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Fundamental Limits for ISAC - Asymptotics in
massive MIMO sensing systems

Stefano Fortunati and Francesco Lisi and Aya Mostafa Ibrahim Ahmed and Aydin
Sezgin and Maria Sabrina Greco and Fulvio Gini

Abstract Asymptotic analysis is a common tool in statistics aiming at investigating
the properties of an inference methodology as the number of observations grows to
infinity. Even if the asymptotic regime cannot be achieved in real-world scenarios,
its practical usefulness has been proved in an uncountable number of engineering
applications. In the contest of ISAC, one of the brightest example is the Mas-
sive Multiple-Input-Multiple-Output (MMIMO) communications framework. The
breakthrough brought by the MMIMO systems was in showing that, as the number
of antenna elements grows to infinity, linear combining and precoding algorithms
can mitigate the interference even in the presence of a partial knowledge of the com-
munication channel. Inspired by this fundamental result, in this chapter we show
that the massive (asymptotic) paradigm can bring essential benefits also in radar
systems. In particular, we considered a co-located MIMO radar having a massive
number of virtual spatial antenna channels. We focus on the target detection problem
by showing that the massive regime allows for the derivation of a cognitive, robust,
reinforcement learning (RL)-based, Wald-type test that guarantees certain perfor-
mance regardless of the unknown statistical characterization of the disturbance. As
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concluding remarks, some explorative idea on a massive integrated communica-
tion/sensing system will be provided.

1 Introduction

A key feature enabled by sixth generation (6G) systems is the integration of sensing
within the communication capabilities. It is foreseen that 6G will empower novel
sensing applications as in the smart cities paradigm, which includes intelligent ve-
hicular networks, robot and drone tracking, enhanced emergency call localization,
personal radar and location aware communications in general [29]. To support this
huge variety of potential applications, an innovative integrated sensing and com-
munication (ISAC) strategy has to be put in place. The simplest form of ISAC is
cohabitation, where both systems share the same resources (i.e., time, frequency,
space) while interfering on each other [22]. Normally, in this case each system de-
velops a co-existence strategy of resource sharing which can be non-cooperative
or cooperative for example [22, 19, 20, 12]. A more advanced form of ISAC is
the co-design, which implies the implementation of a fully integrated system with
fully shared transmitters, largely shared receivers and joint transmitted waveforms
[13, 14]. 6G systems provide the perfect framework to realize ISAC. In fact, thanks
to the high frequency and large bandwidth offered within millimeter wave (mmW)
and sub-Terahertz (THz) bands, it is suitable to increase the users data rate from the
communication side while improving the range and Doppler resolution from a re-
mote sensing side. Furthermore, 6G may become a fast catalyst for the realization of
massive multiple input multiple output (MMIMO) systems due to the small antenna
size. As a matter of fact, current 5G commercial solutions can even realize up to
64 fully digital transceivers[6]. It is envisioned that 6G systems will be capable of
employing much more antennas, in the order of hundreds, within the footprint of few
square centimeters [3].

Let us focus now on the strict link between the ISAC goal and the MMIMO
paradigm. The concept of MMIMO was first introduced in [21] as a solution to the
shortcomings of conventional multi-user MIMO. From a communication perspec-
tive, the MMIMO system can bring huge advantages in terms of spectral efficiency,
since the latter increases monotonically with the number of antennas. Moreover,
it has been shown that MMIMO can also mitigate spatial interference even in the
presence of imperfect channel state information (CSI) [6]. At the same time, from the
sensing perspective, large scale antenna arrays offer a significant spatial resolution
capability. Specifically, a MMIMO system can steer a pencil-like beam towards a
direction of interest, hence improving target detection and related parameter estima-
tion. However, we can go far beyond that in term of advantages for remote sensing
tasks. For example, the potential benefits that large virtual spatial channels can bring
into the radar detection problem has been recently investigated in [7]. Specifically, it
has been proved that a massive number of virtual spatially antenna channels 𝑁 allows
for the derivation of robust detection algorithms, which in turn guarantee certain sta-
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tistical performance regardless the, generally unknown, disturbance model. More
formally, in [7], it has been shown that the constant false alarm property (CFAR) of a
derived Wald-type detector can be achieved under a wide variety of disturbance (i.e.,
clutter plus noise) statistical models as 𝑁 → ∞. Along with the CFAR property,
the optimization of the Probability of Detection (𝑃𝐷) is a crucial task for a sensing
system and it can be fulfilled by means of a suitable waveform design strategy [11].
Moreover, in the ISAC framework, the selected waveforms have to fulfill, at the
same time, the maximization of both the sensing and communication metrics in an
environment whose statistical characterization is generally unknown and variable
with time. The complexity of this kind of scenarios has motivated the integration
of artificial intelligence (AI), machine and reinforcement learning (ML and RL)
techniques in more classical statistical-oriented signal processing frameworks [4].

