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Abstract

The Keisler theorems dealing with the definability in first-order logic of classes of struc-
tures are adapted to atomic and molecular logics. These logics are based on Dunn’s gaggle
theory and generalize modal logics. We show how notions of bisimulation can be auto-
matically defined from the truth conditions of the connectives of any atomic or molecular
logic. Then, we adapt the basic notion of ultraproduct of first-order logic to our atomic and
molecular logics. This allows us to state our generalized Keisler theorems. The connectives
of molecular logics should be in a specific format called ‘normality’ for our theorems to
hold. We consider modal logic, the Lambek calculus, (modal) intuitionistic logic, weakly
aggregative modal logic and temporal logic as case study. In a companion article [3], we use
and extend these results to first-order logic and protologics, i.e. logics such that the truth
conditions of their connectives are expressible by first-order formulas.

1 Introduction

The model theory of non-classical logics is often developed on a case by case basis by consid-
ering each logic independently, and similar theorems are proved for each non-classical logic by
frequently adapting the same proof method. For example, for modal logic, temporal logic and
XPath, a number of model-theoretical results dealing with the definability of classes of models by
means of a set of formulas or a single formula have been proved [8, 23, 1] by adapting the Keisler
theorems of first-order logic (FOL for short) [9]. This type of theorems provides conditions of
definability of classes of models in a specific logic. More precisely, they state that a class of
models is definable in a given logic if this class of models and its complement are both closed
under a specific construction called ultraproduct and under a specific notion of bisimulation as-
sociated to the logic. Similar adaptations to other logics have been made for the van Benthem
characterization theorem of modal logic [27, 23, 5, 20, 10]. A natural question that comes up
to mind is to wonder whether the Keisler theorems of FOL transfer to an arbitrary logic. We
shall see in that paper that the Keisler theorems do transfer to any atomic and molecular logics
if their connectives are ‘normal’.

The framework of atomic and molecular logics is based on Dunn’s gaggle theory [12, 13].
Atomic logics generalize “gaggle logics” by adding types to formulas. Gaggle logics were intro-
duced in [2] where it is also shown that a very large number of non-classical logics are actually
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gaggle logics and therefore also atomic logics (see Figures 6-11 in that article). Atomic and
molecular logics are a generalization of gaggle logics which behave as ‘normal form’ logics. We
indeed show that every non-classical logic such that the truth conditions of its connectives are
expressible in first-order logic is as expressive as an atomic or molecular logic [4, 3].

As it turns out, an appropriate notion of bisimulation can be automatically associated to
any atomic or molecular logic from the truth conditions of its connectives. We will rediscover
the already known invariance notions of modal logic, the Lambek calculus, (modal) intuitionistic
logic, weakly aggregative modal logic and temporal logic as specific instances of our generic
notion of C-bisimulation. This will allow us to state our generalized Keisler theorems for atomic
and molecular logics.

Structure of the article We start in Section 2 by recalling modal logic, the Lambek calculus,
temporal logic and modal intuitionistic logic. In Section 3 we introduce atomic logics, in Section
4 molecular logics and in Section 5 their Boolean versions with Boolean connectives. In Section
7, we show how notions of bisimulations can be automatically defined from the truth conditions
of the connectives of atomic and molecular logics, after some preliminaries in Section 6 where
we introduce universal and existential connectives. We illustrate our general definitions by redis-
covering the bisimulation notions of modal logic, the Lambek calculus, temporal logic, (modal)
intuitionistic logic and weakly aggregative modal logic. In Section 8, we adapt the notions of
ultraproducts and ultrapowers to atomic and molecular logics and state in Section 9 our main
theorems for atomic and molecular logics. We conclude in Section 10. All the proofs of this
paper are in the appendix.

2 Non-Classical Logics

In this section, we recall modal logic, the Lambek calculus and temporal logics. The generic
results of the article will be applied to these logics in the sequel. Logics will always be semanti-
cally presented by following a tri-partite representation: language, class of models, satisfaction
relation.

In this section, A is a set of propositional letters which can be finite or infinite.

2.1 Modal Logic

The set I is a set of indices which can be finite or infinite. The multi-modal language LML is
defined inductively by the following grammar in BNF:

LML : ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 3jϕ | 2jϕ

where p ∈ A and j ∈ I.
We present the so-called possible world semantics of modal logic. A Kripke model M is a

tuple M , (W, {R1, . . . , Rm, . . . , P1, . . . , Pn, . . .}) where

• W is a non-empty set whose elements are called possible worlds;

• R1, . . . , Rm, . . . ⊆W ×W , m ∈ I are binary relations over W called accessibility relations;

• P1, . . . , Pn, . . . ⊆W are unary relations interpreting the propositional letters of A.

We write w ∈M for w ∈W by abuse and the pair (M,w) is called a pointed Kripke model. The
class of all pointed Kripke models is denoted EML.
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We define the satisfaction relation ML ⊆ EML × LML inductively by the following truth
conditions. Below, we write (M,w) ϕ for ((M,w), ϕ) ∈ ML. For all (M,w) ∈ EML, all
ϕ,ψ ∈ LML, all pi ∈ A and all j ∈ I,

(M,w) pi iff Pi(w) holds;
(M,w) ¬pi iff Pi(w) does not hold;
(M,w) (ϕ ∧ ψ) iff (M,w) ϕ and (M,w) ψ;
(M,w) (ϕ ∨ ψ) iff (M,w) ϕ or (M,w) ψ;
(M,w) 3jϕ iff there exists v ∈W such that Rjwv and (M,v) ϕ;
(M,w) 2jϕ iff for all v ∈W such that Rjwv, (M, v) ϕ.

The triple (LML, EML, ML) forms a logic, that we call modal logic. Bisimulations for modal
logic can be found in [8].

2.2 Lambek Calculus

The Lambek language LLC is the set of formulas defined inductively by the following grammar in
BNF:

LLC : ϕ ::= p | (ϕ⊗ ϕ) | (ϕ ⊂ ϕ) | (ϕ ⊃ ϕ)

where p ∈ P. A Lambek model is a tuple M = (W, {R,P1, . . . , Pn, . . .}) where:

• W is a non-empty set;

• R ⊆W ×W ×W is a ternary relation over W ;

• P1, . . . , Pn, . . . ⊆W are unary relations over W .

We write w ∈M for w ∈W by abuse and (M,w) is called a pointed Lambek model. The class of
all pointed Lambek models is denoted ELC. We define the satisfaction relation Int ⊆ ELC×LLC

by the following truth conditions. Below, we write (M,w) ϕ for ((M,w), ϕ) ∈ LC. For all
Lambek models M = (W, {R,P1, . . . , Pn, . . .}), all w ∈M , all ϕ,ψ ∈ LLC and all pi ∈ P,

(M,w) pi iff Pi(w) holds;
(M,w) (ϕ⊗ ψ) iff there are v, u ∈W such that Rvuw,

(M,v) ϕ and (M,u) ψ;
(M,w) (ϕ ⊃ ψ) iff for all v, u ∈W such that Rwvu,

if (M, v) ϕ then (M,u) ψ;
(M,w) (ψ ⊂ ϕ) iff for all v, u ∈W such that Rvwu,

if (M, v) ϕ then (M,u) ψ.

The triple (LLC, ELC, LC) forms a logic, that we call the Lambek calculus. Bisimulations for
the Lambek calculus, called directed bisimulations, can be found in [29].

2.3 Temporal Logic

The temporal language LTL is defined inductively by the following grammar in BNF:

LTL : ϕ ::= > | ⊥ | p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | U(ϕ,ϕ) | S(ϕ,ϕ)

where p ∈ A. A temporal model is a tuple M = (W, {<,P1, . . . , Pn, . . .}) where:
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• W is a non-empty set;

• <⊆W ×W is a binary relation over W ;

• P1, . . . , Pn, . . . ⊆W are unary relations over W .

We write w ∈ M for w ∈ W by abuse and the pair (M,w) is called a pointed temporal
model. The class of all pointed temporal models is denoted ETL. We define the satisfaction
relation TL ⊆ ETL × LTL by the following truth conditions. Below, we write (M,w) ϕ for
((M,w), ϕ) ∈ TL. For all temporal models M = (W, {<,P1, . . . , Pn, . . .}), all w ∈ M , all
ϕ,ψ ∈ LTL and all pi ∈ P,

(M,w) > always;
(M,w) ⊥ never;
(M,w) pi iff Pi(w) holds;
(M,w) ¬pi iff Pi(w) does not hold;
(M,w) (ϕ ∧ ψ) iff (M,w) ϕ and (M,w) ψ;
(M,w) (ϕ ∨ ψ) iff (M,w) ϕ or (M,w) ψ;
(M,w) U(ϕ,ψ) iff there is v ∈W such that w < v and (M, v) ϕ and

for all u ∈W such that w < u < v, (M,u) ψ;
(M,w) S(ϕ,ψ) iff there is v ∈W such that v < w and (M, v) ϕ and

for all u ∈W such that v < u < w, (M,u) ψ.

The triple (LTL, ETL, TL) forms a logic, that we call temporal logic. Bisimulations for
temporal logic can be found in [23].

2.4 Modal Intuitionistic Logic

The modal intuitionistic language LInt is defined inductively by the following grammar in BNF:

LInt : ϕ ::= > | ⊥ | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ⇒ ϕ) | 3ϕ | 2ϕ

where p ∈ A. A modal intuitionistic model is a tuple M = (W, {R,R3, P1, . . . , Pn, . . .}) where:

• W is a non-empty set;

• R ⊆W ×W is a binary relation over W which is reflexive and transitive (R is reflexive if
for all w ∈W Rww and transitive if for all u, v, w ∈W , Ruv and Rvw imply Ruw);

• R3 ⊆W ×W is a binary relation over W ;

• P1, . . . , Pn, . . . ⊆ W are unary relations over W such that for all v, w ∈ W , if Rvw and
Pn(v) then Pn(w).

We write w ∈M for w ∈W by abuse and the pair (M,w) is called a pointed modal intuitionis-
tic model. The class of all pointed modal intuitionistic models is denoted EInt. We define the sat-
isfaction relation Int ⊆ EInt×LInt by the following truth conditions. Below, we write (M,w) ϕ
for ((M,w), ϕ) ∈ Int. For all modal intuitionistic models M = (W, {R,R3, P1, . . . , Pn, . . .}),
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all w ∈M , all ϕ,ψ ∈ LInt and all pi ∈ P,

(M,w) > always;
(M,w) ⊥ never;
(M,w) pi iff Pi(w) holds;
(M,w) (ϕ ∧ ψ) iff (M,w) ϕ and (M,w) ψ;
(M,w) (ϕ ∨ ψ) iff (M,w) ϕ or (M,w) ψ;
(M,w) (ϕ⇒ ψ) iff for all v ∈W such that Rwv,

if (M,v) ϕ then (M, v) ψ;
(M,w) 2ϕ iff for all v ∈W such that Rwv,

for all u ∈W such that R3vu, (M,u) ϕ;
(M,w) 3ϕ iff for all v ∈W such that Rwv,

there is u ∈W such that R3vu and (M,u) ϕ.

The triple (LInt, EInt, Int) forms a logic, that we call modal intuitionistic logic. Bisimulations
for (modal) intuitionistic logic can be found in [26, 27].

2.5 Common Logical Notions

In the present section, we define a number of notions which are common to all logics and in
particular to the logics introduced beforehand. The way we define logics is different from many
proposals considered in universal logic [6] such as pairs of Suzsko’s abstract logics, Tarski’s
consequence operators or logical structures. Often a logic is viewed as a pair of a language
together with a consequence relation on this language. Our approach to defining logics is somehow
more ‘semantic’ in that respect than the usual proposals. It corresponds in fact to the “abstract
logics” of Garćıa-Matos & Väänänen [17] or to the “rooms” of Mossakowski et al. [25].

A logic is a triple L , (L, E , ) where

• L is a logical language defined as a set of well-formed expressions built from a set of
connectives C and a set of propositional letters A;

• E is a class of pointed models;

• is a satisfaction relation which relates in a compositional manner elements of L to
models of E by means of so-called truth conditions.

Let L = (L, E , ) be a logic and let Γ ⊆ L, ϕ ∈ L and M ∈ E . We write M Γ when for
all ψ ∈ Γ, we have M ψ. Then, we say that

• ϕ is true (satisfied) at M or M is a model of ϕ when M ϕ;

• ϕ is a logical consequence of Γ, written Γ Lϕ, when for all M ∈ E , if M Γ then M ϕ;

• ϕ is valid, written Lϕ, when for all models M ∈ E , we have M ϕ;

• ϕ is satisfiable when there is a model M ∈ E such that M ϕ.

If Γ is a singleton Γ = {ψ}, we also write by abuse ψ ϕ for {ψ} ϕ.
A set of formulas of L is called a theory. A set ∆ of formulas of L is said to be a set of

axioms for a theory Γ iff Γ and ∆ have the same logical consequences. A theory is called finitely
axiomatizable iff it has a finite set of axioms. A logic L is axiomatizable if its set of validities is
finitely axiomatizable.
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3 Atomic Logics

Atomic logics are logics such that the truth conditions of their connectives are defined
by first-order formulas of the form ∀x1 . . . xn(±1Q1x1 ∨ . . . ∨ ±nQnxn ∨ ±Rx1 . . . xnx) or
∃x1 . . . xn(±1Q1x1 ∧ . . . ∧ ±nQnxn ∧ ±Rx1 . . . xnx) where the ±is and ± are either empty or
¬. Likewise, propositional letters are defined by first-order formulas of the form ±Rx. We will
represent the structure of these formulas by means of so–called skeletons whose various argu-
ments capture the different features and patterns from which they can be redefined completely.
Atomic logics are also generalizations of our gaggle logics [2] with types associated to formulas.

We recall that N∗ denotes the set of natural numbers without 0 and that for all n ∈ N∗, Sn

denotes the group of permutations over the set {1, . . . , n}. Permutations are generally denoted
σ, τ , the identity permutation Id is sometimes denoted 1 as the neutral element of every permu-
tation group and σ− stands for the inverse permutation of the permutation σ. For example, the
permutation σ = (3, 1, 2) is the permutation that maps 1 to 3, 2 to 1 and 3 to 2 (see for instance
[30] for more details).

Definition 1 (Atomic skeletons and connectives). The sets of atomic skeletons P and C are
defined as follows:

P ,S1 × {+,−} × {∀,∃} × N∗

C ,P ∪
⋃
n∈N∗

{
Sn+1 × {+,−} × {∀,∃} × N∗n+1 × {+,−}n

}
.

P is called the set of propositional letter skeletons and C is called the set of connective skele-
tons. They can be represented by tuples (σ,±,Æ, k,±j) or (σ,±,Æ, k) if it is a proposi-
tional letter skeleton, where Æ ∈ {∀,∃} is called the quantification signature of the skeleton,
k = (k, k1, . . . , kn) ∈ N∗n+1 is called the type signature of the skeleton and ±j = (±1, . . . ,±n) ∈
{+,−}n is called the tonicity signature of the skeleton; (Æ, k,±j) is called the signature of the
skeleton. The arity of a propositional letter skeleton is 0 and its type is k. The arity of a skeleton
? ∈ C is n, its input types are k1, . . . , kn and its output type is k.

A (atomic) connective or propositional letter is a symbol generally denoted ? or p to which
is associated a (atomic) skeleton. Its arity, signature, quantification signature, type signature,
tonicity signature, input and output types are the same as its skeleton. By abuse, we sometimes
identify a connective with its skeleton. If C is a set of atomic connectives, its set of propositional
letters is denoted P(C). Propositional letters are denoted p, p1, p2, etc. and connectives ?, ?1, ?2,
etc.

We need to distinguish between connectives and skeletons because in general we need a
countable number of propositional letters or connectives of the same skeleton, like in some modal
logics, where we need multiple modalities of the same (similarity) type/skeleton.

