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Generalized Keisler Theorems for First-order Logic and Protologics

. We indeed show in this present article that first-order logic and protologics are as expressive as some atomic and molecular logics.

Introduction

The model theory of non-classical logics is often developed on a case by case basis by considering each logic independently, and similar theorems are proved for each non-classical logic by frequently adapting the same proof method. For example, for modal logic, temporal logic and XPath, a number of model-theoretical results dealing with the definability of classes of models by means of a set of formulas or a single formula have been proved [START_REF] Blackburn | Modal Logic, volume 53 of Cambridge Tracts in Computer Science[END_REF][START_REF] Kurtonina | Bisimulations for temporal logic[END_REF][START_REF] Abriola | Model theory of XPath on data trees. part II: binary bisimulation and definability[END_REF] by adapting the Keisler theorems of first-order logic (FOL for short) [START_REF] Chang | Model Theory[END_REF]. This type of theorems provides conditions of definability of classes of models in a specific logic. More precisely, they state that a class of models is definable in a given logic if this class of models and its complement are both closed under a specific construction called ultraproduct and under a specific notion of bisimulation associated to the logic. Similar adaptations to other logics have been made for the van Benthem characterization theorem of modal logic [START_REF] Grigory | On expressive power of basic modal intuitionistic logic as a fragment of classical FOL[END_REF][START_REF] Kurtonina | Bisimulations for temporal logic[END_REF][START_REF] Aucher | Modal logics of sabotage revisited[END_REF][START_REF] Janin | On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic[END_REF][START_REF] De | A note on graded modal logic[END_REF]. A natural question that comes up to mind is to wonder whether the Keisler theorems of FOL transfer to an arbitrary logic. We shall see in that paper that the Keisler theorems do transfer to any protologic, i.e. any logic such that the truth conditions of its connectives are expressible by first-order formulas, if these connectives are so-called 'normal'.

To prove our results, we will resort to the framework of atomic and molecular logics introduced in [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]. This framework is based on Dunn's gaggle theory [START_REF] Michael Dunn | Gaggle theory: an abstraction of galois connections and residuation, with applications to negation, implication, and various logical operators[END_REF][START_REF] Michael Dunn | Partial-gaggles applied to logics with restricted structural rules[END_REF]. Atomic logics generalize "gaggle logics" by adding types to formulas. Gaggle logics were introduced in [START_REF] Aucher | Selected Topics from Contemporary Logics, chapter Towards Universal Logic: Gaggle Logics[END_REF] where it is also shown that a very large number of non-classical logics are actually gaggle logics and therefore also atomic logics (see in that article). Atomic and molecular logics are a generalization of gaggle logics which behave as 'normal form' logics. We will indeed show that every nonclassical logic such that the truth conditions of its connectives are expressible in first-order logic is as expressive as an atomic or molecular logic.

Moreover, as it turns out, an appropriate notion of bisimulation can be automatically associated to any atomic or molecular logic from the truth conditions of its connectives [START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF]. On the one hand, our embedding of FOL into atomic logics will allow us to automatically derive our notion of invariance for FOL, that we call 'predicate bisimulation' and 'first-order bisimulation', and to obtain our generalization of the Keisler theorems for FOL. Our notion of predicate bisimulation turns out to be a slight and natural variant of the classical notion of partial isomorphism. On the other hand, our embedding of protologics into molecular logics will allow us to obtain automatically invariance notions for any protologic and our generalization of the Keisler theorems for protologics.

Structure of the article

We start in Section 2 by recalling first-order logics and in Section 3 modal logic. In Section 4, we introduce a specific notion of equi-expressivity for logics which are not based on the same classes of models. In Section 5 we introduce atomic logics, in Section 6 molecular logics and in Section 7 their Boolean versions with Boolean connectives. In Section 9, we show how notions of bisimulations can be automatically defined from the truth conditions of the connectives of atomic and molecular logics, after some formal preliminaries in Section 8 where we introduce universal and existential connectives. In Section 10, we adapt the notions of ultraproducts and ultrapowers to atomic and molecular logics. In Section 11, we show that first-order logics are as expressive as atomic logics. This leads us in Section 12 to apply our general results for atomic logics to first-order logics. In doing so, we generalize and (re)discover an analogue of the Keisler theorems. Likewise, in Section, 13, we recall and show how every protologic is as expressive as some molecular logic. This leads us in Section 14 to prove similar results for protologics. Finally, we show in Section 15 that bisimulations of schematically equally expressive logics are equivalent. We conclude in Section 16. Unless otherwise stated, all the proofs of this paper are in this appendix or in the appendix of the companion article [START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF].

First-Order Logics

In this section, we recall FOL. In the sequel, all logics will always be semantically presented by following a tri-partite representation: language, class of models, satisfaction relation.

The set P {R 1 , . . . , R n , . . .} is a set of predicate symbols of arity k 1 , . . . , k n , . . . respectively (one of them can be the identity predicate = of arity 2), F {f 1 , . . . , f n , . . .} is a set of function symbols, V {v 1 , . . . , v n , . . .} is a set of variables and C {c 1 , . . . , c n , . . .} is a set of constants. Each of these sets can be finite or infinite. v 1 , v 2 , v 3 , . . . are the names of the variables and we use the expressions x, x 1 , x 2 , . . . , y, y 1 , y 2 , . . . , z, z 1 , z 2 , . . . to refer to arbitrary variables or constants, which can be for example v 42 , v 5 , c 101 , c 21 , . . . Arity(P, F) is the set of all arities of predicate and function symbols. The first-order language L PF FOL is defined inductively by the following grammars in BNF: If ϕ ∈ L PF FOL , the Boolean negation of ϕ, denoted ¬ϕ, is defined by the abbreviation ¬ϕ (ϕ → ⊥). We also use the abbreviations ¬⊥, (ϕ ∨ ψ) (¬ϕ → ψ), (ϕ ∧ ψ) ¬(¬ϕ ∨ ¬ψ) and (ϕ ↔ ψ) (ϕ → ψ) ∧ (ψ → ϕ) as well as the abbreviations ∃xϕ ¬∀x¬ϕ, ∀x 1 . . . x n ϕ ∀x 1 . . . ∀x n ϕ, ∃x 1 . . . x n ϕ ∃x 1 . . . ∃x n ϕ and ∀xϕ ∀x 1 . . . x n ϕ if x = (x 1 , . . . , x n ) is a tuple of variables.

Let ϕ ∈ L PF FOL . An occurrence of a variable x in ϕ is free (in ϕ) if, and only if, x is not within the scope of a quantifier of ϕ. We say that a formula of L PF FOL is a sentence (or is closed) when it contains no free variable. We denote by ϕ(x 1 , . . . , x k ) a formula of L PF FOL whose free variables or constants coincide exactly with x 1 , . . . , x k . We assume that these variables and constants are all distinct. In doing so, we depart from the literature in which this notation means that the free variables of ϕ are included in {x 1 , . . . , x k }.

We denote by L P FOL the fragment of L PF FOL whose formulas do not contain function symbols. We denote by L P FOL (x) (resp. L PF FOL (x)) the fragment of L P FOL (resp. L PF FOL ) whose formulas all contain at least one free variable or constant. For all k ∈ N * and x = (x 1 , . . . , x k ) ∈ (V ∪ C) k , we denote by L P FOL (x, k) the fragment of L P FOL whose formulas all contain exactly k free variables or constants and these variables or constants are x. If X ⊆ V ∪ C is a non-empty set, we denote by L P FOL (X) (resp. L PF FOL (X)) the fragment of L P FOL (resp. L PF FOL ) whose formulas are such that their free variables and constants are all contained in X. We denote by L P FOL (∅) (resp. L PF FOL (∅)) the set of sentences of L P FOL (resp. L PF FOL ) without constants. A language L FOL ⊆ L PF FOL is countable if its set of predicate symbols, function symbols, variables and constants is countable.

A structure is a tuple M (W, {R 1 , . . . , R n , . . . , f 1 , . . . , f n , . . . , c 1 , . . . , c n , . . .}) where:

• W is a non-empty set called the domain;

• R 1 , . . . , R n , . . . are relations over W with the same arity as R 1 , . . . , R n , . . . respectively;

• f 1 , . . . , f n , . . . are functions over W with the same arity as f 1 , . . . , f n , . . . respectively;

• c 1 , . . . , c n , . . . ∈ W are elements of the domain called distinguished elements.

An assignment over M is a mapping s : V ∪ C → W such that for all c i ∈ C, s(c i ) = c i . If s is an assignment, s[x := w] is the same assignment as s except that the value of the variable x ∈ V is assigned to w. A pair of structure and assignement (M, s) is called a pointed structure. The class of all pointed structures (M, s) is denoted M FOL . If K is a class of pointed structures, K is M FOL -K.

If (M, s) is a pointed structure, we extend the assignment s from variables and constants to terms and define the extended assignment s : T → W as follows:

s(x) s(x) s(c) s(c) s(ft 1 . . . t k )
f (s(t 1 ), . . . , s(t k )).

The satisfaction relation FOL ⊆ M FOL × L PF FOL is defined inductively as follows. Below, we write (M, s) ϕ for ((M, s), ϕ) ∈ FOL .

(M, s) ⊥ never; (M, s) R i t 1 . . . t k iff (s(t 1 ), . . . , s(t k )) ∈ R i ; (M, s) (ϕ → ψ) iff if (M, s) ϕ then (M, s) ψ; (M, s) ∀xϕ iff (M, s[x := w]) ϕ for all w ∈ W.

In the literature [START_REF] Chang | Model Theory[END_REF], (M, s) ϕ(x 1 , . . . , x k ) is sometimes denoted M ϕ(x 1 , . . . , x k )[w 1 , . . . , w k ], M ϕ[w 1 /x 1 , . . . , w k /x k ] or simply M ϕ[w 1 , . . . , w k ], with w 1 = s(x 1 ), . . . , w k = s(x k ). Some other times [START_REF] Herbert | An Introduction to Mathematical Logic[END_REF], it is denoted M ϕ(x 1 , . . . , x n )[s], M, s ϕ(x 1 , . . . , x n ) or simply M ϕ [s]. In that case, we say that (M, s) makes ϕ true. We depart from the literature by treating constants on a par with variables: the denotation of constants is usually not dealt with by means of assignments.

We say that the formula ϕ ∈ L PF FOL is realized in M when there is an assignment s such that (M, s) ϕ.

A triple of the form (L 

Modal Logic

In this section, A is a set of propositional letters which can be finite or infinite. The set I is a set of indices which can be finite or infinite. The multi-modal language L ML is defined inductively by the following grammar in BNF:

L ML : ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | j ϕ | j ϕ
where p ∈ A and j ∈ I.

We present the so-called possible world semantics of modal logic. A Kripke model M is a tuple M (W, {R 1 , . . . , R m , . . . , P 1 , . . . , P n , . . .}) where

• W is a non-empty set whose elements are called possible worlds;

• R 1 , . . . , R m , . . . ⊆ W × W , m ∈ I are binary relations over W called accessibility relations;

• P 1 , . . . , P n , . . . ⊆ W are unary relations interpreting the propositional letters of A.

We write w ∈ M for w ∈ W by abuse and the pair (M, w) is called a pointed Kripke model. The class of all pointed Kripke models is denoted E ML .

We define the satisfaction relation ML ⊆ E ML × L ML inductively by the following truth conditions. Below, we write (M, w) ϕ for ((M, w), ϕ) ∈ ML . For all (M, w) ∈ E ML , all ϕ, ψ ∈ L ML , all p i ∈ A and all j ∈ I,

(M, w) p i iff P i (w) holds; (M, w) ¬p i iff P i (w) does not hold; (M, w) (ϕ ∧ ψ) iff (M, w) ϕ and (M, w) ψ; (M, w) (ϕ ∨ ψ) iff (M, w) ϕ or (M, w) ψ; (M, w) j ϕ iff there exists v ∈ W such that R j wv and (M, v) ϕ; (M, w) j ϕ iff for all v ∈ W such that R j wv, (M, v) ϕ.
The triple (L ML , E ML , ML ) forms a logic, that we call modal logic. Bisimulations for modal logic can be found in [START_REF] Blackburn | Modal Logic, volume 53 of Cambridge Tracts in Computer Science[END_REF].

Common Logical Notions

In the present section, we define a number of notions which are common to all logics and in particular to the logics introduced beforehand. The way we define logics is different from many proposals considered in universal logic [START_REF] Béziau | Logica Universalis, chapter From Consequence Operator to Universal Logic: A Survey of General Abstract Logic[END_REF] such as pairs of Suzsko's abstract logics, Tarski's consequence operators or logical structures. Often a logic is viewed as a pair of a language together with a consequence relation on this language. Our approach to defining logics is somehow more 'semantic' in that respect than the usual proposals. It corresponds in fact to the "abstract logics" of García-Matos & Väänänen [START_REF] García-Matos | Abstract model theory as a framework for universal logic[END_REF] or to the "rooms" of Mossakowski et al. [START_REF] Mossakowski | What is a logic translation?[END_REF].

A logic is a triple L (L, E, ) where

• L is a logical language defined as a set of well-formed expressions built from a set of connectives C and a set of propositional letters A;

• E is a class of pointed models;

• is a satisfaction relation which relates in a compositional manner elements of L to models of E by means of so-called truth conditions.

Let L = (L, E,
) be a logic and let Γ ⊆ L, ϕ ∈ L and M ∈ E. We write M Γ when for all ψ ∈ Γ, we have M ψ. Then, we say that

• ϕ is true (satisfied) at M or M is a model of ϕ when M ϕ; • ϕ is a logical consequence of Γ, written Γ L ϕ, when for all M ∈ E, if M Γ then M ϕ;
• ϕ is valid, written L ϕ, when for all models M ∈ E, we have M ϕ;

• ϕ is satisfiable when there is a model

M ∈ E such that M ϕ.
If Γ is a singleton Γ = {ψ}, we also write by abuse ψ ϕ for {ψ} ϕ.

A set of formulas of L is called a theory. A set ∆ of formulas of L is said to be a set of axioms for a theory Γ iff Γ and ∆ have the same logical consequences. A theory is called finitely axiomatizable iff it has a finite set of axioms. A logic L is axiomatizable if its set of validities is finitely axiomatizable.

On the Relative Expressivity of Logics

When two logics

L 1 = (L 1 , E 1 , 1 ) and L 2 = (L 2 , E 2 ,
2 ) are interpreted over different classes of models E 1 and E 2 , there is no canonical way to compare their relative expressiveness, even if some proposals have already been made [START_REF] García-Matos | Abstract model theory as a framework for universal logic[END_REF][START_REF] Mossakowski | What is a logic translation?[END_REF]. We are now going to propose some new notions to deal with that issue.

Given a logic (L, E, ), for all ϕ, ψ ∈ L, we write ϕ ≡ ψ when for all M ∈ E, it holds that M ϕ iff M ψ and for all M, N ∈ E, we write M ≡ N when for all ϕ ∈ L, it holds M ϕ iff N ϕ. If M, N ⊆ E, we write M ≡ N when for all M ∈ M there is N ∈ N such that M ≡ N , and vice versa.

Definition 1 (Equi-expressivity). A logic

L 1 = (L 1 , E 1 , 1 ) is as expressive as a logic L 2 = (L 2 , E 2 ,
2 ), written L 1 ≡ L 2 , when the following hold:

1. there is a mapping

T ϕ 1 : L 1 → L 2 and a mapping T M 1 : E 1 → E 2 such that for all ϕ 1 ∈ L 1 and all M 1 ∈ E 1 , it holds that M 1 ϕ 1 iff T M 1 (M 1 ) T ϕ 1 (ϕ 1 ); 2. there is a mapping T ϕ 2 : L 2 → L 1 and a mapping T M 2 : E 2 → E 1 such that for all ϕ 2 ∈ L 2 and all M 2 ∈ E 2 , it holds that M 2 ϕ 2 iff T M 2 (M 2 ) T ϕ 2 (ϕ 2 ); 3. for all M 1 ∈ E 1 and all M 2 ∈ E 2 , it holds that T M 2 (T M 1 (M 1 )) ≡ M 1 and T M 1 (T M 2 (M 2 )) ≡ M 2 .
Let L 1 and L 2 be two classes of logics. We say that L 1 is as expressive as L 2 , written L 1 ≡ L 2 , when for all L 1 ∈ L 1 there is L 2 ∈ L 2 such that L 1 ≡ L 2 , and vice versa.

