ M ′ such that
(w1, . . . , wn, w)Z(w′1, . . . , w′n, w′);

3. if (w1, . . . , wn)Z(w′1, . . . , w′n) then for all mappings f : J1;mK → J1;nK, we have that
(wf(1), . . . , wf(m))Z(w′f(1), . . . , w

′
f(m));

4. if (w1, . . . , wn)Z(w′1, . . . , w′n) then (w′1, . . . , w′n)Z(w1, . . . , wn).

Let X ⊆ V ∪ C be a non-empty set. An X–compatible predicate bisimulation Z between two
pointed structures (M, s) and (M ′, s′) is a predicate bisimulation between M and M ′ such that

5. for all x1, . . . , xn ∈ X, it holds that (s(x1), . . . , s(xn))Z (s′(x1), . . . , s′(xn)).

A C-compatible predicate bisimulation between two pointed structures is often abusively
called a predicate bisimulation.

Now, we recall the usual notion of partial isomorphism.

Definition 30 (Partial isomorphism). A partial isomorphism between two structures M1 and
M2 is a relation Z on the set of pairs of finite sequences (w1, . . . , wn), (v1, . . . , vn) of elements of
M1 and M2 of the same length such that:

1. if (w1, . . . , wn)Z(v1, . . . , vn) then (M1, s1) and (M2, s2) make true the same atomic formulas
ϕ(x1, . . . , xn) ∈ LPFFOL, where s1 and s2 are such that for all i ∈ {1, . . . , n}, s1(xi) = wi and
s2(xi) = vi;

2. if (w1, . . . , wn)Z(v1, . . . , vn) then for all w ∈ M1 there is v ∈ M2 such that
(w1, . . . , wn, w)Z(v1, . . . , vn, v), and vice versa;

3. for all w ∈M1 there is v ∈M2 such that (w)Z(v), and vice versa.

Condition 3 could be equivalently replaced by the condition ∅Z∅, like in [10]. Predicate
bisimulations are basically partial isomorphisms as one can easily notice:

Proposition 8. A predicate bisimulation between pointed structures without functions is a partial
isomorphism.

Proposition 9. Let X ⊆ V ∪ C be a non-empty set. If there is an X–compatible predicate
bisimulation between two pointed structures then they make true the same formulas of LPFOL(X).

The analogue of the Keisler-Shelah theorem below generalizes it in the sense that it applies
to larger classes of first-order formulas than the class of sentences only.

Theorem 1. Let X ⊆ V ∪ C be non-empty and assume that LPFOL(X) is countable. Let (M, s)
and (M ′, s′) be two pointed structures. Then the following are equivalent:

1. (M, s) and (M ′, s′) make true the same formulas of LPFOL(X);

23

2. there exists an ultrafilter U and a X–compatible predicate bisimulation between
∏
U

(M, s)

and
∏
U

(M ′, s′).

The following corollary with sentences only is an analogue of the Keisler-Shelah isomorphism
theorem [10, Theorem 6.1.15] in which isomorphisms are replaced by predicate bisimulations.

Corollary 1. Assume that LPFOL is countable and let (M, s) and (M ′, s′) be two pointed structures.
Then the following are equivalent:

1. (M, s) and (M ′, s′) make true the same sentences of LPFOL;

2. there exists an ultrafilter U and a predicate bisimulation between
∏
U

(M, s) and
∏
U

(M ′, s′).

Theorem 2. Let X ⊆ V ∪ C be non-empty and assume that LPFOL(X) is countable. Let K and
K ′ be classes of pointed structures such that K ′ is closed under ultraproduct. Then, the following
are equivalent:

1. K is definable in K ′ by a set of formulas of LPFOL(X);

2. K is closed under X–compatible predicate bisimulations in K ′ and closed under ultraprod-
ucts, and K ′ −K is closed under ultrapowers.

Corollary 2. Let K be a class of pointed structures. Then, the following are equivalent:

1. K is definable by a set of sentences of LPFOL;

2. K is closed under predicate bisimulations and ultraproducts, and K is closed under ultra-
powers.

A result similar to Corollary 2 was already proved by van Benthem & Doets [27, p. 285]. In
their result, isomorphisms are replaced by partial isomorphisms.

Theorem 3. Let X ⊆ V∪C be non-empty and assume that LPFOL(X) is countable. Let K and K ′
be classes of pointed structures such that K ′ is closed under ultraproducts. Then, the following
are equivalent:

1. K is definable in K ′ by means of a single formula ϕ ∈ LPFOL(X);

2. Both K and K ′−K are closed under X–compatible predicate bisimulations in K ′ and closed
under ultraproducts.

Corollary 3. Let K be a class of pointed structures. Then, the following are equivalent:

1. K is definable by means of a sentence of LPFOL;

2. Both K and K are closed under predicate bisimulations and ultraproducts.

24

12.2 Bisimulations for First–order Logic
The results of the previous section hold for pure predicate logic, that is first–order logic without
functions. In this section, we are going to extend them to first–order logic (with functions).

Definition 31 (First–order bisimulation). A first–order bisimulation between two structures
M1 and M2 is a pair of non–empty relations (Z,Z0) between finite sequences of M1 and M2 of
the same length such that for all M,M ′ ∈ {M1,M2} with M = (W,R) and M ′ = (W ′,R′),
all m,n ∈ N∗, all w1, . . . , wn ∈ W , all w′1, . . . , w′n ∈ W ′, all functions f1, . . . , fn of M and
corresponding functions f ′1, . . . , f ′n of M ′, all tuples v1, . . . , vn of W and v′1, . . . , v′n of W ′,

1. if (w1, . . . , wn)Z0(w′1, . . . , w′n) then for all n–ary relations R ∈ R and R′ ∈ R′ associated
to the same predicate R, if Rw1 . . . wn then R′w′1 . . . w

′
n;

2. if (w1, . . . , wn)Z0(w′1, . . . , w′n) and f1(v′1) = w′1, . . . , fn(v′n) = w′n then there are finite
sequences v1, . . . , vn of M such that v1Z0v′1, . . . , vnZ0v′n and f1(v1) = w1, . . . , fn(vn) =
wn;

3. if (w1, . . . , wn)Z0(w′1, . . . , w′n) then for all mappings f : J1;mK → J1;nK, we have that
(wf(1), . . . , wf(m))Z0(w′f(1), . . . , w

′
f(m));

4. if (w1, . . . , wn)Z(w′1, . . . , w′n) then (w1, . . . , wn)Z0(w′1, . . . , w′n);

5. if (w1, . . . , wn)Z(w′1, . . . , w′n) then for all w ∈ M there is w′ ∈ M ′ such that
(w1, . . . , wn, w)Z(w′1, . . . , w′n, w′);

6. if (w1, . . . , wn)Z(w′1, . . . , w′n) then for all mappings f : J1;mK → J1;nK, we have that
(wf(1), . . . , wf(m))Z(w′f(1), . . . , w

′
f(m));

7. if (w1, . . . , wn)Z(w′1, . . . , w′n) then (w′1, . . . , w′n)Z(w1, . . . , wn).

Let X ⊆ V ∪C be a non-empty set. An X–compatible first-order bisimulation Z between two
pointed structures (M, s) and (M ′, s′) is a first-order bisimulation between M and M ′ such that

8. for all x1, . . . , xn ∈ X, it holds that (s(x1), . . . , s(xn))Z (s′(x1), . . . , s′(xn)).

A C-compatible first-order bisimulation between two pointed structures is often abusively
called a first-order bisimulation.

The bisimulation notion that we obtain in this extended setting with functions is again
different from the usual notion of (partial) isomorphism, but the difference, which concerns the
atomic base, is more visible in that case than for pure predicate logics. Basically, condition 1 of
a (partial) isomorphism is replaced by a set of back and forth semantic conditions dealing with
the functions, but without any reference to, or evaluation of, first-order (atomic) formulas, like
for our predicate bisimulations.

Theorem 4. Theorems 1, 2, 3 and Corollaries 1, 2, 3 hold if we replace at the same time
the term “predicate bisimulation” with “first–order bisimulation” and the languages LPFOL and
LPFOL(X) with the languages with function symbols LPFFOL and LPFFOL(X) respectively.

The invariance notions of pure predicate logic and first–order logic with equality are also
predicate bisimulation and first–order bisimulation because the equality predicate is consid-
ered on a par with the other predicates, it is just like any other predicate. In that case, the

25

corresponding condition 1. of Definitions 29 and 31 for the equality predicate is the follow-
ing: if (w,w)Z0(w′1, w′2) then w′1 = w′2. With the other conditions, this condition is equiva-
lent to: (w1, . . . , wi, . . . , wi, . . . , wn)Z0(w′1 . . . , w′i, . . . , w′j , . . . , w′n) implies w′i = w′j . This condi-
tion does not follow from the other conditions of a first-order or a predicate bisimulation. On
the other hand, it holds for these notions that if (w1, . . . , wi, . . . , wn)Z(w′1, . . . , w′i, . . . , w′n) then
(w1, . . . , wi, . . . , wi, . . . , wn)Z(w′1, . . . , w′i, . . . , w′i, . . . , w′n).