Definition 2 (Atomic language). Let C be a set of atomic connectives. The (typed) atomic
language LC associated to C is the smallest set that contains the propositional letters and that
is closed under the atomic connectives. That is,

• P(C) ⊆ LC;

• for all ? ∈ C of arity n > 0 and of type signature (k, k1, . . . , kn) and for all ϕ1, . . . , ϕn ∈ LC

of types k1, . . . , kn respectively, we have that ?(ϕ1, . . . , ϕn) ∈ LC and ?(ϕ1, . . . , ϕn) is of
type k.
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Elements of LC are called atomic formulas and are denoted ϕ,ψ, α, . . . The type of a formula
ϕ ∈ LC is denoted k(ϕ).

The skeleton syntactic tree of a formula ϕ ∈ LC is the syntactic tree of the formula ϕ in
which the nodes labeled with subformulas of ϕ are replaced by the skeleton of their outermost
connective.

A set of atomic connectives C is plain if for all ? ∈ C of skeleton
(σ,±,Æ, (k, k1, . . . , kn), (±1, . . . ,±n)) there are atoms p1, . . . , pn ∈ P of types k1, . . . , kn
respectively. In the sequel, we assume that all sets of connectives C are plain.

Our assumption that all sets of connectives C considered are plain makes sense. Indeed, we
want all connectives of C to appear in some formula of LC. If C was not plain then there would
be a connective of C (with input type k) which would be necessarily composed with another
connective of C (of output type k), if we want such a connective to appear in a formula of LC.
Yet, in that case, we should instead view C as a set of molecular connectives (introduced in the
next section).

Definition 3 (C–models). Let C be a set of atomic connectives. A C–model is a tuple M =
(W,R) where W is a non-empty set and R is a set of relations over W such that each n–ary
connective ? ∈ C of type signature (k, k1, . . . , kn) is associated to a k1 + . . .+ kn + k–ary relation
R? ∈ R.

An assignment is a tuple (w1, . . . , wk) ∈ W k for some k ∈ N∗, generally denoted w. The set
of assignments of a C–model M is denoted w(M,C). A pointed C–model (M,w) is a C–model M
together with an assignment w. In that case, we say that (M,w) is of type k. The class of all
pointed C–models is denoted MC.

Definition 4 (Atomic logics). Let C be a set of atomic connectives and let M = (W,R) be

a C–model. We define the interpretation function of LC in M , denoted J·KM : LC →
⋃
k∈N∗

W k,

inductively as follows: for all propositional letters p ∈ C of type k, all connectives ? ∈ C of
skeleton (σ,±,Æ, (k, k1, . . . , kn), (±1, . . . ,±n)) of arity n > 0, for all ϕ1, . . . , ϕn ∈ LC,

JpKM ,

{
Rp if ± = +

W k −Rp if ± = −
J?(ϕ1, . . . , ϕn)KM , f?(Jϕ1KM , . . . , JϕnKM )

where the function f? is defined as follows: for all W1 ∈ P(W k1), . . . ,Wn ∈ P(W kn),
f?(W1, . . . ,Wn) ,

{
wn+1 ∈W k | C? (W1, . . . ,Wn, wn+1)

}
where C?(W1, . . . ,Wn, wn+1) is called

the truth condition of ? and is defined as follows:

• if Æ = ∀: “∀w1 ∈W k1 . . . wn ∈W kn
(
w1 t1 W1 ∨ . . . ∨ wn tn Wn ∨R±σ? w1 . . . wnwn+1

)
”;

• if Æ = ∃: “∃w1 ∈W k1 . . . wn ∈W kn
(
w1 t1 W1 ∧ . . . ∧ wn tn Wn ∧R±σ? w1 . . . wnwn+1

)
”;

where, for all j ∈ J1;nK, wj tj Wj ,

{
wj ∈Wj if ±j = +

wj /∈Wj if ±j = −
and

R±σ? w1 . . . wn+1 holds iff ±R?wσ−(1) . . . wσ−(n+1) holds, with the notations +R? , R? and

−R? ,W k+k1+...+kn −R?. If EC is a class of pointed C–models, the satisfaction relation ⊆
EC×LC is defined as follows: for all ϕ ∈ LC and all (M,w) ∈ EC, ((M,w), ϕ) ∈ iff w ∈ JϕKM .
We usually write (M,w) ϕ instead of ((M,w), ϕ) ∈ and we say that ϕ is true in (M,w).

The logic (LC, EC, ) is the atomic logic associated to EC and C. The logics of the form
(LC,MC, ) are called basic atomic logics.
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Permutations of S2 unary signatures

τ1 = (1, 2) t1 = (∃, (1, 1),+)
τ2 = (2, 1) t2 = (∀, (1, 1),+)

t3 = (∀, (1, 1),−)
t4 = (∃, (1, 1),−)

Permutations of S3 binary signatures

σ1 = (1, 2, 3) s1 = (∃, (1, 1, 1), (+,+))
σ2 = (3, 2, 1) s2 = (∀, (1, 1, 1), (+,−))
σ3 = (3, 1, 2) s3 = (∀, (1, 1, 1), (−,+))
σ4 = (2, 1, 3) s4 = (∀, (1, 1, 1), (+,+))
σ5 = (2, 3, 1) s5 = (∃, (1, 1, 1), (+,−))
σ6 = (1, 3, 2) s6 = (∃, (1, 1, 1), (−,+))

s7 = (∃, (1, 1, 1), (−,−))
s8 = (∀, (1, 1, 1), (−,−))

Figure 1: Permutations of S2 and S3 and ‘families’ of unary and binary signatures

The ± sign in R±σ? is the ± sign in (σ,±,Æ, (k, k1, . . . , kn), (±1 , . . . ,±n)).

Example 1 (Lambek calculus, modal logic). The Lambek calculus, where C = {p,⊗,⊃,⊂}
is defined in Section 2, is an example of atomic logic. Here ⊗,⊃,⊂ are the connectives of
skeletons (σ1,+, s1), (σ5,−, s3), (σ3,−, s2). Another example of atomic logic is modal logic where
C = {p,>,⊥,∧,∨,3j ,2j | j ∈ I} is such that

• >,⊥ are connectives of skeletons (Id,+,∃, 1) and (Id,−,∀, 1) respectively;

• ∧,∨,3j ,2j are connectives of skeletons (σ1,+, s1), (σ1,−, s4), (τ2,+, t1) and (τ2,−, t2)
respectively;

• the C-models M = (W,R) ∈ EC are such that R∧ = R∨ = {(w,w,w) | w ∈W}, R3j
= R2j

and R> = R⊥ = W .

With these conditions on the C–models of EC, for all (M,w) ∈ EC,

w ∈ J3jϕKM iff ∃v(v ∈ JϕKM ∧R3j
wv)

w ∈ J2jϕKM iff ∀v(v ∈ JϕKM ∨ −R2jwv)

w ∈ J∧(ϕ,ψ)KM iff ∃vu(v ∈ JϕKM ∧ u ∈ JψKM ∧R∧vuw)

iff w ∈ JϕKM ∧ w ∈ JψKM

w ∈ J∨(ϕ,ψ)KM iff ∀vu(v ∈ JϕKM ∨ u ∈ JψKM ∨ −R∨vuw)

iff w ∈ JϕKM ∨ w ∈ JψKM

Other examples are given in Figure 2 as well as in [2, 4].

4 Molecular Logics

Molecular logics are basically logics whose primitive connectives are compositions of atomic con-
nectives in which it is possible to repeat the same argument at different places in the connective.
That is why we call them ‘molecular’, just as molecules are compositions of atoms in chemistry.
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Atomic Truth condition Non–classical connective
Connective in the literature

The existentially positive orbit

(τ1,+, t1) ϕ ∃v (v ∈ JϕK ∧Rvw) 3−ϕ [28] 3↓ [12]
(τ2,−, t2) ϕ ∀v (v ∈ JϕK ∨ −Rwv) �ϕ [21]

The universally positive orbit

(τ1,+, t2) ϕ ∀v (v ∈ JϕK ∨Rvw) +↓ϕ [12] [15, p. 401]
(τ2,−, t1) ϕ ∃v (v ∈ JϕK ∧ −Rwv) [12]

The existentially negative orbit

(τ1,+, t4) ϕ ∃v (v /∈ JϕK ∧Rvw) ?ϕ [12][15, p. 402]
�1ϕ [12][7, Def. 10.7.7]

(τ2,+, t4) ϕ ∃v (v /∈ JϕK ∧Rwv) ?↓ϕ [12][16] [15, p. 402]
�2ϕ [7, Def. 10.7.7]

The universally negative orbit

(τ1,+, t3) ϕ ∀v (v /∈ JϕK ∨Rvw) ϕ⊥ [12, 14] ϕo [19]
�−1 ϕ [7, Def. 10.7.2]

(τ2,+, t3) ϕ ∀v (v /∈ JϕK ∨Rwv) ∼ ϕ [18] ⊥ϕ [12, 14] oϕ [19]
�−2 ϕ [7, Def. 10.7.2]

The symmetrical existentially positive orbit

(τ1,−, t1) ϕ ∃v (v ∈ JϕK ∧ −Rvw) [12]
(τ2,+, t2) ϕ ∀v (v ∈ JϕK ∨Rwv) +ϕ [12] [15, p. 402]

ϕ∗ [7, Def. 7.1.19]

The symmetrical universally positive orbit

(τ1,−, t2) ϕ ∀v (v ∈ JϕK ∨ −Rvw) �−ϕ [28] �↓ [12]
(τ2,+, t1) ϕ ∃v (v ∈ JϕK ∧Rwv) 3ϕ [21]

The symmetrical existentially negative orbit

(τ1,−, t4) ϕ ∃v (v /∈ JϕK ∧ −Rvw) ?ϕ [12][7, Ex. 1.4.5] ϕ1 [19]
(τ2,−, t4) ϕ ∃v (v /∈ JϕK ∧ −Rwv) ?↓ϕ [12] [7, Ex. 1.4.5] 1ϕ [19]

The symmetrical universally negative orbit

(τ1,−, t3) ϕ ∀v (v /∈ JϕK ∨ −Rvw) [12]
(τ2,−, t3) ϕ ∀v (v /∈ JϕK ∨ −Rwv) ¬lϕ [22, 29] ⊥ϕ [16]

Figure 2: The unary connectives of atomic logics of type (1, 1)
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Definition 5 (Molecular skeleton and connective). The class C∗ of molecular skeletons is the
smallest set such that:

• P ⊆ C∗ and C∗ contains as well, for each k, l ∈ N∗, a symbol idlk of type signature (k, k),
output type k and arity 1;

• for all atomic skeleton ? ∈ C of type signature (k, k01, . . . , k
0
n) and all c1, . . . , cn ∈ C∗

of output types or types (if they are propositional letters) k01, . . . , k
0
n respectively, c ,

?(c1, . . . , cn) is a molecular skeleton of C∗ of output type k.

If c ∈ C∗, we define its decomposition tree as follows. If c = p ∈ P or c = idlk, then its
decomposition tree Tc is the tree consisting of a single node labeled with p or idlk respectively. If
c = ?(c1, . . . , cn) ∈ C∗ then its decomposition tree Tc is the tree defined inductively as follows:
the root of Tc is c and it is labeled with ? and one sets edges between that root and the roots
c1, . . . , cn of the decomposition trees Tc1 , . . . , Tcn respectively.

If c , ?(c1, . . . , cn) is a molecular skeleton with output type k and k1, . . . , km are the ks of
the different idlks which appear in c1, . . . , cn (in an order which follows the first appearance of
the idlks in the inorder traversal of the decomposition trees of c1, . . . , cn), then the type signature
of c is (k, k1, . . . , km) and its arity is m. We also define the quantification signature Æ(c) of
c = ?(c1, . . . , cn) by Æ(c) , Æ(?).

A molecular connective is a symbol to which is associated a molecular skeleton. Its arity,
type signature, output type, quantification signature and decomposition tree are the same as its
skeleton. The set of atomic connectives associated to a set C of molecular connectives is the set
of labels different from idlk of the decomposition trees of the molecular connectives of C.

Note that the same label (atomic connective) may appear several times in a decomposition
tree. Note also that the vertices of a decomposition tree are molecular connectives.

Every atomic connective ? of type signature (k, k1, . . . , kn) can be seen as the (specific)
molecular connectives c , ?(id1k1 , . . . , id

n
kn). One needs to introduce the connective idlk in order

to deal with molecular connectives whose skeletons are for example of the form ?(p, idlk) where
p ∈ P or molecular connectives in which the same argument(s) appear at different places, like
for example in ?(id1k, . . . , id

1
k) which is of arity 1.

Example 2 (Modal intuitionistic logic). Let us consider the skeletons c, c′, ?1, ?2, ?3 defined by
the following first–order formulas.

c(x) , ∀y (Rxy → ∀z (R3yz → Q(z)))

c′(x) , ∀y (Rxy → ∃z (R3yz ∧ Q(z)))

?1(x) , ∀y (Rxy → Q(y))

?2(x) , ∀z (R3xz → Q(z))

?3(x) , ∃z (R3xz ∧ Q(z))

These first–order formulas can be naturally represented by molecular skeletons. Then, ?1, ?2, ?3
are atomic skeletons and the connectives associated to c, c′ are molecular connectives. Indeed, c
is the composition of ?1 and ?2, c = ?1(?2), and c′ is the composition of ?1 and ?3, c′ = ?1(?3).
To be more precise, c and c′ will have the same semantics as ?1(?2(id11)) and ?1(?3(id11)). The
connective associated to c corresponds to the connective 2 of modal intuitionistic logic and the
connective associated to c′ corresponds to the connective 3 of modal intuitionistic logic [27]
defined in Section 2.4.
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Definition 6 (Molecular language). Let C be a set of molecular connectives. The (typed)
molecular language LC associated to C is the smallest set that contains the propositional letters
and that is closed under the molecular connectives while respecting the type constraints. That
is,

• the propositional letters of C belong to LC;

• for all c ∈ C of type signature (k, k1, . . . , km) and for all ϕ1, . . . , ϕm ∈ LC of types k1, . . . , km
respectively, we have that c(ϕ1, . . . , ϕm) ∈ LC and c(ϕ1, . . . , ϕm) is of type k.

Elements of LC are called molecular formulas and are denoted ϕ,ψ, α, . . . The type of a
formula ϕ ∈ LC is denoted k(ϕ). We use the same abbreviations as for the atomic language.

Definition 7 (Molecular logic). If C is a set of molecular connectives, then a C–model M is a
C′–model M where C′ is the set of atomic connectives associated to C. The class of all pointed
C–models is also denoted MC, like for atomic logics.

The truth conditions for molecular connectives are defined naturally from the truth conditions
of atomic connectives. We define the interpretation function of LC in M , denoted J·KM : LC →⋃
k∈N∗

W k, inductively as follows: for all propositional letters p ∈ C of skeleton (σ,±,Æ, k), all

molecular connectives ?(c1, . . . , cn) ∈ C of arity m > 0 and all k, l ∈ N∗, for all ϕ,ϕ1, . . . , ϕm ∈
LC,

JpKM,±Rp
Jidlk(ϕ)KM,JϕKM

J?(c1, . . . , cn) (ϕ1, . . . , ϕm)KM,f?
(
Jc1(ϕ1

1, . . . , ϕ
1
i1)KM , . . . , Jcn(ϕn1 , . . . , ϕ

n
in)KM

)
where for all j ∈ {1, . . . , n}, the formulas ϕj1, . . . , ϕ

j
ij

are those ϕ1, . . . , ϕm for which there is a

corresponding idlk in cj (the ϕji s appear in the same order as their corresponding idlks in cj).
If EC is a class of pointed C–models, the triple (LC, EC, ) is a logic called the molecular

logic associated to EC and C.

As one can easily notice, every atomic logic can be canonically mapped to an equi-expressive
molecular logic: each atomic connective ? of type signature (k, k1, . . . , kn) of the given atomic
logic has to be transformed into the molecular connective of skeleton ?(id1k1 , . . . , id

n
kn). Note

that the idlk are in fact specific atomic connectives whose associated relations are the identity
relations.