Our third condition states that T M 2 and T M 1 are inverse bijections of each other (modulo some natural congruence). Hence, our definition is set in such a way that we compare the relative expressivity of each logic by comparing them over their whole class of models, taking into account the specificities of all the models of each logic in the comparison.

Our proposal is different from the one of García-Matos & Väänänen [START_REF] García-Matos | Abstract model theory as a framework for universal logic[END_REF]. However, they deal with a more general notion of embedding between logics based on different classes of models, that is an embedding in only one direction, of one logic into another. If two logics L 1 and L 2 are essentially equally expressive in our sense then there exist two "model-expansive corridors" from L 1 to L 2 and from L 2 to L 1 in the sense of Mossakowski et al. [START_REF] Mossakowski | What is a logic translation?[END_REF] (with the proviso that the surjection holds modulo the congruence ≡). Thus, our notion of equi-expressivity is more demanding and stronger than the one of Mossakowski et al. [START_REF] Mossakowski | What is a logic translation?[END_REF]. On the other hand, our "logics" can in fact be seen as institutions [START_REF] Mossakowski | What is a logic translation?[END_REF]. In that case, one can prove that two logics are "equally expressive" in our sense if, and only if, they are "equivalent" in the sense of institutions [START_REF] Mossakowski | What is a logic?[END_REF]Definition 3.5].1 

Atomic Logics

Atomic logics are logics such that the truth conditions of their connectives are defined by first-order formulas of the form ∀x

1 . . . x n (± 1 Q 1 x 1 ∨ . . . ∨ ± n Q n x n ∨ ±Rx 1 . . . x n x) or ∃x 1 . . . x n (± 1 Q 1 x 1 ∧ . . . ∧ ± n Q n x n ∧ ±Rx 1 . . . x n x)
where the ± i s and ± are either empty or ¬. Likewise, propositional letters are defined by first-order formulas of the form ±Rx. We will represent the structure of these formulas by means of so-called skeletons whose various arguments capture the different features and patterns from which they can be redefined completely. Atomic logics are also generalizations of our gaggle logics [START_REF] Aucher | Selected Topics from Contemporary Logics, chapter Towards Universal Logic: Gaggle Logics[END_REF] with types associated to formulas.

We recall that N * denotes the set of natural numbers without 0 and that for all n ∈ N * , S n denotes the group of permutations over the set {1, . . . , n}. Permutations are generally denoted σ, τ , the identity permutation Id is sometimes denoted 1 as the neutral element of every permutation group and σ -stands for the inverse permutation of the permutation σ. For example, the permutation σ = (3, 1, 2) is the permutation that maps 1 to 3, 2 to 1 and 3 to 2 (see for instance [START_REF] Rotman | An Introduction to the Theory of Groups[END_REF] for more details).

Definition 2 (Atomic skeletons and connectives). The sets of atomic skeletons P and C are defined as follows:

P S 1 × {+, -} × {∀, ∃} × N * C P ∪ n∈N * S n+1 × {+, -} × {∀, ∃} × N * n+1 × {+, -} n .
P is called the set of propositional letter skeletons and C is called the set of connective skeletons.

They can be represented by tuples (σ, ±, AE, k, ± j ) or (σ, ±, AE, k) if it is a propositional letter skeleton, where AE ∈ {∀, ∃} is called the quantification signature of the skeleton, k = (k, k 1 , . . . , k n ) ∈ N * n+1 is called the type signature of the skeleton and

± j = (± 1 , . . . , ± n ) ∈ {+, -}
n is called the tonicity signature of the skeleton; (AE, k, ± j ) is called the signature of the skeleton. The arity of a propositional letter skeleton is 0 and its type is k. The arity of a skeleton ∈ C is n, its input types are k 1 , . . . , k n and its output type is k.

A (atomic) connective or propositional letter is a symbol generally denoted or p to which is associated a (atomic) skeleton. Its arity, signature, quantification signature, type signature, tonicity signature, input and output types are the same as its skeleton. By abuse, we sometimes identify a connective with its skeleton. If C is a set of atomic connectives, its set of propositional letters is denoted P(C).

Propositional letters are denoted p, p 1 , p 2 , etc. and connectives are denoted , 1 , 2 , etc.

We need to distinguish between connectives and skeletons because in general we need a countable number of propositional letters or connectives of the same skeleton, like in some modal logics, where we need multiple modalities of the same similarity type/skeleton. Definition 3 (Atomic language). Let C be a set of atomic connectives. The (typed) atomic language L C associated to C is the smallest set that contains the propositional letters and that is closed under the atomic connectives. That is,

• P(C) ⊆ L C ;
• for all ∈ C of arity n > 0 and of type signature (k, k 1 , . . . , k n ) and for all ϕ 1 , . 

∈ L C is denoted k(ϕ).
The skeleton syntactic tree of a formula ϕ ∈ L C is the syntactic tree of the formula ϕ in which the nodes labeled with subformulas of ϕ are replaced by the skeleton of their outermost connective.

A set of atomic connectives C is plain if for all ∈ C of skeleton (σ, ±, AE, (k, k 1 , . . . , k n ), (± 1 , . . . , ± n )) there are atoms p 1 , . . . , p n ∈ P of types k 1 , . . . , k n respectively. In the sequel, we assume that all sets of connectives C are plain.

Our assumption that all sets of connectives C considered are plain makes sense. Indeed, we want all connectives of C to appear in some formula of L C . If C was not plain then there would be a connective of C (with input type k) which would be necessarily composed with another connective of C (of output type k), if we want such a connective to appear in a formula of L C . Yet, in that case, we should instead view C as a set of molecular connectives (introduced in the next section). Definition 4 (C-models). Let C be a set of atomic connectives. A C-model is a tuple M = (W, R) where W is a non-empty set and R is a set of relations over W such that each n-ary

connective ∈ C of type signature (k, k 1 , . . . , k n ) is associated to a k 1 + . . . + k n + k-ary relation R ∈ R.
An assignment is a tuple (w 1 , . . . , w k ) ∈ W k for some k ∈ N * , generally denoted w. The set of assignments of a C-model M is denoted w(M, C). A pointed C-model (M, w) is a C-model M together with an assignment w. In that case, we say that (M, w) is of type k. The class of all pointed C-models is denoted M C .

Note that a C-model can be canonically seen as a (first-order) structure, for some appropriate set of predicates P associated to the relations of R.

Definition 5 (Atomic logics). Let C be a set of atomic connectives and let M = (W, R) be a C-model. We define the interpretation function of 

L C in M , denoted • M : L C → k∈N * W k , Permutations of S 2 unary signatures τ 1 = (1, 2) t 1 = (∃, (1, 1), +) τ 2 = (2,
, . . . , k n ), (± 1 , . . . , ± n )) of arity n > 0, for all ϕ 1 , . . . , ϕ n ∈ L C , p M R p if ± = + W k -R p if ± = - (ϕ 1 , . . . , ϕ n ) M f ( ϕ 1 M , . . . , ϕ n M )
where the function f is defined as follows: for all W 1 ∈ P(W k1 ), . . . , W n ∈ P(W kn ),

f (W 1 , . . . , W n ) w n+1 ∈ W k | C (W 1 , . . . , W n , w n+1
) where C (W 1 , . . . , W n , w n+1 ) is called the truth condition of and is defined as follows:

• if AE = ∀: "∀w 1 ∈ W k1 . . . w n ∈ W kn w 1 1 W 1 ∨ . . . ∨ w n n W n ∨ R ±σ w 1 . . . w n w n+1 "; • if AE = ∃: "∃w 1 ∈ W k1 . . . w n ∈ W kn w 1 1 W 1 ∧ . . . ∧ w n n W n ∧ R ±σ w 1 . . . w n w n+1 ";
where, for all j ∈ 1; n , w j j W j w j ∈ W j if We stress that the ± sign in R ±σ is the ± sign in (σ, ±, AE, (k, k 1 , . . . , k n ), (± 1 , . . . , ± n )).

± j = + w j / ∈ W j if ± j =
Example 1 (Modal logic). An example of atomic logic is modal logic where C = {p, , ⊥, ∧, ∨, j , j | j ∈ I} is such that

• , ⊥ are connectives of skeletons (Id, +, ∃, 1) and (Id, -, ∀, 1) respectively;

• ∧, ∨, j , j are connectives of skeletons (σ 1 , +, s 1 ), (σ 1 , -, s 4 ), (τ 2 , +, t 1 ) and (τ 2 , -, t 2 ) respectively;

• the C-models M = (W, R) ∈ E C are such that R ∧ = R ∨ = {(w, w, w) | w ∈ W }, R j = R j and R = R ⊥ = W .
With these conditions on the C-models of E C , for all (M, w)

∈ E C , w ∈ j ϕ M iff ∃v(v ∈ ϕ M ∧ R j wv) w ∈ j ϕ M iff ∀v(v ∈ ϕ M ∨ -R j wv) w ∈ ∧(ϕ, ψ) M iff ∃vu(v ∈ ϕ M ∧ u ∈ ψ M ∧ R ∧ vuw) iff w ∈ ϕ M ∧ w ∈ ψ M w ∈ ∨(ϕ, ψ) M iff ∀vu(v ∈ ϕ M ∨ u ∈ ψ M ∨ -R ∨ vuw) iff w ∈ ϕ M ∨ w ∈ ψ M
Other examples are given in Figure 2 as well as in [START_REF] Aucher | Selected Topics from Contemporary Logics, chapter Towards Universal Logic: Gaggle Logics[END_REF][START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF][START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF].

Molecular Logics

Molecular logics are basically logics whose primitive connectives are compositions of atomic connectives in which it is possible to repeat the same argument at different places in the connective.

That is why we call them 'molecular', just as molecules are compositions of atoms in chemistry.

Definition 6 (Molecular skeleton and connective). The class C * of molecular skeletons is the smallest set such that:

• P ⊆ C * and C * contains as well, for each k, l ∈ N * , a symbol id l k of type signature (k, k), output type k and arity 1;

• for all atomic skeleton ∈ C of type signature (k, k 0 1 , . . . , k 0 n ) and all c 1 , . . . , c n ∈ C * of output types or types (if they are propositional letters) k 0 1 , . . . , k 0 n respectively, c (c 1 , . . . , c n ) is a molecular skeleton of C * of output type k.

If c ∈ C * , we define its decomposition tree as follows. If c = p ∈ P or c = id l k , then its decomposition tree T c is the tree consisting of a single node labeled with p or id l k respectively. If c = (c 1 , . . . , c n ) ∈ C * then its decomposition tree T c is the tree defined inductively as follows: the root of T c is c and it is labeled with and one sets edges between that root and the roots c 1 , . . . , c n of the decomposition trees T c1 , . . . , T cn respectively.

If c (c 1 , . . . , c n ) is a molecular skeleton with output type k and k 1 , . . . , k m are the ks of the different id l k s which appear in c 1 , . . . , c n (in an order which follows the first appearance of the id l k s in the inorder traversal of the decomposition trees of c 1 , . . . , c n ), then the type signature of c is (k, k 1 , . . . , k m ) and its arity is m. We also define the quantification signature AE(c) of c = (c 1 , . . . , c n ) by AE(c) AE( ).

A molecular connective is a symbol to which is associated a molecular skeleton. Its arity, type signature, output type, quantification signature and decomposition tree are the same as its skeleton.

The set of atomic connectives associated to a set C of molecular connectives is the set of labels different from id l k of the decomposition trees of the molecular connectives of C.

Atomic connective Truth condition

Connective in the literature

The conjunction orbit

ϕ (σ 1 , +, s 1 ) ψ ∃vu (v ∈ ϕ ∧ u ∈ ψ ∧ Rvuw) ϕ • ψ [20], ϕ ⊗ 3 ψ [3] ϕ (σ 2 , -, s 2 ) ψ ∀vu (v ∈ ϕ ∨ u / ∈ ψ ∨ -Rwuv) ϕ (σ 3 , -, s 2 ) ψ ∀vu (v ∈ ϕ ∨ u / ∈ ψ ∨ -Ruwv) / [20], ϕ ⊂ 2 ψ [3] ϕ (σ 4 , +, s 1 ) ψ ∃vu (v ∈ ϕ ∧ u ∈ ψ ∧ Ruvw) = ψ (σ 1 , +, s 1 ) ϕ ϕ (σ 5 , -, s 3 ) ψ ∀vu (v / ∈ ϕ ∨ u ∈ ψ ∨ -Rwvu) \ [20], ϕ ⊃ 1 ψ [3] = ψ (σ 2 , -, s 2 ) ϕ ϕ (σ 6 , -, s 3 ) ψ ∀vu (v / ∈ ϕ ∨ u ∈ ψ ∨ -Rvwu) = ψ (σ 3 , -, s 2 ) ϕ The but-not orbit ϕ (σ 1 , +, s 5 ) ψ ∃vu (v ∈ ϕ ∧ u / ∈ ψ ∧ Rvuw) ϕ 3 ψ [3] ϕ (σ 2 , -, s 4 ) ψ ∀vu (v ∈ ϕ ∨ u ∈ ψ ∨ -Rwuv) ϕ (σ 3 , +, s 6 ) ψ ∃vu (v / ∈ ϕ ∧ u ∈ ψ ∧ Ruwv) ϕ 2 ψ [3] ϕ (σ 4 , +, s 6 ) ψ ∃vu (v / ∈ ϕ ∧ u ∈ ψ ∧ Ruvw) ϕ ψ [17, 22] = ψ (σ 1 , +, s 5 ) ϕ ϕ (σ 5 , -, s 4 ) ψ ∀vu (v ∈ ϕ ∨ u ∈ ψ ∨ -Rwvu) ϕ ψ [17, 22] = ψ (σ 2 , -, s 4 ) ϕ ϕ 1 ψ [3] ϕ (σ 6 , +, s 5 ) ψ ∃vu (v ∈ ϕ ∧ u / ∈ ψ ∧ Rvwu) ϕ ψ [17, 22] = ψ (σ 3 , +, s 6 ) ϕ
The stroke orbit Note that the same label (atomic connective) may appear several times in a decomposition tree. Note also that the vertices of a decomposition tree are molecular connectives.

ϕ (σ 1 , +, s 7 ) ψ ∃vu (v / ∈ ϕ ∧ u / ∈ ψ ∧ Rvuw) ϕ | 3 ψ [2, 16] ϕ (σ 2 , +, s 7 ) ψ ∃vu (v / ∈ ϕ ∧ u / ∈ ψ ∧ Rwuv) ϕ (σ 3 , +, s 7 ) ψ ∃vu (v / ∈ ϕ ∧ u / ∈ ψ ∧ Ruwv) ϕ (σ 4 , +, s 7 ) ψ ∃vu (v / ∈ ϕ ∧ u / ∈ ψ ∧ Ruvw) = ψ (σ 1 , +, s 7 ) ϕ ϕ (σ 5 , +, s 7 ) ψ ∃vu (v / ∈ ϕ ∧ u / ∈ ψ ∧ Rwvu) ϕ | 1 ψ [2, 16] = ψ (σ 2 , +, s 7 ) ϕ ϕ (σ 6 , +, s 7 ) ψ ∃vu (v / ∈ ϕ ∧ u / ∈ ψ ∧ Rvwu) ϕ | 2 ψ [2, 16] = ψ (σ 3 , +, s 7 ) ϕ
Every atomic connective of type signature (k, k 1 , . . . , k n ) can be seen as the (specific) molecular connectives c (id 1 k1 , . . . , id n kn ). One needs to introduce the connective id l k in order to deal with molecular connectives whose skeletons are for example of the form (p, id l k ) where p ∈ P or with molecular connectives in which the same argument(s) appear at different places, like for example in (id 1 k , . . . , id 1 k ) which is of arity 1.