Proposition 10. If there is a first–order bisimulation between two pointed structures then there
is a predicate bisimulation and a partial isomorphism between them. Any two finite or countable
structures such that there is a predicate or (if they contain functions) a first–order bisimulation
between them are isomorphic.

13 Protologics in Molecular Logics
Protologics, introduced in [6], are logics such that the truth conditions of their connectives can
be expressed by means of first-order formulas. Hence, protologics represent and correspond to a
very large fragment of non-classical logics. We show that every protologic is as expressive as a
molecular logic. The proofs are essentially the same as in [6]. In this section, Q and P are sets
of predicates such that Q ⊆ P.

Definition 32 (Translation from protologics to molecular logics). Let Ca be a set of abstract
connectives.
Syntax. We define the mapping t from the abstract connectives of Ca to molecular connectives
as follows:

• t(Q) = Q for all predicate Q ∈ Q;

• For abstract connectives of the form (χ(x), (Q1, . . . ,Qn)), we proceed as follows. We first
translate χ(x) into predicate atomic logic using the translation Tx of Definition 27 We
obtain a formula χ′ = Tx(χ(x)) of predicate atomic logic. That transformation is injective.
That formula χ′ is then transformed into a molecular connective c. The skeleton decompo-
sition tree of that molecular connective is the skeleton syntactic tree of χ′ where the leafs
labeled with the skeleton of a predicate Qi are all replaced by the same skeleton symbol idlki
where ki is the arity of each Qi and l is a natural number which allows to distinguish idlki
from the other symbols of the form idl

′

ki appearing in the skeleton. The resulting molecular
connective c of arity n and type signature (k, k1, . . . , kn) is denoted t(χ(x), (Q1, . . . ,Qn)).

The resulting set of molecular connectives is denoted t(Ca). Then, this translation t is ex-
tended to the whole language as follows: for all ? ∈ Ca and all ϕ1, . . . , ϕn ∈ LCa of appropriate
types, t(?(ϕ1, . . . , ϕn)) = t(?)(t(ϕ1), . . . , t(ϕn)). By construction, this transformation t is injec-
tive.
Semantics. Let (M,w) be a pointed Ca–model with M = (W,R). The pointed t(Ca)–model
t(M,w) is the t(Ca)–model ((W,R′), w) where R′ is R together with the relations of Definition
26.

Lemma 3. Let Ca be a set of abstract connectives, let ϕ ∈ LCa and let (M,w) be a pointed
Ca–model where w is of size the type of ϕ. Then, we have that

(M,w) ϕ iff t(M,w) t(ϕ)

Proof: It is the same as [6, Lemma 3]. �

26

Definition 33 (Translation from molecular logics to protologics). Let C be a set of molecular
connectives.
Syntax. We define the mapping st from molecular connectives to abstract connectives inductively
as follows:

• st(p) , p for all propositional letters p of C.

• For all molecular connectives of the form c = ?(c1, . . . , cm) we proceed as follows. First, we
replace all symbols idlk appearing in c by fresh and distinct propositional letters (p1, . . . , pn).
This yields a formula ϕ ∈ LC of some type k. Then, we pick a tuple of free variables x
of size k and we define the first–order formula stx(ϕ) inductively as follows. If ϕ is a
propositional letter p then stx(p) , Qx, where Q is a predicate symbol of Q. If ϕ is of the
form ?(ϕ1, . . . , ϕm) then

– if ? = (σ,±,∀, k, (±1, . . . ,±m)) then
stx(?(ϕ1, . . . , ϕm)) , ∀y1 . . . ym

(
±1sty1(ϕ1) ∨ . . . ∨ ±nstym(ϕm) ∨ ±Rσy1 . . . ymx

)
;

– if ? = (σ,±,∃, k, (±1, . . . ,±m)) then
stx(?(ϕ1, . . . , ϕm)) , ∃y1 . . . ym

(
±1sty1(ϕ1) ∧ . . . ∧ ±nstyn(ϕm) ∧ ±Rσy1 . . . ymx

)
;

where y1, . . . , yn are fresh tuples of free variables and R is a predicate symbol of P − Q.
We recall that for all formulas ψ, ±iψ stands for ψ if ±i = + and for ¬ψ if ±i = −, and
that Rσy1 . . . ymym+1 , Ryσ−(1) . . . yσ−(m)yσ−(m+1).

Finally, we define the abstract connective st(c) , (stx(ϕ), (Q1, . . . , Qn)) where for all
i ∈ J1;nK, Qi = st(pi).

The resulting set of abstract connectives is denoted st(C). Then, this translation st is ex-
tended to the whole language as follows: for all ? ∈ C and all ϕ1, . . . , ϕn ∈ LC of appropriate
types, st(?(ϕ1, . . . , ϕn)) = st(?)(st(ϕ1), . . . , st(ϕn)). By construction, this transformation st is
injective.

Lemma 4. Let C be a set of molecular connectives, let ϕ ∈ LC and let (M,w) be a pointed
C–model where w is of size the type of ϕ. Then, we have that

(M,w) ϕ iff (M,w) st(ϕ)

Proof: It is the same as [6, Lemma 4]. �

Theorem 5. The class of protologics is as expressive as the class of molecular logics.

Proof: It is the same as [6, Theorem 2]. �

Definition 34 (Predicate molecular logic). A predicate molecular logic is a molecular logic whose
molecular connectives are built up from the predicate atomic connectives {⊥, U} ∪ {2k,⊃k| k ∈
N∗} ∪ {[f lk] | k, l ∈ N∗ and f lk : J1; lK → J1; kK is a mapping} of Definitions 25 and 26, together
with some set of propositional letters (possibly empty).

Theorem 6. The class of predicate molecular logics is as expressive as the class of molecular
logics and therefore also as expressive as the class of protologics.

Proof: It is the same as [6, Theorem 3]. �

27

14 Generalized Keisler Theorems for Protologics
Our ultimate objective in this article is to provide an appropriate notion of bisimulation for any
protologic, together with Keisler type theorems, when this is possible. This is what we are going
to achieve in this section thanks to the translation from protologics to (predicate) molecular
logics which was defined in the previous sections. Our method is the following:

1. Translate the given protologic L into a predicate molecular logic L′ (thanks to the translation
t of Definition 32);

2. Define the notion of Ca–bisimulation associated to L via the notion of C–bisimulation
associated to L′ (thanks to Definition 35);

3. State Keisler type characterization theorems for L if its connectives are normal (our The-
orem 7).

Every protologic (LCa , ECa ,) is as expressive as the predicate molecular logic
(t(LCa), t(ECa),) (see Definition 32) which is itself based on a set of molecular connectives
t(Ca) defined by the translation t of Definition 32. The notion of t(Ca)–bisimulation canonically
induces a notion of bisimulation for the protologic (LCa , ECa ,), as follows.

Definition 35 (Ca–bisimulation for abstract connectives). Let Ca be a set of abstract connectives
and let (LCa , ECa ,) be a protologic (defined in [6, Sect. 4.1]). Let (M,w), (M ′, w′) ∈ ECa be
two pointed Ca–models. We say that (M,w) and (M ′, w′) are Ca–bisimilar, written (M,w)→Ca

(M ′, w′), when t(M,w) and t(M ′, w′) (defined in Definition 32) are t(Ca)–bisimilar, that is
t(M,w) →t(Ca) t(M ′, w′). We also say that the set of abstract connectives Ca is normal when
the set of molecular connectives t(Ca) is itself normal.

This is well-defined because for any pointed Ca–model (M,w), we have by definition of t that
(M,w) and t(M,w) are based on the same set of worlds W .

Theorem 7 (Keisler theorems for protologics). Let Ca be a set of normal abstract connectives
complete for conjunction and disjunction. Then, theorems 1, 2, 3 hold if we replace “pointed
structures” by “pointed Ca–models”, the language “LPFOL(X)” by the language “LCa” and “X–
compatible predicate bisimulation” by “Ca–bisimulation”.

Atomic and molecular connectives C can be equivalently seen as abstract connectives Ca, in
the sense that one can find abstract connectives which have the same truth conditions as any given
atomic or molecular connective.2 For example, the connective of tense logic of skeleton (τ1,−, t2)
has the same truth conditions as the abstract connective (χ(x),Q), where χ(x) , ∀y(Ryx→ Qy).
Theorems 7 suggests that the notion of C–bisimulation for atomic and molecular connectives C
and the notion of Ca–bisimulation for the corresponding abstract connectives should be the same.
We can indeed check on the example of tense logic that they do coincide.

Example 7 (Tense logic). Let us consider the translation by t of the abstract connective
(χ(x),Q), where χ(x) , ∀y(Ryx → Qy). This connective corresponds to the box modality
2− of tense logic. We obtain that c , t(χ(x),Q) = 21 ⊃2 ([f2

2]R, [f1
2]id1

1) is a universal molec-
ular connective, where R is a propositional letter of skeleton (Id,+,∃, 2), f2

2 : J1; 2K → J1; 2K is
defined by f2

2 (1) , 2 and f2
2 (2) = 1 and f1

2 : {1} → J1; 2K is defined by f1
2 (1) = 2.