Example 3 (Temporal logic). Temporal logic is an example of logic in which one needs to
resort both to our types and to combine basic connectives in order to be able to express the
truth conditions of its connectives. Let us consider the skeletons defined by the following first–
order formulas:

?1(x) ,∃yzz′ (Py ∧ Qzz′ ∧ Ryzz′x)

?′1(x) ,∃yzz′ (Py ∧ Qzz′ ∧ Rxzz′y)

?2(x, x′) ,∀y (Py ∨ ¬Syxx′)

?1, ?′1 and ?2 are atomic skeletons (this is independent from the definitions of R and S). The
connectives of skeletons c = ?1(id11, ?2(id21)) and c′ = ?′1(id11, ?2(id21)) are molecular connectives.
Together with some propositional letters, truth constants, Boolean conjunction and disjunction,
they form a set of molecular connectives C = {p,¬p,>,⊥,∧,∨, c, c′}. If we choose the class of
C–models appropriately, the molecular connectives c and c′ then correspond to the connectives
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‘until’ U and ‘since’ S of temporal logic respectively. Let us be a bit more precise. Let M =
(W, {<,P}) be a temporal model. We represent this temporal model by the C–model MU,S =
(W, {R,S, P}) such that for all y, z, z′, x ∈W ,

Ryzz′x iff x < y, x = z and y = z′ (1)

Syxx′ iff x < y < x′. (2)

One can show that for all ϕ ∈ LTL and all w ∈ W , (M,w) ϕ iff (MU,S , w) T (ϕ) where
T : LTL → LC is defined inductively on the formulas of LTL in such a way that T (U(ϕ,ψ))
, c(T (ϕ), T (ψ)) and T (S(ϕ,ψ)) , c′(T (ϕ), T (ψ)). Indeed, the standard translation of the until
and since operators are:

STx(U(ϕ,ψ)) = ∃y(x < y ∧ STy(ϕ) ∧ ∀z(x < z < y → STz(ψ)))

STx(S(ϕ,ψ)) = ∃y(y < x ∧ STy(ϕ) ∧ ∀z(y < z < x→ STz(ψ)))

Example 4 (Weakly aggregative modal logic). The modal connectives of weakly aggregative
modal logics [11, 24] are expressed by first-order formulas of the following form:

?(x) , ∃x1 . . . xn (Px1 ∧ . . . ∧ Pxn ∧ Rx1 . . . xnx)

The arity of such connectives is 1, their argument is just repeated at different places of the atomic
connective ?. So, they are in fact molecular connectives, their molecular skeleton is of the form
?(id11, . . . , id

1
1).

There are infinitely more examples of molecular logics since we proved in [4] that any logic
such that the truth conditions of its connectives are expressible in first-order logic is as expressive
as a molecular logic.

5 Boolean Atomic and Molecular Logics

Atomic and molecular logics do not include Boolean connectives as primitive connectives. In
fact, they can be defined in terms of specific atomic connectives, as follows.

Definition 8 (Boolean connectives). The Boolean connectives called conjunctions, disjunctions,
negations and Boolean constants (of type k) are the atomic connectives denoted, respectively:

B , {∧k,∨k,¬k,>k,⊥k | k ∈ N∗}

The skeleton of ∧k is (Id,+,∃, (k, k, k), (+,+)), the skeleton of ∨k is (Id,−,∀, (k, k, k), (+,+)),
the skeleton of ¬k is (Id,+,∃, (k, k),−), the skeleton of >k is (Id,+,∃, k) and the skeleton of ⊥k
is (Id,−,∀, k).

In any C-model M = (W,R) containing Boolean connectives, the associated relation of any
∨k or ∧k is R∧k

= R∨k
, {(w,w,w) | w ∈ W k}, the associated relation of any ¬k is R¬k

,
{(w,w) | w ∈W k} and the associated relation of any >k or ⊥k is R⊥k

= R>k
,W k.

Atomic or molecular logics containing Boolean connectives are called Boolean atomic or
molecular logics. We say that a set of atomic connectives C is complete for conjunctions and
disjunctions when it contains all conjunctions, disjunctions and constants ∧k,∨k,>k,⊥k, for k
ranging over all input types and output types of the atomic connectives of C. We say that a set
of atomic connectives C is complete for Boolean connectives when it contains all conjunctions,
disjunctions, constants as well as negations ∧k,∨k,>k,⊥k,¬k, for k ranging over all input types
and output types of the atomic connectives of C. The completion of a set of atomic connec-
tives C with conjunctions and disjunctions is the smallest set of connectives including C which
is complete for conjunctions and disjunction.
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Proposition 1. Let C be a set of atomic connectives containing Boolean connectives. and let
M = (W,R) be a C-model. Then, for all k ∈ N∗, all ϕ,ψ ∈ LC, if k(ϕ) = k(ψ) = k, then

J>kKM , W k

J⊥kKM , ∅
J¬kϕKM , W k − JϕKM

J(ϕ ∧k ψ)KM , JϕKM ∩ JψKM

J(ϕ ∨k ψ)KM , JϕKM ∪ JψKM .

It turns out that Boolean negation can also be simulated systematically at the level of atomic
connectives by applying a transformation on them. The Boolean negation of a formula then
boils down to taking the Boolean negation of the outermost connective of the formula. This
transformation is defined as follows.

Definition 9 (Boolean negation). Let ? be a n–ary connective of skeleton
(σ,±,Æ, k,±1, . . . ,±n). The Boolean negation of ? is the connective −? of skeleton
(σ,−±,−Æ, k,−±1, . . . ,−±n) where −Æ , ∃ if Æ = ∀ and −Æ , ∀ otherwise, which is
associated in any C–model to the same relation as ?. If ϕ = ?(ϕ1, . . . , ϕn) is an atomic formula,
the Boolean negation of ϕ is the formula −ϕ , − ? (ϕ1, . . . , ϕn).

Proposition 2 ([4]). Let C be a set of atomic connectives such that −? ∈ C for all ? ∈ C. Let
ϕ ∈ LC of type k and let M = (W,R) be a C–model. Then, for all w ∈ W k, w ∈ J−ϕKM iff
w /∈ JϕKM .

6 Universal and Existential Molecular Connectives

Universal and existential molecular connectives are essentially molecular connectives such that
the quantification patterns of the quantification signatures of their successive atomic connectives
are of the form ∀ . . . ∀ or ∃ . . . ∃ respectively. They essentially behave as ‘macroscopic’ atomic
connectives of quantification signatures ∀ or ∃.

Definition 10 (Universal and existential molecular connective). A universal (resp. existential)
molecular skeleton is a molecular skeleton c different from any idlk for any k, l ∈ N∗ such that
Æ(c) = ∀ (resp. Æ(c) = ∃) and such that for each node of its decomposition tree labeled with
? = (σ,±,Æ, k, (±1, . . . ,±n)) and each of its jth children labeled with some ?j ∈ C such that
the subtree generated by this jth children contains at least one idlk, we have that Æ(?j) = ±jÆ.
A universal (resp. existential) molecular connective is a molecular connective with a universal
(resp. existential) skeleton.

Example 5. On the one hand, the molecular connective ?(p, idlk) is a universal (resp. existential)
molecular connective if Æ(?) = ∀ (resp. Æ(?) = ∃). Likewise, ⊃ (id11,2id

2
1) and ⊗(3id11, p) are

universal and existential molecular connectives respectively. On the other hand, the molecular
connectives 23−id11 and ⊃ (2id11,2id

2
1) are neither universal nor existential molecular connec-

tives.

Just as we have tonicity signatures for atomic connectives, we can also define an adaptation
of this notion for universal and existential molecular connectives, which, we repeat, are some
sort of ‘macroscopic’ atomic connectives.

Definition 11 (Tonicity signature of a molecular connective). Let c be a molecular connective
and let c′ be a molecular subconnective of c. We define the tonicity of c′ w.r.t. c, denoted
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tn(c′, c) inductively as follows. If c = c′ then tn(c′, c) = +. Otherwise, if c = ?(c1, . . . , cn) with
? = (σ,±,Æ, k, (±1, . . . ,±n)) and c′ appears in cj then tn(c′, c) = ±jtn(c′, cj). The tonicity
signature of a molecular connective is the tuple (±1, . . . ,±l) of the tonicities tn(idik, c) of the
connectives labeling the leafs of the decomposition tree of c of the form idik (possibly with
repetition).

A molecular connective c is generally represented as ?(c1, . . . , cn) where ? is an atomic con-
nective, but it can also be represented as c0(c′1, . . . , c

′
n) where c0 is a molecular connective such

that the idiks which appear in c0 are all distincts. This representation and decomposition in
terms of molecular connectives is equivalent to the original one. For example the modal connec-
tive of weakly agregative modal logic ?(id11, . . . , id

1
1) can be represented in terms of molecular

connectives with distinct idiks as follows: ?(id11, . . . , id
n
1 )(idn+1

1 , . . . , idn+1
1 ). We now formalize

this idea of decomposition into molecular connectives.

Definition 12 (Decomposition of a molecular connective). Let c be a molecular connective and
let Tc be its decomposition tree. A decomposition of c is an expression of the form c0(c1, . . . , cn)
where c0 is a molecular connective whose decomposition tree is a subtree of Tc with root c and
whose leafs, corresponding to the nodes c1, . . . , cn of Tc, have been replaced by distinct idiks
and where c1, . . . , cn are molecular connectives whose decomposition trees are the subtrees of Tc
generated by the nodes c1, . . . , cn of Tc.

Example 6. For any molecular connective ?(id11, . . . , id
n
1 ) corresponding to an atomic connective

? of arity n, a decomposition is ?(idn+1
1 , . . . , id2n1 )(id11, . . . , id

n
1 ). Likewise, a decomposition of

?(p, idlk) is ?(id11, id
2
k)(p, idlk) (if p is of type 1).

Based on this observation, we can decompose molecular connectives into an alternation of
universal and existential molecular subconnectives. That is what the following definition cap-
tures, at least at the first level of alternation depth. In that definition, if c0 is universal and the
tonicity of the jth molecular connective cj is positive for example, then cj will have an existential
quantification signature (and its ‘head’ will behave as an existential molecular connective).

Definition 13 (Maximal decomposition). A decomposition c = c0(c1, . . . , cn) of a molecular
connective c is maximal when c0 is a universal or existential molecular connective of tonicity
signature (±1, . . . ,±n) with the idiks all distinct, and we have that Æ(cj) = − ±j Æ(c0) for all
j ∈ J1;nK such that cj is not of the form idlk for some k, l ∈ N∗.

Example 7. The decomposition of ?(p, idlk) in ?(id11, id
2
k)(p, idlk) (if p is of type 1) is not maximal

because ?(p, idlk) is already a universal or existential molecular connective. On the other hand,

the decomposition of ?(p, idlk) in ?(p, idlk)(idl
′

k ) is maximal.

The alternation of universal and existential molecular subconnectives inherent to any molec-
ular connective is fully captured by the following notion of quantified decomposition tree. It is
an abstraction of the notion of decomposition tree of Definition 5 which considers as first-class
citizens universal and existential molecular (sub)connectives.

Definition 14 (Quantified decomposition tree). If c ∈ C∗ is a molecular skeleton, we define
its quantified decomposition tree T ′c inductively as follows. If c is a propositional letter or idlk
for some k, l ∈ N∗ then its quantified decomposition tree T ′c is the tree consisting of a single
node labeled with c. Otherwise, c admits a maximal decomposition c = c0(c1, . . . , cn). Then,
its quantified decomposition tree T ′c is the tree defined inductively as follows: the root of T ′c is
c and it is labeled with c0 and one sets edges between that root and the roots c1, . . . , cn of the
quantified decomposition trees T ′c1 , . . . , T

′
cn respectively. The quantified decomposition tree of a

molecular connective is the quantified decomposition tree of its skeleton.
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Note that a propositional letter p can occur as the label of a node only if the quantified
decomposition tree in which it appears consists of this single node only (Example 7 illustrates
this phenomenon).

Definition 15 (Relation associated to a molecular connective). Let C be a set of molecu-
lar connectives and let c = ?(c1, . . . , cn) ∈ C be a molecular connective with ? of skeleton
(σ,±,Æ, (k?, k?1 , . . . , k

?
n), (±?1, . . . ,±?n)). Assume that the decomposition tree of c has l different

leaves labeled with idiks of output types k1, . . . , kl, in that order. Then, the arity of c is l.
Let M = (W,R) be a C–model. We define the relation Rc inductively as follows. First, we

set R−? = R? if ? is an atomic connective and if ± ∈ {+,−},

±p ,

{
p if ± = +

−p if ± = −
and ± ? (c1, . . . , cn) =

{
?(c1, . . . , cn) if ± = +

− ? (c1, . . . , cn) if ± = −
.

• If the arity l of c is 0 then Rc = JcKM ;

• If the arity l of c is greater than 0 and Æ = ∃ then for all w ∈W k, w1 ∈W k1 , . . . , wl ∈W kl ,
we set

Rcw1 . . . wlw iff ∃v1 ∈W k?1 , . . . , vn ∈W k?n(
R±σ? v1 . . . vnw ∧R±?

1c1
w1

1 . . . w
1
i1v1 ∧ . . . ∧R±?

ncn
wn1 . . . w

n
invn

)
where, for all j ∈ J1;nK, the tuples wj1, . . . , w

j
ij

are those associated to the leafs of the

decomposition tree of c which are also leafs in the decomposition (sub)tree of cj (the wji s
appear in the same order as their corresponding leafs in the decomposition tree of cj).
Moreover, we set Ridikvw iff R−idikvw iff v = w.

• If the arity l of c is greater than 0 and Æ = ∀ then for all w ∈W k, w1 ∈W k1 , . . . , wl ∈W kl ,
we set

Rcw1 . . . wlw iff ∀v1 ∈W k?1 , . . . , vn ∈W k?n(
R±σ? v1 . . . vnw ∨R±?

1c1
w1

1 . . . w
1
i1v1 ∨ . . . ∨R±?

ncn
wn1 . . . w

n
invn

)
where, for all j ∈ J1;nK, the tuples wj1, . . . , w

j
ij

are defined as above. However, for that
universal case, we set Ridikvw iff R−idikvw iff v 6= w.

Unsurprisingly, the semantics of universal and existential molecular connectives is similar
to the semantics of atomic connectives of quantification signature ∀ and ∃ respectively. That is
what the following proposition shows. In this proposition and the definition above, the molecular
connective c = ?(c1, . . . , cn) yields three different values: n,m and l. They can be all different
in general. The value m is the arity of c, n is the arity of ? and l is the number of leaves of
the decomposition tree Tc of c. The value m is also the number of different labels idik of the
leafs of the decomposition tree Tc. Hence, the size l of the tuple of the tonicity signature of a
molecular connective c is larger than the arity m of c because in the former case we take into
account repetitions of the same idiks.

Proposition 3. Let C be a set of molecular connectives and let c = ?(c1, . . . , cn) ∈ C be a
molecular connective of type signature (k, k1, . . . , km) and tonicity signature (±1, . . . ,±l) with
? = (σ,±,Æ, k, (±?1, . . . ,±?n)). Assume that the decomposition tree of c has l > 0 different leaves
labeled by some idik. Let M = (W,R) be a C–model and let w ∈W k.
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• If c is an existential molecular connective then

w ∈ Jc(ϕ1, . . . , ϕm)KM iff ∃w1 . . . wl(
w1 t1 Jϕi1K

M ∧ . . . ∧ wl tl JϕilK
M ∧Rcw1 . . . wlw

)
• If c is a universal molecular connective then

w ∈ Jc(ϕ1, . . . , ϕm)KM iff ∀w1 . . . wl(
w1 t1 Jϕi1K

M ∨ . . . ∨ wl tl JϕilK
M ∨Rcw1 . . . wlw

)
where the Rcs are defined in Definition 15 and for all j ∈ J1; lK,

wj tj Jϕij K
M ,

{
wj ∈ Jϕij K

M if ±j = +

wj /∈ Jϕij K
M if ±j = −

and i1, . . . , il ∈ J1;mK are those indices corre-

sponding to the m different idiks appearing in c (we basically map the l leafs of the decomposition
tree of c to their labels idiks in this tree).