Definition 7 (Molecular language). Let C be a set of molecular connectives. The (typed) molecular language L C associated to C is the smallest set that contains the propositional letters and that is closed under the molecular connectives while respecting the type constraints. That is,

• the propositional letters of C belong to L C ;

• for all c ∈ C of type signature (k, k 1 , . . . , k m ) and for all ϕ 1 , . . . , ϕ m ∈ L C of types k 1 , . . . , k m respectively, we have that c(ϕ 1 , . . . , ϕ m ) ∈ L C and c(ϕ 1 , . . . , ϕ m ) is of type k.
Elements of L C are called molecular formulas and are denoted ϕ, ψ, α, . . . The type of a formula ϕ ∈ L C is denoted k(ϕ). We use the same abbreviations as for the atomic language. Definition 8 (Molecular logic). If C is a set of molecular connectives, then a C-model M is a C -model M where C is the set of atomic connectives associated to C. The truth conditions for molecular connectives are defined naturally from the truth conditions of atomic connectives. We define the interpretation function of

L C in M , denoted • M : L C → k∈N * W k , inductively as follows: for all propositional letters p ∈ C of skeleton (σ, ±, AE, k), all molecular connectives (c 1 , . . . , c n ) ∈ C of arity m > 0 and all k, l ∈ N * , for all ϕ, ϕ 1 , . . . , ϕ m ∈ L C , p M ±R p id l k (ϕ) M ϕ M (c 1 , . . . , c n ) (ϕ 1 , . . . , ϕ m ) M f c 1 (ϕ 1 1 , . . . , ϕ 1 i1 ) M , . . . , c n (ϕ n 1 , . . . , ϕ n in ) M
where for all j ∈ {1, . . . , n}, the formulas ϕ j 1 , . . . , ϕ j ij are those ϕ 1 , . . . , ϕ m for which there is a corresponding id l k in c j (the ϕ j i s appear in the same order as their corresponding

id l k s in c j ). If E C is a class of pointed C-models, the triple (L C , E C ,
) is a logic called the molecular logic associated to E C and C.

As one can easily notice, every atomic logic can be canonically mapped to an equi-expressive molecular logic: each atomic connective of type signature (k, k 1 , . . . , k n ) of the given atomic logic has to be transformed into the molecular connective of skeleton (id 1 k1 , . . . , id n kn ). Note that the id l k are in fact specific atomic connectives whose associated relations are the identity relations.

Examples of specific molecular logics can be found in [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF][START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF].

Boolean Atomic and Molecular Logics

Atomic and molecular logics do not include Boolean connectives as primitive connectives. In fact, they can be defined in terms of specific atomic connectives, as follows.

Definition 9 (Boolean connectives). The Boolean connectives called conjunctions, disjunctions, negations and Boolean constants (of type k) are the atomic connectives denoted, respectively:

B {∧ k , ∨ k , ¬ k , k , ⊥ k | k ∈ N * } The skeleton of ∧ k is (Id, +, ∃, (k, k, k), (+, +)), the skeleton of ∨ k is (Id, -, ∀, (k, k, k), (+, +)), the skeleton of ¬ k is (Id, +, ∃, (k, k), -), the skeleton of k is (Id, +, ∃, k) and the skeleton of ⊥ k is (Id, -, ∀, k).
In any C-model M = (W, R) containing Boolean connectives, the associated relation of any

∨ k or ∧ k is R ∧ k = R ∨ k {(w, w, w) | w ∈ W k }, the associated relation of any ¬ k is R ¬ k {(w, w) | w ∈ W k } and the associated relation of any k or ⊥ k is R ⊥ k = R k W k .
Atomic or molecular logics containing Boolean connectives are called Boolean atomic or molecular logics. We say that a set of atomic connectives C is complete for conjunctions and disjunctions when it contains all conjunctions, disjunctions and constants ∧ k , ∨ k , k , ⊥ k , for k ranging over all input types and output types of the atomic connectives of C. We say that a set of atomic connectives C is complete for Boolean connectives when it contains all conjunctions, disjunctions, constants as well as negations ∧ k , ∨ k , k , ⊥ k , ¬ k , for k ranging over all input types and output types of the atomic connectives of C.

Proposition 1. Let C be a set of atomic connectives containing Boolean connectives. and let

M = (W, R) be a C-model. Then, for all k ∈ N * , all ϕ, ψ ∈ L C , if k(ϕ) = k(ψ) = k, then k M W k ⊥ k M ∅ ¬ k ϕ M W k -ϕ M (ϕ ∧ k ψ) M ϕ M ∩ ψ M (ϕ ∨ k ψ) M ϕ M ∪ ψ M .
It turns out that Boolean negation can also be simulated systematically at the level of atomic connectives by applying a transformation on them. The Boolean negation of a formula then boils down to taking the Boolean negation of the outermost connective of the formula. This transformation is defined as follows.

Definition 10 (Boolean negation). Let be a n-ary connective of skeleton

(σ, ±, AE, k, ± 1 , . . . , ± n ).
The Boolean negation of is the connective

-of skeleton (σ, -±, -AE, k, -± 1 , . . . , -± n ) where -AE ∃ if AE = ∀ and -AE ∀ otherwise, which is associated in any C-model to the same relation as . If ϕ = (ϕ 1 , . . . , ϕ n ) is an atomic formula, the Boolean negation of ϕ is the formula -ϕ -(ϕ 1 , . . . , ϕ n ). Proposition 2 ([6]). Let C be a set of atomic connectives such that -∈ C for all ∈ C. Let ϕ ∈ L C of type k and let M = (W, R) be a C-model. Then, for all w ∈ W k , w ∈ -ϕ M iff w / ∈ ϕ M .

Universal and Existential Molecular Connectives

Universal and existential molecular connectives are essentially molecular connectives such that the quantification patterns of the quantification signatures of their successive atomic connectives are of the form ∀ . . . ∀ or ∃ . . . ∃ respectively. So, they essentially behave as 'macroscopic' atomic connectives of quantification signatures ∀ or ∃.

Definition 11 (Universal and existential molecular connective). A universal (resp. existential) molecular skeleton is a molecular skeleton c different from any id l k for any k, l ∈ N * such that AE(c) = ∀ (resp. AE(c) = ∃) and such that for each node of its decomposition tree labeled with = (σ, ±, AE, k, (± 1 , . . . , ± n )) and each of its jth children labeled with some j ∈ C such that the subtree generated by this j th children contains at least one id l k , we have that AE( j ) = ± j AE. A universal (resp. existential) molecular connective is a molecular connective with a universal (resp. existential) skeleton.

Example 2. On the one hand, the molecular connective (p, id l k ) is a universal (resp. existential) molecular connective if AE( ) = ∀ (resp. AE( ) = ∃). Likewise, ⊃ (id 1 1 , id 2 1 ) and ⊗( id 1 1 , p) are universal and existential molecular connectives respectively. On the other hand, the molecular connectives -id 1 1 and ⊃ ( id 1 1 , id 2 1 ) are neither universal nor existential molecular connectives.

Just as we have tonicity signatures for atomic connectives, we can also define an adaptation of this notion for universal and existential molecular connectives, which, we repeat, are some sort of 'macroscopic' atomic connectives.

Definition 12 (Tonicity signature of a molecular connective). Let c be a molecular connective and let c be a molecular subconnective of c. We define the tonicity of c w.r.t. c, denoted tn(c , c) inductively as follows.

If c = c then tn(c , c) = +. Otherwise, if c = (c 1 , . . . , c n ) with = (σ, ±, AE, k, (± 1 , . . . , ± n )
) and c appears in c j then tn(c , c) = ± j tn(c , c j ). The tonicity signature of a molecular connective is the tuple (± 1 , . . . , ± l ) of the tonicities tn(id i k , c) of the connectives labeling the leafs of the decomposition tree of c of the form id i k (possibly with repetition).

A molecular connective c is generally represented as (c 1 , . . . , c n ) where is an atomic connective, but it can also be represented as c 0 (c 1 , . . . , c n ) where c 0 is a molecular connective such that the id i k s which appear in c 0 are all distincts. This representation and decomposition in terms of molecular connectives is equivalent to the original one. For example the modal connective of weakly agregative modal logic (id 1 1 , . . . , id 1 1 ) can be represented in terms of molecular connectives with distinct id i k s as follows: (id ). We now formalize this idea of decomposition into molecular connectives.

Definition 13 (Decomposition of a molecular connective). Let c be a molecular connective and let T c be its decomposition tree. A decomposition of c is an expression of the form c 0 (c 1 , . . . , c n ) where c 0 is a molecular connective whose decomposition tree is a subtree of T c with root c and whose leafs, corresponding to the nodes c 1 , . . . , c n of T c , have been replaced by distinct id i k s and where c 1 , . . . , c n are molecular connectives whose decomposition trees are the subtrees of T c generated by the nodes c 1 , . . . , c n of T c . Example 3. For any molecular connective (id 1 1 , . . . , id n 1 ) corresponding to an atomic connective of arity n, a decomposition is (id

n+1 1 , . . . , id 2n 1 )(id 1 1 , . . . , id n 1 ). Likewise, a decomposition of (p, id l k ) is (id 1 1 , id 2 k )(p, id l k ) (if p is of type 1)
. Based on this observation, we can decompose molecular connectives into an alternation of universal and existential molecular subconnectives. That is what the following definition captures, at least at the first level of alternation depth. In that definition, if c 0 is universal and the tonicity of the j th molecular connective c j is positive for example, then c j will have an existential quantification signature (and its 'head' will behave as an existential molecular connective).

Definition 14 (Maximal decomposition).

A decomposition c = c 0 (c 1 , . . . , c n ) of a molecular connective c is maximal when c 0 is a universal or existential molecular connective of tonicity signature (± 1 , . . . , ± n ) with the id i k s all distinct, and we have that AE(c j ) = -± j AE(c 0 ) for all j ∈ 1; n such that c j is not of the form id l k for some k, l ∈ N * .

Example 4. The decomposition of (p,

id l k ) in (id 1 1 , id 2 k )(p, id l k ) (if p is of type 1) is not maximal because (p, id l k
) is already a universal or existential molecular connective. On the other hand, the decomposition of (p, id l k ) in (p, id l k )(id l k ) is maximal. The alternation of universal and existential molecular subconnectives inherent to any molecular connective is fully captured by the following notion of quantified decomposition tree. It is an abstraction of the notion of decomposition tree of Definition 6 which considers as first-class citizens universal and existential molecular (sub)connectives.

Definition 15 (Quantified decomposition tree). If c ∈ C * is a molecular skeleton, we define its quantified decomposition tree T c inductively as follows. If c is a propositional letter or id l k for some k, l ∈ N * then its quantified decomposition tree T c is the tree consisting of a single node labeled with c. Otherwise, c admits a maximal decomposition c = c 0 (c 1 , . . . , c n ). Then, its quantified decomposition tree T c is the tree defined inductively as follows: the root of T c is c and it is labeled with c 0 and one sets edges between that root and the roots c 1 , . . . , c n of the quantified decomposition trees T c1 , . . . , T cn respectively. The quantified decomposition tree of a molecular connective is the quantified decomposition tree of its skeleton.

Note that a propositional letter p can occur as the label of a node only if the quantified decomposition tree in which it appears consists of this single node only (Example 4 illustrates this phenomenon).

Definition 16 (Relation associated to a molecular connective). Let C be a set of molecular connectives and let c = (c 1 , . . . , c n ) ∈ C be a molecular connective with of skeleton (σ, ±, AE, (k , k 1 , . . . , k n ), (± 1 , . . . , ± n )). Assume that the decomposition tree of c has l different leaves labeled with id i k s of output types k 1 , . . . , k l , in that order. Then, the arity of c is l. Let M = (W, R) be a C-model. We define the relation R c inductively as follows. First, we set R -= R if is an atomic connective and if ± ∈ {+, -},

±p p if ± = + -p if ± = - and ± (c 1 , . . . , c n ) = (c 1 , . . . , c n ) if ± = + -(c 1 , . . . , c n ) if ± = - . • If the arity l of c is 0 then R c = c M ;
• If the arity l of c is greater than 0 and AE = ∃ then for all

w ∈ W k , w 1 ∈ W k1 , . . . , w l ∈ W k l , we set R c w 1 . . . w l w iff ∃v 1 ∈ W k 1 , . . . , v n ∈ W k n R ±σ v 1 . . . v n w ∧ R ± 1 c1 w 1 1 . . . w 1 i1 v 1 ∧ . . . ∧ R ± n cn w n 1 . . . w n in v n
where, for all j ∈ 1; n , the tuples w j 1 , . . . , w j ij are those associated to the leafs of the decomposition tree of c which are also leafs in the decomposition (sub)tree of c j (the w j i s appear in the same order as their corresponding leafs in the decomposition tree of c j ). Moreover, we set

R id i k vw iff R -id i k vw iff v = w. • If the arity l of c is greater than 0 and AE = ∀ then for all w ∈ W k , w 1 ∈ W k1 , . . . , w l ∈ W k l , we set R c w 1 . . . w l w iff ∀v 1 ∈ W k 1 , . . . , v n ∈ W k n R ±σ v 1 . . . v n w ∨ R ± 1 c1 w 1 1 . . . w 1 i1 v 1 ∨ . . . ∨ R ± n cn w n 1 . . . w n in v n
where, for all j ∈ 1; n , the tuples w j 1 , . . . , w j ij are defined as above. However, for that universal case, we set

R id i k vw iff R -id i k vw iff v = w.
Unsurprisingly, the semantics of universal and existential molecular connectives is similar to the semantics of atomic connectives of quantification signature ∀ and ∃ respectively. That is what the following proposition shows. In this proposition and the definition above, the molecular connective c = (c 1 , . . . , c n ) yields three different values: n, m and l. They can be all different in general. The value m is the arity of c, n is the arity of and l is the number of leaves of the decomposition tree T c of c. The value m is also the number of different labels id i k of the leafs of the decomposition tree T c . Hence, the size l of the tuple of the tonicity signature of a molecular connective c is larger than the arity m of c because in the former case we take into account repetitions of the same id i k s. 

i k . Let M = (W, R) be a C-model and let w ∈ W k .
• If c is an existential molecular connective then

w ∈ c(ϕ 1 , . . . , ϕ m ) M iff ∃w 1 . . . w l w 1 1 ϕ i1 M ∧ . . . ∧ w l l ϕ i l M ∧ R c w 1 . . . w l w • If c is a universal molecular connective then w ∈ c(ϕ 1 , . . . , ϕ m ) M iff ∀w 1 . . . w l w 1 1 ϕ i1 M ∨ . . . ∨ w l l ϕ i l M ∨ R c w 1 . . . w l w
where the R c s are defined in Definition 16 and for all j ∈ 1; l ,

w j j ϕ ij M w j ∈ ϕ ij M if ± j = + w j / ∈ ϕ ij M if ± j = - and i 1 , . . . , i l ∈ 1; m are those indices corre-
sponding to the m different id i k s appearing in c (we basically map the l leafs of the decomposition tree of c to their labels id i k s in this tree).

Automatic Bisimulations for Atomic and Molecular Logics

In this section, we are going to see that notions of bisimulations can be automatically defined for atomic and molecular logics on the basis of the definition of the truth conditions of their connectives, not only for plain atomic logics but also for molecular logics. These notions are such that they preserve the truth of the formulas of the atomic logic considered between models.

Atomic Logics

Definition 17 (C-bisimulation for atomic connectives). Let C be a set of atomic connectives, let ∈ C and let where, for all j ∈ 1; n , we define w j w j w j Zw j if

M 1 = (W 1 , R 1 ) and M 2 = (W 2 , R 2 ) be two C-models. A binary relation Z ⊆ k∈N * (W k 1 × W k 2 ) ∪ (W k 2 × W k 1 ) is a C-bisimulation between M 1 and
± j = + w j Zw j if ± j = - .
When such a C-bisimulation Z exists and wZw , we say that (M, w) and (M , w ) are Cbisimilar and we write it (M, w) → C (M , w ).

Note that case 1. is a particular instance of cases 2. and 3. with n = 0. Importantly, note also that the clause(s) defining a C-bisimulation allow us to define back the atomic connective(s) that led to their definition(s): we can recover the skeleton of the connectives considered (tonicity signature, quantification signature, type signature, etc) from the mere expression of the clauses of a given C-bisimulation. Hence, in that sense, a C-bisimulation completely characterizes a given (atomic) logic.