According to the definition of C–bisimulation, the clause for this molecular connective is the
following:

2See [6, Definition 3] for a precise definition of abstract connectives.

28

if wZcw′ and −R′cv′w′ then there is v such that −Rcvw and vZv′.

(We recall that Zid1
1

= Z in that case.)
The C–bisimulation clause for the atomic connective 2− of skeleton (τ1,−, t2) is the following:

if wZcw′ and −R
′−τ1
2 v′w′ then there is v such that −R

′−τ1
2 v′w′ and vZv′, that is,

if wZcw′ and R′2v
′w′ then there is v such that R′2v′w′ and vZv′.

So, if we prove that for all w, v we have that Rcvw iff −R2vw, then we will have proved
that the two definitions of bisimulation are equivalent (at least for this bisimulation clause, but
the other clause for the 3 modality is proved similarly). This is what the following proposition
proves.

Proposition 11. Let P = {R} and let M = (W,R) be a predicate CP–model such that the
predicate symbol R is associated to the relation R2. Let c be the universal molecular connective
21 ⊃2 ([f2

2]R, [f1
2]id1

1). Then, for all w, v ∈ W , we have that Rcvw iff −R2vw. (We recall that
Rc is defined in Definition 16.)

This leads us to a more general problem, to determine whether two equally expressive logics
have the same notion of bisimulation.

15 Bisimulations of Equally Expressive Logics are Equiv-
alent

Our definitions of C–bisimulation are defined from the truth conditions of atomic or molecular
conectives. However, these truth conditions may take many equivalent forms, in particular if
we take two logics which are equally expressive but are not defined on the basis of the same
connectives. In that case, we would nevertheless want to obtain the same notion of bisimulation
or at least equivalent definitions. That is, we would want that when we consider two equally
expressive molecular logics, their notions of bisimulations coincide. To be more precise, we would
want that, in that case, if we take two bisimilar models in one logic then the translations of these
two models in the second equally expressive logic are also bisimilar. That is what we are going
to prove in that section. We first spell out what we mean by “schematically equally expressive”
logics.

Definition 36 (Schematic equi–expressivity). Let L1 = (L1, E1, 1) and L2 = (L2, E2, 2)
be two molecular logics such that L1 and L2 are built up from the sets of molecular connectives
C1 and C2. We say that L1 is schematically as expressive as L2 when they are equally expressive
and, moreover, if {i, j} = {1, 2}, the mappings Tϕi and TMi are such that:

i. The mapping Tϕi is induced from a translation of the connectives of Ci which respects the
quantified decomposition of the connectives. That is, for all molecular connectives c ∈ Ci
and all vertices c0 of the quantified decomposition tree of c, the mapping Tϕi defines a
molecular connective Tϕi (c0) built up from the molecular connectives of Cj which is existential
(resp. universal) if c0 is existential (resp. universal) and which has the same arity, tonicity
signature and idiks as c0 (which can be equal to some idik). We extend this definition
inductively to molecular connectives of Ci as follows: if c ∈ Ci is maximally decomposed
into c = c0(c1, . . . , cn) then

Tϕi (c) , Tϕi (c0)(Tϕi (c1), . . . , Tϕi (cn)).

29

Then, we extend inductively the translation to the whole language Li as follows. For all
c ∈ Ci and all ϕ1, . . . , ϕm ∈ Li, we define

Tϕi (c(ϕ1, . . . , ϕm)) , Tϕi (c)(Tϕi (ϕ1), . . . , Tϕi (ϕm))

ii. The mapping TMi is induced from a translation of the relations of the Ci–models. That is, for
all Mi,M

′
i ∈ Ei such that Mi = (M,wi) and M ′i = (M,w′i), we have that TMi (Mi) = (N,w2)

and TMi (M ′i) = (N,w′2), i.e. they are also based on the same Cj–model. In that case, we
write them TMi (wi) and TMi (w′i). Then for all Mi ∈ Ei, all w1, . . . , wn, w ∈ w(Mi,Ci), all
c0 ∈ Ci and all vertices c ∈ V ′c0

of the quantified decomposition tree of c0,

RcT
M
j (w1) . . . TMj (wn)TMj (w) iff RTϕ

i
(c)w1 . . . wnw

Our notion of schematic equi–expressivity is a refinement of the notion of equi–expressivity
of Definition 1.

Proposition 12. Let L1 = (L1, E1, 1) and L2 = (L2, E2, 2) be two molecular logics such
that L1 and L2 are built up from the sets of molecular connectives C1 and C2. If L1 and L2 are
schematically equally expressive (via some mappings TM1 , Tϕ1 , T

M
2 , Tϕ2) then for all M1,M

′
1 ∈ E1

which are C1–bisimilar, TM1 (M1) and TM1 (M ′1) are also C2–bisimilar.

16 Conclusion
We have introduced a generic method which allows us to find out an appropriate notion of bisim-
ulation for an arbitrary logic whose truth conditions are defined by first–order formulas. This
bisimulation notion comes as well with a number of associated model–theoretical results of the
logic considered. In doing so, we have discovered new invariance notions for first–order logic.
Compared to the original Keisler theorems, our results replace isomorphisms by predicate bisim-
ulations and first–order bisimulations and we generalize existing results and consider arbitrary
sets of first–order formulas, and not only the set of all sentences. On countable structures, the
notions of isomorphism, partial isomorphism, predicate bisimulation and first–order bisimulation
coincide. We expect that our notions of predicate and first–order bisimulation differ from isomor-
phisms on uncountable structures. By the (upward) Löwenheim–Skolem theorem and because
our results hold for countable languages, they open new perspectives for the study of uncountable
structures such as the non–standard models of arithmetic.

These generalizations and new versions of existing theorems confirm, together with the re-
discovery of numerous existing results [5], the soundness and generic character of our overall
approach. We do not claim to have introduced brand new notions of invariance for first-order
logic, they are in fact natural and intuitive variants of the usual notions of (partial) isomorphism.
Instead, we claim to have introduced a generic notion of C-bisimulation which is somehow ‘deeper’
and more basic than the usual notion of bisimulation for modal logic or even the usual notion
of (partial) isomorphism for first-order logic. Indeed, all invariance notions introduced in the
literature (including those) can all be seen as instances of our general notions of C-bisimulation
of Definitions 17 and 19.

References
[1] Sergio Abriola, Maŕıa Emilia Descotte, and Santiago Figueira. Model theory of XPath on

data trees. part II: binary bisimulation and definability. Inf. Comput., 255:195–223, 2017.

30

[2] Gerard Allwein and J. Michael Dunn. Kripke models for linear logic. The Journal of
Symbolic Logic, 58(2):514–545, June 1993.

[3] Guillaume Aucher. Displaying Updates in Logic. Journal of Logic and Computation,
26(6):1865–1912, March 2016.

[4] Guillaume Aucher. Selected Topics from Contemporary Logics, chapter Towards Universal
Logic: Gaggle Logics, pages 5–73. Landscapes in Logic. College Publications, October 2021.

[5] Guillaume Aucher. Generalized Keisler Theorems for Atomic and Molecular Logics. Re-
search report, Université de Rennes 1, December 2022.

[6] Guillaume Aucher. On the universality of atomic and molecular logics via protologics. Logica
Universalis, 16(1):285–322, 2022.

[7] Guillaume Aucher, Johan van Benthem, and Davide Grossi. Modal logics of sabotage revis-
ited. J. Log. Comput., 28(2):269–303, 2018.

[8] Jean-Yves Béziau. Logica Universalis, chapter From Consequence Operator to Universal
Logic: A Survey of General Abstract Logic. Birkhäuser Basel, 2007.

[9] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cam-
bridge Tracts in Computer Science. Cambridge University Press, 2001.

[10] C. C. Chang and H. J. Keisler. Model Theory. Studies in Logic and the Foundations of
Mathematics. Elsevier, 3rd edition, 1990.

[11] Maarten de Rijke. A note on graded modal logic. Studia Logica, 64(2):271–283, 2000.

[12] J Michael Dunn. Gaggle theory: an abstraction of galois connections and residuation, with
applications to negation, implication, and various logical operators. In European Workshop
on Logics in Artificial Intelligence, pages 31–51. Springer Berlin Heidelberg, 1990.

[13] J Michael Dunn. Partial-gaggles applied to logics with restricted structural rules. In Peter
Schroeder-Heister and Kosta Dosen, editors, Substructural Logics, pages 63–108. Clarendon
Press: Oxford, 1993.

[14] Herbert B. Enderton. An Introduction to Mathematical Logic. Academic Press, 2001.

[15] Marta Garćıa-Matos and Jouko Väänänen. Abstract model theory as a framework for
universal logic. In Jean-Yves Béziau, editor, Logica Universalis, pages 19–33, Basel, 2007.
Birkhäuser Basel.