7 Automatic Bisimulations for Atomic and Molecular Log-
ics

In this section, we are going to see that notions of bisimulations can be automatically defined
for atomic and molecular logics on the basis of the definition of the truth conditions of their
connectives, not only for plain atomic logics but also for molecular logics. These notions are
such that they preserve the truth of the formulas of the atomic logic considered between models.
We will illustrate these results on modal logic, the Lambek calculus, (modal) intuitionistic logic
and temporal logic of Section 2. The bisimulation notions that we will find out by applying our
generic definitions on these atomic logics will correspond to the bisimulation notions introduced
in the literature for these logics.

7.1 Atomic Logics

Definition 16 (C–bisimulation). Let C be a set of atomic connectives, let ? ∈ C and let M1 =

(W1,R1) and M2 = (W2,R2) be two C–models. A binary relation Z ⊆
⋃
k∈N∗

(W k
1 × W k

2 ) ∪

(W k
2 ×W k

1 ) is a C–bisimulation between M1 and M2 when it is non-empty and for all ? ∈ C, if
{M,M ′} = {M1,M2}, then for all w1, . . . , wn, w′1, . . . , w′n, w, w′ ∈ w(M,C) ∪ w(M ′,C),

1. if ? is a propositional letter p then, if wZw′ and w ∈ JpK then w′ ∈ JpK;

2. if ? has skeleton (σ,±,∃, k, (±1, . . . ,±n)) and we have wZw′ and R±σ? w1 . . . wnw, then

∃w′1, . . . , w′n(w1 ./ w′1 ∧ w2 ./ w′2 ∧ . . . ∧ wn ./ w′n ∧R
′±σ
? w′1 . . . w′nw′);

3. if ? has skeleton (σ,±,∀, k, (±1, . . . ,±n)) and we have wZw′ and −R
′±σ
? w′1 . . . w′nw′, then

∃w1, . . . , wn(w1 ./ w′1 ∧ w2 ./ w′2 ∧ . . . ∧ wn ./ w′n ∧ −R±σ? w1 . . . wnw);

where, for all j ∈ J1;nK, we define wj ./ w′j ,

{
wjZw′j if ±j = +

w′jZwj if ±j = −
.

When such a C–bisimulation Z exists and wZw′, we say that (M,w) and (M ′, w′) are C–
bisimilar and we write it (M,w)→C (M ′, w′).
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Importantly, note that the clause(s) defining a C-bisimulation allow us to define back the
atomic connective(s) that led to their definition(s): we can recover the skeleton of the connec-
tives considered (tonicity signature, quantification signature, type signature, etc) from the mere
expression of the clauses of a given C-bisimulation. Hence, in that sense, a C–bisimulation com-
pletely characterizes a given (atomic) logic. Note also that case 1. is a particular instance of
cases 2. and 3. with n = 0.

Example 8 (Modal logic). Let us consider the connectives of modal logic: C = {p,¬p,∧,∨,3,2}
where p has skeleton (Id,+,∃, 1), ¬p has skeleton (Id,−,∀, 1), 3 has skeleton (τ2,+, t1) and 2
has skeleton (τ2,−, t2) . Let M1 = (W1, {R1, P1}) and M2 = (W2, {R2, P2}) be two Kripke mod-
els (they are also C-models). A binary relation Z between M1 andM2 is a C–bisimulation between
M1 and M2 when for all M,M ′ ∈ {M1,M2} with M = (W, {R,P}) and M ′ = (W ′, {R′, P ′}),
all w, v, u ∈M and all w′, v′, u′ ∈M ′,

• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if wZw′ and w′ ∈ JpK then w ∈ JpK (condition for ¬p);

• if wZw′ and Rwv then there is v′ ∈ W ′ such that vZv′ and R′w′v′ (condition for
3 = (τ2,+, t1) );

• if wZw′ and R′w′v′ then there is v ∈ W such that vZv′ and Rwv (condition for
2 = (τ2,−, t2) ).

Note that every C–bisimulation can be canonically extended into a symmetric C–bisimulation:
one sets w′Zw when wZw′ already holds.

Note that the conditions for the Boolean connectives ∧ and ∨ always trivially hold and that
is why we never mention them (it suffices to take v′ = u′ = w′ and v = u = w below, since
w = v = u and w′ = v′ = u′ respectively):

• if wZw′ and R∧wvu then there are v′, u′ ∈ W ′ such that vZv′, uZu′ and R∧w
′v′u′ (con-

dition for ∧);

• if wZw′ and R∨w
′v′u′ then there are v, u ∈W such that vZv′, uZu′ and R∧wvu (condition

for ∨).

Example 9 (Lambek calculus). Let us consider the connectives of the Lambek calculus: C =
{p,⊗,⊃,⊂} where p has skeleton (Id,+,∃, 1), ⊗3 has skeleton (σ1,+, s1) , ⊃ has skeleton
(σ5,−, s3) and ⊂ has skeleton (σ3,−, s2) . Let M1 = (W1, {R1, P1}) and M2 = (W2, {R2, P2})
be two Lambek models (they are also C–models). A binary relation Z between M1 and M2 is a
C–bisimulation between M1 and M2 when for all M,M ′ ∈ {M1,M2} with M = (W, {R,P}) and
M ′ = (W ′, {R′, P ′}), all w, v, u ∈M and all w′, v′, u′ ∈M ′,

• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if wZw′ and Rvuw then there are v′, u′ ∈W ′ such that vZv′, uZu′ and Rv′u′w′ (condition
for ⊗);

• if vZv′ and Rv′u′w′ then there are u,w ∈W such that u′Zu, wZw′ and Rvuw (condition
for ⊃= (σ5,−, s3) );

• if uZu′ and Rv′u′w′ then there are v, w ∈W such that v′Zv, wZw′ and Rvuw (condition
for ⊂= (σ3,−, s2) ).
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The following proposition shows that the notions of C–bisimulation for the Lambek calcu-
lus and directed bisimulation coincide (directed bisimulations are defined for example in [29,
Definition 13.2]) and likewise for modal logic.

Proposition 4. • Let C = {p,¬p,∧,∨,3j ,2j | j ∈ I} be the connectives of Example 8 and
let M and M ′ be two C–models. Then, a C–bisimulation between M and M ′ is a modal
bisimulation between M and M ′ and vice versa.

• Let C = {p,⊗,⊃,⊂} be the connectives of Example 9 and let M and M ′ be two C–models.
Then, a C–bisimulation between M and M ′ is a directed bisimulation between M and M ′

and vice versa.

Example 10 (Intuitionistic logic). Let us consider the connectives of intuitionistic logic:
C = {p,⊥,>,∧,∨,⇒} where p has skeleton (Id,+,∃, 1), > has skeleton (Id,+,∃, 1), ⊥ has
skeleton (Id,−,∀, 1), ∧ and ∨ are Boolean connectives and ⇒ has skeleton (σ5,−, s3) (here,
> and ⊥ are represented by specific propositional letters of respective signatures (Id,+,∃, 1)
and (Id,−,∀, 1)). Let M1 = (W1, R1, P ) and M2 = (W2, R2, P ) be two intuitionistic mod-
els. We represent these intuitionistic models by the C–models M⇒1 = (W1, R1,⇒, P ) and
M⇒2 = (W2, R2,⇒, P ) respectively such that for all u1, v1, w1 ∈W1 and all u2, v2, w2 ∈W2,

R1,⇒u1v1w1 iff R1u1w1 and v1 = w1 (3)

R2,⇒u2v2w2 iff R2u2w2 and v2 = w2 (4)

One can show that for all ϕ ∈ LC and all w1 ∈W1, M1, w1 ϕ iff M⇒1 , w1 ϕ (and likewise for
M2 and M⇒2 ). Now, a binary relation Z between M⇒1 and M⇒2 is a C–bisimulation between M⇒1
and M⇒2 iff for all M,M ′ ∈ {M⇒1 ,M⇒2 }, all w,w′, v′, u′ ∈ w(M,C) ∪ w(M ′,C) and all p ∈ P,

• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if vZv′ and R′⇒v
′u′w′ then there are u,w ∈ W such that u′Zu, wZw′ and R⇒vuw (∗)

(condition for ⇒);

• conditions for > and ⊥ trivially hold because of their semantics.

Using Expressions (3) and (4), one can easily show that condition (∗) is equivalent to the following
condition:

• if vZv′ and R′v′w′ then there is w ∈W such that w′Zw, wZw′ and Rvw (∗∗).

That condition (∗∗) is Olkhovikov’s condition “step” of [27, Definition 1] of his “basic asimula-
tion”.

Definition 17. Let C be a set of atomic connectives. Let (M,w) and (M ′, w′) be two pointed C–
models. We write (M,w) C (M ′, w′) when for all ϕ ∈ LC, (M,w) ϕ implies (M ′, w′) ϕ.

Proposition 5 (Truth preservation between C-bisimilar pointed C-models). Let C be a set of
atomic connectives and let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. Let Z be a
C–bisimulation between M1 and M2. Then, if {M,M ′} = {M1,M2} then for all w ∈ w(M,C),
all w′ ∈ w(M ′,C), if wZw′ then (M,w) C (M ′, w′).
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7.2 Molecular Logics

Definition 18 (C–bisimulation for molecular connectives). Let C be a set of molecular connec-
tives and let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. For all c0 ∈ C, let V ′c0 be the
vertices of the quantified decomposition tree of c0. We associate to each vertex c ∈ V ′c0 of output

type or type (if it is a propositional letter) k a relation Zc ⊆ (W k
1 ×W k

2 )∪ (W k
2 ×W k

1 ) such that

i. Z ,
⋃{

Zidik | id
i
k appears in some c ∈ C

}
is non-empty;

ii. for all w,w′ of size k such that wZw′, we also have that for all c ∈ C of output type or type
(if it is a propositional letter) k that wZcw′.

We say that this set of relations
{
Zc | c ∈ V ′c0 , c0 ∈ C

}
is a C–bisimulation between M1 and M2

when for all c0 ∈ C, all vertice c ∈ V ′c0 whose label is different from any idlk, if {M,M ′} =

{M1,M2} then for all w1, . . . , wn, w′1, . . . , w′n, w, w′ ∈ w(M,C) ∪ w(M ′,C),

1. if c is of arity 0 then, wZcw′ and w ∈ JcK imply w′ ∈ JcK;

2. if c is of arity greater than 0 and is maximally decomposed into c = c0(c1, . . . , cn), with
c0 an existential molecular connective of tonicity signature (±1, . . . ,±n), and we have that
wZcw′ and Rc0w1 . . . wnw, then there are w′1w′2 . . . w′n such that Rc0w

′
1 . . . w′nw′ and

i. for all j ∈ J1;nK such that ±j = +, there is i ∈ J1;nK such that cj = ci and wiZcjw
′
j ;

ii. for all j ∈ J1;nK such that ±j = −, there is i ∈ J1;nK such that cj = ci and w′jZcjwi.

3. if c is of arity greater than 0 and is maximally decomposed into c = c0(c1, . . . , cn), with
c0 a universal molecular connective of tonicity signature (±1, . . . ,±n), and we have that
wZcw′ and −Rc0w′1 . . . w′nw′, then there are w1w2 . . . wn such that −Rc0w1 . . . wnw and

i. for all j ∈ J1;nK such that ±j = +, there is i ∈ J1;nK such that cj = ci and wjZcjw
′
i;

ii. for all j ∈ J1;nK such that ±j = −, there is i ∈ J1;nK such that cj = ci and w′iZcjwj .

When we have that wZw′, we say that (M,w) and (M ′, w′) are C–bisimilar and we write it
(M,w)→C (M ′, w′).

Note that if we consider molecular connectives of the form c , ?(id1k1 , . . . , id
n
kn), rep-

resenting the atomic connective ? of type signature (k, k1, . . . , kn), then the definition of a
C–bisimulation for these kind of molecular connectives is identical to the definition of a C–
bisimulation for the associated atomic connectives. Hence, our definition of C–bisimulation for
molecular connectives is a genuine generalization of our definition of C–bisimulation for atomic
connectives. The bisimulation relation Z in the atomic case corresponds in the molecular case

to
⋃{

Zidik | id
i
k appears in some c ∈ C

}
.

Fact 1. Let C be a set of molecular connectives and let M1 = (W1,R1) and M2 = (W2,R2)
be two C-models. Let {Zc | c ∈ V ′c0 , c0 ∈ C} be a set of relations between M1 and M2. We set

Z ,
⋃
{Zidik | id

i
k appears in some c ∈ C}. Then, {Zc | c ∈ V ′c0 , c0 ∈ C} is a C-bisimulation if,

and only if, Z is non-empty and conditions 1, 2, 3 of Definition 18 hold, in which all Zc and all
Zidik for c ∈ C and idik appearing in some c ∈ C are replaced by Z.
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Example 11 (Temporal logic). Let us consider the skeletons defined by the following first–order
formulas:

?1(w) ,∃vuu′ (Pv ∧ Quu′ ∧ Rvuu′w)

?′1(w) ,∃vuu′ (Pv ∧ Quu′ ∧ Rwuu′v)

?2(w,w′) ,∀v (Pv ∨ ¬Svww′)

?1, ?′1 and ?2 are atomic skeletons (this is independent from the definitions of R and S). The
connectives of skeletons c = ?1(id11, ?2(id21)) and c′ = ?′1(id11, ?2(id21)) are normal molecular
connectives standing for the ‘until’ and the ‘since’ temporal operators U and S. Let M1 =
(W1, {<1, P}) and M2 = (W2, {<2, P}) be two temporal models. We represent these temporal

models by the C–models MU,S
1 = (W1, {R1, S1, P}) and MU,S

2 = (W2, {R2, S2, P}) respectively
such that for all v1, u1, u

′
1, w1, w

′
1 ∈W1,

R1v1u1u
′
1w1 iff w1 <1 v1, w1 = u1 and v1 = u′1 (5)

S1v1w1w
′
1 iff w1 <1 v1 <1 w

′
1 (6)

and likewise for R2 and S2 ofM2. One can show that for all ϕ ∈ LC and all w1 ∈W1, (M1, w1) ϕ

iff (MU,S
1 , w1) ϕ (and likewise for M2 and MU,S

2 ).
Let Zc, Zc′ , Zp, Z¬p, Zid11 , Zid21 ⊆ (W1 × W2) ∪ (W2 × W1) and Z?2 ⊆

((W1 ×W1)× (W2 ×W2)) ∪ ((W2 ×W2)× (W1 ×W1)). Then, by Definition 18,
{Zc, Zc′ , Zp, Z¬p, Zid11 , Zid21 , Z?2} is a C–bisimulation iff for all w, v ∈ W , all w′, v′ ∈ W ′

and all p ∈ P(C),

• if wZpw
′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if wZ¬pw
′ and w′ ∈ JpK then w ∈ JpK (condition for ¬p);

• if w < v and wZcw
′ then there is v′ ∈ W ′ such that w′ < v′ and vZid11v

′ and

(w, v)Z?2(w′, v′),

if (w, v)Z?2(w′, v′) and w′ < u′ < v′ then there is u ∈W such that uZid21u
′ and w < u < v

(condition for Until c);

• if v < w and wZc′w
′ then there is v′ ∈ W ′ such that v′ < w′ and vZid11v

′ and

(v, w)Z?2(v′, w′),

if (v, w)Z?2(v′, w′) and v′ < u′ < w′ then there is u ∈W such that uZid21u
′ and v < u < w

(condition for Since c′).