Example 5 (Modal logic). Let us consider the connectives of modal logic: C = {p, ¬p, ∧, ∨, , } where p has skeleton (Id, +, ∃, 1), ¬p has skeleton (Id, -, ∀, 1), has skeleton (τ 2 , +, t 1 ) and has skeleton (τ 2 , -, t 2 ) . Let M 1 = (W 1 , {R 1 , P 1 }) and M 2 = (W 2 , {R 2 , P 2 }) be two Kripke models (they are also C-models). A binary relation Z between M 1 and M 2 is a C-bisimulation between M 1 and M 2 when for all M, M ∈ {M 1 , M 2 } with M = (W, {R, P }) and M = (W , {R , P }), all w, v ∈ M and all w , v ∈ M ,

• if wZw and w ∈ p then w ∈ p (condition for p);

• if wZw and w ∈ p then w ∈ p (condition for ¬p);

• if wZw and Rwv then there is v ∈ W such that vZv and R w v (condition for = (τ 2 , +, t 1 ) );

• if wZw and R w v then there is v ∈ W such that vZv and Rwv (condition for = (τ 2 , -, t 2 ) ).

Note that every C-bisimulation can be canonically extended into a symmetric C-bisimulation: one sets w Zw when wZw already holds. 

M 1 = (W 1 , R 1 ) and M 2 = (W 2 , R 2 ) be two C-models. Let Z be a C- bisimulation between M 1 and M 2 . Then, if {M, M } = {M 1 , M 2 } then for all w ∈ w(M, C), all w ∈ w(M , C), if wZw then (M, w) C (M , w ).

Molecular Logics

Definition 19 (C-bisimulation for molecular connectives). Let C be a set of molecular connectives and let M 1 = (W 1 , R 1 ) and M 2 = (W 2 , R 2 ) be two C-models. For all c 0 ∈ C, let V c0 be the vertices of the quantified decomposition tree of c 0 . We associate to each vertex c ∈ V c0 of output type or type (if it is a propositional letter) k a relation

Z c ⊆ (W k 1 × W k 2 ) ∪ (W k 2 × W k 1 ) such that i. Z Z id i k | id i k appears in some c ∈ C is non-empty;
ii. for all w, w of size k such that wZw , we also have that for all c ∈ C of output type or type (if it is a propositional letter) k that wZ c w .

We say that this set of relations

Z c | c ∈ V c0 , c 0 ∈ C is a C-bisimulation between M 1 and M 2 when for all c 0 ∈ C, all vertice c ∈ V c0 whose label is different from any id l k , if {M, M } = {M 1 , M 2 } then for all w 1 , . . . , w n , w 1 , . . . , w n , w, w ∈ w(M, C) ∪ w(M , C),
1. if c is of arity 0 then, wZ c w and w ∈ c imply w ∈ c ; 2. if c is of arity greater than 0 and is maximally decomposed into c = c 0 (c 1 , . . . , c n ), with c 0 an existential molecular connective of tonicity signature (± 1 , . . . , ± n ), and we have that wZ c w and R c0 w 1 . . . w n w, then there are w 1 w 2 . . . w n such that R c0 w 1 . . . w n w and i. for all j ∈ 1; n such that ± j = +, there is i ∈ 1; n such that c j = c i and w i Z cj w j ;

ii. for all j ∈ 1; n such that ± j = -, there is i ∈ 1; n such that c j = c i and w j Z cj w i .

3. if c is of arity greater than 0 and is maximally decomposed into c = c 0 (c 1 , . . . , c n ), with c 0 a universal molecular connective of tonicity signature (± 1 , . . . , ± n ), and we have that wZ c w and -R c0 w 1 . . . w n w , then there are w 1 w 2 . . . w n such that -R c0 w 1 . . . w n w and i. for all j ∈ 1; n such that ± j = +, there is i ∈ 1; n such that c j = c i and w j Z cj w i ;

ii. for all j ∈ 1; n such that ± j = -, there is i ∈ 1; n such that c j = c i and w i Z cj w j .

When we have that wZw , we say that (M, w) and (M , w ) are C-bisimilar and we write it (M, w) → C (M , w ).

Note that if we consider molecular connectives of the form c (id 1 k1 , . . . , id n kn ), representing the atomic connective of type signature (k, k 1 , . . . , k n ), then the definition of a C-bisimulation for these kind of molecular connectives is identical to the definition of a Cbisimulation for the associated atomic connectives. Hence, our definition of C-bisimulation for molecular connectives is a genuine generalization of our definition of C-bisimulation for atomic connectives. The bisimulation relation Z in the atomic case corresponds in the molecular case to

Z id i k | id i k appears in some c ∈ C .
Definition 20. Let C be a set of molecular connectives. For all c 0 ∈ C and all vertex c of the quantified decomposition tree T c0 , we define the language L cC as follows:

L cC {c(ϕ 1 , . . . , ϕ n ) | ϕ 1 , . . . , ϕ n ∈ L C } if c is of arity n > 0 {c} if c is of arity 0
Let (M, w) and (M , w ) be two pointed C-models. We write (M, w) cC (M , w ) when for all ϕ ∈ L cC , (M, w) ϕ implies (M , w ) ϕ. We also write (M, w) C (M , w ) when for all ϕ ∈ L C , (M, w) ϕ implies (M , w ) ϕ.

Proposition 6 (Truth preservation of C-bisimilar pointed C-models). Let C be a set of molecular connectives and let M 1 = (W 1 , R 1 ) and M 2 = (W 2 , R 2 ) be two C-models. Let C 0 ⊆ C and for all c ∈ C 0 , let D c be the vertices of the quantified decomposition tree

T c . Let Z c | c ∈ V c0 , c 0 ∈ C 0 be a C 0 -bisimulation between M 1 and M 2 . If {M, M } = {M 1 , M 2 }
then for all c 0 ∈ C 0 and all c ∈ V c0 , for all w ∈ w(M, C) and all w ∈ w(M , C), if wZ c w then (M, w) cC0 (M , w ). In particular, if wZw then (M, w) C0 (M , w ).

Definition 21 (Normal connectives). A molecular connective is normal when its molecular skeleton can be decomposed maximally into a molecular skeleton c 0 (c 1 , . . . , c n ) such that for all i ∈ 1; n , 1. c i is either id i k or c i (id i k , . . . , id i k ) with c i either universal or existential, and in that case we note id(c i ) the unique id i k appearing in c i ;

2. if id(c i ) = id(c j ) then c i = c j .
In the above definition, since the decomposition c 0 (c 1 , . . . , c n ) is maximal, we have in particular, by definition, that if c 0 is of tonicity signature (± 1 , . . . , ± n ), then AE(c i ) = -± i AE(c 0 ). Example 6. The molecular connectives of modal intuitionistic logic, weakly aggregative modal logic and temporal logic [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF][START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF] are normal.

Ultrafilters, Ultraproducts and Ultrapowers

In this section, we are going to recall and generalize to molecular logics a number of key notions and results of model theory, such as ultrafilters and ultraproducts. Our definitions are basically the same as those of FOL [START_REF] Chang | Model Theory[END_REF].

Definition 22 (Filter and ultrafilter). Let I be a non-empty set. A filter F over I is a set

F ⊆ P(I) such that I ∈ F ; if X, Y ∈ F then X ∩ Y ∈ F ; if X ∈ F and X ⊆ Z ⊆ I then Z ∈ F .
A filter is called proper if it is distinct from P(I). An ultrafilter over I is a proper filter U such that for all X ∈ P(I), X ∈ U iff I -X / ∈ U . A countably incomplete ultrafilter is an ultrafilter which is not closed under countable intersections.

In the rest of this section, I is a non-empty set and U is an ultrafilter over I.

Definition 23 (Ultraproduct of sets). For each i ∈ I, let W i be a non-empty set. For all

(w i ) i∈I , (v i ) i∈I ∈ i∈I W i , we say that (w i ) i∈I and (v i ) i∈I are U -equivalent, written (w i ) i∈I ∼ U (v i ) i∈I , if {i ∈ I | w i = v i } ∈ U . Note that ∼ U is an equivalence relation on i∈I W i . The equiva- lence class of (w i ) i∈I under ∼ U is denoted U w i (v i ) i∈I ∈ i∈I W i | (v i ) i∈I ∼ U (w i ) i∈I . The ultraproduct of (W i ) i∈I modulo U is U W i U w i | (w i ) i∈I ∈ i∈I W i . When W i =
W for all i ∈ I, the ultraproduct is called the ultrapower of W modulo U , written U W .

Definition 24 (Ultraproduct and ultrapower). Let C be a set of molecular connectives and let (M i , w i ) i∈I be a family of pointed C-models. The ultraproduct

U (M i , w i ) of (M i , w i ) modulo U is the pointed C-model U M i , U w i where U M i = (W U , R U ) and
U w i are defined by:

• W U = U W i ; • for all n + 1-ary relations R i of M i , the n + 1-ary relation U R ∈ R U is defined for all U w 1 i , . . . , U w n+1 i ∈ W U by U R U w 1 i . . . U w n+1 i iff i ∈ I | R i w 1 i . . . w n+1 i ∈ U ; • U w i U w 1 i , . . . , U w k i if (w i ) i∈I = (w 1 i , . . . , w k i ) i∈I .
If (M i , s i ) i∈I is a family of pointed structures, the ultraproduct

U (M i , s i ) is the pointed structure U M i , U s i
where U M i is defined as above (the M i are viewed as C-models) and

U s i : V → U W i is the assignment such that for all x ∈ V, U s i (x) = U s i (x).
If for all i ∈ I, 

(M i , w i ) = (M, w) (and (M i , s i ) = (M, s)) then U (M i , w i ) is

First-Order Logics in Atomic Logics

In this section, we introduce predicate atomic logics, which are, as we will show, as expressive as the predicate atomic logics introduced in [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]. That is why we call both of them with the same name.

Definition 25 (Predicate atomic connectives). Let P be a set of predicate symbols. The set of predicate atomic connectives associated to P is

C P P ∪ {⊥, U } ∪ { k , ⊃ k | k ∈ N * } ∪ {[f l k ] | k, l ∈ N * and f l k : 1; l → 1; k is a mapping} where, for all k, l ∈ N * , • R has skeleton (Id, +, ∀, k) if R ∈ P is of arity k;
• ⊥ has skeleton (Id, -, ∀, 1);

• U has skeleton (Id, -, ∀, (1, 1), +);

• k has skeleton (Id, -, ∀, (k, k + 1), +);

• ⊃ k has skeleton (Id, -, ∀, (k, k, k), (-, +));

• [f l k ] has skeleton (Id, -, ∀, (k, l), +).
Definition 26 (Predicate atomic logic). Let P be a set of predicate symbols. A predicate C P -model is a C P -model M = (W, R) such that:

• for all k ∈ N * , the connectives R of type k are associated to k-ary relations R over W ;

• the connective ⊥ is associated to the 1-ary relation R ⊥ W ;

• for all k, l ∈ N * and all mappings f l k :

1; l → 1; k , the connective [f l k ] is associated to the k + l-ary relation R [f l k ] such that for all w 1 , . . . , w k , v 1 , . . . , v l ∈ W , we have that R [f l k ] v 1 . . . v l w 1 . . . w k iff for all i ∈ 1; l , v i = w f l k (i) ; • for all k ∈ N * , the connectives ⊃ k are associated to the 3k-ary relation R k ⊆ W 3k such that for all w 1 ∈ W k , all w 2 ∈ W k and all w 3 ∈ W k , we have that R k w 1 w 2 w 3 iff w 1 = w 2 = w 3 ;
• for all k ∈ N * , the connectives k are associated to the 2k + 1-ary relation R k ⊆ W 2k+1 such that for all v ∈ W k+1 and all w ∈ W k , we have that R k vw iff v = (w, u) for some u ∈ W ;

• U is associated to the 2-ary relation R U W 2 .
The class of all pointed predicate C P -models is denoted M C P . The satisfaction relation ⊆ M C P × L C P is then defined following Definition 5. If E C P is a specific class of pointed C P -model, the triple (L C P , E C P ,

) is called the predicate atomic logic associated to E C P and P. We also define

L C P (k) {ϕ ∈ L C P | k(ϕ) = k}. A predicate atomic logic of type k is a triple (L C P (k), E C P (k),
) such that all pointed C P -models of E C P (k) are of type k.

Our connectives [f l k ] are a generalization of the connectives σ of multi-dimensional modal logics [START_REF] Marx | Multi-dimensional modal logic[END_REF]

. In fact, if k = l then [f k k ] is exactly f k k .
Definition 27 (Translation from FOL to predicate atomic logics). Let P be a set of predicate symbols.

Syntax. For all k ∈ N and all x = (x 1 , . . . , x k ) ∈ (V ∪ C) k , we define the mappings T x : L P FOL (x, k) → L C P (k) and T ∅ : L P FOL (∅) → L C P (1) inductively on the formula ϕ(x 1 , . . . , x k ) ∈ L P FOL (with or without free variables) as follows.

• if ϕ = ⊥ then we define T ∅ (⊥) ⊥;

• if ϕ = Rx i1 . . . x i l with k ≤ l (some variables or constants can be the same and variables and constants may be in a different order than (x 1 , . . . , x k )) then there is a unique (surjective) mapping f l k : 1; l → 1; k such that for all j ∈ 1; l , we have that f l k (j) = i j . Finally, we define

T x (Ry 1 . . . y l ) f l k R; • if ϕ = (ϕ 1 → ϕ 2 )
where ϕ 1 and ϕ 2 are both sentences, then we define

T ∅ (ϕ) ⊃ 1 (T ∅ (ϕ 1 ), T ∅ (ϕ 2 )) if ϕ = (ϕ 1 → ϕ 2 (x))
where ϕ 1 is a sentence, then we define

T (x) (ϕ) ⊃ 1 T ∅ (ϕ 1 ), T (x) (ϕ 2 (x)) if ϕ = (ϕ 1 (x) → ϕ 2 )
where ϕ 2 is a sentence, then we define

T (x) (ϕ) ⊃ 1 T (x) (ϕ 1 (x)), T ∅ (ϕ 2 ) if ϕ = (ϕ 1 → ϕ 2 (x 1 , . . . , x k ))
where ϕ 1 is a sentence and k > 1 , then we define

T x (ϕ) ⊃ k [f 1 k ]T ∅ (ϕ 1 ), T (x1,...,x k ) (ϕ 2 (x 1 , . . . , x k )) where f 1 k : {1} → 1; k is defined by f 1 k (1) = 1; if ϕ = (ϕ 1 (x 1 , . . . , x k ) → ϕ 2 )
where ϕ 2 is a sentence and k > 1, then we define

T x (ϕ) ⊃ k T (x1,...,x k ) (ϕ 1 (x 1 , . . . , x k )), [f 1 k ]T ∅ (ϕ 2 )
where f 1 k is defined as above; if ϕ = (ϕ 1 (x i1 , . . . , x i k 1 ) → ϕ 2 (y j1 , . . . , y j k 2 )) then we define

T x (ϕ) ⊃ k Exp x (ϕ 1 (x i1 , . . . , x i k 1 )), Exp x (ϕ 2 (x j1 , . . . , x j k 2 ))
where

Exp x (ϕ 1 (x i1 , . . . , x i k 1 )) T (x1,...,x k ) (ϕ 1 (x i1 , . . . , x i k 1 )) if k 1 = k f k1 k T (xi 1 ,...,xi k 1 ) (ϕ 1 (x i1 , . . . , x i k 1 )) if k 1 < k
where for all j ∈ 1; k 1 , we have that f k1 k (j) = i j . The definition is similar for Exp x (ϕ 2 (x j1 , . . . , x j k 2 )), one only needs to replace i by j and k 1 by k 2 .

• if ϕ = ∀xψ(x) where ϕ is a sentence, then we define

T ∅ (ϕ) U T (x) (ψ(x)); if ϕ = ∀xψ(x 1 , . . . , x k , x) with k ≥ 1, then we define T x (ϕ) k T (x1,...,x k ,x) (ψ(x 1 , . . . , x k , x)).
Semantics. Let M = (W, {R 1 , . . . , R n , . . . , c 1 , . . . , c n , . . .}) be a structure without functions. We define the C P -model T (M ) = (W, R) by adding to the relations of M the relations defined in Definition 26. If x = (x 1 , . . . , x k ) is a tuple of k variables then we define T x (M, s) (T (M ), (s(w 1 ), . . . , s(w k ))) and T ∅ (M, s) (T (M ), (s(x 0 ))) for an arbitrary x 0 ∈ V.