[16] Rajeev Goré. Substructural logics on display. Logic Journal of IGPL, 6(3):451–504, 1998.

[17] Viktor Grishin. On a generalization of the Ajdukiewicz-Lambek system. In A. I. Mikhailov,
editor, Studies in Nonclassical Logics and Formal Systems, pages 315–334. Nauka, Moscow,
1983.

[18] David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In Ugo Montanari and Vladimiro
Sassone, editors, CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa,
Italy, August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in Computer Science,
pages 263–277. Springer, 1996.

31

[19] Natasha Kurtonina and Maarten de Rijke. Bisimulations for temporal logic. Journal of
Logic, Language and Information, 6(4):403–425, 1997.

[20] Joachim Lambek. The mathematics of sentence structure. American mathematical monthly,
65:154–170, 1958.

[21] Maarten Marx and Yde Venema. Multi-dimensional modal logic, volume 4 of Applied logic
series. Kluwer, 1997.

[22] Michael Moortgat. Symmetries in natural language syntax and semantics: the Lambek-
Grishin calculus. In Logic, Language, Information and Computation, pages 264–284.
Springer, 2007.

[23] Till Mossakowski, Razvan Diaconescu, and Andrzej Tarlecki. What is a logic translation?
Logica Universalis, 3(1):95–124, 2009.

[24] Till Mossakowski, Joseph Goguen, Răzvan Diaconescu, and Andrzej Tarlecki. What is
a logic? In Jean-Yves Beziau, editor, Logica Universalis, pages 111–133, Basel, 2007.
Birkhäuser Basel.

[25] Grigory K. Olkhovikov. On expressive power of basic modal intuitionistic logic as a fragment
of classical FOL. J. Appl. Log., 21:57–90, 2017.

[26] Joseph J. Rotman. An Introduction to the Theory of Groups, volume 148 of Graduate texts
in mathematics. Springer, 1995.

[27] Johan van Benthem and Kees Doets. Higher-order logic. In Dov Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, volume 1, pages 275–329. Reidel Publishing
Company, 1983.

A Proofs of Lemmas 1, 2, Theorems 1, 2, 3 and Corollaries
1, 2, 3

Lemma 1. Let ϕ ∈ LPFOL, let x be the tuple of free variables and constants of ϕ (possibly empty)
and let (M, s) be a pointed structure. Then, we have that

(M, s) ϕ iff Tx(M, s) Tx(ϕ).

Proof: (sketch) Similar to the proof of [6, Lemma 1], by induction on ϕ. We only prove some of
the cases which differ significantly. Let ϕ(x1, . . . , xk) ∈ LPFOL(x, k).

• If ϕ = Rxi1 . . . xil with k ≤ l then there is a unique (surjective) mapping f lk : J1; lK→ J1; kK
such that for all j ∈ J1; lK, we have that f lk(j) = ij . Then, Tx(M, s) Tx(ϕ)
iff (T (M), (s(x1), . . . , s(xk)) [f lk]R
iff (T (M), (s(xf l

k
(1)), . . . , s(xf l

k
(l)))) R by definition of [f lk]

iff (T (M), (s(xi1), . . . , s(xil))) R
iff Rs(xi1) . . . s(xil) holds
iff (M, s) Rxi1 . . . xil
iff (M, s) ϕ

32

• If ϕ = ∀xψ(x1, . . . , xk, x) with k ≥ 1, then Tx(M, s) Tx(ϕ)
iff (T (M), (s(x1), . . . , s(xk))) 2kT(x1,...,xk,x)(ψ(x1, . . . , xk, x))
iff for all w ∈W , (T (M), (s(x1), . . . , s(xk), w)) T(x1,...,xk,x)(ψ(x1, . . . , xk, x))
iff for all w ∈ W , T(x1,...,xk,x)(M, s[x := w]) T(x1,...,xk,x)(ψ(x1, . . . , xk, x)) by definition
of T(x1,...,xk,x)

iff for all w ∈W , (M, s[x := w]) ψ(x1, . . . , xk, x) by Induction Hypothesis
iff (M, s) ∀xψ(x1, . . . , xk, x) by definition of ∀x
iff (M, s) ϕ.

�

Lemma 2. Let (M,w) be a pointed predicate CP–model of type k, let ϕ ∈ LCP of type k and let
x ∈ (V ∪ C)k. Then,

(M,w) ϕ iff STx (M,w) STx(ϕ).

Moreover, for all pointed structures (M, s) without distinguished elements, we have that
STx (Tx(M, s)) ≡x (M, s) and for all pointed predicate CP–model (M,w), we have that
Tx (STx(M,w)) ≡k (M,w).

Proof: (sketch) Similar to the proof of [6, Lemma 2], by induction on ϕ. We only prove two cases
which differ significantly. Let ϕ ∈ LCP of type k and let x = (x1, . . . , xk) ∈ (V ∪ C)k.

• If ϕ = [f lk]ψ then STx(M,w) STx(ϕ)
iff STx(M,w) STx([f lk]ψ)
iff (ST (M), swx) ST(x

fl
k

(1),...,xfl
k

(l))(ψ) by definition of STx

iff (ST (M), svy) STy(ψ) where y = (xf l
k

(1), . . . , xf l
k

(l)) and v = (wf l
k

(1), . . . , wf l
k

(l))

iff (M, v) ψ by Induction Hypothesis
iff (M,w) [f lk]ψ because we have that R[f l

k
]vw

iff (M,w) ϕ.

• If ϕ = 2kψ then STx(M,w) STx(ϕ)
iff STx(M,w) STx(2kψ)
iff (ST (M), swx) ∀xST(x,x)(ψ) by definition

iff for all w ∈W , (ST (M), swx [x := w]) ST(x,x)(ψ)

iff for all w ∈W , (ST (M), s(w,w)
(x,x)) ST(x,x)(ψ) by definition

iff for all w ∈W , (M, (w,w)) ψ by Induction Hypothesis
iff (M,w) 2kψ

iff (M,w) ϕ.

�

Lemma 5. Let CP be the set of predicate atomic connectives (introduced in Definition 25).
A CP–bisimulation between two CP–models is a predicate bisimulation between their associated
structures (defined in Definition 28), but which does not necessarily fulfill condition 5 of Defini-
tion 29.

33

Proof: Let us consider the predicate atomic connectives CP = P ∪ {⊥, U} ∪ {‖k,⊃k,2k | k ∈
N∗} ∪ {[f lk] | k, l ∈ N∗ and f lk : J1; lK → J1; kK is surjective} (defined in Definition 25). Let M1
and M2 be two CP–models and let Z be a non-empty binary relation between finite sequences of
M1 and M2 of the same length. Then, by Definition 17, Z is a CP–bisimulation between M1 and
M2 when for all M,M ′ ∈ {M1,M2} with M = (W,R) and M ′ = (W ′,R′), all w, v, u ∈ w(M,C),
all w, v ∈W and all w′, v′, u′ ∈ w(M ′,C), all w′, v′ ∈W ′, all R ∈ P, it holds that

• condition for R: if wZw′ and Rw then R′w′, for all relations R and R′ both associated to
R (in the associated structure);

• condition for ⊥: if wZw′ and R′⊥(w′) then R⊥(w), this condition always holds;

• condition for [f lk]: for all k, l ∈ N∗ and all surjections f lk, if wZw′ and R′[f l
k

]w
′v′ then there

is v ∈ w(M,C) such that vZv′ and R[f l
k

]wv,

that is, if wZw′ then f lk(w)Zf lk(w′), where for all w = (w1, . . . , wk), f lk(w) ,
(wf l

k
(1), . . . , wf l

k
(l));

• condition for ⊃k: for all k ∈ N∗, if wZw′ and Rkv′u′w′ then there are v, u ∈ w(M,C) such
that v′Zv, uZu′ and Rkvuw,
that is, if wZw′ then w′Zw;

• condition for 2k: for all k ∈ N∗, if wZw′ and R′k,1w
′v′u′ then there are v, u ∈ w(M,C)

such that vZv′ and uZu′ and Rk,1wvu,
that is, if wZw′ then for all v′ ∈W ′ there is v ∈W such that vZv′ and (w, v)Z(w′, v′);

• condition for U : if wZw′ and v′ ∈W ′ then there is v ∈W such that vZv′,
that is, for all w′ ∈W ′ there is w ∈W such that wZw′.

Now, if we combine the conditions above, we obtain the definition of a predicate bisimulation
on the structures associated to M1 and M2 without condition 5. �

Theorem 1. Let X ⊆ V ∪ C be non-empty and assume that LPFOL(X) is countable. Let (M, s)
and (M ′, s′) be two pointed structures. Then the following are equivalent:

1. (M, s) and (M ′, s′) make true the same formulas of LPFOL(X);

2. there exists an ultrafilter U and a X–compatible predicate bisimulation between
∏
U

(M, s)

and
∏
U

(M ′, s′).