Then, by setting Z , Zid11 ∪Zid21 , this entails by Fact 1 that the above definition is equivalent
to the following one, in which Z is non-empty:

• if wZw′ and w ∈ JpK then w′ ∈ JpK;

• if wZw′ and w′ ∈ JpK then w ∈ JpK;

• if w < v and wZw′ then there is v′ ∈W ′ such that w′ < v′ and vZv′ and (w, v)Z?2(w′, v′),

if (w, v)Z?2(w′, v′) and w′ < u′ < v′ then there is u ∈W such that uZu′ and w < u < v;

• if v < w and wZw′ then there is v′ ∈W ′ such that v′ < w′ and vZv′ and (v, w)Z?2(v′, w′),

if (v, w)Z?2(v′, w′) and v′ < u′ < w′ then there is u ∈W such that uZu′ and v < u < w.
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We have rediscovered the notion of bisimulation for temporal logic introduced by Kurtonina &
de Rijke [23]. The relation Z?2 is presented differently in [23], it is split up into two relations Z1 ⊆
((W1 ×W1)× (W2 ×W2)) and Z2 ⊆ ((W2 ×W2)× (W1 ×W1)) but the two formal definitions
boil down to the same.

Example 12 (Modal intuitionistic logic). Let C = {p,>,⊥,∧,∨,⇒, c, c′} where c, c′ ∈ C∗ are
the molecular connectives of Example 2 and where {p,>,⊥,∧,∨,⇒} are defined in Example 10.

Let M1 = (W1, {R1, R1,3, P}) and M2 = (W2, {R2, R2,3, P}) be two modal intuitionis-
tic models. The set of binary relations {Zid11 , Zid21 , Zp, Z⇒, Zc, Zc′ , Z?3} is a C–bisimulation

iff for all M,M ′ ∈ {M1,M2} with M = (W, {R,R3, P}) and M ′ = (W ′, {R′, R′3, P}), all
w, v, u, w′, v′, u′ ∈ w(M,C) ∪ w(M ′,C) and all p ∈ P,

• if wZpw
′ and w ∈ JpK then w′ ∈ JpK

(condition for p, like in Example 10);

• if vZ⇒v
′ and R′v′w′ then there is w ∈W such that w′Zid11w, wZid21w

′ and Rvw

(condition for ⇒, like in Example 10);

• if wZcw
′ and R′cw

′v′ then there is v ∈W such that vZid11v
′ and Rcwv;

(condition for c = ?1(?2));

• if wZc′w
′ and R′w′v′ then there is v ∈W such that vZ?3v

′ and Rwv,

if wZ?3w
′ and R3wv then there is v′ ∈W ′ such that vZid11v

′ and R′3w
′v′

(condition for c′ = ?1(?3)).

Then, by setting Z , Zid11 ∪ Zid21 , this entails by Fact 1 that the above definition is equivalent
to the following one, in which Z is non-empty:

• if wZw′ and w ∈ JpK then w′ ∈ JpK

(condition for p, like in Example 10);

• if vZv′ and R′v′w′ then there is w ∈W such that w′Zw, wZw′ and Rvw

(condition for ⇒, like in Example 10);

• if wZw′ and R′w′u′ and R3u
′v′ then there are v, u ∈ W such that vZv′ and Rwu and

R3uv

(condition for ? = ?1(?2));

• if wZw′ and R′w′v′ then there is v ∈W such that vZ?3v
′ and Rwv,

if wZ?3w
′ and R3wv then there is v′ ∈W ′ such that vZv′ and R′3w

′v′

(condition for ?′ = ?1(?3)).

It turns out that the conditions for ?′ = ?1(?3) are the conditions (diam–2(1)) and (diam–
2(2)) of Olkhovikov [27, Definition 9] and that the condition for ? = ?1(?2) is the condition
(box-2) of Olkhovikov [27, Definition 5], as expected.

Example 13 (Weakly aggregative modal logic). Let c be a molecular connective of skeleton
?(id11, . . . , id

1
1) with ? = (Id,±,∃, k, (+, . . . ,+)) corresponding to the ‘diamond’ modality of a

weakly aggregative modal logic. Then, if we spell out the condition of C-bisimulation of Definition
18 for this connective, we obtain the following:
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• if wZcw′ and R±σ? w1 . . . wnw, then there are w′1w′2 . . . w′n such that R
′±σ
? w′1 . . . w′nw′

and for all j ∈ J1;nK, there is i ∈ J1;nK such that wiZid11w
′
j .

For the molecular connective c′ of skeleton ?′(id11, . . . , id
1
1) with ?′ = (Id,±,∀, k, (+, . . . ,+))

corresponding to the ‘box’ modality of a weakly aggregative modal logic, we obtain:

• if wZc′w′ and −R
′±σ
? w′1 . . . w′nw′, then there are w1w2 . . . wn such that −R±σ? w1 . . . wnw

and for all j ∈ J1;nK, there is i ∈ J1;nK such that wjZid11w
′
i.

These two conditions are the conditions “Forth” and “Back” of a wan-bisimulation for weakly
aggregative modal logics [24, Definition 4].

Definition 19. Let C be a set of molecular connectives. For all c0 ∈ C and all vertex c of the
quantified decomposition tree Tc0 , we define the language LcC as follows:

LcC ,

{
{c(ϕ1, . . . , ϕn) | ϕ1, . . . , ϕn ∈ LC} if c is of arity n > 0

{c} if c is of arity 0

Let (M,w) and (M ′, w′) be two pointed C–models. We write (M,w) cC (M ′, w′) when for all
ϕ ∈ LcC, (M,w) ϕ implies (M ′, w′) ϕ. We also write (M,w)  C (M ′, w′) when for all
ϕ ∈ LC, (M,w) ϕ implies (M ′, w′) ϕ.

Proposition 6 (Truth preservation between C-bisimilar pointed C-models). Let C be a set
of molecular connectives and let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. Let
C0 ⊆ C and for all c ∈ C0, let Dc be the vertices of the quantified decomposition tree Tc. Let{
Zc | c ∈ V ′c0 , c0 ∈ C0

}
be a C0–bisimulation between M1 and M2. If {M,M ′} = {M1,M2} then

for all c0 ∈ C0 and all c ∈ V ′c0 , for all w ∈ w(M,C) and all w′ ∈ w(M ′,C), if wZcw′ then

(M,w) cC0
(M ′, w′). In particular, if wZw′ then (M,w) C0

(M ′, w′).

Definition 20 (Normal connectives). A molecular connective is normal when its molecular
skeleton can be decomposed maximally into a molecular skeleton c0(c1, . . . , cn) such that for all
i ∈ J1;nK,

1. ci is either idik or c′i(id
i
k, . . . , id

i
k) with c′i either universal or existential,

and in that case we note id(ci) the unique idik appearing in ci;

2. if id(ci) = id(cj) then ci = cj .

In the above definition, since the decomposition c0(c1, . . . , cn) is maximal, we have in partic-
ular, by definition, that if c0 is of tonicity signature (±1, . . . ,±n), then Æ(ci) = −±i Æ(c0).

Example 14. The molecular connectives of modal intuitionistic logic, weakly aggregative modal
logic and temporal logic are normal.

8 Ultrafilters, Ultraproducts and Ultrapowers

In this section, we are going to recall and generalize to molecular logics a number of key no-
tions and results of model theory, such as ultrafilter, ultraproducts and the  Loś theorem. Our
definitions and proofs are basically the same as those of FOL [9].
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Definition 21 (Filter and ultrafilter). Let I be a non–empty set. A filter F over I is a set
F ⊆ P(I) such that I ∈ F ; if X,Y ∈ F then X ∩ Y ∈ F ; if X ∈ F and X ⊆ Z ⊆ I then Z ∈ F .
A filter is called proper if it is distinct from P(I). An ultrafilter over I is a proper filter U such
that for all X ∈ P(I), X ∈ U iff I −X /∈ U . A countably incomplete ultrafilter is an ultrafilter
which is not closed under countable intersections.

In the rest of this section, I is a non-empty set and U is an ultrafilter over I.

Definition 22 (Ultraproduct of sets). For each i ∈ I, let Wi be a non-empty set. For all

(wi)i∈I , (vi)i∈I ∈
∏
i∈I

Wi, we say that (wi)i∈I and (vi)i∈I are U -equivalent, written (wi)i∈I ∼U

(vi)i∈I , if {i ∈ I | wi = vi} ∈ U . Note that ∼U is an equivalence relation on
∏
i∈I

Wi. The equiva-

lence class of (wi)i∈I under ∼U is denoted
∏
U

wi ,

{
(vi)i∈I ∈

∏
i∈I

Wi | (vi)i∈I ∼U (wi)i∈I

}
.

The ultraproduct of (Wi)i∈I modulo U is
∏
U

Wi ,

{∏
U

wi | (wi)i∈I ∈
∏
i∈I

Wi

}
. When Wi =

W for all i ∈ I, the ultraproduct is called the ultrapower of W modulo U , written
∏
U

W .

Definition 23 (Ultraproduct and ultrapower). Let C be a set of molecular connectives and let

(Mi, wi)i∈I be a family of pointed C–models. The ultraproduct
∏
U

(Mi, wi) of (Mi, wi) modulo

U is the pointed C–model

(∏
U

Mi,
∏
U

wi

)
where

∏
U

Mi = (WU ,RU ) and
∏
U

wi are defined by:

• WU =
∏
U

Wi;

• for all n + 1–ary relations Ri? of Mi, the n + 1–ary relation
∏
U

R? ∈ RU is defined for all∏
U

w1
i , . . . ,

∏
U

wn+1
i ∈WU by

∏
U

R?
∏
U

w1
i . . .

∏
U

wn+1
i iff

{
i ∈ I | Ri?w1

i . . . w
n+1
i

}
∈ U ;

•
∏
U

wi ,

(∏
U

w1
i , . . . ,

∏
U

wki

)
if (wi)i∈I = (w1

i , . . . , w
k
i )i∈I .

If (Mi, si)i∈I is a family of pointed structures, the ultraproduct
∏
U

(Mi, si) is the pointed

structure

(∏
U

Mi,
∏
U

si

)
where

∏
U

Mi is defined as above (the Mi are viewed as C–models) and

∏
U

si : V →
∏
U

Wi is the assignment such that for all x ∈ V,

(∏
U

si

)
(x) =

∏
U

si(x).

If for all i ∈ I, (Mi, wi) = (M,w) (and (Mi, si) = (M, s)) then
∏
U

(Mi, wi) is also called an

ultrapower of (M,w) (resp. (M, s)) modulo U , also denoted
∏
U

(M,w) (resp.
∏
U

(M, s)).
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Proposition 7. Let C be a set of molecular connectives and let (Mi, wi)i∈I be a family of C–

models. Let
∏
U

(Mi, wi) be an ultraproduct of (Mi, wi)i∈I . Then, for all ϕ ∈ LC,
∏
U

(Mi, wi) ϕ

iff {i ∈ I | (Mi, wi) ϕ} ∈ U .

9 Keisler Theorems for Molecular Logics

We are going to adapt the Keisler theorems for FOL [9, Theorem 6.1.15 & 4.1.12] to molecular
logics.

Theorem 1. Let C be a set of normal connectives complete for conjunction and disjunction and
let (M,w) and (M ′, w′) be pointed C–models. Then the following are equivalent:

1. (M,w) C (M ′, w′);

2. there exists a countably incomplete ultrafilter U over N such that
∏
U

(M,w) →C∏
U

(
M ′, w′

)
.

Definition 24 (Definability, closure under C-bisimulation and ultraproducts). Let C be a set
of molecular connectives, let (M,w) be a pointed C–model of type k and let T ⊆ LC. We write
(M,w) T when for all ϕ ∈ T of type k, it holds that (M,w) ϕ.

Let K and K ′ be classes of pointed C–models. We say that K is definable by a set of
formulas in K ′ of LC when there is a set T of formulas of LC such that K is the set of
pointed C–models (M,w) of K ′ such that (M,w) T . The types of K, denoted k(K),
is the set of all types of the pointed C–models of K and we define K ′ − K , {(M,w) |
(M,w) is a pointed C–model of K ′ not in K of type in k(K)}.

We say that K is closed under C–bisimulations in K ′ when for all (M,w) ∈ K and all pointed
C–models (M ′, w′) of K ′, if (M,w) →C (M ′, w′) then (M ′, w′) ∈ K. We say that K is closed
under ultraproducts (ultrapowers) when for all non-empty sets I, if for all i ∈ I (Mi, wi) ∈ K
(resp. (M,w) ∈ K) then

∏
U

(Mi, wi) ∈ K (resp.
∏
U

(M,w) ∈ K) for all ultraproducts U over

I.

Theorem 2. Let C be a set of normal connectives complete for conjunction and disjunction and
let K and K ′ be classes of pointed C-models such that K ′ is closed under ultraproducts. Then,
the following are equivalent:

1. K is definable in K ′ by a set of formulas of LC;

2. K is closed under C–bisimulations in K ′ and closed under ultraproducts, and K ′ − K is
closed under ultrapowers.

Theorem 3. Let C be a set of normal connectives complete for conjunction and disjunction
and let K and K ′ be classes of pointed C–models of the same type such that K ′ is closed under
ultraproducts. Then, the following are equivalent:

1. K is definable in K ′ by a single formula of LC;

2. K is closed under C–bisimulation in K ′, closed under ultraproducts and K ′ −K is closed
under ultraproducts.
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Corollary 1. Let L = (LC, EC, ) be a molecular logic whose set of connectives C is normal
and complete for conjunction and disjunction and whose class EC of C–models are all of the
same type. Then, L is axiomatizable iff EC is closed under C–bisimulation and ultraproducts and
MC − EC is closed under ultraproducts.

These theorems can be instantiated for example to the Lambek calculus, (modal) intuitionistic
logic, temporal logic or modal logic and in that case we (re)discover the existing results for
temporal [23] and modal [8] logics; those for the Lambek calculus and (modal) intuitionistic
logic are novel. Yet, our generic results apply in fact to an infinite number of logics, in particular
to all (Boolean) atomic logics.

Moreover, unlike existing results, our theorems provide conditions of definability w.r.t. a
given class of models K ′ and not w.r.t. the class of all models. As such, they generalize those
existing for modal and temporal logics. No such theorems exist for the Lambek calculus and
many other logics. Note also that unlike modal logic [8, Theorem 2.76] (and first-order logic [9,
Theorem 4.1.12]), our Theorem 3 does not require K ′ − K to be closed under C–bisimulation
(resp. isomorphism).

10 Conclusion

We have introduced a generic method which allows us to find out an appropriate notion of
bisimulation for atomic and molecular logics. This bisimulation notion comes as well with a
number of associated model–theoretical results for the logic considered (Theorems 1, 2 and
3). We have applied this method to modal logic, temporal logic, (modal) intuitionistic logic,
weakly aggregative modal logic and the Lambek calculus. In doing so, we have rediscovered the
definitions of bisimulation of the literature of these logics. We have also rediscovered some of
the associated model–theoretical results of modal logic, temporal logic as well as novel results
regarding the Lambek calculus and (modal) intuitionistic logic.

These generalizations and new versions of existing theorems confirm, together with the redis-
covery of numerous existing results, the soundness and generic character of our overall approach.
Our method is applicable to a much wider class of logics than the examples of logics that we have
dealt with in the article, in fact an infinite number of logics. Other examples include obviously
all the atomic logics listed in Figure 2 as well as all gaggle logics [2], some of them having been
already well-studied. In the companion article [3], we show, using the results of this article, that
our approach in fact extends to first-order logic as well as all logics such that the truth conditions
of their connectives are defined by first-order formulas, i.e. any (normal) protologics.
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A Proofs of Theorems 1, 2, 3 and Corollary 1

This appendix contains notations and notions related to first-order logic such as “pointed struc-
tures”, “assignments”, the first-order language with function symbols “LPFFOL” and the first-order
language without function symbols “LPFOL”. These notions and notations are properly defined
in the companion article [3]. We also introduce in this appendix the ‘standard’ translation STx
from molecular logics to first-order logic, which is not defined in the companion article.