Motivated by the evidence that a cross-fertilization between classical asymptotic
statistics and learning approaches may bring a breakthrough in the unsolved ISAC
challenges, for instance mutual interference, this chapter describes the successful
exploitation of this hybrid cognitive approach in the MMIMO sensing context. In
particular, building upon recent works [1, 18], we show that an RL based algorithm for
waveform selection can be fruitfully combined with outcomes on robust asymptotic
statistics to develop a fully adaptive and data-driven detection algorithm for MMIMO
radar systems that may achieve good performance without relying on any a priori
knowledge of the environment. More specifically, in Sec. 2 the signal and disturbance
models of the MMIMO system will be presented along with the robust Wald-type test.
As we will see, asymptotic statistics provide us with the tools needed to investigate
the statistical properties of the derived test as the number of virtual antenna goes to
infinity. In order to make the chapter as self-contained as possible, Sec. 3 collects the
main concepts about Reinforcement Learning, Markov Decision Problem and related
learning algorithms. The core of this chapter is Sec. 4, where the RL methodologies,
previously introduced, will be applied to the MMIMO detection problem in order to
derive an adaptive RL-based waveform selection algorithm aiming at maximizing
the 𝑃𝐷 of the system. Finally, Sec. 5 concludes the chapter with some considerations
about the extension of the proposed joint asymptotic statistics-RL methodologies to
the general ISAC framework of MMIMO communication-sensing systems.

2 Massive MIMO radar system description

This section is dedicated to a detailed description of a massive MIMO (MMIMO)
radar system and to the presentation of the main advantages over classical MIMO
system. Specifically, in Sec. 2.1 a general signal model for a co-located MIMO radar
is presented. Then, Sec. 2.2 describes a robust Wald-type test for radar detection that
satisfies the constant false alarm rate (CFAR) property when the radar operates in
the MMIMO regime.
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2.1 Signal model

Suppose that a point-like target, with angular position \0, is within the radar’s
detection range, the baseband signal at the receiving array can be modelled as [8],
[9]

𝒚(𝑡) = 𝛼𝒂𝑅 (\0)𝒂𝑇𝑇 (\0)𝒔(𝑡 − 𝜏)𝑒 𝑗𝜔𝑑 𝑡 + 𝒏(𝑡), 𝑡 ∈ [0, 𝑇) (1)

where 𝒚(𝑡) ∈ C𝑁𝑅 is the receiving array output vector, 𝒔(𝑡) ∈ C𝑁𝑇 is the vector
of transmitted signals and 𝒏(𝑡) ∈ C𝑁𝑅 is the disturbance at the receiver. The scalar
𝛼 ∈ C is a parameter that accounts for the two-way path loss and the radar cross
section, which is supposed to be the same for all the transmitter-receiver pairs
since we are dealing with a co-located radar system, 𝜏 ∈ IR and 𝜔𝑑 ∈ IR are the
delay and doppler shift of the target. Let us assume an Uniformly Linear Array
(ULA) configuration for both the transmitter and the receiver, so that 𝒂𝑇 (\0) =