Proof: The proof follows the same reasoning as the proof of [5, Theorem 1], using [5, Lemma 1]
and [5, Proposition 9, Appendix] and [5, Proposition 11] as well as the ‘translation’ Lemmas 1
and 2.

First, we prove that 2. implies 1. By [5, Proposition 9, Appendix], for all formulas ϕ ∈
LPFOL(X), we have that (M, s) ϕ iff

∏
U

(M, s) ϕ. By assumption and Proposition 9, this

implies that
∏
U

(M ′, s′) ϕ and, again by [5, Proposition 9, Appendix], the latter is equivalent

to (M ′, s′) ϕ.

34

Now, we prove that 1. implies 2. Let U be a countably incomplete ultrafilter over N
(it exists by [9, Example 2.72]). By [5, Proposition 11], the ultrapowers

∏
U

M and
∏
U

M ′

are ω–saturated and therefore T

(∏
U

M

)
and T

(∏
U

M ′

)
are ω–saturated as well (for the

first-order language LPFOL). Now, for all formula ϕ(x) ∈ LPFOL(X),
∏
U

(M, s) ϕ(x) im-

plies
∏
U

(M ′, s′) ϕ(x) because of 1. and [5, Proposition 9, Appendix]. That is, for all

formula ϕ(x) ∈ LPFOL(X),
(∏

U

M,
∏
U

s

)
ϕ(x) implies

(∏
U

M ′,
∏
U

s′

)
ϕ(x). There-

fore, by Lemma 1, for all formula ϕ(x) ∈ LPFOL(X), we have that Tx

(∏
U

M,
∏
U

s

)
Tx(ϕ)

implies Tx

(∏
U

M ′,
∏
U

s′

)
Tx(ϕ) (if ϕ is a sentence without constant, we take in

Definition 27 of T∅ a variable x0 such that x0 ∈ X). That is, for all formula

ϕ ∈ LPFOL(X), we have that
(
T

(∏
U

M

)
,

(∏
U

s(x1), . . . ,
∏
U

s(xk)
))

Tx(ϕ) implies(
T

(∏
U

M ′

)
,

(∏
U

s′(x1), . . . ,
∏
U

s′(xk)
))

Tx(ϕ) (∗). Then, using Lemmas 1 and 2, we

can prove the following:

Claim 1. For all x1, . . . , xk ∈ X,
(
T

(∏
U

M

)
,

(∏
U

s(x1), . . . ,
∏
U

s(xk)
))

 CP(
T

(∏
U

M ′

)
,

(∏
U

s′(x1), . . . ,
∏
U

s′(xk)
))

.

Proof: (of the Claim) Let ϕ ∈ LCP of type k ∈ N∗ and let x1, . . . , xk ∈ X. Assume that(
T

(∏
U

M

)
,

(∏
U

s(x1), . . . ,
∏
U

s(xk)
))

ϕ.

Then, by Lemma 2,

STx

(
T

(∏
U

M

)
,

(∏
U

s(x1), . . . ,
∏
U

s(xk)
))

STx(ϕ).

That is, (
ST

(
T

(∏
U

M

))
, s

(
∏

U
s(x1),...,

∏
U
s(xk))

x

)
STx(ϕ).

So, by Lemma 1,(
T

(
ST

(
T

(∏
U

M

)))
,

(∏
U

s(x1), . . . ,
∏
U

s(xk)
))

Tx (STx(ϕ)) .

35

That is, again by Lemma 2,(
T

(∏
U

M

)
,

(∏
U

s(x1), . . . ,
∏
U

s(xk)
))

Tx (STx(ϕ)) .

So, by (∗), we have that(
T

(∏
U

M ′

)
,

(∏
U

s′(x1), . . . ,
∏
U

s′(xk)
))

Tx (STx(ϕ)) .

That is, again by Lemma 2,(
T

(
ST

(
T

(∏
U

M ′

)))
,

(∏
U

s′(x1), . . . ,
∏
U

s′(xk)
))

Tx (STx(ϕ)) .

Then, by Lemma 1,(
ST

(
T

(∏
U

M ′

))
, s

(
∏

U
s′(x1),...,

∏
U
s′(xk))

x

)
STx(ϕ).

Thus, by Lemma 2,(
T

(∏
U

M ′

)
,

(∏
U

s′(x1), . . . ,
∏
U

s′(xk)
))

ϕ.

and we have proved the claim. �
Hence, by [5, Lemma 1] and Lemma 5, there is a X–compatible predicate bisimulation be-

tween the structures associated to
(
T

(∏
U

M

)
,
∏
U

s

)
and

(
T

(∏
U

M ′

)
,
∏
U

s

)
and therefore

between
(∏

U

M,
∏
U

s

)
and

(∏
U

M ′,
∏
U

s

)
, that is, between

∏
U

(M, s) and
∏
U

(M ′, s′). �

Corollary 1. Assume that LPFOL is countable and let (M, s) and (M ′, s′) be two pointed structures.
Then the following are equivalent:

1. (M, s) and (M ′, s′) make true the same sentences of LPFOL;

2. there exists an ultrafilter U and a predicate bisimulation between
∏
U

(M, s) and
∏
U

(M ′, s′).

Proof: The set of sentences is LPFOL(C). The result follows by a direct application of Theorem 1.
�

Theorem 2. Let X ⊆ V ∪ C be non-empty and assume that LPFOL(X) is countable. Let K and
K ′ be classes of pointed structures such that K ′ is closed under ultraproduct. Then, the following
are equivalent:

1. K is definable in K ′ by a set of formulas of LPFOL(X);

2. K is closed under X–compatible predicate bisimulations in K ′ and closed under ultraprod-
ucts, and K ′ −K is closed under ultrapowers.

36

Proof: The proof follows the same reasoning as the proof of [5, Theorem 2]. The notion of X–
compatibility is used in the direction from 1. to 2. As for the direction from 2. to 1., we consider
the following set of pure predicate formulas:

T ,
{
ϕ ∈ LPFOL(X) | for all (M, s) ∈ K, (M, s) ϕ

}
Let (M0, s0) ∈ K ′ be a pointed structure of K ′ such that (M0, s0) T . We are going to

prove that (M0, s0) ∈ K. Let us consider the following set of formulas:

Σ , {ϕ ∈ LPFOL(X) | (M0, s0) ϕ}

Σ is finitely satisfiable in K. Indeed, assume that the finite set {ψ1, . . . , ψn} ⊆ Σ is not
satisfiable in K. Then, ¬ψ1∨. . .∨¬ψn is true on all pointed structures of K. So, ¬ψ1∨. . .∨¬ψn ∈
T . However, it would be false on (M0, s0), which is impossible. But then, [5, Proposition 10]
shows that Σ is satisfiable in an ultraproduct

∏
U

(Ni, si) of pointed structures (Ni, si) ∈ K. Let

us take (N, s) =
∏
U

(Ni, si). Then, (N, s) ∈ K by closure of K under ultraproduct. Moreover,

(N, s) Σ. So, for all ϕ ∈ LPFOL(X), (M0, s0) ϕ implies (N, s) ϕ. Thus, by closure of
LPFOL(X) under Boolean negation, for all ϕ ∈ LPFOL(X), (M0, s0) ϕ iff (N, s) ϕ. Thus, by
Theorem 1, there exists an ultrafilter U over a non-empty set I and a X–compatible predicate
bisimulation between

∏
U

(M0, s0) and
∏
U

(N, s). Now,
∏
U

(N, s) ∈ K because (N, s) ∈ K and

closure of K under ultraproduct. But
∏
U

(M0, s0) ∈ K ′ by closure of K ′ under ultraproducts. So,∏
U

(M0, s0) ∈ K by closure of K under X–compatible bisimulation in K ′. Finally, since K ′ −K

is closed under ultrapower, (M0, s0) must belong to K, since otherwise
∏
U

(M0, s0) would not be

in K. This completes the proof of the theorem. �

Corollary 2. Let K be a class of pointed structures. Then, the following are equivalent:

1. K is definable by a set of sentences of LPFOL;

2. K is closed under predicate bisimulations and ultraproducts, and K is closed under ultra-
powers.

Proof: The set of sentences is LPFOL(C). The result follows from a direct application of Theorem
2 with X = C and K ′ =MFOL. �

Theorem 3. Let X ⊆ V∪C be non-empty and assume that LPFOL(X) is countable. Let K and K ′
be classes of pointed structures such that K ′ is closed under ultraproducts. Then, the following
are equivalent:

1. K is definable in K ′ by means of a single formula ϕ ∈ LPFOL(X);

2. Both K and K ′−K are closed under X–compatible predicate bisimulations in K ′ and closed
under ultraproducts.

Proof: It is similar to the proof of [5, Theorem 3]. The direction from 1. to 2. is easy. For
the converse, we assume that K and K ′ − K satisfy the stated closure conditions. Hence by
Theorem 2, there are sets of formulas of LPFOL(X), T1 and T2, defining K and K ′−K respectively.