Lemma 1. Let ϕ ∈ L P

FOL , let x be the tuple of free variables and constants of ϕ (possibly empty) and let (M, s) be a pointed structure. Then, we have that (M, s) ϕ iff T x (M, s) T x (ϕ).

Definition 28 (Translation from predicate atomic logics to FOL).

Syntax. For all k ∈ N * and all tuples x = (x 1 , . . . , x k ) of variables or constants, we define the mappings ST x : L k C P → L P FOL , where L k C P is the set of formulas of L C P of type k, inductively as follows:

ST x (R) Rx ST x (⊥) ⊥ ST x ([f l k ]ϕ) ST (x f l k (1) ,...,x f l k (l) ) (ϕ) ST x (⊃ k (ϕ 1 , ϕ 2 )) (ST x (ϕ 1 ) → ST x (ϕ 2 )) ST x ( k ϕ) ∀xST (x,x) (ϕ) ST (x) (U ϕ) ∀xST (x) (ϕ)
where t is an arbitrary term of L P FOL (we recall that ∨ is here an abbreviation). Semantics. Let (M, (w 1 , . . . , w k )) be a pointed C P -model of type k and let x = (x 1 , . . . , x k ) be a tuple of free variables or constants of size k. The (pointed) structure associated to (M, w), denoted ST x (M, w) (ST (M ), s w x ), is defined as follows. The assignment s w x is such that for all i ∈ {1, . . . , k}, s(x i ) = w i and for all x ∈ V -{x 1 , . . . , x k }, s(x) = w 1 and ST (M ) is the structure ST (M ) = (W, ST (R)) where ST (R) is the set R to which we remove the relations stemming from Definition 26.

Lemma 2. Let (M, w) be a pointed predicate C

P -model of type k, let ϕ ∈ L C P of type k and let x ∈ (V ∪ C) k . Then, (M, w) ϕ iff ST x (M, w) ST x (ϕ).
Moreover, for all pointed structures (M, s) without distinguished elements, we have that ST x (T x (M, s)) ≡ x (M, s) and for all pointed predicate C P -model (M, w), we have that T x (ST x (M, w)) ≡ k (M, w). Proposition 7. Let P be a set of predicate symbols and k ∈ N * . If E C P is a class of pointed C P -model, the predicate atomic logic (of type k) associated to E C P and P is as expressive as a predicate atomic logic (of type k) as defined in [6, Definition 18], and vice versa.

Therefore, [6, Theorem 1] and [6, Corollary 1] hold as well for the versions of predicate atomic logics introduced in the present article.

Generalized Keisler Theorems for First-Order Logics

In that section, we assume that the first-order languages are countable.

Bisimulations for Pure Predicate Logic

Applying our Definition 17 to our predicate atomic logics of Section 11 we obtain the following conditions: for all M, M ∈ {M 1 , M 2 } with M = (W, R) and M = (W , R ), all w, v, u ∈ w(M, C), all w, v ∈ W and all w , v , u ∈ w(M , C), all w , v ∈ W , all R ∈ P,

• condition for R: if wZw and Rw then R w , for all relations R and R both associated to R (in the associated structure);

• condition for ⊥: if wZw and R ⊥ (w ) then R ⊥ (w), this condition always holds;

• condition for [f l k ]: for all k, l ∈ N * and all mappings f l k , if wZw and

R [f l k ] w v then there is v ∈ w(M, C) such that vZv and R [f l k ] wv, that is, if wZw then f l k (w)Zf l k (w )
, where for all w = (w 1 , . . . , w k ), f l k (w) (w f l k (1) , . . . , w f l k (l) ); • condition for ⊃ k : for all k ∈ N * , if wZw and R k v u w then there are v, u ∈ w(M, C) such that v Zv, uZu and R k vuw, that is, if wZw then w Zw;

• condition for k : for all k ∈ N * , if wZw and R k v w then there is v ∈ w(M, C) such that vZv and R k vw, that is, if wZw then for all v ∈ W there is v ∈ W such that (w, v)Z(w , v );

• condition for U : if wZw and v ∈ W then there is v ∈ W such that vZv , that is, for all w ∈ W there is w ∈ W such that wZw .

If we combine the conditions above, we obtain the following definition.

Definition 29 (Predicate bisimulation). A predicate bisimulation between two structures M 1

and M 2 is a non-empty relation Z between finite sequences of the same length of M 1 and M 2 or M 2 and M 1 such that for all M, M ∈ {M 1 , M 2 } with M = (W, R) and M = (W , R ), all m, n ∈ N * , all w 1 , . . . , w n ∈ W , all w 1 , . Let X ⊆ V ∪ C be a non-empty set. An X-compatible predicate bisimulation Z between two pointed structures (M, s) and (M , s ) is a predicate bisimulation between M and M such that 5. for all x 1 , . . . , x n ∈ X, it holds that (s(x 1 ), . . . , s(x n )) Z (s (x 1 ), . . . , s (x n )).

A C-compatible predicate bisimulation between two pointed structures is often abusively called a predicate bisimulation. Now, we recall the usual notion of partial isomorphism.

Definition 30 (Partial isomorphism). A partial isomorphism between two structures M 1 and M 2 is a relation Z on the set of pairs of finite sequences (w 1 , . . . , w n ), (v 1 , . . . , v n ) of elements of M 1 and M 2 of the same length such that:

1. if (w 1 , . . . , w n )Z(v 1 , . . . , v n ) then (M 1 , s 1 ) and (M 2 , s 2 ) make true the same atomic formulas ϕ(x 1 , . . . , x n ) ∈ L PF FOL , where s 1 and s 2 are such that for all i ∈ {1, . . . , n}, s 1 (x i ) = w i and s 2 (x i ) = v i ; 2. if (w 1 , . . . , w n )Z(v 1 , . . . , v n ) then for all w ∈ M 1 there is v ∈ M 2 such that (w 1 , . . . , w n , w)Z(v 1 , . . . , v n , v), and vice versa;

3. for all w ∈ M 1 there is v ∈ M 2 such that (w)Z(v), and vice versa.

Condition 3 could be equivalently replaced by the condition ∅Z∅, like in [START_REF] Chang | Model Theory[END_REF]. Predicate bisimulations are basically partial isomorphisms as one can easily notice: Proposition 8. A predicate bisimulation between pointed structures without functions is a partial isomorphism. Proposition 9. Let X ⊆ V ∪ C be a non-empty set. If there is an X-compatible predicate bisimulation between two pointed structures then they make true the same formulas of L P FOL (X).

The analogue of the Keisler-Shelah theorem below generalizes it in the sense that it applies to larger classes of first-order formulas than the class of sentences only.

Theorem 1. Let X ⊆ V ∪ C be non-empty and assume that L P FOL (X) is countable. Let (M, s) and (M , s ) be two pointed structures. Then the following are equivalent:

1. (M, s) and (M , s ) make true the same formulas of L P FOL (X);

there exists an ultrafilter U and a X-compatible predicate bisimulation between

U (M, s)
and

U (M , s ).
The following corollary with sentences only is an analogue of the Keisler-Shelah isomorphism theorem [START_REF] Chang | Model Theory[END_REF]Theorem 6.1.15] in which isomorphisms are replaced by predicate bisimulations.

Corollary 1. Assume that L P

FOL is countable and let (M, s) and (M , s ) be two pointed structures. Then the following are equivalent:

1. (M, s) and (M , s ) make true the same sentences of L P FOL ;

2. there exists an ultrafilter U and a predicate bisimulation between U (M, s) and

U (M , s ).
Theorem 2. Let X ⊆ V ∪ C be non-empty and assume that L P FOL (X) is countable. Let K and K be classes of pointed structures such that K is closed under ultraproduct. Then, the following are equivalent:

1. K is definable in K by a set of formulas of L P FOL (X);
2. K is closed under X-compatible predicate bisimulations in K and closed under ultraproducts, and K -K is closed under ultrapowers.

Corollary 2. Let K be a class of pointed structures. Then, the following are equivalent:

1. K is definable by a set of sentences of L P FOL ;

K is closed under predicate bisimulations and ultraproducts, and K is closed under ultrapowers.

A result similar to Corollary 2 was already proved by van Benthem & Doets [27, p. 285]. In their result, isomorphisms are replaced by partial isomorphisms. Theorem 3. Let X ⊆ V ∪ C be non-empty and assume that L P FOL (X) is countable. Let K and K be classes of pointed structures such that K is closed under ultraproducts. Then, the following are equivalent:

1. K is definable in K by means of a single formula ϕ ∈ L P FOL (X);
2. Both K and K -K are closed under X-compatible predicate bisimulations in K and closed under ultraproducts.

Corollary 3.

Let K be a class of pointed structures. Then, the following are equivalent:

1. K is definable by means of a sentence of L P FOL ;

2. Both K and K are closed under predicate bisimulations and ultraproducts.

Bisimulations for First-order Logic

The results of the previous section hold for pure predicate logic, that is first-order logic without functions. In this section, we are going to extend them to first-order logic (with functions).

Definition 31 (First-order bisimulation). A first-order bisimulation between two structures M 1 and M 2 is a pair of non-empty relations (Z, Z 0 ) between finite sequences of M 1 and M 2 of the same length such that for all M, M ∈ {M 

)Z 0 (w 1 , . . . , w n ) and f 1 (v 1 ) = w 1 , . . . , f n (v n ) = w n then there are finite sequences v 1 , . . . , v n of M such that v 1 Z 0 v 1 , . . . , v n Z 0 v n and f 1 (v 1 ) = w 1 , . . . , f n (v n ) = w n ; 3. if (
)Z(w 1 , . . . , w n ) then (w 1 , . . . , w n )Z(w 1 , . . . , w n ).
Let X ⊆ V ∪ C be a non-empty set. An X-compatible first-order bisimulation Z between two pointed structures (M, s) and (M , s ) is a first-order bisimulation between M and M such that 8. for all x 1 , . . . , x n ∈ X, it holds that (s(x 1 ), . . . , s(x n )) Z (s (x 1 ), . . . , s (x n )).

A C-compatible first-order bisimulation between two pointed structures is often abusively called a first-order bisimulation.

The bisimulation notion that we obtain in this extended setting with functions is again different from the usual notion of (partial) isomorphism, but the difference, which concerns the atomic base, is more visible in that case than for pure predicate logics. Basically, condition 1 of a (partial) isomorphism is replaced by a set of back and forth semantic conditions dealing with the functions, but without any reference to, or evaluation of, first-order (atomic) formulas, like for our predicate bisimulations.

Theorem 4. Theorems 1, 2, 3 and Corollaries 1, 2, 3 hold if we replace at the same time the term "predicate bisimulation" with "first-order bisimulation" and the languages L P

FOL and L P FOL (X) with the languages with function symbols L PF FOL and L PF FOL (X) respectively.

The invariance notions of pure predicate logic and first-order logic with equality are also predicate bisimulation and first-order bisimulation because the equality predicate is considered on a par with the other predicates, it is just like any other predicate. In that case, the corresponding condition 1. of Definitions 29 and 31 for the equality predicate is the following: if (w, w)Z 0 (w 1 , w 2 ) then w 1 = w 2 . With the other conditions, this condition is equivalent to: (w 1 , . . . , w i , . . . , w i , . . . , w n )Z 0 (w 1 . . . , w i , . . . , w j , . . . , w n ) implies w i = w j . This condition does not follow from the other conditions of a first-order or a predicate bisimulation. On the other hand, it holds for these notions that if (w 1 , . . . , w i , . . . , w n )Z(w 1 , . . . , w i , . . . , w n ) then (w 1 , . . . , w i , . . . , w i , . . . , w n )Z(w 1 , . . . , w i , . . . , w i , . . . , w n ). Proposition 10. If there is a first-order bisimulation between two pointed structures then there is a predicate bisimulation and a partial isomorphism between them. Any two finite or countable structures such that there is a predicate or (if they contain functions) a first-order bisimulation between them are isomorphic.

Protologics in Molecular Logics

Protologics, introduced in [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF], are logics such that the truth conditions of their connectives can be expressed by means of first-order formulas. Hence, protologics represent and correspond to a very large fragment of non-classical logics. We show that every protologic is as expressive as a molecular logic. The proofs are essentially the same as in [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]. In this section, Q and P are sets of predicates such that Q ⊆ P.

Definition 32 (Translation from protologics to molecular logics). Let C a be a set of abstract connectives. Syntax. We define the mapping t from the abstract connectives of C a to molecular connectives as follows:

• t(Q) = Q for all predicate Q ∈ Q;
• For abstract connectives of the form (χ(x), (Q 1 , . . . , Q n )), we proceed as follows. We first translate χ(x) into predicate atomic logic using the translation T x of Definition 27 We obtain a formula χ = T x (χ(x)) of predicate atomic logic. That transformation is injective. That formula χ is then transformed into a molecular connective c. The skeleton decomposition tree of that molecular connective is the skeleton syntactic tree of χ where the leafs labeled with the skeleton of a predicate Q i are all replaced by the same skeleton symbol id l ki

where k i is the arity of each Q i and l is a natural number which allows to distinguish id l ki from the other symbols of the form id l ki appearing in the skeleton. The resulting molecular connective c of arity n and type signature (k,

k 1 , . . . , k n ) is denoted t(χ(x), (Q 1 , . . . , Q n )).
The resulting set of molecular connectives is denoted t(C a ). Then, this translation t is extended to the whole language as follows: for all ∈ C a and all ϕ 1 , . . . , ϕ n ∈ L C a of appropriate types, t( (ϕ 1 , . . . , ϕ n )) = t( )(t(ϕ 1 ), . . . , t(ϕ n )). By construction, this transformation t is injective.

Semantics. Let (M, w) be a pointed C a -model with M = (W, R). The pointed t(C a )-model t(M, w) is the t(C a )-model ((W, R ), w)
where R is R together with the relations of Definition 26.

Lemma 3. Let C a be a set of abstract connectives, let ϕ ∈ L C a and let (M, w) be a pointed C a -model where w is of size the type of ϕ. Then, we have that

(M, w) ϕ iff t(M, w) t(ϕ)
Proof: It is the same as [6, Lemma 3].

Definition 33 (Translation from molecular logics to protologics). Let C be a set of molecular connectives.

Syntax. We define the mapping st from molecular connectives to abstract connectives inductively as follows:

• st(p) p for all propositional letters p of C.

• For all molecular connectives of the form c = (c 1 , . . . , c m ) we proceed as follows. First, we replace all symbols id l k appearing in c by fresh and distinct propositional letters (p 1 , . . . , p n ). This yields a formula ϕ ∈ L C of some type k. Then, we pick a tuple of free variables x of size k and we define the first-order formula st x (ϕ) inductively as follows. If ϕ is a propositional letter p then st x (p) Qx, where Q is a predicate symbol of Q. If ϕ is of the form (ϕ 1 , . . . , ϕ m ) then

-if = (σ, ±, ∀, k, (± 1 , . . . , ± m )) then st x ( (ϕ 1 , . . . , ϕ m )) ∀y 1 . . . y m ± 1 st y 1 (ϕ 1 ) ∨ . . . ∨ ± n st y m (ϕ m ) ∨ ±R σ y 1 . . . y m x ; -if = (σ, ±, ∃, k, (± 1 , . . . , ± m )) then st x ( (ϕ 1 , . . . , ϕ m )) ∃y 1 . . . y m ± 1 st y 1 (ϕ 1 ) ∧ . . . ∧ ± n st y n (ϕ m ) ∧ ±R σ y 1 . . . y m x ;
where y 1 , . . . , y n are fresh tuples of free variables and R is a predicate symbol of P -Q.

We recall that for all formulas ψ, ± i ψ stands for ψ if ± i = + and for ¬ψ if

± i = -, and that R σ y 1 . . . y m y m+1 Ry σ -(1) . . . y σ -(m) y σ -(m+1) .
Finally, we define the abstract connective st(c)

(st x (ϕ), (Q 1 , . . . , Q n )) where for all i ∈ 1; n , Q i = st(p i ).
The resulting set of abstract connectives is denoted st(C). Then, this translation st is extended to the whole language as follows: for all ∈ C and all ϕ 1 , . . . , ϕ n ∈ L C of appropriate types, st( (ϕ 1 , . . . , ϕ n )) = st( )(st(ϕ 1 ), . . . , st(ϕ n )). By construction, this transformation st is injective. Definition 34 (Predicate molecular logic). A predicate molecular logic is a molecular logic whose molecular connectives are built up from the predicate atomic connectives {⊥,

U } ∪ { k , ⊃ k | k ∈ N * } ∪ {[f l k ] | k, l ∈ N * and f l k : 1; l → 1;
k is a mapping} of Definitions 25 and 26, together with some set of propositional letters (possibly empty).