[1, 𝑒 𝑗2𝜋a , . . . , 𝑒 𝑗2𝜋 (𝑁𝑇−1)a]𝑇 ∈ C𝑁𝑇 and 𝒂𝑅 (\0) = [1, 𝑒 𝑗2𝜋a , . . . , 𝑒 𝑗2𝜋 (𝑁𝑅−1)a]𝑇 ∈
C𝑁𝑅 are the transmit and receive steering vectors, with a ≜ 𝑑

_
sin(\0). In the rest of

the chapter, 𝑑 is always assumed equal to _/2. The transmitted signals vector 𝒔(𝑡)
can be expressed as:

𝒔(𝑡) = 𝑾𝚽(𝑡), (2)

where 𝑾 ∈ C𝑁𝑇×𝑁𝑇 is the weighting matrix used to shape the transmit beampattern
as better detailed below. The term 𝚽(𝑡) ∈ C𝑁𝑇 is a vector of quasi-orthonormal
waveforms, i.e. ∫ 𝑇

0
Φ𝑖 (𝑡 − 𝜏′)Φ∗

𝑗 (𝑡 − 𝜏)𝑑𝑡 ≊ 𝛿𝑖 𝑗 , ∀𝜏′, 𝜏. (3)

where 𝛿𝑖 𝑗 is the Kronecker delta. Note that this orthogonality condition is assumed
to be true for all the possible delays 𝜏′, 𝜏. This stringent requirement will be removed
in Sec. 2.2. At the receiver the signal is processed as:

𝒀 (𝑛, ℎ) ≜
∫ 𝑇

0
𝒚(𝑡)𝚽𝐻 (𝑡 − 𝑛Δ𝑡)𝑒− 𝑗ℎΔ𝜔𝑡𝑑𝑡 (4)

=

∫ 𝑇

0

(
𝛼𝒂𝑅 (\0)𝒂𝑇𝑇 (\0)𝑾𝚽(𝑡 − 𝜏)𝑒 𝑗𝜔𝑑 𝑡 + 𝒏(𝑡)

)
𝚽𝐻 (𝑡 − 𝑛Δ𝑡)𝑒− 𝑗ℎΔ𝜔𝑡𝑑𝑡

= 𝛼𝒂𝑅 (\0)𝒂𝑇𝑇 (\0)𝑾𝑹𝚽 (𝑛, ℎ) + 𝑪 (𝑛, ℎ), (5)

with 𝑛 = 1, . . . , 𝐿𝜏 and ℎ = 1, . . . , 𝐿𝜔 , where:

𝑹𝚽 (𝑛, ℎ) ≜
∫ 𝑇

0
𝚽(𝑡 − 𝜏)𝚽𝐻 (𝑡 − 𝑛Δ𝑡)𝑒 𝑗 (𝜔𝑑−ℎΔ𝜔)𝑡𝑑𝑡, (6)

𝑪 (𝑛, ℎ) ≜
∫ 𝑇

0
𝒏(𝑡)𝚽𝐻 (𝑡 − 𝑛Δ𝑡)𝑒− 𝑗ℎΔ𝜔𝑡𝑑𝑡. (7)

Recasting the problem in vectorial form we have:
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𝒚(𝑛, ℎ) ≜ vec
(
𝒀 (𝑛, ℎ)

)
= 𝛼𝒉(𝑛, ℎ) + 𝒄(𝑛, ℎ) ∈ C𝑁×1 (8)

with 𝑁 ≜ 𝑁𝑇𝑁𝑅 and

𝒉(𝑛, ℎ) ≜
(
𝑹𝑇𝚽 (𝑛, ℎ) ⊗ 𝑰𝑁𝑅

) (
𝑾𝑇 𝒂𝑇 (\0) ⊗ 𝒂𝑅 (\0)

)
(9)

where 𝒄(𝑛, ℎ) ≜ vec
(
𝑪 (𝑛, ℎ)

)
. Note that, in radar terminology, the measurement

vector 𝒚(𝑛, ℎ) is usually called snapshot. Under the hypothesis that 𝒏(𝑡) is a zero-
mean wide sense stationary process, i.e E {𝒏(𝑡)} = 0 and E