Definition 25 (Translation from atomic and molecular logics to FOL). Let C be a set of atomic
connectives possibly containing Boolean connectives.
Syntax. For all k ∈ N∗ and all x ∈ (V ∪ C)k, we define the mappings STx :
LkC → LPFOL(x), where LkC is the set of formulas of LC of type k, as follows: for all
p ∈ C, all ? ∈ C of skeleton (σ,±,Æ, (k, k1, . . . , kn), (±1, . . . ,±n)) and all ϕ1, . . . , ϕn ∈

LC,

STw(p) , P(w)

STw(ϕ ∧k ψ) , STw(ϕ) ∧ STw(ψ)

STw(ϕ ∨k ψ) , STw(ϕ) ∨ STw(ψ)

STw(?(ϕ1, . . . , ϕn)) , Æw1 . . . wn(
∗1STw1(ϕ1)× . . .× ∗nSTwn(ϕn)× R±σ? w1 . . . wnw

) where

x1, . . . , xn are tuples of free variables of size k1, . . . , kn,

× =

{
∧ if Æ = ∃
∨ if Æ = ∀

and for all j ∈ J1;nK, ∗j =

{
¬ if ±j = −
empty if ±j = +

.

Semantics. Let (M,w) be a pointed C–model of type k with w = (w1, . . . , wk). Let x =

(x1, . . . , xk) ∈ (V ∪ C)k. A pointed structure associated to (M,w) and x, denoted STx(M,w), is
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a pointed structure (M, swx ) (the set of predicates P considered are a copy of the relations of M)
where the assignment swx is such that swx (x1) = w1,. . . , swx (xk) = wk.

The above translations canonically extend to molecular logics. Indeed, if C is a set of molecular
connectives, every molecular formula of LC can be viewed as a formula of LC′ , where C′ is the set
of atomic connectives associated to C. Likewise, any pointed C-model can also be viewed as a
pointed C′-model. Then, we apply the above translations to obtain the translation of molecular
formulas or C-models into FOL.

The following proposition follows straightforwardly from the truth conditions of Definition 4.

Proposition 8. Let C be a set of molecular connectives, let (M,w) be a pointed C–model of type
k, let ϕ ∈ LC of type k and let x ∈ Vk. Then, (M,w) ϕ iff

(
M, swx

)
STx(ϕ).

Proposition 9. Let C be a set of molecular connectives and let M be a C–model. Let
∏
U

M be

an ultrapower of M . Then, for all ϕ ∈ LC, we have (M,w) ϕ iff
∏
U

(M,w) ϕ. Likewise,

if (M, s) is a pointed structure then for all ϕ ∈ LPFFOL, we have (M, s) ϕ iff
∏
U

(M, s) ϕ.

Proof:
∏
U

(M,w) ϕ

iff {i ∈ I | (M,w) ϕ} ∈ U by Proposition 7
iff (M,w) ϕ because ∅ /∈ U since I ∈ U by definition and because U is a proper filter.
The proof for first–order logic is similar. �

Proposition 10 (An ultraproduct version of the compactness theorem). Let Σ be a set of
formulas of LPFFOL, all with the same number of free variables or constants, let I be the set of all
finite subsets of Σ, and for each i ∈ I, let (Mi, si) be a model of i. Then there exists an ultrafilter

U over I such that
∏
U

(Mi, si) is a model of Σ.

Proof: The original formulation of this result [9, Corollary 4.1.11] is for sentences of LPFFOL, but the
proof can easily be adapted to our setting with free variables using item (ii) of the fundamental
theorem of ultraproducts [9, Theorem 4.1.9]. �

We recall the definition of ω–saturation. In that definition, the C–model is simply viewed
as a structure. We state it in its general form for tuples of variables (x1, . . . , xk). By [9,
Proposition 2.3.6] this definition is equivalent to its usual formulation for a single variable x.

Definition 26 (ω–saturated C-model). Let C be a set of molecular connectives. A C–model
M = (W,R) is ω–saturated when for all finite Y = {w1, . . . , wn} ⊆ W given, if all finite
subsets Γ′ ⊆ Γ(c′1, . . . , c

′
n, x1, . . . , xk) ⊆ LPFFOL with new constants c′1, . . . , c

′
n and free variables

x1, . . . , xk are realized in M by assignments s : V ∪ C ∪ {c′1, . . . , c′n} → W such that s(c′1) =
w1, . . . , s(c

′
n) = wn (LPFFOL is also defined with appropriate relations and function symbols), then

Γ(c′1, . . . , c
′
n, x1, . . . , xk) is realized in M (by an assignment s such that s(c′1) = w1, . . . , s(c

′
n) =

wn as well).

Proposition 11. Let LPFOL be countable, U a countably incomplete ultrafilter over I and M a

structure. Then, the ultrapower
∏
U

M is ω–saturated.

Proof: See [9, Theorem 6.1.1]. In fact [9, Theorem 6.1.1] proves that M is ω1–saturated, which
implies that it is ω–saturated. �
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Lemma 1. Let C be a set of normal connectives and let M1 = (W1,R1) and M2 = (W2,R2) be
two ω–saturated C–models. For all c ∈ C, let Vc be the vertices of the quantified decomposition

tree Tc. Let C+ ,
⋃
c∈C

Vc be the set of vertices of all the quantified decomposition trees associated

to the connectives of C. For all c = ?(c1, . . . , cn) ∈ C+, we define the binary relation Zc ⊆(
W k

1 ×W k
2

)
∪ (W k

2 ×W k
1 ) (where k is the output type of ?) as follows: if {M,M ′} = {M1,M2}

then for all w ∈ w(M,C), all w′ ∈ w(M ′,C), wZcw′ iff (M,w)  cC (M ′, w′). Then, the set of
binary relations

{
Zc | c ∈ C+

}
is a C–bisimulation between M1 and M2.

Proof: (Here we identify connectives with their skeletons.) We define L∨cjC (resp. L∧cjC) to be
the language consisting of formulas which belong to LcjC (resp. LcjC) or which are disjunctions
(resp. conjunctions) of such formulas. Now, we prove the three conditions of Definition 18.

Condition 1. It holds trivially.

Condition 2. Assume that c = c0(c1, . . . , cn) is maximally decomposed, with c0 which is an
existential molecular connective of type signature (±1, . . . ,±n). Before proceeding further, note
that by definition of normal connectives we have that if Æ(c0) = ∃ then Æ(ci) = ∀ iff ±i = +, if
Æ(c0) = ∀ then Æ(ci) = ∀ iff ±i = − and if ci = cj then ±i = ±j .

Let w1, . . . , wn, w ∈ w(M,C) and w′ ∈ w(M ′,C) be such that Rc0w1 . . . wnw and wZcw′. For
all j ∈ {1, . . . , n}, let us define

Π+(M,wj) ,
{
STxj

(ϕ) | ϕ ∈ L∨cjC and (M,wi) ϕ for all i ∈ J1;nK such that ci = cj

}
Π−(M,wj) ,

{
¬STxj (ϕ) | ϕ ∈ L∧cjC and not (M,wi) ϕ for all i ∈ J1;nK such that ci = cj

}
.

Let I− , {i ∈ {1, . . . , n} | ±i = −} and I+ , {i ∈ {1, . . . , n} | ±i = +}. Let Γ(x1, . . . , xn) ,⋃
i∈I+

Π+(M,wi) ∪
⋃
i∈I−

Π−(M,wi) and let Γ ⊆ Γ(x1, . . . , xn) be finite. Then, Γ = Γ1 ∪ . . . ∪ Γn

where all Γi ⊆ Π±i
(M,wi) are finite.

For all i ∈ J1;nK, let us define

ϕi ,

{∧
{ϕ | STxi

(ϕ) ∈ Γi} if ±i = + (i.e. Æ(ci) = ∀)∨
{ϕ | ¬STxi(ϕ) ∈ Γi} if ±i = − (i.e. Æ(ci) = ∃)

and then

ψi ,

{∧
{ϕj | j ∈ J1;nK and id(cj) = id(ci)} if ±i = + (i.e. Æ(ci) = ∀)∨
{ϕj | j ∈ J1;nK and id(cj) = id(ci)} if ±i = − (i.e. Æ(ci) = ∃)

and let us define ψ , c0(ψ1, . . . , ψn) (note that id(cj) = id(ci) is in fact equivalent to cj = ci,
because of Condition 3 of Definition 20). This formula does not necessarily belong to LC, but
in any case we have that (M,w) ψ (in an extended language). The formulas ψi are either
conjunctions of disjunctions of formulas of LcjC (if ±i = +) or disjunctions of conjunctions of
formulas of LcjC (if ±i = −). Using the distributivity of ∨ and ∧ over their dual connective, they
can be transformed equivalently into disjunctions of conjunctions of formulas of LcjC (if ±i = +)
or into conjunctions of disjunctions of formulas of LcjC (if ±i = −). So, by Definition 20 and
by our construction of the ψis in two steps, there are χ1, . . . , χm ∈ LcC such that χ1 ∨ . . . ∨ χm
and ψ are true in the same pointed models (∗). So, (M,w) χ1 ∨ . . . ∨ χm. Therefore,
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(M ′, w′) χ1 ∨ . . .∨ χm because (M,w) cC (M ′, w′) by assumption (because wZcw′). Hence,
(M ′, w′) ψ, again because of (∗). Then, by definition of c0, there are w′1, . . . , w

′
n ∈ w(M ′,C)

such that w′1 t1 Jψ1K and . . . and w′n tn JψnK and R′c0w
′
1 . . . w

′
mw
′. Therefore, for all i ∈ J1;nK,

(M ′, w′i) Γi and R′c0w
′
1w′2 . . . w′nw′. So, if Γ , Γ(x1, . . . , xn) ∪ {R′c0x1 . . . xnc} where the

tuple of new constants c is interpreted by the distinguished elements w′, then M ′ realizes every
finite subset of Γ, namely in some states related to w′. Thus, by ω–saturation of M ′, there are
w′1, . . . , w′n ∈ w(M ′,C) such that for all i ∈ J1;nK, we have that (M ′, w′i) Π±i(M,wi) (∗∗)
and R′c0w

′
1 . . . w′nw′.

Now, let us take j ∈ J1;nK such that ±j = + and let us assume towards a contradiction that

for all i ∈ J1;nK such that cj = ci it is not the case that (M,wi)  cjC (M ′, w′j). Then, for all

i ∈ J1;nK such that cj = ci, there is ϕi ∈ LcjC such that (M,wi) ϕi and not (M ′, w′j) ϕi.
Let us define

ψj ,
∨
{ϕi | i ∈ J1;nK and cj = ci} . (7)

Then, ψj ∈ L∨cjC and for all i ∈ J1;nK such that ci = cj , (M,wi) ψj . So, STxj (ψj) ∈
Π+(M,wj). Therefore, by (∗∗), we have that (M ′, w′j) STxj

(ψj), so (M ′, w′j) ψj . That is,

there is i ∈ J1;nK such that cj = ci and (M ′, w′j) ϕi, which is impossible. Therefore, there is

i ∈ J1;nK such that cj = ci and (M,wi) cjC (M ′, w′j). This proves Clause 2.(i) of Definition 18
of a C–bisimulation for molecular connectives.

Now, let us take j ∈ J1;nK such that ±j = − and let us assume towards a contradiction that

for all i ∈ J1;nK such that cj = ci it is not the case that (M ′, w′j)  cjC (M,wi). Then, for all

i ∈ J1;nK such that cj = ci, there is ϕi ∈ LcjC such that (M ′, w′j) ϕi and not (M,wi) ϕi.
Let us define

ψj ,
∧
{ϕi | i ∈ J1;nK and cj = ci} .

Then, ψj ∈ L∧cjC and for all i ∈ J1;nK such that cj = ci, not (M,wi) ψj . So,

¬STxj
(ψj) ∈ Π−(M,wj). Therefore, by (∗∗), (M ′, w′j) ¬STxj

(ψj). That is, there is

i ∈ J1;nK such that cj = ci and not (M ′, w′j) ϕi, which is impossible. Therefore, there is

i ∈ J1;nK such that cj = ci and (M ′, w′j)  cjC (M,wi). This proves Clause 2.(ii) of Definition
18 of a C–bisimulation for molecular connectives.

Condition 3. It is proved similarly to Condition 2, with dual definitions of (sets of) formulas
where conjunctions and replaced by disjunctions and vice versa. Assume that c = c0(c1, . . . , cn)
is maximally decomposed, with c0 which is a universal molecular connective of type signature
(±1, . . . ,±n). Let w′1, . . . , w

′
n, w

′ ∈ w(M ′,C) and w ∈ w(M,C) be such that −R′c0w
′
1 . . . w

′
nw
′

and wZcw′. Then we define for all j ∈ {1, . . . , n},

Π+(M ′, w′j) ,
{
¬STxj (ϕ) | ϕ ∈ L∧cjC and not (M ′, w′i) ϕ for all i ∈ J1;nK such that ci = cj

}
Π−(M ′, w′j) ,

{
STxj (ϕ) | ϕ ∈ L∨cjC and (M ′, w′i) ϕ for all i ∈ J1;nK such that ci = cj

}
.

Let I− , {i ∈ {1, . . . , n} | ±i = −} and I+ , {i ∈ {1, . . . , n} | ±i = +}. Let Γ(x1, . . . , xn) ,⋃
i∈I+

Π+(M,wi) ∪
⋃
i∈I−

Π−(M,wi) and let Γ ⊆ Γ(x1, . . . , xn) be finite. Then, Γ = Γ1 ∪ . . . ∪ Γn
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where all Γi ⊆ Π±i(M,wi) are finite. For all i ∈ J1;nK, let us define

ϕi ,

{∨
{ϕ | ¬STxi

(ϕ) ∈ Γi} if ±i = + (i.e. Æ(ci) = ∃)∧
{ϕ | STxi(ϕ) ∈ Γi} if ±i = − (i.e. Æ(ci) = ∀)

and then

ψi ,

{∨
{ϕj | j ∈ J1;nK and id(cj) = id(ci)} if ±i = + (i.e. Æ(ci) = ∃)∧
{ϕj | j ∈ J1;nK and id(cj) = id(ci)} if ±i = − (i.e. Æ(ci) = ∀)

and let us define ψ , c0(ψ1, . . . , ψn) (note that id(cj) = id(ci) is in fact equivalent to cj = ci,
because of Condition 3 of Definition 20). This formula ψ does not necessarily belong to LC, but
in any case we have that it is not the case that (M ′, w′) ψ (in an extended language). The
formulas ψi are either disjunctions of conjunctions of formulas of LcjC (if ±i = +) or conjunctions
of disjunctions of formulas of LcjC (if ±i = −). Using the distributivity of ∨ and ∧ over their dual
connective, they can be transformed equivalently into conjunctions of disjunctions of formulas
of LcjC (if ±i = +) or into disjunctions of conjunctions of formulas of LcjC (if ±i = −). By
our construction of the ψis in two steps and by definition of normal connectives, there are
χ1, . . . , χm ∈ LcC such that χ1∧ . . .∧χm and ψ are true in the same pointed models (∗). So, it is
not the case that (M ′, w′) χ1∧. . .∧χm. Therefore, it is not the case that (M,w) χ1∧. . .∧χm
because (M,w)  cC (M ′, w′) by assumption (because wZcw′). Hence, it is not the case that
(M,w) ψ, again because of (∗). Then, by definition of c0, there are w1, . . . , wn ∈ w(M,C)
such that not w1 t1 Jψ1K and . . . and not wn tn JψnK and −Rc0w1 . . . wmw. Therefore, for all
i ∈ J1;nK, (M,wi) Γi and −Rc0w1w2 . . . wnw. So, if Γ , Γ(x1, . . . , xn)∪{Rc0x1 . . . xnc} where
the tuple of new constants c is interpreted by the distinguished elements w′, then M realizes
every finite subset of Γ, namely in some states related to w. Thus, by ω–saturation of M , there
are w1, . . . , wn ∈ w(M,C) such that for all i ∈ J1;nK, we have that (M,wi) Π±i

(M ′, w′i) (∗∗∗)
and −Rc0w1 . . . wnw.