37

Obviously, their union is inconsistent in the sense that there is no pointed structure (M, s) of
K ′ such that (M, s) T1 ∪ T2. So then, by [5, Proposition 10], there exist ϕ1, . . . ϕn ∈ T1
and ψ1, . . . , ψm ∈ T2 such that for all pointed structures (M, s) of K ′, it is not the case that
(M, s) ϕ1 ∧ . . . ∧ ϕn ∧ ψ1 ∧ . . . ∧ ψm (∗). To complete the proof, we show that K is in fact
defined in K ′ by the conjunction ϕ1 ∧ . . . ∧ ϕn. By definition, for any (M, s) in K we have
(M, s) ϕ1 ∧ . . . ∧ ϕn. Conversely, for all (M, s) of K ′, if (M, s) ϕ1 ∧ . . . ∧ ϕn then there
must be i ∈ J1;mK such that (M, s) ψi does not hold. Indeed, otherwise, we would have that
(M, s) ϕ1 ∧ . . .∧ϕn ∧ψ1 ∧ . . .∧ψm, which is impossible by (∗). Hence, it is not the case that
(M, s) T2. Therefore, (M, s) does not belong to K ′ −K, whence (M, s) belongs to K. �

Corollary 3. Let K be a class of pointed structures. Then, the following are equivalent:

1. K is definable by means of a sentence of LPFOL;

2. Both K and K are closed (in MFOL) under predicate bisimulations and ultraproducts.

Proof: The set of sentences is LPFOL(C). The result follows from a direct application of Theorem
3 with X = C and K ′ =MFOL. �

B Proof of Theorem 4
We recall that P is a set of predicate symbols, F is a set of function symbols, V is a set of variables
and C is a set of constants (see Section 2). We also define the head h(t) and the body b(t) of a
term t ∈ T inductively as follows: if t = x or t = c then h(t) = b(t) = t; if t = f(t1, . . . , tm) then
h(t) = f and b(t) = (t1, . . . , tm).

Definition 37 (First–order atomic connectives). The set of propositional letter atomic connec-
tives is CF , {pR | R ∈ P}∪{[h1, . . . , hm] | k ∈ Arity(P,F) and h1, . . . , hm ∈ V ∪ C ∪ F}∪{[f lk] |
k, l ∈ N∗ and f lk : J1; lK→ J1; kK is a surjection} where:

• pR has skeleton (Id,+,∀, k) with k the arity of R ∈ P;

• [h1, . . . , hm] has skeleton (Id,−,∀, (n1 + . . . + nm,m),+) in which ni is the arity of the
function hi (it is 1 if hi ∈ V ∪ C);

• [f lk] has skeleton (Id,−,∀, (k, l),+), for all k, l ∈ N∗ (such that l ≥ k).

The set of first–order atomic connectives CPF is CF to which we add CP and the propositional
letters {pχ | χ ∈ LCF } of skeletons (1,+,∀, k), where k is the type of χ ∈ LCF .

Definition 38 (First–order atomic logic). A first–order CPF–model is a CPF–modelM = (W,R)
such that:

• the relations associated to the connectives of CP satisfy the conditions of Definition 26;

• for all R ∈ P of arity n, the connectives pR are associated to n–ary relations RpR ;

• each connective [h1, . . . , hm] is associated to a relation R[h1,...,hm] over W l where l = m+
n1 + . . .+ nm with ni the arity of the function hi (it is 1 if ni ∈ V ∪ C);

• for all k, l ∈ N∗, the connective [f lk] is associated to a k+ l–ary relation R[f l
k

] such that for
all w1, . . . , wk, v1, . . . , vl ∈ W , it holds that R[f l

k
]v1 . . . vlw1 . . . wk iff for all j ∈ J1; lK, we

have that vj = wσl
k

(j);

38

• for all χ ∈ LCF , the connectives pχ are associated to k–ary relations Rpχ , where k is the
type of χ.

The class of all pointed first–order CPF–models is denoted MCPF . We define the two–tiered
language LCPF as follows:

LCF : χ ::= pR | [h1, . . . , hm]χ | [f lk]χ
LCPF : ϕ ::= pχ | ? (ϕ, . . . , ϕ)

where R ∈ P, [h1, . . . , hm] , [f lk] ∈ CF , ? ∈ CPF (different from propositional letters) and χ
is of type m in the expression [h1, . . . , hm]χ. The satisfaction relation ⊆ MCPF × LCPF
is then defined following Definition 5. If ECPF is a specific class of abstract CPF–models, the
triple (LCPF , ECPF ,) is called the first–order atomic logic associated to ECPF . The triple
(LCPF ,MCPF ,) is called first–order atomic logic.

We also define LCPF (k) , {ϕ ∈ LCPF | k(ϕ) = k} and for all (M,w), (N, v) ∈ MCPF , we
write (M,w) ≡F,k (N, v) when for all ϕ ∈ LCPF (k) it holds that (M,w) ϕ iff (N, v) ϕ.

Definition 39 (Translation from FOL to first–order atomic logic).
Syntax. For all x = (x1, . . . , xk) ∈ (V ∪ C)k, we define the mapping T+

x : LPFFOL(x, k) → LCPF

inductively on the formula ϕ ∈ LPFFOL(x, k) as follows.

• if ϕ = R(t1, . . . , tm) and ϕ contains k different variables or constants x which occur at l
different places in ϕ then we define T+

x (ϕ) , [f lk]T+
x (t1, . . . , tm)pR where [f lk] is defined as

follows:

– if (xi1 , . . . , xil) is the tuple of size l made up of the k variables or constants x =
(x1, . . . , xk) which occur in (t1, . . . , tm) in that order (and possibly with repetition)
then f lk : J1; lK→ J1; kK is defined for all j ∈ J1; lK by f lk(j) = ij .

and where T+
x (t1, . . . , tm) is defined inductively as follows:

– if (t1, . . . , tm) is a tuple of only variables and constants then T+
x (t1, . . . , tm) ,

[t1, . . . , tm];
– otherwise, if one of the terms ti contains a function symbol fi, then T+

x (t1, . . . , tm) ,
T+
x (b(t1), . . . , b(tm)) [h(t1), . . . , h(tm)].

Note that T+
x (ϕ) belongs to LCF .

• if ϕ is of one of the other forms then the translation T+
x is the same as Tx.

Semantics. Let M = ((W, {R1, . . . , Rn, . . . , f1, . . . , fn, . . .}) , s) be a pointed structure. We define
the CPF–model T+(M) , (W,R) as follows:

• the n–ary relation RpR is the n–ary relation R associated to R ∈ P;

• for all h1, . . . , hm ∈ V ∪ C ∪ F , the connectives [h1, . . . , hm] ∈ CF are associated to the re-
lation R[h1,...,hm] , {(v1, . . . , vm, w1, . . . , wm) | for all i ∈ J1; kK, if hi = fi then fi(wi) =
vi, if hi ∈ V ∪ C then wi = vi};

• the other relations of R for the other connectives are defined like in Definition 38.

If x = (x1, . . . , xk) ∈ (V ∪ C)k then we define T+
x (M, s) ,

(
T+(M), (s(x1), . . . , s(xk))

)
.

39

Lemma 6. Let k ∈ N∗, let ϕ = ϕ(x1, . . . , xk) ∈ LPFFOL and let (M, s) be a pointed structure. Then
we have that

(M, s) ϕ iff T+
x (M, s) T+

x (ϕ).

Proof: The proof follows the same reasoning as the proof of Lemma 1. The only real new
case is for ϕ = R(t1, . . . , tn). It follows from the truth condition for that formula: we have
that (M, s) R(t1, . . . , tn) iff R(w1, . . . , wn) and w1 = s(t1), . . . , wn = s(tn). The condition
R(w1, . . . , wn) is captured by pR and the condition w1 = s(t1), . . . , wn = s(tn) is captured by the
composition of appropriate connectives [h1, . . . , hm]. �

Definition 40 (Translation from first–order atomic logic to FOL).
Syntax. For all n ∈ N∗ and all tuples t = (t1, . . . , tm) of tuples of terms such that each tuple
of terms ti is of size ni, we define the mappings ST+

t
: LkCF → L

PF
FOL, where LkCF is the set of

formulas of LCF of type k, inductively as follows. For all [h1, . . . , hm] of type (n1 + . . .+nm,m),
where n1, . . . , nm are the arities of h1, . . . , hm, we define

ST+
t

(pR) , Rt
ST+

t
([h1, . . . , hm]χ) , ST+

(h1(t1),...,hm(tm))(χ).

Then, we define the mapping ST+
t

: LCPF → LPFFOL inductively as follows.

ST+
t

(pχ) , ST+
t

(χ).

where t is an appropriate tuple of tuples of terms. The clauses for the other connectives of CPF
are defined like in [6, Definition 20], tuples of variables x only have to be replaced by tuples of
terms t.

Semantics. Let (M,w) be a pointed CPF–model of type k and let x be a tuple of free vari-
ables or constants of size k. The pointed structure associated to (M,w), denoted ST+

x (M,w) ,
(ST+(M), swx), is defined as follows. The assignment swx is defined like in [6, Definition 20] and
ST+(M) is M to which we remove the relations of the form R[f l

k
], Rk1 , R2k and R∀0 and we

replace relations of the form R[h1,...,hn] with functions f defined as follows: f(w1, . . . , wk) = w
iff R[f]ww1, . . . wk.