{
𝒏(𝑡1)𝒏(𝑡2)𝐻

}
= 𝚺(𝑡1 −

𝑡2), then E{𝒄(𝑛, ℎ)} = 0 and consequently, as shown in [7]:

𝚪(𝑛, ℎ) ≜ 𝐸{𝒄(𝑛, ℎ)𝒄𝐻 (𝑛, ℎ)} (10)

=

𝑇∫
0

𝑇∫
0

[𝚽∗ (𝑡1 − 𝑛Δ𝑡)𝚽𝑇 (𝑡2 − 𝑛Δ𝑡) ⊗ 𝚺(𝑡1 − 𝑡2)]𝑒− 𝑗ℎΔ𝜔 (𝑡1−𝑡2 )𝑑𝑡1𝑑𝑡2. (11)

In the following sections, we assume that the samples �̄� and ℎ̄ are chosen in such
a way that �̄�Δ𝑡 = 𝜏 and ℎ̄Δ𝜔 = 𝜔𝑑 , so using (3), (9) becomes

𝒉(�̄�, ℎ̄) = 𝑾𝑇 𝒂𝑇 (\0) ⊗ 𝒂𝑅 (\0) ≡ 𝒉, (12)

and the indexes are omitted for ease of notation. It is worth underlining that most
of the existing works assume that the noise samples are uncorrelated in both spatial
and temporal domains [16], i.e. 𝚪(𝑛, ℎ) ≡ 𝚪 = 𝜎2𝑰. As we will extensively discuss
in the next subsection, in [7] this assumption has been greatly relaxed to take into
account a huge variety of realistic disturbance statistics.
To conclude, let’s recall the transmitter beampattern of a MIMO radar defined as
[10]:

𝐵𝑃(\) = 𝒂𝑇𝑇 (\)𝑹𝑾 𝒂∗𝑇 (\), (13)

where 𝑹𝑾 ≜ 𝑾𝑾𝐻 and 𝑾 is he weighting matrix defined in eq. (2).
The beampattern corresponds to the normalised power density [10] of the elec-

tromagnetic field under the hypothesis of ideal isotropically radiating elements, thus
we can compute the transmitted power as 𝑃𝑇 ≜ 𝑡𝑟{𝑹𝑾 }.

Eq. (13) shows that by choosing the weighting matrix 𝑾, and consequently the
correlation matrix 𝑹𝑾 , one can shape the transmitting beampattern. Thus the choice
of the transmitted waveforms plays a crucial role in the design of the MIMO radar
systems as amply discussed in [11, Ch. 4] and [9], among many others. Just to cite the
limit cases, an omnidirectional beampattern can be obtained by selecting orthogonal
waveforms, i.e. 𝑾 = 𝑾𝑜𝑟𝑡 ≜

√︃
𝑃𝑇
𝑁𝑇

𝑰𝑁𝑇
. On the contrary, if we want to focus all the

transmitter power in the direction \̄, we should select 𝑾 =

√︃
𝑃𝑇
𝑁𝑇

𝒂∗
𝑇
(\̄)𝒂𝑇

𝑇
(\̄).
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2.2 A robust Wald-type test for target detection

After having introduced the signal model for a MMIMO radar system, we will now
focus our attention on the target detection problem. Remarkably, as we will see in
the following, the massive regime allows us to overcome most of the unrealistic
assumptions that are generally made in the radar detection literature.

Starting from the characterization of the received signal given in eq. (8), the
single-snapshot target detection problem for MMIMO system can be cast as:

H0 : 𝒚 = 𝒄 (14)
H1 : 𝒚 = 𝛼𝒉 + 𝒄. (15)

A huge amount of literature can be found on the implementation of a decision statistic,
i.e. a detector, to discriminate between the null hypothesisH0 (target absence) against
the alternative H1 (target present). However, most of the existing works rely on the
following simplifying assumptions (see, among many others [5], [17] and [16, Ch.
4] for the MIMO case.):

• availability of a sufficiently large number of independent and identically dis-
tributed (i.i.d.) measurement vectors (or snapshots),

• the disturbance is assumed to be Gaussian distributed with diagonal (or block-
diagonal) covariance matrices,

• the waveform matrix 𝚽(𝑡) is assumed to be perfectly orthogonal.