Now, let us take j ∈ J1;nK such that ±j = + and let us assume towards a contradiction that

for all i ∈ J1;nK such that cj = ci it is not the case that (M,wj)  cjC (M ′, w′i). Then, for all

i ∈ J1;nK such that cj = ci, there is ϕi ∈ LcjC such that (M,wj) ϕi and not (M ′, w′i) ϕi.
Let us define

ψj ,
∧
{ϕi | i ∈ J1;nK and cj = ci} . (8)

Then, ψj ∈ L∧cjC and for all i ∈ J1;nK such that ci = cj , not (M ′, w′i) ψj . So, ¬STxj (ψj) ∈
Π+(M ′, w′j). Therefore, by (∗∗∗), we have that (M,wj) ¬STxj

(ψj), so not (M,wj) ψj . That

is, there is i ∈ J1;nK such that cj = ci and not (M,wj) ϕi, which is impossible. Therefore,

there is i ∈ J1;nK such that cj = ci and (M,wi)  cjC (M ′, w′j). This proves Clause 3.(i) of
Definition 18 of a C–bisimulation for molecular connectives.

Now, let us take j ∈ J1;nK such that ±j = − and let us assume towards a contradiction that

for all i ∈ J1;nK such that cj = ci it is not the case that (M ′, w′i)  cjC (M,wj). Then, for all

i ∈ J1;nK such that cj = ci, there is ϕi ∈ LcjC such that (M ′, w′i) ϕi and not (M,wj) ϕi.
Let us define

ψj ,
∨
{ϕi | i ∈ J1;nK and cj = ci} .

Then, ψj ∈ L∨cjC and for all i ∈ J1;nK such that cj = ci, (M ′, w′i) ψj . So, STxj
(ψj) ∈

Π−(M ′, w′j). Therefore, by (∗ ∗ ∗), (M,wj) STxj
(ψj). That is, there is i ∈ J1;nK such that
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cj = ci and (M,wj) ϕi, which is impossible. Therefore, there is i ∈ J1;nK such that cj = ci
and (M ′, w′i)  cjC (M,wj). This proves Clause 3.(ii) of Definition 18 of a C–bisimulation for
molecular connectives. �

Theorem 1. Let C be a set of normal connectives complete for conjunction and disjunction and
let (M,w) and (M ′, w′) be pointed C–models. Then the following are equivalent:

1. (M,w) C (M ′, w′);

2. there exists a countably incomplete ultrafilter U over N such that
∏
U

(M,w) →C∏
U

(
M ′, w′

)
.

Proof: We first prove that 2. implies 1. By Proposition 9, (M,w) ϕ iff
∏
U

(M,w) ϕ. By

assumption and Proposition 6, this implies that
∏
U

(
M ′, w′

)
ϕ and, again by Proposition 9,

the latter is equivalent to (M ′, w′) ϕ.
Now, we prove that 1. implies 2. Let U be a countably incomplete ultrafilter over N (it exists

by [8, Example 2.72]). By Proposition 11, the ultrapowers
∏
U

M and
∏
U

M ′ are ω–saturated.

Now, for all ϕ ∈ LC,
∏
U

(M,w) ϕ implies
∏
U

(
M ′, w′

)
ϕ. This claim follows from 1. and

Proposition 9. Then, we apply Lemma 1 since
∏
U

M and
∏
U

M ′ are ω–saturated and we obtain

the result. �

Lemma 2. Let C be a set of molecular connectives and let (Mi, wi)i∈I be a family of pointed
C–models of type k. Then, for all ϕ ∈ LC of type k and all tuples of free variables x of size k,∏
U

(Mi, wi) ϕ iff
∏
U

(Mi, s
wi

x ) STx(ϕ).

Proof: We have that
∏
U

(Mi, wi) =

(∏
U

Mi,
∏
U

wi

)
where

∏
U

wi =

(∏
U

w1
i , . . . ,

∏
U

wki

)
if

wi = (w1
i , . . . , w

k
i ) and

∏
U

(Mi, s
wi

x ) =

(∏
U

Mi,
∏
U

swi

x

)
. So, it suffices to prove that s

∏
U wi

x and∏
U

swi

x coincide on the variables xj of the tuple x = (x1, . . . , xk) to obtain the result. And it

turns out that for all xj ∈ {x1, . . . , xk}, s
∏

U wi

x (xj) =
∏
U

wji =
∏
U

swi

x (xj) =

(∏
U

swi

x

)
(xj). �

Theorem 2. Let C be a set of normal connectives complete for conjunction and disjunction and
let K and K ′ be classes of pointed C-models such that K ′ is closed under ultraproducts. Then,
the following are equivalent:

1. K is definable in K ′ by a set of formulas of LC;

2. K is closed under C–bisimulations in K ′ and closed under ultraproducts, and K ′ − K is
closed under ultrapowers.
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Proof: The implication from 1. to 2. follows from Propositions 6, 7 and 9. For the converse,
assume that K and K ′ −K satisfy the closure conditions. Define T as the set of formulas of LC

holding in K:

T ,
⋃
k∈N∗
{ϕ ∈ LC | k(ϕ) = k and, for all (M,w) ∈ K of type k, (M,w) ϕ} (9)

We will show that T defines the class K in K ′. Let (M,w) be a pointed C–model of K ′ of
type k and assume that (M,w) T . To complete the proof of the theorem, we show that (M,w)
must be in K.

Define Σ to be the theory of FOL of (M,w), with x a tuple of variables of the same size as w:

Σ , {¬STx(ϕ) | ϕ ∈ LC of type k such that not (M,w) ϕ}.

Σ is finitely satisfiable in STx(K) ,
{

(M, swx ) | (M,w) ∈ K
}

. Indeed, assume towards a con-
tradiction that the set {¬STx(ψ1), . . . ,¬STx(ψn)} ⊆ Σ is not satisfiable in STx(K). Then the
formula (ψ1 ∨ . . .∨ψn) of type k would be true on all pointed models in K of type k. Moreover,
it belongs to LC because C is complete for disjunction. So (ψ1 ∨ . . . ∨ ψn) would belong to T .
However, it would be false in (M,w), which is impossible. But then Proposition 10, adapted

from [9, Corollary 4.1.11], shows that Σ is satisfiable in an ultraproduct
∏
U

(Ni, s
vi
x ) of pointed

models of STx(K).

Let us take (N, v) ,
∏
U

(Ni, vi), which belongs to K by closure of K under taking ultra-

products. Then, by Lemma 2, we have that for all ϕ ∈ LC of type k,
∏
U

(Ni, vi) ϕ iff∏
U

(Ni, s
vi
x ) STx(ϕ). So, we have that (N, v) C (M,w) because for all ϕ ∈ LC, not (M,w) ϕ

implies not (N, v) ϕ is equivalent to, for all ϕ ∈ LC, (N, v) ϕ implies (M,w) ϕ. So, by

Theorem 1, there exists an ultrafilter U ′ such that
∏
U ′

(N, v)→C

∏
U ′

(M,w).

By closure under ultraproducts, the pointed model
∏
U ′

(N, v) belongs to K. Moreover,∏
U ′

(M,w) is in K ′ by the assumption of closure of K ′ under ultraproduct. Hence, by clo-

sure under C–bisimulations,
∏
U ′

(M,w) is in K as well. By closure of K ′−K under ultrapowers,

it follows that (M,w) is in K. This completes the proof. �

Theorem 3. Let C be a set of normal connectives complete for conjunction and disjunction
and let K and K ′ be classes of pointed C–models of the same type such that K ′ is closed under
ultraproducts. Then, the following are equivalent:

1. K is definable in K ′ by a single formula of LC;

2. K is closed under C–bisimulation in K ′, closed under ultraproducts and K ′ −K is closed
under ultraproducts.

Proof: The direction from 1. to 2. follows from Propositions 6 and 7. For the converse, we assume
that K and K ′−K satisfy the stated closure conditions and that their pointed C–models are all
of type k. Then, by Theorem 2, there is a set T of formulas of LC of type k defining K in K ′.
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Let k be the type of the C–models of K and K ′ −K and let x be a tuple of k variables. Let
us define:

T2 , {¬STx(ϕ) | ϕ ∈ LC of type k and for all (M,w) ∈ K ′ −K, not (M,w) ϕ}.

We are going to show that T2 defines STx(K ′ − K) , {STx(M,w) | (M,w) ∈ K ′ −K} in
STx(K ′). Let (M,w) ∈ K ′ of type k be such that STx(M,w) T2 and let us define

Σ , {ϕ ∈ LC | (M,w) ϕ} .

Then, Σ is finitely satisfiable in K ′ −K. Indeed, assume towards a contradiction that there are
ϕ1, . . . , ϕn ∈ Σ which are not satisfiable in K ′ −K. Then, ¬STx(ϕ1 ∧ . . .∧ϕn) ∈ T2. Therefore,
STx(M,w) ¬STx(ϕ1) ∨ . . . ∨ ¬STx(ϕn). However, (M,w) (ϕ1 ∧ . . . ∧ ϕn). So, we reach
a contradiction and Σ is finitely satisfiable in K ′ −K. Thus, by compactness, we have that Σ
is satisfiable in an ultraproduct (N, v) of C-models of K ′ −K (the proof of Proposition 10 can
easily be adapted to molecular logics using Proposition 7). By assumption, this ultraproduct
(N, v) belongs to K ′ −K. Then, by definition of Σ, we have that (M,w) C (N, v). Therefore,

by Theorem 1, there exists a countably incomplete ultrafilter U over N such that
∏
U

(M,w)→C∏
U

(N, v). But
∏
U

(N, v) belongs to K ′ − K by closure of K ′ − K under ultraproduct (and

therefore also to K ′). Now, if (M,w) belonged to K then
∏
U

(M,w) would also belong to K by

closure of K under ultraproduct. Then, we would have by closure under C–bisimulation of K in

K ′ that
∏
U

(N, v) would belong to K as well, which is impossible. Therefore, (M,w) does not

belong to K. Moreover, (M,w) belongs to K ′ by assumption. This entails that (M,w) belongs
to K ′ −K. Hence, STx(M,w) ∈ STx(K ′ −K) and T2 does define STx(K ′ −K) in STx(K ′).

Now, let us define

T1 , {STx(ϕ) | ϕ ∈ T} .

Then, because T defines K in K ′, we have that T1 ∪ T2 is unsatisfiable in K ′. That is, there
is no pointed C–model (M,w) of K ′ of type k such that STx(M,w) T1 ∪ T2. So then, by
compactness, there exist STx(ϕ1), . . . , STx(ϕn) ∈ T1 and ¬STx(ψ1), . . . ,¬STx(ψm) ∈ T2 such
that for all pointed C–models (M,w) of K ′, it is not the case that STx(M,w) STx(ϕ1)∧ . . .∧
STx(ϕn) ∧ ¬STx(ψ1) ∧ . . . ∧ ¬STx(ψm) (∗). To complete the proof, we show that K is in fact
defined in K ′ by the conjunction (ϕ1 ∧ . . . ∧ ϕn). By definition, for any (M,w) in K we have
(M,w) (ϕ1 ∧ . . . ∧ ϕn). Conversely, for any (M,w) of K ′, if (M,w) (ϕ1 ∧ . . . ∧ ϕn) then
there must be i ∈ J1;mK such that STx(M,w) ¬STx(ψi) does not hold. Indeed, otherwise,
we would have that STx(M,w) STx(ϕ1)∧ . . .∧STx(ϕn)∧¬STx(ψ1)∧ . . .∧¬STx(ψm), which
is impossible by (∗). Therefore, there must be i ∈ J1;mK such that (M,w) ψi. Hence, by
definition of T2, this entails that (M,w) does not belong to K ′ −K, whence (M,w) belongs to
K. �

Corollary 1. Let L = (LC, EC, ) be a molecular logic whose set of connectives C is normal
and complete for conjunction and disjunction and whose class EC of C–models are all of the
same type. Then, L is axiomatizable iff EC is closed under C–bisimulation and ultraproducts and
MC − EC is closed under ultraproducts.

Proof: It follows straightforwardly from Theorem 3 and the definition of axiomatizability recalled
in Section 2.5. �
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B Proofs of Propositions 1, 2, 3, 4, 5, 6, 7

Proposition 1. Let C be a set of atomic connectives containing Boolean connectives. and let
M = (W,R) be a C-model. Then, for all k ∈ N∗, all ϕ,ψ ∈ LC, if k(ϕ) = k(ψ) = k, then

J>kKM , W k

J⊥kKM , ∅
J¬kϕKM , W k − JϕKM

J(ϕ ∧k ψ)KM , JϕKM ∩ JψKM

J(ϕ ∨k ψ)KM , JϕKM ∪ JψKM .

Proof: The proof is without particular difficulty. See Example 1 for the cases of conjunction and
disjunction. �

Proposition 2. Let C be a set of atomic connectives such that −? ∈ C for all ? ∈ C. Let ϕ ∈ LC

and M be a C–model. Then, for all w ∈ w(M,C), w ∈ J−ϕKM iff w /∈ JϕKM .

Proof: It is without particular difficulty, it suffices to check the definitions. �

Proposition 3. Let C be a set of molecular connectives and let c = ?(c1, . . . , cn) ∈ C be a
molecular connective of type signature (k, k1, . . . , km) and tonicity signature (±1, . . . ,±l) with
? = (σ,±,Æ, k, (±?1, . . . ,±?n)). Assume that the decomposition tree of c has l > 0 different leaves
labeled by some idik. Let M = (W,R) be a C–model and let w ∈W k.

• If c is an existential molecular connective then

w ∈ Jc(ϕ1, . . . , ϕm)KM iff ∃w1 . . . wl(
w1 t1 Jϕi1K

M ∧ . . . ∧ wl tl JϕilK
M ∧Rcw1 . . . wlw

)
• If c is a universal molecular connective then

w ∈ Jc(ϕ1, . . . , ϕm)KM iff ∀w1 . . . wl(
w1 t1 Jϕi1K

M ∨ . . . ∨ wl tl JϕilK
M ∨Rcw1 . . . wlw

)
where the Rcs are defined in Definition 15 and for all j ∈ J1; lK,

wj tj Jϕij K
M ,

{
wj ∈ Jϕij K

M if ±j = +

wj /∈ Jϕij K
M if ±j = −

and i1, . . . , il ∈ J1;mK are those indices corre-

sponding to the m different idiks appearing in c (we basically map the l leafs of the decomposition
tree of c to their labels idiks in this tree).

Proof: We only prove the existential case, the proof for the universal case is similar. The proof
is by induction on c.

Assume that c = ?(id1k1 , . . . , id
n
kn) is an existential molecular connective with ? of skele-

ton (σ,±,∃, k, (±?1, . . . ,±?n)). Then, l = n and we have that Rcw1 . . . wnw holds iff there are
v1 . . . vn such that R±σ? v1 . . . vnw and w1 = v1 and . . . and wn = vn. Then, we have that
Rcw1 . . . wnw iff R±σ? w1 . . . wnw. However, by definition, we have that w ∈ Jc(ϕ1, . . . , ϕm)KM

iff ∃w1 . . . wn
(
w1 t1 Jϕi1K

M ∧ . . . ∧ wn tl JϕinKM ∧Rcw1 . . . wnw
)
. We obtain the result by re-

placing R±σ? by Rc.
Now, we prove the induction step. If c = ?(c1, . . . , cn) is an existential molecular connective

with ? of skeleton (σ,±,∃, k, (±?1, . . . ,±?n)) then we have that w ∈ Jc(ϕ1, . . . , ϕm)KM
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iff ∃v1 . . . vn(R±σ? v1 . . . vnw ∧ v1 t1 Jc1(ϕ1
1, . . . , ϕ

1
i1)KM ∧ . . . ∧ vn tn Jcn(ϕn1 , . . . , ϕ

n
in)KM ) by

the truth condition for ?
iff ∃v1 . . . vn(R±σ? v1 . . . vnw ∧ v1 ∈ J±?1c1(ϕ1

1, . . . , ϕ
1
i1)KM ∧ . . . ∧ vn ∈ J±?ncn(ϕn1 , . . . , ϕ

n
in)KM )

iff ∃v1 . . . vn(R±σ? v1 . . . vnw ∧ ∃w1
1 . . . w

1
i1(w1

1 t11 Jϕ1
1K
M ∧ . . . ∧ w1

i1 t1i1 Jϕ1
i1K

M ∧
R±?