Lemma 7. Let (M,w) be a pointed first–order CPF–model, let ϕ ∈ LCPF of type k and let x be
a tuple of k variables. Then, we have that

(M,w) ϕ iff ST+
x (M,w) ST+

x (ϕ)

Moreover, for all pointed structures (M, s), we have that ST+
x

(
T+
x (M, s)

)
≡F,x (M, s) and

for all pointed CPF–model (M,w) of type k, we have that T+
x

(
ST+

x (M,w)
)
≡F,k (M,w).

Proof: (Sketch) By induction on ϕ. The tricky case is when ϕ is of the form [h1, . . . , hn]χ. This
is where we need to index the translation by a tuple of terms. These terms keep track of the
terms or subterms of the formula which is being translated. �

Lemma 8. Let CPF be the set of first–order atomic connectives and let M1 = (W1,R1) and
M2 = (W2,R2) be two ω–saturated CPF–models. We define the binary relation Z0 ⊆ (W1 ×W2)∪
(W2 ×W1) as follows: if {M,M ′} = {M1,M2} then for all w ∈ w(M,C), all w′ ∈ w(M ′,C),
wZ0w′ iff (M,w) CF (M ′, w′). We also define the binary relation Z between finite sequences
of M1 and M2 of the same length by wZw′ iff (M,w) CPF (M ′, w′). Then, the pair of binary
relations (Z,Z0) is a first–order bisimulation between M1 and M2.

40

Proof: Applying [5, Lemma 1] to CF , from the definition of a CF–bisimulation, we obtain con-
ditions 1. – 2. of a first–order bisimulation. Likewise, by [5, Lemma 1] and Lemma 5, Z is a
predicate bisimulation. Hence, conditions 4. – 7. of a first–order bisimulation are fulfilled. More-
over, we also have the condition that if (w1, . . . , wn)Z(w′1, . . . , w′n) then for all n–ary relations
Rpχ ∈ R and R′pχ ∈ R

′ associated to the same propositional letter pχ, if Rpχw1 . . . wn then
R′pχw

′
1 . . . w

′
n. This last condition reformulates as if wZw′ then (M,w) CF (M ′, w′). That is,

if wZw′ then wZ0w′, which is condition 3. Hence, (Z,Z0) is a first–order bisimulation between
M1 and M2. �

Theorem 4. Theorems 1, 2, 3 and Corollaries 1, 2, 3 hold if we replace at the same time
the term “predicate bisimulation” with “first–order bisimulation” and the languages LPFOL and
LPFOL(X) with the languages with function symbols LPFFOL and LPFFOL(X) respectively.

Proof: It is the same as the proofs of Theorems 1, 2 and 3 and Corollaries 1 and 2. Only the [6,
Lemmas 1 & 2] have to be replaced by the ‘translation’ Lemmas 6 and 7 and [5, Lemma 1] and
Lemma 5 have to be replaced by Lemma 8. �

C Proof of Theorem 7
Lemma 9. Let Ca be a set of abstract connectives, let (M,w) be a pointed Ca–model and let

U be an ultrafilter over a non-empty set I. Then,
∏
U

t(M,w) is isomorphic to t

(∏
U

(M,w)
)

(where t is defined in Definition 32).

Proof: The translation t of (M,w) adds relations R[f l
k

], Rk, R2k , RU , R⊥ to (M,w). We are going
to prove that the (ultraproduct) relations

∏
U

R[f l
k

],
∏
U

Rk,
∏
U

R2k ,
∏
U

RU ,
∏
U

R⊥ in
∏
U

t(M,w)

are the same as the relations R[f l
k

], Rk, R2k , RU , R⊥ in t

(∏
U

(M,w)
)

.

• Let k, l ∈ N∗ and let f lk : J1; lK→ J1; kK be a mapping.∏
U

R[f l
k

]
∏
U

vi1 . . .
∏
U

vil
∏
U

wi1 . . .
∏
U

wik

iff
{
i ∈ I | Ri[f l

k
]v
i
1 . . . v

i
lw

i
1 . . . w

i
k

}
∈ U

iff
{
i ∈ I | ∀j ∈ J1; lK, vij = wif l

k
(j)

}
∈ U

iff for all j ∈ J1; lK,
{
i ∈ I | vij = wif l

k
(j)

}
∈ U by properties of ultrafilters

iff for all j ∈ J1; lK,
∏
U

vij =
∏
U

wif l
k

(j). So, the relation
∏
U

R[f l
k

] in
∏
U

t(M,w) is the same

as the relation R[f l
k

] in t

(∏
U

(M,w)
)

.

•
∏
U

Rk
∏
U

wi1
∏
U

wi2
∏
U

wi3 iff E ,
{
i ∈ I | wi1 = wi2 = wi3

}
∈ U . We have to show that∏

U

wi1 =
∏
U

wi2 =
∏
U

wi3, i.e. A ,
{
i ∈ I | wi1 = wi2

}
∈ U and B ,

{
i ∈ I | wi2 = wi3

}
∈ U .

41

However, E ⊆ A and E ⊆ B, so A ∈ U and B ∈ U . So, the relation
∏
U

Rk in
∏
U

t(M,w)

is the same as the relation Rk in t

(∏
U

(M,w)
)

.

•
∏
U

R2k

∏
U

vi
∏
U

wi

iff
{
i ∈ I | R2kv

iwi
}
∈ U

iff
{
i ∈ I | there is ui ∈W such that vi = (wi, ui)

}
∈ U

iff there is (ui)i∈I such that
∏
U

vi =
∏
U

(wi, ui)

iff there is
∏
U

ui such that
∏
U

vi =
(∏

U

wi,
∏
U

ui

)
by definition of

∏
U

(wi, ui). So, the

relation
∏
U

R2k in
∏
U

t(M,w) is the same as the relation R2k in t

(∏
U

(M,w)
)

.

•
∏
U

RU
∏
U

wi1
∏
U

wi2 iff E =
{
i ∈ I | RUwi1wi2

}
∈ U . However, RUwi1wi2 always holds, for

any wi1, wi2. So, E = I which does belong to U .

• The same reasoning as in the previous case applies to
∏
U

R⊥.

�

Theorem 7 (Keisler theorems for protologics). Let Ca be a set of normal abstract connectives
complete for conjunction and disjunction. Then, theorems 1, 2, 3 hold if we replace “pointed
structures” by “pointed Ca–models”, the language “LPFOL(X)” by the language “LCa” and “X–
compatible predicate bisimulation” by “Ca–bisimulation”.

Proof: Let Ca be a set of normal abstract connectives complete for conjunction and disjunction.
Then, the set t(Ca) of molecular connectives are also normal and complete for conjunction and
disjunction. Then, applying Theorem 1 to t(Ca), we obtain that for all pointed Ca–models (M,w)
and (M ′, w′), the following are equivalent:

1. t(M,w) t(Ca) t(M ′, w′);

2. there exists a countably incomplete ultrafilter U over N such that
∏
U

t (M,w) →t(Ca)∏
U

t
(
M ′, w′

)
.

So, if we prove that (a) t(M,w) t(Ca) t(M ′, w′) iff (M,w) Ca (M ′, w′) and (b)∏
U

t (M,w)→t(Ca)
∏
U

t
(
M ′, w′

)
iff
∏
U

(M,w)→Ca
∏
U

(
M ′, w′

)
then we will have proved Theo-

rem 1 for protologics. Expression (a) follows directly from Lemma 3. Expression (b) is proved

if we prove that t
(∏

U

(M,w)
)

is isomorphic to
∏
U

t (M,w), for all pointed Ca–models (M,w).

This is Lemma 9.

42

The proofs of Theorems 2 and 3 for protologics are the same as the proofs of [5, Theorem 2]
and [5, Theorem 3] for molecular logics. The only difference is that in the proof we use the
version of Theorem 1 for protologics that we have just proved. �

D Proofs of Propositions 7, 8, 9, 10, 11, 12
The proofs of Propositions 1, 2, 3, 4, 5, 6 are in the appendix of the companion article [5].

Proposition 7. Let P be a set of predicate symbols and k ∈ N∗. If ECP is a specific class of
pointed CP–model, the predicate atomic logic (of type k) associated to ECP and P is as expressive
as a predicate atomic logic (of type k) in the sense of [6, Definition 18].

Proof: We fix a tuple of k variables and constants x ∈ (V ∪ C)k. We denote by T ′x and ST ′x the
translations Tx and STx of [6, Definition 19] and [6, Definition 20] respectively, both for formulas
and models. Then, we define the predicate atomic logic (of type k)

(
L′CP , E

′
CP ,

′) in the sense
of [6, Definition 18] by L′CP , {ST

′
xTx(ϕ) | ϕ ∈ LCP} and E ′CP , {ST

′
xTx(M,w) | (M,w) ∈ ECP}.