These three assumptions are rather unrealistic and generally violated in practice
[8]. For this reason, by exploiting the advantages resulting from a massive number
of virtual antenna channels, in [7] it was proposed to overcome the previous two
simplified assumptions by considering a single snapshot scenario and by imposing
only the following:

Assumption A1

The disturbance 𝒄 is a realization of a discrete-time, complex circular and possibly
non-Gaussian random process {𝑐𝑛,∀𝑛} with a polynomial decay of its autocorrela-
tion function, that is 𝑟𝑐 [𝑚] ≜ E{𝑐𝑛𝑐∗𝑛−𝑚} = O

(
|𝑚 |−𝛾

)
, 𝑚 ∈ Z, 𝛾 > 𝜚/(𝜚−1), 𝜚 > 1.

Note that Assumption A1 is weak enough to be satisfied by, for example, all the
Gaussian and non-Gaussian Autoregressive-Moving Average (ARMA) models of
arbitrary order and by all the Compound Gaussian models [7]. Remarkably, under
Assumption A1, the target detection problem in (14) can be solved by a Wald-type
test without the need of any a priori knowledge on the statistical distribution of the
disturbance vector 𝒄. Briefly, to build this Wald-type statistic, only an asymptotically
normal,

√
𝑁-consistent estimator of 𝛼, together with its asymptotic error covariance,

are required. Under A1, the estimator is simply given by the linear least square (LLS)
estimator [7]:
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�̂� = 𝒉𝐻 𝒚/| |𝒉 | |2, (16)

whose asymptotic error covariance is E{|�̂�−𝛼 |2} = 𝒉𝐻𝚪𝒉
| |𝒉 | |4 where 𝚪 is the disturbance

covariance matrix defined in eq. (10). Then, a Wald-test statistic can be derived as:

Λ(𝒚) = 2|𝒉𝐻 𝒚 |2

𝒉𝐻 �̂�𝒉
, (17)

where �̂� is the following
√
𝑁-consistent estimate of 𝚪:

[�̂�]𝑖, 𝑗 =
{
𝑐𝑖𝑐

∗
𝑗
, |𝑖 − 𝑗 | ≤ 𝑙,

0, |𝑖 − 𝑗 | > 𝑙,
(18)

where 𝒄 = 𝒚 − �̂�𝒉 and 𝑙 is the truncation lag that must grow with 𝑁 , but more slowly
than 𝑁1/3. Further considerations on the choice of the truncation lag 𝑙 can be found
in [27, Theorem 6.20]. Moreover, [7, Theorem 3], states that the derived Wald-test
statistic is asymptotically distributed as:

Λ(𝒚 |H0) ∼
𝑁→∞

𝜒2
2 (0), (19)

Λ(𝒚 |H1) ∼
𝑁→∞

, 𝜒2
2 (𝜍) (20)

with
𝜍 ≜ 2|𝛼 |2 | |𝒉 | |4

𝒉𝐻𝚪𝒉
. (21)

To discriminate between the null hypothesis H0 and its alternative H1, the value of
the decision statistic is compared with a threshold:

Λ(𝒚)
H1
≷
H0
_. (22)

It is immediate to verify that, from the Wald’s test statistic asymptotic distributions,
the closed form asymptotic expressions of the 𝑃𝐹𝐴 and 𝑃𝐷 are [7]:

𝑃𝐹𝐴(_) = Pr{Λ(𝒚) ≥ _ |H0} =
∫ +∞

_

𝑓Λ |H0 (𝑎)𝑑𝑎 →
𝑁→∞

𝑒−
_
2 , (23)