1c1
w1

1 . . . w
1
i1v1)∧ . . .∧∃wn1 . . . wnin(wn1 t

n
1 Jϕn1 KM ∧ . . .∧wnin t

n
in JϕninKM ∧R±?

ncn
wn1 . . . w

n
invn))

iff ∃w1
1 . . . w

1
i1 . . . w

n
1 . . . w

n
in(w1

1 t
1
1 Jϕ1

1K
M ∧ . . . ∧ w1

i1 t
1
i1 Jϕ1

i1K
M ∧ . . . ∧ wn1 tn1 Jϕn1 KM ∧ . . . ∧

wnin t
n
in JϕninKM ∧ ∃v1 . . . vn(R±σ? v1 . . . vnw ∧R±?

1c1
w1

1 . . . w
1
i1v1 ∧ . . . ∧R±?

ncn
wn1 . . . w

n
invn))

iff ∃w1 . . . wl(w1 t1 Jϕi1K
M ∧ . . .∧wl tl JϕilK

M ∧Rcw1 . . . wlw) because the union of the sets
of leaves of Tcj for each cj , which corresponds to the tuples w1

1 . . . w
1
i1 . . . w

n
1 . . . w

n
in , is the set of

leaves of Tc, which is denoted here w1 . . . wl. This proves the induction step. �

Proposition 4. • Let C = {p,¬p,∧,∨,3,2} be the connectives of Example 8 and let M and
M ′ be two C–models. Then, a C–bisimulation between M and M ′ is a modal bisimulation
between M and M ′ and vice versa.

• Let C = {p,⊗,⊃,⊂} be the connectives of Example 9 and let M and M ′ be two C–models.
Then, a C–bisimulation between M and M ′ is a directed bisimulation between M and M ′

and vice versa.

Proof: It suffices to compare the conditions of Examples 8 and 9 with the definitions of modal
bisimulation [8, Def. 2.16] and directed bisimulation. This said, we obtain a notion of bisimulation
which is slightly more general than the usual definition of modal bisimulation. They are in fact
equivalent because both definitions of bisimulation can be extended to obtain symmetric relations.
�

Proposition 5. Let C be a set of atomic connectives and let M1 = (W1,R1) and M2 = (W2,R2)
be two C–models. Let Z be a C–bisimulation between M1 and M2. Then, if {M,M ′} = {M1,M2}
then for all w ∈ w(M,C), all w′ ∈ w(M ′,C), if wZw′ then (M,w) C (M ′, w′).

Proof: We prove it by induction on a formula ϕ. If ϕ = p is a propositional letter then the result
holds by definition of Z. Assume that ϕ = ?(ϕ1, . . . , ϕn).

If ? has skeleton (σ,±,∃, (k, k1, . . . , kn), (±1, . . . ,±n)), then assume that (M,w) ϕ. Then,
there are w1, . . . , wn such that w1 t1 Jϕ1K and . . . and wn tn JϕnK and R±σ? w1 . . . wnw. Now,
wZw′, so by definition of Z, there are w′1, w′2 . . . , w′n such that w1 ./1 w′1 and . . . and

wn ./n w′n and R
′±σ
? w′1 . . . w′nw′ where wj ./ w′j ,

{
wjZw′j if ±j = +

w′jZwj if ±j = −
. Now, by Induction

Hypothesis, for all i ∈ {1, . . . , n}, if ±i = + then wi ∈ JϕiK and wiZw′i, therefore w′i ∈ JϕiK
and if ±i = − then wi /∈ JϕiK and wiZw′i, therefore w′i /∈ JϕiK. So, in all cases, w′i ti JϕiK.
Moreover, R

′±σ
? w′1 . . . w′nw′. Thus, there are w′1, . . . , w′n such that w′1 t1 Jϕ1K and . . . and

w′n ∈ JϕnK and R
′±,σ
? w′1 . . . w′nw′. Hence, (M ′, w′) ϕ.

If ? has skeleton (σ,±,∀, (k, k1, . . . , kn), (±1, . . . ,±n)), then assume by contraposition that
it is not the case that (M ′, w′) ϕ. Then, there are w′1, . . . , w′n such that not w′1 t1 Jϕ1K
and . . . and not w′n tn JϕnK and −R

′±,σ
? w′1 . . . w′nw′. Now, wZw′, so by definition of Z,

there are w1, . . . , wn such that w1 ./1 w′1 and . . . and wn ./n w′n and −R±σ? w1 . . . wnw where

for all i ∈ {1, . . . , n}, wi ./ w′i ,

{
wiZw′i if ±i = +

w′iZwi if ±i = −
. Let i ∈ {1, . . . , n}. If ±i = + then

w′i /∈ JϕiK and wiZw′i. Therefore, by Induction Hypothesis, wi /∈ JϕiK. If ±i = −, then
w′i ∈ JϕiK and w′iZwi. Therefore, by Induction Hypothesis, wi ∈ JϕiK. So, in all cases, not
wi ti JϕiK. Thus, there are w1, . . . , wn such that not w1 t1 Jϕ1K and . . . and not wn tn JϕnK
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and −R±σ? w1 . . . wnw. That is, not (M,w) ϕ. So, we have proved that if not (M ′, w′) ϕ
and wZw′ then not (M,w) ϕ. Hence we obtain the result by contraposition. �

Proposition 6. Let C be a set of molecular connectives and let M1 = (W1,R1) and M2 =
(W2,R2) be two C–models. Let C0 ⊆ C and for all c ∈ C0, let Dc be the vertices of the quantified
decomposition tree Tc. Let

{
Zc | c ∈ V ′c0 , c0 ∈ C0

}
be a C0–bisimulation between M1 and M2.

If {M,M ′} = {M1,M2} then for all c0 ∈ C0 and all c ∈ V ′c0 , for all w ∈ w(M,C) and all

w′ ∈ w(M ′,C), if wZcw′ then (M,w)  cC0
(M ′, w′). In particular, if wZw′ then (M,w)  C0

(M ′, w′).

Proof: (Here we confuse connectives with their skeletons to ease the presentation of the ideas.)
We prove by induction on c that for all vertices c of the decomposition tree of a molecular
connective c0 ∈ C∗, if wZcw′ then (M,w) cC (M ′, w′).

If c is of arity 0 then it follows straightforwardly from condition 1 of Definition 18. Assume
now that wZcw′ with c neither a propositional letter nor a symbol idik. We prove by induction
on ϕ ∈ LcC that (M,w) ϕ implies (M ′, w′) ϕ. Let ϕ = c(ϕ1, . . . , ϕm) and let c0(c1, . . . , cn)
be a maximal decomposition of the skeleton of c, where c1, . . . , cn ∈ C∗ are of arity k1, . . . , kn
respectively. Then ϕ = c(ϕ1, . . . , ϕm) = c0(c1(ϕ1

1, . . . , ϕ
k1
1 ), . . . , cn(ϕ1

n, . . . , ϕ
kn
n )) where for all

j ∈ {1, . . . , n}, the formulas ϕ1
j , . . . , ϕ

ij
j are those ϕ1, . . . , ϕm for which there is a corresponding

idik in cj (the ϕijs appear in the same order as their corresponding idiks in cj).

1. Assume that c0 is an existential molecular connective of tonicity signature (±1, . . . ,±n).
Assume that (M,w) c(ϕ1, . . . , ϕm). Then, (M,w) c0(c1(ϕ1

1, . . . , ϕ
k1
1 ), . . . , c(ϕ1

n, . . . , ϕ
kn
n )).

Then, by Proposition 3, there are w1, . . . , wn such that Rc0w1 . . . wnw and w1 t1
Jc1(ϕ1

1, . . . , ϕ
k1
1 )K and . . . and wn tn Jcn(ϕ1

n, . . . , ϕ
kn
n )K (1). Then, by definition of Zc, there

are w′1, . . . w′n such that Rc0w
′
1 . . . w′mw′ (4) and

(i) for all j ∈ J1;nK such that ±j = +, there is i ∈ J1;nK such that cj = ci and wiZcjw
′
j ;

(ii) for all j ∈ J1;nK such that ±j = −, there is i ∈ J1;nK such that cj = ci and w′jZcjwi (2).

Since c1(ϕ1
1, . . . , ϕ

k1
1 ) ∈ Lc1C, . . . , cn(ϕ1

n, . . . , ϕ
kn
n ) ∈ LcnC, by Induction Hypothesis, for

all w ∈ w(M,C), all w′ ∈ w(M ′,C) and all j ∈ J1;nK, if (M,wj) c(ϕ1
j , . . . , ϕ

kj
j ) and

wjZcjw
′
j then (M ′, w′j) cj(ϕ

1
j , . . . , ϕ

kj
j ); and if (M ′, w′j) c(ϕ1

j , . . . , ϕ
kj
j ) and w′jZcjwj

then (M,wj) cj(ϕ
1
j , . . . , ϕ

kj
j ) (3).

From (1) and (2), we derive by means of (3) that w′1 t1 Jc1(ϕ1
1, . . . , ϕ

k1
1 )K

and . . . and w′n tn Jcn(ϕ1
n, . . . , ϕ

kn
n )K. Then, with (4), it follows that

(M ′, w′) c0(c1(ϕ1, . . . , ϕ
k1
1 ), . . . , cn(ϕ1

n, . . . , ϕ
kn
n )). That is, (M ′, w′) c(ϕ1, . . . ϕm).

2. Assume that c0 is a universal molecular connective of tonicity signature (±1, . . . ,±n). By
contraposition, assume that it is not the case that (M ′, w′) c(ϕ1, . . . , ϕm). That is, it is not
the case that (M ′, w′) c0(c1(ϕ1

1, . . . , ϕ
k1
1 ), . . . , cn(ϕ1

n, . . . , ϕ
kn
n )). Then, by Proposition 3, there

are w′1, . . . , w′n ∈ w(M,C) such that −Rc0w′1 . . . w′nw′ and not w′1 t1 Jc1(ϕ1
1, . . . , ϕ

k1
1 )K and

. . . and not w′n tn Jcn(ϕ1
n, . . . , ϕ

kn
n )K (1). Now, by definition of Zc and since wZcw′ there are

w1, . . . , wn such that −Rc0w1 . . . wnw (2) and

(i) for all j ∈ J1;nK such that ±j = +, there is i ∈ J1;nK such that cj = ci and wjZcjw
′
i;

(ii) for all j ∈ J1;nK such that ±j = −, there is i ∈ J1;nK such that cj = ci and w′iZcjwj (3).
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Like for the previous case, combining (1) and (3) with the Induction Hypothesis, we obtain that
it holds that not w1 t1 Jc1(ϕ1

1, . . . , ϕ
k1
1 )K and . . . and not wn tn Jcn(ϕ1

n, . . . , ϕ
kn
n )K. Together

with (2), we obtain that it is not the case that (M,w) c0(c1(ϕ1
1, . . . , ϕ

k1
1 ), . . . , cn(ϕ1

n, . . . , ϕ
kn
n )).

That is, it is not the case that (M,w) c(ϕ1, . . . , ϕm).

Finally, assume that wZcw′ with c = idik. Then, since by definition of C–bisimulation, we
have that for all c ∈ C of output type or type (if it is a propositional letter) k that wZcw′, we
obtain that (M,w) ϕ implies (M ′, w′) ϕ holds for all formulas ϕ of the form c(ϕ1, . . . , ϕm).
This holds not only for connectives c of types or output types k but in fact for any connective
c of any (output) type since the antecedent of the implication is false in the case where these
(output) types are different from k. So, the result holds for all formulas ϕ of the language LC:
(M,w) C (M ′, w′). �

Proposition 7. Let C be a set of molecular connectives, let (Mi, wi)i∈I be a family of C–models,

let
∏
U

(Mi, wi) be an ultraproduct of (Mi, wi)i∈I . Then, for all ϕ ∈ LC,
∏
U

(Mi, wi) ϕ iff

{i ∈ I | (Mi, wi) ϕ} ∈ U .

Let (Mi, si)i∈I be a family of pointed structures and let
∏
U

(Mi, si) be an ultraproduct of

(Mi, si)i∈I . Then, for all ϕ ∈ LPFFOL,
∏
U

(Mi, si) ϕ iff {i ∈ I | (Mi, si) ϕ} ∈ U .

Proof: We consider the completion of C under Boolean negation: C can always be extended to
include the Boolean negation of each connective (defined in Definition 9). Now, we prove it for
this extended language by induction on ϕ.

1) The base case ϕ = p holds by definition.
2) a) If ϕ = ?(ϕ1, . . . , ϕn) with ? = (σ,±,∃, (k, k1, . . . , kn), (±1, . . . ,±n)), then∏
U

(Mi, wi) ? (ϕ1, . . . , ϕn)

iff there are
∏
U

w1
i , . . . ,

∏
U

wni such that
∏
U

R±σ?
∏
U

w1
i . . .

∏
U

wni
∏
U

wi and
∏
U

w1
i t1 Jϕ1K

and . . . and
∏
U

wni tn JϕnK

iff there are
∏
U

w1
i , . . . ,

∏
U

wni such that
{
j ∈ I | R±σ? w1

j . . . w
n
jwj

}
∈ U and{

j ∈ I | w1
j t1 Jϕ1K

}
∈ U and . . . and

{
j ∈ I | wnj tn JϕnK

}
∈ U by Induction Hypothesis

iff there are
∏
U

w1
i , . . . ,

∏
U

wni such that
{
j ∈ I | R±σ? w1

j . . . w
n
jwj and w1

j t1 Jϕ1K and wnj tn JϕnK
}

∈ U by closure under intersection of the filter definition (from left to right) and by closure by
superset of the filter definition (from right to left)

iff {j ∈ I | there are w1
j , . . . , w

n
j such that R±σ? w1

j . . . w
n
jwj and w1

j t1
Jϕ1K and . . . and wnj tn JϕnK} ∈ U

iff {j ∈ I | (Mj , wj) ? (ϕ1, . . . , ϕn)} ∈ U
b) If ϕ = ?(ϕ1, . . . , ϕn) with ? = (σ,±,∀, (t, t1, . . . , tn), (±1, . . . ,±n)), then∏
U

(Mi, wi) ϕ iff {i ∈ I | (Mi, wi) ϕ} ∈ U

iff

(
not

∏
U

(Mi, wi) ϕ

)
iff {i ∈ I | (Mi, wi) ϕ} /∈ U)
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iff
∏
U

(Mi, wi) − ϕ iff {i ∈ I | not (Mi, wi) ϕ} ∈ U by Proposition 2 and because U

is an ultrafilter (we recall that −ϕ is defined in Definition 9)

iff
∏
U

(Mi, wi) − ϕ iff {i ∈ I | (Mi, wi) − ϕ} ∈ U by Proposition 2.

This case thus boils down to the case 2) a).
c) If ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2 then the result follows directly from the definition of an

ultrafilter.
As for the second part of the proposition, for pointed structures, the proof is similar and

follows the main lines of the proof of [9, Theorem 4.1.9]. �

C Proof of Fact 1

Fact 1. Let C be a set of molecular connectives and let M1 = (W1,R1) and M2 = (W2,R2)
be two C-models. Let {Zc | c ∈ V ′c0 , c0 ∈ C} be a set of relations between M1 and M2. We set

Z ,
⋃
{Zidik | id

i
k appears in some c ∈ C}. Then, {Zc | c ∈ V ′c0 , c0 ∈ C} is a C-bisimulation if,

and only if, Z is non-empty and conditions 1, 2, 3 of Definition 18 hold, in which all Zc and all
Zidik for c ∈ C and idik appearing in some c ∈ C are replaced by Z.

Proof: For the left to right direction, we use conditions i and ii of Definition 18 to obtain the
result. For the right to left direction, we set for all idik and all c ∈ C of output type k that
Zc = Zidik , Z ∩ (W k

1 ×W k
2 ) ∪ (W k

2 ×W k
1 ) and we thus obtain conditions i and ii. �
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