Theorem 6. The class of predicate molecular logics is as expressive as the class of molecular logics and therefore also as expressive as the class of protologics.

Proof: It is the same as [6, Theorem 3].

Generalized Keisler Theorems for Protologics

Our ultimate objective in this article is to provide an appropriate notion of bisimulation for any protologic, together with Keisler type theorems, when this is possible. This is what we are going to achieve in this section thanks to the translation from protologics to (predicate) molecular logics which was defined in the previous sections. Our method is the following: Every protologic

(L C a , E C a ,
) is as expressive as the predicate molecular logic

(t(L C a ), t(E C a ),
) (see Definition 32) which is itself based on a set of molecular connectives t(C a ) defined by the translation t of Definition 32. The notion of t(C a )-bisimulation canonically induces a notion of bisimulation for the protologic (L C a , E C a , ), as follows.

Definition 35 (C a -bisimulation for abstract connectives). Let C a be a set of abstract connectives and let (L C a , E C a , ) be a protologic (defined in [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]Sect. 4.1]). Let (M, w), (M , w ) ∈ E C a be two pointed C a -models. We say that (M, w) and (M , w ) are C a -bisimilar, written (M, w) → C a (M , w ), when t(M, w) and t(M , w ) (defined in Definition 32) are t(C a )-bisimilar, that is t(M, w) → t(C a ) t(M , w ). We also say that the set of abstract connectives C a is normal when the set of molecular connectives t(C a ) is itself normal. This is well-defined because for any pointed C a -model (M, w), we have by definition of t that (M, w) and t(M, w) are based on the same set of worlds W . Theorem 7 (Keisler theorems for protologics). Let C a be a set of normal abstract connectives complete for conjunction and disjunction. Then, theorems 1, 2, 3 hold if we replace "pointed structures" by "pointed C a -models", the language "L P FOL (X)" by the language "L C a " and "Xcompatible predicate bisimulation" by "C a -bisimulation".

Atomic and molecular connectives C can be equivalently seen as abstract connectives C a , in the sense that one can find abstract connectives which have the same truth conditions as any given atomic or molecular connective. 2 For example, the connective of tense logic of skeleton (τ 1 , -, t 2 ) has the same truth conditions as the abstract connective (χ(x), Q), where χ(x) ∀y(Ryx → Qy). Theorems 7 suggests that the notion of C-bisimulation for atomic and molecular connectives C and the notion of C a -bisimulation for the corresponding abstract connectives should be the same. We can indeed check on the example of tense logic that they do coincide.

Example 7 (Tense logic). Let us consider the translation by t of the abstract connective (χ(x), Q), where χ(x) ∀y(Ryx → Qy). This connective corresponds to the box modality -of tense logic. We obtain that c t(χ(x

), Q) = 1 ⊃ 2 ([f 2 2 ]R, [f 1 2 ]id 1 1 ) is a universal molec- ular connective, where R is a propositional letter of skeleton (Id, +, ∃, 2), f 2 2 : 1; 2 → 1; 2 is defined by f 2 2 (1) 2 and f 2 2 (2) = 1 and f 1 2 : {1} → 1; 2 is defined by f 1 2 (1) = 2.
According to the definition of C-bisimulation, the clause for this molecular connective is the following:

if wZ c w and -R c v w then there is v such that -R c vw and vZv .

(We recall that Z id 1 1 = Z in that case.) The C-bisimulation clause for the atomic connective -of skeleton (τ 1 , -, t 2 ) is the following: if wZ c w and -R -τ1 v w then there is v such that -R -τ1 v w and vZv , that is, if wZ c w and R v w then there is v such that R v w and vZv .

So, if we prove that for all w, v we have that R c vw iff -R vw, then we will have proved that the two definitions of bisimulation are equivalent (at least for this bisimulation clause, but the other clause for the modality is proved similarly). This is what the following proposition proves.

Proposition 11. Let P = {R} and let M = (W, R) be a predicate C P -model such that the predicate symbol R is associated to the relation R . Let c be the universal molecular connective

1 ⊃ 2 ([f 2 2 ]R, [f 1 2 ]id 1 1 ). Then, for all w, v ∈ W , we have that R c vw iff -R vw. (We recall that R c is defined in Definition 16.)
This leads us to a more general problem, to determine whether two equally expressive logics have the same notion of bisimulation.

Bisimulations of Equally Expressive Logics are Equivalent

Our definitions of C-bisimulation are defined from the truth conditions of atomic or molecular conectives. However, these truth conditions may take many equivalent forms, in particular if we take two logics which are equally expressive but are not defined on the basis of the same connectives. In that case, we would nevertheless want to obtain the same notion of bisimulation or at least equivalent definitions. That is, we would want that when we consider two equally expressive molecular logics, their notions of bisimulations coincide. To be more precise, we would want that, in that case, if we take two bisimilar models in one logic then the translations of these two models in the second equally expressive logic are also bisimilar. That is what we are going to prove in that section. We first spell out what we mean by "schematically equally expressive" logics.

Definition 36 (Schematic equi-expressivity). Let

L 1 = (L 1 , E 1 , 1 ) and L 2 = (L 2 , E 2 ,
2 ) be two molecular logics such that L 1 and L 2 are built up from the sets of molecular connectives C 1 and C 2 . We say that L 1 is schematically as expressive as L 2 when they are equally expressive and, moreover, if {i, j} = {1, 2}, the mappings T ϕ i and T M i are such that:

i. The mapping T ϕ i is induced from a translation of the connectives of C i which respects the quantified decomposition of the connectives. That is, for all molecular connectives c ∈ C i and all vertices c 0 of the quantified decomposition tree of c, the mapping T ϕ i defines a molecular connective T ϕ i (c 0 ) built up from the molecular connectives of C j which is existential (resp. universal) if c 0 is existential (resp. universal) and which has the same arity, tonicity signature and id i k s as c 0 (which can be equal to some id i k ). We extend this definition inductively to molecular connectives of

C i as follows: if c ∈ C i is maximally decomposed into c = c 0 (c 1 , . . . , c n ) then T ϕ i (c) T ϕ i (c 0 )(T ϕ i (c 1 ), . . . , T ϕ i (c n )).
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Then, we extend inductively the translation to the whole language L i as follows. For all c ∈ C i and all ϕ 1 , . . . , ϕ m ∈ L i , we define

T ϕ i (c(ϕ 1 , . . . , ϕ m )) T ϕ i (c)(T ϕ i (ϕ 1 ), . . . , T ϕ i (ϕ m ))
ii. The mapping T M i is induced from a translation of the relations of the C i -models. That is, for all M i , M i ∈ E i such that M i = (M, w i ) and M i = (M, w i ), we have that T M i (M i ) = (N, w 2 ) and T M i (M i ) = (N, w 2 ), i.e. they are also based on the same C j -model. In that case, we write them T M i (w i ) and T M i (w i ). Then for all M i ∈ E i , all w 1 , . . . , w n , w ∈ w(M i , C i ), all c 0 ∈ C i and all vertices c ∈ V c0 of the quantified decomposition tree of c 0 ,

R c T M j (w 1 ) . . . T M j (w n )T M j (w) iff R T ϕ i (c) w 1 . . . w n w
Our notion of schematic equi-expressivity is a refinement of the notion of equi-expressivity of Definition 1.

Proposition 12. Let L 1 = (L 1 , E 1 , 1 ) and L 2 = (L 2 , E 2 ,
2 ) be two molecular logics such that L 1 and L 2 are built up from the sets of molecular connectives C 1 and C 2 . If L 1 and L 2 are schematically equally expressive (via some mappings

T M 1 , T ϕ 1 , T M 2 , T ϕ 2 ) then for all M 1 , M 1 ∈ E 1 which are C 1 -bisimilar, T M 1 (M 1
) and T M 1 (M 1 ) are also C 2 -bisimilar.

Conclusion

We have introduced a generic method which allows us to find out an appropriate notion of bisimulation for an arbitrary logic whose truth conditions are defined by first-order formulas. This bisimulation notion comes as well with a number of associated model-theoretical results of the logic considered. In doing so, we have discovered new invariance notions for first-order logic. Compared to the original Keisler theorems, our results replace isomorphisms by predicate bisimulations and first-order bisimulations and we generalize existing results and consider arbitrary sets of first-order formulas, and not only the set of all sentences. On countable structures, the notions of isomorphism, partial isomorphism, predicate bisimulation and first-order bisimulation coincide. We expect that our notions of predicate and first-order bisimulation differ from isomorphisms on uncountable structures. By the (upward) Löwenheim-Skolem theorem and because our results hold for countable languages, they open new perspectives for the study of uncountable structures such as the non-standard models of arithmetic. These generalizations and new versions of existing theorems confirm, together with the rediscovery of numerous existing results [START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF], the soundness and generic character of our overall approach. We do not claim to have introduced brand new notions of invariance for first-order logic, they are in fact natural and intuitive variants of the usual notions of (partial) isomorphism. Instead, we claim to have introduced a generic notion of C-bisimulation which is somehow 'deeper' and more basic than the usual notion of bisimulation for modal logic or even the usual notion of (partial) isomorphism for first-order logic. Indeed, all invariance notions introduced in the literature (including those) can all be seen as instances of our general notions of C-bisimulation of Definitions 17 and 19. Proof: (sketch) Similar to the proof of [6, Lemma 1], by induction on ϕ. We only prove some of the cases which differ significantly. Let ϕ(x 1 , . . . , x k ) ∈ L P FOL (x, k).

A Proofs of

• If ϕ = Rx i1 . . . x i l with k ≤ l then there is a unique (surjective) mapping f l k : 1; l → 1; k such that for all j ∈ 1; l , we have that Moreover, for all pointed structures (M, s) without distinguished elements, we have that ST x (T x (M, s)) ≡ x (M, s) and for all pointed predicate C P -model (M, w), we have that T x (ST x (M, w)) ≡ k (M, w).

f l k (j) = i j . Then, T x (M, s) T x (ϕ) iff (T (M ), (s(x 1 ), . . . , s(x k )) [f l k ]R iff (T (M ), (s(x f l k (1) ), . . . , s(x f l k (l) ))) R by definition of [f l k ] iff (T (M ), (s(x i1 ), . . . , s(x i l ))) R iff Rs(x i1 ) . . . s(x i l ) holds iff (M, s) Rx i1 . . . x i l iff (M, s) ϕ • If ϕ = ∀xψ(
Proof: (sketch) Similar to the proof of [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]Lemma 2], by induction on ϕ. We only prove two cases which differ significantly. Let ϕ ∈ L C P of type k and let A C P -bisimulation between two C P -models is a predicate bisimulation between their associated structures (defined in Definition 28), but which does not necessarily fulfill condition 5 of Definition 29.

x = (x 1 , . . . , x k ) ∈ (V ∪ C) k . • If ϕ = [f l k ]ψ then ST x (M, w) ST x (ϕ) iff ST x (M, w) ST x ([f l k ]ψ) iff (ST (M ), s w x ) ST (x f l k (1) ,...,x f l k (l) ) (ψ)
Proof: Let us consider the predicate atomic connectives Definition 25). Let M 1 and M 2 be two C P -models and let Z be a non-empty binary relation between finite sequences of M 1 and M 2 of the same length. Then, by Definition 17, Z is a C P -bisimulation between M 1 and M 2 when for all M, M ∈ {M 1 , M 2 } with M = (W, R) and M = (W , R ), all w, v, u ∈ w(M, C), all w, v ∈ W and all w , v , u ∈ w(M , C), all w , v ∈ W , all R ∈ P, it holds that • condition for R: if wZw and Rw then R w , for all relations R and R both associated to R (in the associated structure);

C P = P ∪ {⊥, U } ∪ { k , ⊃ k , k | k ∈ N * } ∪ {[f l k ] | k, l ∈ N * and f l k : 1; l → 1; k is surjective} (defined in
• condition for ⊥: if wZw and R ⊥ (w ) then R ⊥ (w), this condition always holds;

• condition for [f l k ]: for all k, l ∈ N * and all surjections f l k , if wZw and

R [f l k ] w v then there is v ∈ w(M, C) such that vZv and R [f l k ] wv, that is, if wZw then f l k (w)Zf l k (w )
, where for all w = (w 1 , . . . , w k ), f l k (w) (w f l k (1) , . . . , w f l k (l) ); • condition for ⊃ k : for all k ∈ N * , if wZw and R k v u w then there are v, u ∈ w(M, C) such that v Zv, uZu and R k vuw, that is, if wZw then w Zw;

• condition for k : for all k ∈ N * , if wZw and R k,1 w v u then there are v, u ∈ w(M, C) such that vZv and uZu and R k,1 wvu, that is, if wZw then for all v ∈ W there is v ∈ W such that vZv and (w, v)Z(w , v );

• condition for U : if wZw and v ∈ W then there is v ∈ W such that vZv , that is, for all w ∈ W there is w ∈ W such that wZw . Now, if we combine the conditions above, we obtain the definition of a predicate bisimulation on the structures associated to M 1 and M 2 without condition 5.

Theorem 1. Let X ⊆ V ∪ C be non-empty and assume that L P FOL (X) is countable. Let (M, s) and (M , s ) be two pointed structures. Then the following are equivalent:

1. (M, s) and (M , s ) make true the same formulas of L P FOL (X); 

T U M , U s(x 1 ), . . . , U s(x k ) ϕ.
Then, by Lemma 2,

ST x T U M , U s(x 1 ), . . . , U s(x k ) ST x (ϕ). That is, ST T U M , s ( U s(x1),..., U s(x k )) x ST x (ϕ). So, by Lemma 1, T ST T U M , U s(x 1 ), . . . , U s(x k ) T x (ST x (ϕ)) .
Proof: The proof follows the same reasoning as the proof of [5, Theorem 2]. The notion of Xcompatibility is used in the direction from 1. to 2. As for the direction from 2. to 1., we consider the following set of pure predicate formulas:

T ϕ ∈ L P FOL (X) | for all (M, s) ∈ K, (M, s) ϕ
Let (M 0 , s 0 ) ∈ K be a pointed structure of K such that (M 0 , s 0 ) T . We are going to prove that (M 0 , s 0 ) ∈ K. Let us consider the following set of formulas:

Σ {ϕ ∈ L P FOL (X) | (M 0 , s 0 ) ϕ}
Σ is finitely satisfiable in K. Indeed, assume that the finite set {ψ 1 , . . . , ψ n } ⊆ Σ is not satisfiable in K. Then, ¬ψ 1 ∨. . .∨¬ψ n is true on all pointed structures of K. So, ¬ψ 1 ∨. . .∨¬ψ n ∈ T . However, it would be false on (M 0 , s 0 ), which is impossible. But then, [5, Proposition 10] shows that Σ is satisfiable in an ultraproduct

U (N i , s i ) of pointed structures (N i , s i ) ∈ K. Let us take (N, s) = U (N i , s i ).
Then, (N, s) ∈ K by closure of K under ultraproduct. Moreover, (N, s) Σ. So, for all ϕ ∈ L P FOL (X), (M 0 , s 0 ) ϕ implies (N, s) ϕ. Thus, by closure of L P FOL (X) under Boolean negation, for all ϕ ∈ L P FOL (X), (M 0 , s 0 ) ϕ iff (N, s) ϕ. Thus, by Theorem 1, there exists an ultrafilter U over a non-empty set I and a X-compatible predicate bisimulation between U (M 0 , s 0 ) and

U (N, s). Now, U (N, s) ∈ K because (N, s) ∈ K and closure of K under ultraproduct. But U (M 0 , s 0 ) ∈ K by closure of K under ultraproducts. So, U (M 0 , s 0 ) ∈ K by closure of K under X-compatible bisimulation in K . Finally, since K -K
is closed under ultrapower, (M 0 , s 0 ) must belong to K, since otherwise U (M 0 , s 0 ) would not be in K. This completes the proof of the theorem. Corollary 2. Let K be a class of pointed structures. Then, the following are equivalent:

1. K is definable by a set of sentences of L P FOL ;

2. K is closed under predicate bisimulations and ultraproducts, and K is closed under ultrapowers.

Proof: The set of sentences is L P FOL (C). The result follows from a direct application of Theorem 2 with X = C and K = M FOL . Theorem 3. Let X ⊆ V ∪ C be non-empty and assume that L P FOL (X) is countable. Let K and K be classes of pointed structures such that K is closed under ultraproducts. Then, the following are equivalent:

1. K is definable in K by means of a single formula ϕ ∈ L P FOL (X);
2. Both K and K -K are closed under X-compatible predicate bisimulations in K and closed under ultraproducts.