𝑃𝐷 (_) = Pr{Λ(𝒚) ≥ _ |H1} =
∫ +∞

_

𝑓Λ |H1 (𝑎)𝑑𝑎 →
𝑁→∞

𝑄1 (
√
𝜍,
√
_), (24)

where 𝑄1 (·, ·) is the Marcum 𝑄 function of order 1 defined as 𝑄1 (𝑎, 𝑏) ≜∫ +∞
𝑏

𝑥 exp
(
−(𝑥2 + 𝑎2)/2

)
𝐼0 (𝑎𝑥)𝑑𝑥, 𝑎 and 𝑏 are nonnegative real numbers and 𝐼0 (·)

is the modified Bessel function of the first kind of zero order.
From the asymptotic expression of 𝑃𝐹𝐴(_), the Constant False Alarm Rate

(CFAR) property follows immediately. In fact, under Assumption A1 and by in-
verting the eq. (23), one can determine the required threshold _̄ for any desired
nominal �̄�𝐹𝐴 as:
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_̄ = −2 ln
(
�̄�𝐹𝐴

)
. (25)

To summarize, it is worth stressing here that the three biggest advantages of
the proposed Wald-type detector are:

• it needs only a single snapshot to extract all the information required to
discriminate between H0 (target absence) and H1 (target present),

• it satisfies the closed form expression of 𝑃𝐹𝐴 and 𝑃𝐷 , provided in eq. (23)
and eq. (24), under any disturbance scenario satisfying Assumption A1, i.e.
it is statistically robust.

• it satisfies the CFAR property in the massive MIMO regime.

We note, in passing, that the previous results about the Wald-type detector hold
true for any array geometry, since we are not using any specific structure for the
related steering vector.

The last practical question that needs to be addressed is related to the “asymptotic
MMIMO regime”: how large should the number of virtual spatial antenna channels
𝑁 be to consider the asymptotic results a good approximation for their finite-sample
counterparts? In [7], a preliminary and simulation-based answer has been given.
Specifically, it has been shown that the massive MIMO regime is achieved if 𝑁 ≥ 104

for a nominal �̄�𝐹𝐴 of 10−4. Providing a more general and rigorous answer to this
crucial aspect is still an open problem.

Let us now focus our attention on the power of the test statistic Λ(𝒚) in eq. (17),
i.e. on its detection performance. In fact, even if the proposed Wald-type detector
presents the desirable robustness and CFAR properties over a very large set of
disturbance model, nothing can be said about the optimality of the achieved 𝑃𝐷 .
In particular, according to the closed form expression in (24) and to the fact that
𝑄1 (·, ·) is strictly increasing in the first argument, to maximize the 𝑃𝐷 we should
maximize 𝜍 with respect to the only free parameter that is the weighting matrix 𝑾.
The analysis and a possible solution of this optimization problem will be presented
in Sec. 4.

We conclude this section with some clarification on the practical radar imple-
mentation of target detection problem in (14) and by introducing the useful notation
that allows us to integrate the robust Wald-type test in (17) with the Reinforce-
ment Learning-based procedure for the optimal selection of the weighting matrix 𝑾
presented ahead.

Let us denote with 𝑘 ∈ N the time index corresponding to each transmitted pulse
provided in (2). At time instant 𝑘 , the radar computes the Wald-test statistic in (17)
in a predefined fixed grid of angular bins Θ = {\𝑙}𝐿𝑙=1, i.e.

Λ𝑘,𝑙 =
2|𝒉𝐻

𝑘−1,𝑙 · 𝒚𝑘,𝑙 |
2

𝒉𝐻
𝑘−1,𝑙 �̂�𝑘,𝑙𝒉𝑘−1,𝑙

(26)
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with 1

𝒉𝑘−1,𝑙 = 𝑾𝑇
𝑘−1𝒂𝑇 (\𝑙) ⊗ 𝒂𝑅 (\𝑙), (27)

[�̂�𝑘,𝑙]𝑖, 𝑗 =
{
[𝒄𝑘,𝑙]𝑖 [𝒄𝑘,𝑙]∗𝑗 , |𝑖 − 𝑗 | ≤ 𝑙
0, |𝑖 − 𝑗 | > 𝑙

, (28)

𝒄𝑘,𝑙 = 𝒚𝑘,𝑙 − �̂�𝑘−1,𝑙𝒉𝑘−1,𝑙 , �̂�𝑘−1,𝑙 =
𝒉𝐻
𝑘−1,𝑙 𝒚𝑘,𝑙

| |𝒉𝑘−1,𝑙 | |2
. (29)

After performing the detection in each angular bin, the radar system should select
the weighting matrix 𝑾𝑘 to maximize the 𝑃𝐷 , starting from some sort of knowl-
edge of the environment. As we will show in the following sections, the weighting
matrix selection problem can be perfectly cast in the reinforcement learning (RL)
framework.