Then, using Lemmas 1 and 2 as well as [6, Lemma 1] and [6, Lemma 2], we can easily prove that
(LCP , ECP ,) and

(
L′CP , E

′
CP ,

′) are equally expressive. The translations are ST ′xTx from
the former to the latter and STxT

′
x from the latter to the former. Reciprocally, the proof that

every predicate atomic logic (of type k) in the sense of [6, Definition 18] is as expressive as a
predicate atomic logic (of type k) in the sense of this article is similar, one only needs to swap
the ′s. �

Proposition 8. A predicate bisimulation between structures without functions is a partial iso-
morphism.

Proof: Condition 1. of a partial isomorphism follows from conditions 1. and 5. of a predicate
bisimulation. Condition 2. is the same. The “back” condition of a partial isomorphism is obtained
by condition 2 and 4 of a predicate bisimulation. We have to show that condition 3 of Definition
30 of a partial isomorphism is deducible from the definition of a predicate bisimulation. Let Z
be a predicate bisimulation between the pointed structures (M, s) and (M ′, s′). Let w ∈Mk and
w′ ∈ M

′k with k > 0 and assume that wZw′ (such a pair exists since a predicate bisimulation
is non empty). For all v ∈ M , there is v′ ∈ M ′ such that (w, v)Z(w′, v′). Then, we have that
(v)Z(v′) by condition 3 of a predicate bisimulation. Hence, we have proved condition 3 of a
partial isomorphism. �

Proposition 9. Let X ⊆ V ∪ C be a non-empty set. If there is an X–compatible predicate
bisimulation between two pointed structures then they make true the same formulas of LPFOL(X).

Proof: This follows from Proposition 8 and the corresponding proposition for partial isomor-
phisms [10, Proposition 2.4.4] together with Condition 5 of Definition 29. �

Proposition 10. If there is a first–order bisimulation between two pointed structures then there
is a predicate bisimulation and a partial isomorphism between them. Any two finite or countable
structures such that there is a predicate or (if they contain functions) a first–order bisimulation
between them are isomorphic.

Proof: The first part follows from the fact that conditions 1.-3. of first-order bisimulations imply
conditions 1. of predicate bisimulations and partial isomorphisms (see Definition 30): one can
easily prove by induction on formulas ϕ that if (w1, . . . , wn)Z0(v1, . . . , vn) then (M1, s1) and
(M2, s2) make true the same formulas ϕ(x1, . . . , xn) ∈ LPFFOL, where (M1, s1) and (M2, s2) are

43

defined like in Definition 30. The other conditions of a partial isomorphism are fulfilled by
the remaining conditions of a predicate or first–order bisimulation. Because we proved that
a predicate bisimulation is a partial isomorphism (without function), the second part of the
proposition follows from [10, Proposition 2.4.4]. �

Proposition 11. Let P = {R} and let M = (W,R) be a predicate CP–model such that the
predicate symbol R is associated to the relation R2. Let c be the universal molecular connective
21 ⊃2 ([f2

2]R, [f1
2]id1

1). Then, for all w, v ∈ W , we have that Rcvw iff −R2vw. (We recall that
Rc is defined in Definition 16.)

Proof: We define the following molecular subconnectives of c:

c , 21(c1) c1 ,⊃2 (c2, c3) c2 , [f2
2]R c3 , [f1

2](id1
1)

Let w, v ∈W . Then, we have that Rcvw
iff ∀u0(R−21

u0w ∨Rc1vu0)
iff ∀u0u1u2(R−21

u0w ∨ (R−⊃2
u1u2u0 ∨R−c2u1 ∨Rc3vu2))

iff ∀u0u1u2u3(R−21
u0w ∨ (R−⊃2

u1u2u0 ∨R−[f2
2]Ru1 ∨ (R−[f1

2]u3u2 ∨Rid1
1
vu3)))

iff ∀u0u1u2u3(R21u0w → (R−⊃2
u1u2u0 ∨R−[f2

2]Ru1 ∨ (R−[f1
2]u3u2 ∨Rid1

1
vu3)))

iff ∀u0u1u2u3(¬(u1 = u2 = (w, u0)) ∨R−[f2
2]Ru1 ∨ ¬R[f1

2]u3u2 ∨ ¬(v = u3))
iff ∀u0u1u2u3(u1 = u2 = (w, u0) ∧ v = u3 → (R[f1

2]u3u2 → R−[f2
2]Ru1))

iff ∀u0u3(v = u3 → (u3 = u0 → R−[f2
2]R(w, u0)))

iff R−[f2
2]R(w, v)

iff (w, v) ∈ J−[f2
2]RK because −[f2

2]R is of arity 0
iff ∃u(R[f2

2]u(w, v) ∧ ¬R2u)
iff ¬R2vw �

Proposition 12. Let L1 = (L1, E1, 1) and L2 = (L2, E2, 2) be two molecular logics such
that L1 and L2 are built up from the sets of molecular connectives C1 and C2. If L1 and L2 are
schematically equally expressive (via some mappings TM1 , Tϕ1 , T

M
2 , Tϕ2) then for all M1,M

′
1 ∈ E1

which are C1–bisimilar, TM1 (M1) and TM1 (M ′1) are also C2–bisimilar.

Proof: Let
{
Zc | c ∈ V ′c0

, c0 ∈ C1
}

be a C1–bisimulation between M1 and M ′1. We define the C2–
bisimulation

{
Zc | c ∈ V ′c0

, c0 ∈ C2
}

between TM1 (M1) and TM1 (M ′1) as follows. Let c2 ∈ C2 and
c ∈ V ′c2

. For all w1 ∈ w(M1,C1) and all w′1 ∈ w(M ′1,C1), we set TM1 (w1)ZcTM1 (w′1) iff w1Zw′1

(we recall that Z ,
⋃{

Zidi
k
| idik appears in some c1 ∈ C1

}
). Now, we prove the conditions

i., ii. and 1.-3. of Definition 19. Conditions i., ii. trivially hold by definition of Z. Likewise,
condition 1. trivially holds by definition of equi-expressivity. Now, we prove condition 2. Assume
that c is maximally decomposed into c = c0(c1, . . . , cn) where c0 is an existential molecular
connective with n distinct idiks. Assume moreover that we have that TM1 (w)ZcTM1 (w) and
Rc0T

M
1 (w1) . . . TM1 (wn)TM1 (w). Then, by definition of Zc, we have wZw′ and by application of

condition iii. of Definition 36, we have that RTϕ2 (c0)w1 . . . wnw. Now, by condition i. of Definition
36, Tϕ2 (c0) is an existential molecular connective which is of the same arity and tonicity signature
as c0 and with n distinct idiks, like c0. So, by condition 2 of Definition 19, there are w′1, . . . , w′n
such that RTϕ2 (c0)w′1 . . . w′nw′ and for all j ∈ J1;nK such that ±j = +, we have wjZw′j and
for all j ∈ J1;nK such that ±j = −, we have w′jZwj . This implies that there are w′1, . . . , w′n
such that Rc0T

M
1 (w′1) . . . TM1 (w′n)TM1 (w′) and for all j ∈ J1;nK such that ±j = +, we have

TM1 (wj)ZcjTM1 (w′j) and for all j ∈ J1;nK such that ±j = −, we have TM1 (w′j)ZcjTM1 (wj).
This implies in turn that there are w′1, . . . , w′n such that Rc0T

M
1 (w′1) . . . TM1 (w′n)TM1 (w′) and

44

for all j ∈ J1;nK such that ±j = +, there is i ∈ J1;nK (take i = j) such that cj = ci and
TM1 (wj)ZcjTM1 (w′j) and for all j ∈ J1;nK such that ±j = −, there is i ∈ J1;nK (take i = j) such
that cj = ci and TM1 (w′j)ZcjTM1 (wj). This proves condition 2 in that case. The case where c is
itself an existential molecular connective is proved similarly. Likewise, the proof of condition 3
is similar, with universal molecular connectives instead of existential molecular connectives. �

45

	Introduction
	First-Order Logics
	Modal Logic
	Common Logical Notions

	On the Relative Expressivity of Logics
	Atomic Logics
	Molecular Logics
	Boolean Atomic and Molecular Logics
	Universal and Existential Molecular Connectives
	Automatic Bisimulations for Atomic and Molecular Logics
	Atomic Logics
	Molecular Logics

	Ultrafilters, Ultraproducts and Ultrapowers
	First-Order Logics in Atomic Logics
	Generalized Keisler Theorems for First-Order Logics
	Bisimulations for Pure Predicate Logic
	Bisimulations for First–order Logic

	Protologics in Molecular Logics
	Generalized Keisler Theorems for Protologics
	Bisimulations of Equally Expressive Logics are Equivalent
	Conclusion
	Proofs of Lemmas 1, 2, Theorems 1, 2, 3 and Corollaries 1, 2, 3
	Proof of Theorem 4
	Proof of Theorem 7
	Proofs of Propositions 7, 8, 9, 10, 11, 12