Proof: It is similar to the proof of [START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF]Theorem 3]. The direction from 1. to 2. is easy. For the converse, we assume that K and K -K satisfy the stated closure conditions. Hence by Theorem 2, there are sets of formulas of L P FOL (X), T 1 and T 2 , defining K and K -K respectively.

Obviously, their union is inconsistent in the sense that there is no pointed structure (M, s) of K such that (M, s) T 

B Proof of Theorem 4

We recall that P is a set of predicate symbols, F is a set of function symbols, V is a set of variables and C is a set of constants (see Section 2). We also define the head h(t) and the body b(t) of a term t ∈ T inductively as follows:

if t = x or t = c then h(t) = b(t) = t; if t = f (t 1 , . . . , t m ) then h(t) = f and b(t) = (t 1 , . . . , t m ).
Definition 37 (First-order atomic connectives). The set of propositional letter atomic connectives is

C F {p R | R ∈ P}∪{[h 1 , . . . , h m ] | k ∈ Arity(P, F) and h 1 , . . . , h m ∈ V ∪ C ∪ F }∪{[f l k ] | k, l ∈ N * and f l k : 1; l → 1;
k is a surjection} where:

• p R has skeleton (Id, +, ∀, k) with k the arity of R ∈ P;

• [h 1 , . . . , h m ] has skeleton (Id, -, ∀, (n 1 + . . . + n m , m), +) in which n i is the arity of the function h

i (it is 1 if h i ∈ V ∪ C); • [f l k ] has skeleton (Id, -, ∀, (k, l), +), for all k, l ∈ N * (such that l ≥ k).
The set of first-order atomic connectives C PF is C F to which we add C P and the propositional letters

{p χ | χ ∈ L C F } of skeletons (1, +, ∀, k), where k is the type of χ ∈ L C F .
Definition 38 (First-order atomic logic). A first-order C PF -model is a C PF -model M = (W, R) such that:

• the relations associated to the connectives of C P satisfy the conditions of Definition 26;

• for all R ∈ P of arity n, the connectives p R are associated to n-ary relations R p R ;

• each connective [h 1 , . . . , h m ] is associated to a relation R [h1,...,hm] over W l where l = m + n 1 + . . . + n m with n i the arity of the function h i (it is 1 if n i ∈ V ∪ C); • for all k, l ∈ N * , the connective [f l k ] is associated to a k + l-ary relation R [f l k ] such that for all w 1 , . . . , w k , v 1 , . . . , v l ∈ W , it holds that R [f l k ] v 1 . . . v l w 1 . . . w k iff for all j ∈ 1; l , we have that v j = w σ l k (j) ;
• for all χ ∈ L C F , the connectives p χ are associated to k-ary relations R pχ , where k is the type of χ.

The class of all pointed first-order C PF -models is denoted M C PF . We define the two-tiered language L C PF as follows:

L C F : χ ::= p R | [h 1 , . . . , h m ] χ | [f l k ]χ L C PF : ϕ ::= p χ | (ϕ, . . . , ϕ) where R ∈ P, [h 1 , . . . , h m ] , [f l k ] ∈ C F , ∈ C PF (different from propositional letters) and χ is of type m in the expression [h 1 , . . . , h m ] χ. The satisfaction relation ⊆ M C PF × L C PF is then defined following Definition 5. If E C PF is a specific class of abstract C PF -models, the triple (L C PF , E C PF ,
) is called the first-order atomic logic associated to

E C PF . The triple (L C PF , M C PF ,
) is called first-order atomic logic. We also define

L C PF (k) {ϕ ∈ L C PF | k(ϕ) = k} and for all (M, w), (N, v) ∈ M C PF , we write (M, w) ≡ F ,k (N, v) when for all ϕ ∈ L C PF (k) it holds that (M, w) ϕ iff (N, v) ϕ.
Definition 39 (Translation from FOL to first-order atomic logic). Syntax. For all x = (x 1 , . . . , x k ) ∈ (V ∪ C) k , we define the mapping T + x : L PF FOL (x, k) → L C PF inductively on the formula ϕ ∈ L PF FOL (x, k) as follows.

• if ϕ = R(t 1 , . . . , t m ) and ϕ contains k different variables or constants x which occur at l different places in ϕ then we define T

+ x (ϕ) [f l k ]T + x (t 1 , . . . , t m )p R where [f l k ]
is defined as follows:

if (x i1 , . . . , x i l ) is the tuple of size l made up of the k variables or constants x = (x 1 , . . . , x k ) which occur in (t 1 , . . . , t m ) in that order (and possibly with repetition) then f l k : 1; l → 1; k is defined for all j ∈ 1; l by f l k (j) = i j . and where T + x (t 1 , . . . , t m ) is defined inductively as follows:

if (t x is the same as T x .

Semantics. Let M = ((W, {R 1 , . . . , R n , . . . , f 1 , . . . , f n , . . .}) , s) be a pointed structure. We define the C PF -model T + (M ) (W, R) as follows:

• the n-ary relation R p R is the n-ary relation R associated to R ∈ P; • for all h 1 , . . . , h m ∈ V ∪ C ∪ F, the connectives [h 1 , . . . , h m ] ∈ C F are associated to the re- lation R [h1,...,hm] {(v 1 , . . . , v m , w 1 , . . . , w m ) | for all i ∈ 1; k , if h i = f i then f i (w i ) = v i , if h i ∈ V ∪ C then w i = v i };
• the other relations of R for the other connectives are defined like in Definition 38.

If x = (x 1 , . . . , x k ) ∈ (V ∪ C) k then we define T +

x (M, s) T + (M ), (s(x 1 ), . . . , s(x k )) .

Lemma 6. Let k ∈ N * , let ϕ = ϕ(x 1 , . . . , x k ) ∈ L PF FOL and let (M, s) be a pointed structure. Then we have that (M, s) ϕ iff T +

x (M, s) T + x (ϕ). Proof: The proof follows the same reasoning as the proof of Lemma 1. The only real new case is for ϕ = R(t 1 , . . . , t n ). It follows from the truth condition for that formula: we have that (M, s) x (ϕ) Moreover, for all pointed structures (M, s), we have that ST +

R
x T + x (M, s) ≡ F ,x (M, s) and for all pointed C PF -model (M, w) of type k, we have that T +

x ST + x (M, w) ≡ F ,k (M, w). Proof: (Sketch) By induction on ϕ. The tricky case is when ϕ is of the form [h 1 , . . . , h n ] χ. This is where we need to index the translation by a tuple of terms. These terms keep track of the terms or subterms of the formula which is being translated. Lemma 8. Let C PF be the set of first-order atomic connectives and let M 1 = (W 1 , R 1 ) and M 2 = (W 2 , R 2 ) be two ω-saturated C PF -models. We define the binary relation Z 0 ⊆ (W 1 × W 2 )∪ (W 2 × W 1 ) as follows: if {M, M } = {M 1 , M 2 } then for all w ∈ w(M, C), all w ∈ w(M , C), wZ 0 w iff (M, w) C F (M , w ). We also define the binary relation Z between finite sequences of M 1 and M 2 of the same length by wZw iff (M, w) C PF (M , w ). Then, the pair of binary relations (Z, Z 0 ) is a first-order bisimulation between M 1 and M 2 .

Proof: Applying [5, Lemma 1] to C F , from the definition of a C F -bisimulation, we obtain conditions 1. -2. of a first-order bisimulation. Likewise, by [5, Lemma 1] and Lemma 5, Z is a predicate bisimulation. Hence, conditions 4. -7. of a first-order bisimulation are fulfilled. Moreover, we also have the condition that if (w 1 , . . . , w n )Z(w 1 , . . . , w n ) then for all n-ary relations R pχ ∈ R and R pχ ∈ R associated to the same propositional letter p χ , if R pχ w 1 . . . w n then R pχ w 1 . . . w n . This last condition reformulates as if wZw then (M, w) C F (M , w ). That is, if wZw then wZ 0 w , which is condition 3. Hence, (Z, Z 0 ) is a first-order bisimulation between M 1 and M 2 . Proof: The translation t of (M, w) adds relations R [f l k ] , R k , R k , R U , R ⊥ to (M, w). We are going to prove that the (ultraproduct) relations

U R [f l k ] , U R k , U R k , U R U , U R ⊥ in U t(M, w)
are the same as the relations

R [f l k ] , R k , R k , R U , R ⊥ in t U (M, w) .
• Let k, l ∈ N * and let f l k : 1; l → 1; k be a mapping.

U R [f l k ] U v i 1 . . . U v i l U w i 1 . . . U w i k iff i ∈ I | R i [f l k ] v i 1 . . . v i l w i 1 . . . w i k ∈ U iff i ∈ I | ∀j ∈ 1; l , v i j = w i f l k (j) ∈ U iff for all j ∈ 1; l , i ∈ I | v i j = w i f l k (j)
∈ U by properties of ultrafilters iff for all j ∈ 1; l ,

U v i j = U w i f l k (j) . So, the relation U R [f l k ] in U t(M, w) is the same as the relation R [f l k ] in t U (M, w) . • U R k U w i 1 U w i 2 U w i 3 iff E i ∈ I | w i 1 = w i 2 = w i 3 ∈ U .
We have to show that

U w i 1 = U w i 2 = U w i 3 , i.e. A i ∈ I | w i 1 = w i 2 ∈ U and B i ∈ I | w i 2 = w i 3 ∈ U .
The proofs of Theorems 2 and 3 for protologics are the same as the proofs of [5, Theorem 2] and [5, Theorem 3] for molecular logics. The only difference is that in the proof we use the version of Theorem 1 for protologics that we have just proved. D Proofs of Propositions 7, 8, 9, 10, 11, 12

The proofs of Propositions 1, 2, 3, 4, 5, 6 are in the appendix of the companion article [START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF].

Proposition 7. Let P be a set of predicate symbols and k ∈ N * . If E C P is a specific class of pointed C P -model, the predicate atomic logic (of type k) associated to E C P and P is as expressive as a predicate atomic logic (of type k) in the sense of [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]Definition 18].

Proof: We fix a tuple of k variables and constants x ∈ (V ∪ C) k . We denote by T x and ST x the translations T x and ST x of [6, Definition 19] and [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]Definition 20] respectively, both for formulas and models. Then, we define the predicate atomic logic (of type k) L C P , E C P , in the sense of [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]Definition 18] by L C P {ST x T x (ϕ) | ϕ ∈ L C P } and E C P {ST x T x (M, w) | (M, w) ∈ E C P }. Then, using Lemmas 1 and 2 as well as [6, Lemma 1] and [6, Lemma 2], we can easily prove that (L C P , E C P ,

) and L C P , E C P , are equally expressive. The translations are ST x T x from the former to the latter and ST x T x from the latter to the former. Reciprocally, the proof that every predicate atomic logic (of type k) in the sense of [START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF]Definition 18] is as expressive as a predicate atomic logic (of type k) in the sense of this article is similar, one only needs to swap the s. Proposition 8. A predicate bisimulation between structures without functions is a partial isomorphism.

Proof: Condition 1. of a partial isomorphism follows from conditions 1. and 5. of a predicate bisimulation. Condition 2. is the same. The "back" condition of a partial isomorphism is obtained by condition 2 and 4 of a predicate bisimulation. We have to show that condition 3 of Definition 30 of a partial isomorphism is deducible from the definition of a predicate bisimulation. Let Z be a predicate bisimulation between the pointed structures (M, s) and (M , s ). Let w ∈ M k and w ∈ M k with k > 0 and assume that wZw (such a pair exists since a predicate bisimulation is non empty). For all v ∈ M , there is v ∈ M such that (w, v)Z(w , v ). Then, we have that (v)Z(v ) by condition 3 of a predicate bisimulation. Hence, we have proved condition 3 of a partial isomorphism. Proposition 9. Let X ⊆ V ∪ C be a non-empty set. If there is an X-compatible predicate bisimulation between two pointed structures then they make true the same formulas of L P FOL (X).

Proof: This follows from Proposition 8 and the corresponding proposition for partial isomorphisms [ 

T

  : t ::= x | c | ft . . . t L PF FOL : ϕ ::= Rt . . . t | ⊥ | (ϕ → ϕ) | ∀xϕ where x ∈ V, c ∈ C, f ∈ F, t ∈ T andR ∈ P. Elements of T are called terms and elements of L PF FOL are called first-order formulas. Formulas of the form Rt 1 . . . t k are called atomic formulas and first-order formulas without function symbols are called pure predicate formulas.

Figure 2 :

 2 Figure 2: Some binary connectives of atomic logics of type (1, 1, 1)

Proposition 4 .Definition 18 .Proposition 5 (

 4185 Let C = {p, ¬p, ∧, ∨, , } be the connectives of Example 5 and let M and M be two C-models. Then, a C-bisimulation between M and M is a modal bisimulation between M and M and vice versa. Let C be a set of atomic connectives. Let (M, w) and (M , w ) be two pointed Cmodels. We write (M, w) C (M , w ) when for all ϕ ∈ L C , (M, w) ϕ implies (M , w ) ϕ. Truth preservation of C-bisimilar pointed C-models). Let C be a set of atomic connectives and let

  also called an ultrapower of (M, w) (resp. (M, s)) modulo U , also denoted U (M, w) (resp. U (M, s)).

Lemma 4 .Theorem 5 .

 45 Let C be a set of molecular connectives, let ϕ ∈ L C and let (M, w) be a pointed C-model where w is of size the type of ϕ. Then, we have that (M, w) ϕ iff (M, w) st(ϕ) Proof: It is the same as [6, Lemma 4]. The class of protologics is as expressive as the class of molecular logics. Proof: It is the same as [6, Theorem 2].

1 . 2 .

 12 Translate the given protologic L into a predicate molecular logic L (thanks to the translation t of Definition 32); Define the notion of C a -bisimulation associated to L via the notion of C-bisimulation associated to L (thanks to Definition 35); 3. State Keisler type characterization theorems for L if its connectives are normal (our Theorem 7).

3 Lemma 1 .

 31 Let ϕ ∈ L P FOL , let x be the tuple of free variables and constants of ϕ (possibly empty) and let (M, s) be a pointed structure. Then, we have that (M, s) ϕ iff T x (M, s) T x (ϕ).

Lemma 2 .

 2 iff for all w ∈ W , (M, s[x := w]) ψ(x 1 . . . , x k , x) by Induction Hypothesis iff (M, s) ∀xψ(x 1 , . . . , x k , x) by definition of ∀x iff (M, s) ϕ. Let (M, w) be a pointed predicate C P -model of type k, let ϕ ∈ L C P of type k and let x ∈ (V ∪ C) k . Then, (M, w) ϕ iff ST x (M, w) ST x (ϕ).

•Lemma 5 .

 5 by definition of ST x iff (ST (M ), s v y ) ST y (ψ) where y = (xf l k (1) , . . . , x f l k (l) ) and v = (w f l k (1) , . . . , w f l k (l) ) iff (M, v) ψ by Induction Hypothesis iff (M, w) [f l k ]ψ because we have that R [f l k ] vw iff (M, w) ϕ. If ϕ = k ψ then ST x (M, w) ST x (ϕ) iff ST x (M, w) ST x ( k ψ) iff (ST (M ), s w x ) ∀xST (x,x) (ψ) by definition iff for all w ∈ W , (ST (M ), s w x [x := w]) ST (x,x) (ψ) iff for all w ∈ W , (ST (M ), s (w,w) (x,x) ) ST (x,x) (ψ)by definition iff for all w ∈ W , (M, (w, w)) ψ by Induction Hypothesis iff (M, w) k ψ iff (M, w) ϕ. Let C P be the set of predicate atomic connectives (introduced in Definition 25).