3 Introduction to Reinforcement Learning

As a prerequisite for Sec. 4 and in order to make this chapter self-contained, in
the following, a brief introduction to the basic ideas behind reinforcement learning
techniques is provided. The interested reader may find exhaustive and in-depth
discussions in [24], [25], and [23], just to cite a few.

3.1 Markov Decision Process (MDP)

A Markov Decision Process is a mathematical tool to describe the interaction between
a system (in our case, the radar system) and the surrounding environment. In the
MDP literature the system that learns and takes decision is referred to as the agent,
while all the other entities, external to the agent and with whom it interacts, are
called environment. At each time instant 𝑘 the agent is in state 𝑠𝑘 ∈ S and selects
an action 𝑎𝑘 ∈ A. The chosen action corresponds to a stimulus for the environment,
which responds by sending a reward 𝑟𝑘+1 ∈ R. In the meanwhile the agent reaches
the new state 𝑠𝑘+1 ∈ S. The final objective of the agent is to maximise a cumulative
reward.

A MDP is completely specified by the following quantities [25]:

• The state space S,
• The action space A,
• The set of possible rewards R,
• The dynamics of the process defined as:

1 Additional considerations of the index 𝑘 will be done ahead in Sec. 4
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𝑝(𝑠′, 𝑟 |𝑠, 𝑎) ≜ Pr{(𝑠𝑘+1 = 𝑠′) ∩ (𝑟𝑘+1 = 𝑟) | (𝑠𝑘 = 𝑠) ∩ (𝑎𝑘 = 𝑎)}. (30)

We will focus our attention on the subset of finite, discrete-time MDP with infinite
horizon. A MDP is called finite if the state space S and action space A have a finite
number of elements. In a MDP with finite horizon the state space S contains at
least one terminal state, so the temporal evolution of the system can be described
as a succession of epochs that can have different duration. During each epoch the
system evolves from an initial state to a terminal state. Such a description is useful
in some applications where a terminal state can be easily identified, such as in the
chess game. In an infinite horizon MDP a terminal state can’t be identified and the
agent continues to interact with the environment endlessly. This is the case for radar
detection/weighting matrix selection problem previously introduced.

3.1.1 Policy and value functions

A policy is a mapping from each state 𝑠 ∈ S to a probability distribution over the set
A. Thus the function 𝜋(𝑎 |𝑠) ≜ Pr{𝑎𝑘 = 𝑎 |𝑠𝑘 = 𝑠} completely specifies a policy. A
deterministic policy is a special case of the previous one, where

𝜋(𝑎 |𝑠) =
{

1, 𝑎 = 𝑓𝜋 (𝑠)
0, 𝑎 ∈ A \ { 𝑓𝜋 (𝑠)}

(31)

then the policy is completely specified by the function 𝑓𝜋 : S → A. Among all
the possible policy, the agent should choose the one that will allow it to achieve its
final goal. To this end, we need to define an ordering over the set of policies. As we
will explain ahead, this ordering will be induced by the value functions. Formally,
to define the value functions for policy 𝜋 we must introduce the cumulative reward

𝐺𝑘 ≜
+∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+1 (32)

where 𝛾 ∈ [0, 1) is called discount factor.
The state value function for policy 𝜋 is defined as