  Semantics. Let (M, w) be a pointed C PF -model of type k and let x be a tuple of free variables or constants of size k. The pointed structure associated to (M, w), denoted ST +x (M, w)(ST + (M ), s w x ),is defined as follows. The assignment s w x is defined like in [6, Definition 20] and ST + (M ) is M to which we remove the relations of the form R [f l k ] , R k1 , R k and R ∀0 and we replace relations of the form R [h1,...,hn] with functions f defined as follows: f (w 1 , . . . , w k ) = w iff R [f ] ww 1 , . . . w k . Lemma 7. Let (M, w) be a pointed first-order C PF -model, let ϕ ∈ L C PF of type k and let x be a tuple of k variables. Then, we have that (M, w) ϕ iff ST + x (M, w) ST +

Theorem 4 . 7 Lemma 9 .

 479 Theorems 1, 2, 3 and Corollaries 1, 2, 3 hold if we replace at the same time the term "predicate bisimulation" with "first-order bisimulation" and the languages L P FOL and L P FOL (X) with the languages with function symbols L PF FOL and L PF FOL (X) respectively. Proof: It is the same as the proofs of Theorems 1, 2 and 3 and Corollaries 1 and 2. Only the [6, Lemmas 1 & 2] have to be replaced by the 'translation' Lemmas 6 and 7 and [5, Lemma 1] Lemma 5 have to be replaced by Lemma 8. C Proof of Theorem Let C a be a set of abstract connectives, let (M, w) be a pointed C a -model and let U be an ultrafilter over a non-empty set I. Then, U t(M, w) is isomorphic to t U (M, w) (where t is defined in Definition 32).

  FOL and E FOL . If L FOL = L P FOL , the triple L P FOL , E FOL , FOL is called pure predicate logic (associated to E FOL ), if L FOL = L P FOL (x), the triple (L P FOL (x), E FOL , FOL ) is called pure predicate logic with free variables and constants (associated to E FOL ). When E FOL is M FOL , they are simply called respectively pure predicate logic and pure predicate logic with free variables and constants.

FOL , E FOL , FOL ) is called the first-order logic associated to L

  . . , ϕ n ∈ L C of types k 1 , . . . , k n respectively, we have that (ϕ 1 , . . . , ϕ n ) ∈ L C and (ϕ 1 , . . . , ϕ n ) is of type k.Elements of L C are called atomic formulas and are denoted ϕ, ψ, α, . . . The type of a formula ϕ

  M 2 when it is nonempty and for all ∈ C, if {M, M } = {M 1 , M 2 }, then for all w 1 , . . . , w n , w 1 , . . . , w ± n )) and we have wZw and R ±σ w 1 . . . w n w, then ∃w 1 , . . . , w n (w 1 w 1 ∧ w 2 w 2 ∧ . . . ∧ w n w n ∧ R ±σ w 1 . . . w n w ); 3. if has skeleton (σ, ±, ∀, k, (± 1 , . . . , ± n )) and we have wZw and -R ±σ w 1 . . . w n w , then ∃w 1 , . . . , w n (w 1 w 1 ∧ w 2 w 2 ∧ . . . ∧ w n w n ∧ -R ±σ w 1 . . . w n w);

n , w, w ∈ w(M, C) ∪ w(M , C),

1. if is a propositional letter p then, if wZw and w ∈ p then w ∈ p ; 2. if has skeleton (σ, ±, ∃, k, (± 1 , . . . ,

  . . , w n ∈ W , 1. if (w 1 , . . . , w n )Z(w 1 , . . . , w n ) then for all n-ary relations R ∈ R and R ∈ R associated to the same predicate R, if Rw 1 . . . w n then R w 1 . . . w n ; 2. if (w 1 , . . . , w n )Z(w 1 , . . . , w n ) then for all w ∈ M there is w ∈ M such that (w 1 , . . . , w n , w)Z(w 1 , . . . , w n , w ); 3. if (w 1 , . . . , w n )Z(w 1 , . . . , w n ) then for all mappings f : 1; m → 1; n , we have that (w f (1) , . . . , w f (m) )Z(w f (1) , . . . , w f (m) ); 4. if (w 1 , . . . , w n )Z(w 1 , . . . , w n ) then (w 1 , . . . , w n )Z(w 1 , . . . , w n ).

  1 , M 2 } with M = (W, R) and M = (W , R ), all m, n ∈ N * , all w 1 , . . . , w n ∈ W , all w 1 , . . . , w n ∈ W , all functions f 1 , . . . , f n of M and corresponding functions f 1 , . . . , f n of M , all tuples v 1 , . . . , v n of W and v 1 , . . . , v n of W , 1. if (w 1 , . . . , w n )Z 0 (w 1 , . . . , w n ) then for all n-ary relations R ∈ R and R ∈ R associated to the same predicate R, if Rw 1 . . . w n then R w 1 . . . w n ; 2. if (w 1 , . . . , w n

  x 1 , . . . , x k , x) with k ≥ 1, then T x (M, s) T x (ϕ) iff (T (M ), (s(x 1 ), . . . , s(x k )))k T (x1,...,x k ,x) (ψ(x 1 , . . . , x k , x)) iff for all w ∈ W , (T (M ), (s(x 1 ), . . . , s(x k ), w)) T (x1,...,x k ,x) (ψ(x 1 , . . . , x k , x))

	iff for all w ∈ W , T (x1,...,x k ,x) (M, s[x := w])	T (x1,...,x k ,x) (ψ(x 1 , . . . , x k , x)) by definition
	of T (x1,...,x k ,x)	

  Now, we prove that 1. implies 2. Let U be a countably incomplete ultrafilter over N (it exists by [9, Example 2.72]). By[START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF] Proposition 11], the ultrapowers (ϕ) (if ϕ is a sentence without constant, we take in Definition 27 of T ∅ a variable x 0 such that x 0 ∈ X).

								M and	M
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	are ω-saturated and therefore T		M and T	M	are ω-saturated as well (for the
						U		U
	first-order language L P FOL ). Now, for all formula ϕ(x) ∈ L P FOL (X),	(M, s)	ϕ(x) im-
								U
	plies	(M , s )	ϕ(x) because of 1. and [5, Proposition 9, Appendix]. That is, for all
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	formula ϕ(x) ∈ L P FOL (X),	M,	s	ϕ(x) implies	M ,	s	ϕ(x). There-
					U	U		U	U
	fore, by Lemma 1, for all formula ϕ(x) ∈ L P FOL (X), we have that T x	M,	s	T x (ϕ)
								U	U
	implies T x	M ,				
			U				
								That is, for all formula
	ϕ ∈ L P FOL (X), we have that T	
								C P
	T	M ,				
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	2. there exists an ultrafilter U and a X-compatible predicate bisimulation between	(M, s)
								U
	and	(M , s ).			
		U					
	Proof: The proof follows the same reasoning as the proof of [5, Theorem 1], using [5, Lemma 1]
	and [5, Proposition 9, Appendix] and [5, Proposition 11] as well as the 'translation' Lemmas 1
	and 2.						
	First, we prove that 2. implies 1. By [5, Proposition 9, Appendix], for all formulas ϕ ∈
	L P FOL (X), we have that (M, s)	ϕ iff		(M, s)	ϕ. By assumption and Proposition 9, this
							U
	implies that	(M , s )	ϕ and, again by [5, Proposition 9, Appendix], the latter is equivalent
			U				
	to (M , s )	ϕ.				

U s T x U M , U s(x 1 ), . . . , U s(x k ) T x (ϕ) implies T U M , U s (x 1 ), . . . , U s (x k ) T x (ϕ) ( * ).

Then, using Lemmas 1 and 2, we can prove the following:

Claim 1. For all x 1 , . . . , x k ∈ X, T U M , U s(x 1 ), . . . , U s(x k ) U s (x 1 ), . . . , U s (x k ) .

Proof: (of the Claim) Let ϕ ∈ L C P of type k ∈ N * and let x 1 , . . . , x k ∈ X. Assume that

  1 ∪ T 2 . So then, by[START_REF] Aucher | Generalized Keisler Theorems for Atomic and Molecular Logics[END_REF] Proposition 10], there exist ϕ 1 , . . . ϕ n ∈ T 1 and ψ 1 , . . . , ψ m ∈ T 2 such that for all pointed structures (M, s) of K , it is not the case that (M, s) ϕ 1 ∧ . . . ∧ ϕ n ∧ ψ 1 ∧ . . . ∧ ψ m ( * ). To complete the proof, we show that K is in fact defined in K by the conjunction ϕ 1 ∧ . . . ∧ ϕ n . By definition, for any (M, s) in K we have (M, s) ϕ 1 ∧ . . . ∧ ϕ n . Conversely, for all (M, s) of K , if (M, s) ϕ 1 ∧ . . . ∧ ϕ n then there must be i ∈ 1; m such that (M, s) ψ i does not hold. Indeed, otherwise, we would have that (M, s) ϕ 1 ∧ . . . ∧ ϕ n ∧ ψ 1 ∧ . . . ∧ ψ m , which is impossible by ( * ). Hence, it is not the case that (M, s) T 2 . Therefore, (M, s) does not belong to K -K, whence (M, s) belongs to K. The set of sentences is L P FOL (C). The result follows from a direct application of Theorem 3 with X = C and K = M FOL .

	Corollary 3. Let K be a class of pointed structures. Then, the following are equivalent:
	1. K is definable by means of a sentence of L P FOL ;
	2. Both K and K are closed (in M FOL ) under predicate bisimulations and ultraproducts.
	Proof:

  otherwise, if one of the terms t i contains a function symbol f i , then T + C F . • if ϕ is of one of the other forms then the translation T +

1 , . . . , t m ) is a tuple of only variables and constants then T + x (t 1 , . . . , t m ) [t 1 , . . . , t m ]; x (t 1 , . . . , t m ) T + x (b(t 1 ), . . . , b(t m )) [h(t 1 ), . . . , h(t m )]. Note that T + x (ϕ) belongs to L

  (t 1 , . . . , t n ) iff R(w 1 , . . . , w n ) and w 1 = s(t 1 ), . . . , w n = s(t n ). The condition R(w 1 , . . . , w n ) is captured by p R and the condition w 1 = s(t 1 ), . . . , w n = s(t n ) is captured by the composition of appropriate connectives [h 1 , . . . , h m ].Definition 40 (Translation from first-order atomic logic to FOL). Syntax. For all n ∈ N * and all tuples t = (t 1 , . . . , t m ) of tuples of terms such that each tuple of terms t i is of size n i , we define the mappingsST + t : L k C F → L PF FOL , where L k C F is the set of formulas of L C F of type k, inductively as follows. For all [h 1 , . . . , h m ] of type 1 + . . . + n m , m),where n 1 , . . . , n m are the arities of h 1 , . . . , h m , we defineST + t (p R ) Rt ST + t ([h 1 , . . . , h m ] χ) ST + (h1(t1),...,hm(tm)) (χ).Then, we define the mapping ST + t : L C PF → L PF FOL inductively as follows.ST + t (p χ ) ST + t (χ).where t is an appropriate tuple of tuples of terms. The clauses for the other connectives of C PF are defined like in[START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF] Definition 20], tuples of variables x only have to be replaced by tuples of terms t.

  10, Proposition 2.4.4] together with Condition 5 of Definition 29. If there is a first-order bisimulation between two pointed structures then there is a predicate bisimulation and a partial isomorphism between them. Any two finite or countable structures such that there is a predicate or (if they contain functions) a first-order bisimulation between them are isomorphic.Proof: The first part follows from the fact that conditions 1.-3. of first-order bisimulations imply conditions 1. of predicate bisimulations and partial isomorphisms (see Definition 30): one can easily prove by induction on formulas ϕ that if (w 1 , . . . , w n )Z 0 (v 1 , . . . , v n ) then (M 1 , s 1 ) and (M 2 , s 2 ) make true the same formulas ϕ(x 1 , . . . , x n ) ∈ L PF FOL , where (M 1 , s 1 ) and (M 2 , s 2 ) are

	Proposition 10.

I thank Peter Arndt for proving that result.

See[START_REF] Aucher | On the universality of atomic and molecular logics via protologics[END_REF] Definition 

3] for a precise definition of abstract connectives.

Corollary 1. Assume that L P

FOL is countable and let (M, s) and (M , s ) be two pointed structures. Then the following are equivalent:

1. (M, s) and (M , s ) make true the same sentences of L P FOL ;

2. there exists an ultrafilter U and a predicate bisimulation between U (M, s) and U (M , s ).

Proof: The set of sentences is L P FOL (C). The result follows by a direct application of Theorem 1.

Theorem 2. Let X ⊆ V ∪ C be non-empty and assume that L P FOL (X) is countable. Let K and K be classes of pointed structures such that K is closed under ultraproduct. Then, the following are equivalent:

2. K is closed under X-compatible predicate bisimulations in K and closed under ultraproducts, and K -K is closed under ultrapowers.

However, E ⊆ A and E ⊆ B, so A ∈ U and B ∈ U . So, the relation

So, E = I which does belong to U .

• The same reasoning as in the previous case applies to U R ⊥ .

Theorem 7 (Keisler theorems for protologics). Let C a be a set of normal abstract connectives complete for conjunction and disjunction. Then, theorems 1, 2, 3 hold if we replace "pointed structures" by "pointed C a -models", the language "L P FOL (X)" by the language "L C a " and "Xcompatible predicate bisimulation" by "C a -bisimulation".

Proof: Let C a be a set of normal abstract connectives complete for conjunction and disjunction. Then, the set t(C a ) of molecular connectives are also normal and complete for conjunction and disjunction. Then, applying Theorem 1 to t(C a ), we obtain that for all pointed C a -models (M, w) and (M , w ), the following are equivalent: 

. Then, for all w, v ∈ W , we have that R c vw iff -R vw. (We recall that R c is defined in Definition 16.) Proof: We define the following molecular subconnectives of c:

2 ) be two molecular logics such that L 1 and L 2 are built up from the sets of molecular connectives C 1 and C 2 . If L 1 and L 2 are schematically equally expressive (via some mappings

. Now, we prove the conditions i., ii. and 1.-3. of Definition 19. Conditions i., ii. trivially hold by definition of Z. Likewise, condition 1. trivially holds by definition of equi-expressivity. Now, we prove condition 2. Assume that c is maximally decomposed into c = c 0 (c 1 , . . . , c n ) where c 0 is an existential molecular connective with n distinct id i k s. Assume moreover that we have that

Then, by definition of Z c , we have wZw and by application of condition iii. of Definition 36, we have that R T ϕ 2 (c0) w 1 . . . w n w. Now, by condition i. of Definition 36, T ϕ 2 (c 0 ) is an existential molecular connective which is of the same arity and tonicity signature as c 0 and with n distinct id i k s, like c 0 . So, by condition 2 of Definition 19, there are w 1 , . . . , w n such that R T ϕ 2 (c0) w 1 . . . w n w and for all j ∈ 1; n such that ± j = +, we have w j Zw j and for all j ∈ 1; n such that ± j = -, we have w j Zw j . This implies that there are w 1 , . . . , w n such that R c0 T M 1 (w 1 ) . . . T M 1 (w n )T M 1 (w ) and for all j ∈ 1; n such that ± j = +, we have T M 1 (w j )Z cj T M 1 (w j ) and for all j ∈ 1; n such that ± j = -, we have T M 1 (w j )Z cj T M 1 (w j ). This implies in turn that there are w 1 , . . . , w n such that R c0 T M 1 (w 1 ) . . . T M 1 (w n )T M 1 (w ) and 44 for all j ∈ 1; n such that ± j = +, there is i ∈ 1; n (take i = j) such that c j = c i and T M 1 (w j )Z cj T M 1 (w j ) and for all j ∈ 1; n such that ± j = -, there is i ∈ 1; n (take i = j) such that c j = c i and T M 1 (w j )Z cj T M 1 (w j ). This proves condition 2 in that case. The case where c is itself an existential molecular connective is proved similarly. Likewise, the proof of condition 3 is similar, with universal molecular connectives instead of existential molecular connectives.