𝑉𝜋 (𝑠) ≜ E𝜋

{ +∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+1

����𝑠𝑘 = 𝑠} (33)

that corresponds to the expectation of the cumulative reward starting from state
𝑠𝑘 = 𝑠 ∈ S and following policy 𝜋. The expectation is computed over all the states
{𝑠𝑘′ ∈ S}+∞𝑘′=𝑘+1, actions {𝑎𝑘′ ∈ A}+∞𝑘′=𝑘 and rewards {𝑟𝑘′ ∈ R}+∞𝑘′=𝑘+1, but we explicit
only the dependence on 𝜋 to simplify the notation.
Similarly the state-action value function for policy 𝜋 is defined as
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𝑄 𝜋 (𝑠, 𝑎) ≜ E𝜋

{ +∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+1

����(𝑠𝑘 = 𝑠) ∩ (𝑎𝑘 = 𝑎)
}
, (34)

where the expectation is computed over {𝑠𝑘′ ∈ S}+∞𝑘′=𝑘+1, {𝑎𝑘′ ∈ A}+∞𝑘′=𝑘+1 and
{𝑟𝑘′ ∈ R}+∞𝑘′=𝑘+1. The relationship between the state value function in (33) and the
state-action value function in (34) is given by:

𝑉𝜋 (𝑠) ≜ E𝜋

{ +∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+1

����𝑠𝑘 = 𝑠} (35)

=
∑︁
𝑎∈A
E𝜋

{ +∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+1

����(𝑠𝑘 = 𝑠) ∩ (𝑎𝑘 = 𝑎)
}

Pr {𝑎𝑘 = 𝑎 |𝑠𝑘 = 𝑠} (36)

=
∑︁
𝑎∈A

𝑄 𝜋 (𝑠, 𝑎)𝜋(𝑎 |𝑠) = E𝑎∈A {𝑄 𝜋 (𝑠, 𝑎)} . (37)

From the state value function definition one can derive the following equation:

𝑉𝜋 (𝑠) ≜ E𝜋

{ +∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+1

����𝑠𝑘 = 𝑠} (38)

=
∑︁
𝑎∈A
E𝜋

{ +∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+1

����(𝑠𝑘 = 𝑠) ∩ (𝑎𝑘 = 𝑎)
}
𝜋(𝑎 |𝑠) (39)

=
∑︁
𝑎∈A
E𝜋

{
𝑟𝑘+1 + 𝛾

+∞∑︁
ℎ=0

𝛾ℎ𝑟𝑘+ℎ+2

����(𝑠𝑘 = 𝑠) ∩ (𝑎𝑘 = 𝑎)
}
𝜋(𝑎 |𝑠) (40)

=
∑︁
𝑎∈A

𝜋(𝑎 |𝑠)
∑︁
𝑠′∈S

∑︁
𝑟∈R

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) (𝑟 + 𝛾𝑉𝜋 (𝑠′)) . (41)

This equation is known as the Bellman equation for policy 𝜋 and since it is valid for
all 𝑠 ∈ S, it can be written in vectorial form as

𝑽𝜋 = 𝑹𝜋 + 𝛾𝑷𝜋𝑽𝜋 , (42)

where the vectors 𝑽𝜋 and 𝑹𝜋 and the matrix 𝑷𝜋 are defined as:
[𝑽𝜋]𝑖 ≜ 𝑉𝜋 (𝑠 (𝑖) ),
[𝑹𝜋]𝑖 ≜ E𝜋

{
𝑟𝑘+1 |𝑠𝑘 = 𝑠 (𝑖)

}
=

∑
𝑎∈A

𝜋(𝑎 |𝑠 (𝑖) ) ∑
𝑠′∈S

∑
𝑟∈R

𝑝(𝑠′, 𝑟 |𝑠 (𝑖) , 𝑎)𝑟,

[𝑷𝜋]𝑖, 𝑗 ≜ Pr
{
𝑠𝑘+1 = 𝑠 ( 𝑗 ) |𝑠𝑘 = 𝑠 (𝑖)

}
=

∑
𝑎∈A

𝜋(𝑎 |𝑠 (𝑖) ) ∑
𝑟∈R

𝑝(𝑠 ( 𝑗 ) , 𝑟 |𝑠 (𝑖) , 𝑎),
(43)

where 𝑠 (𝑖) ∈ S. If the dynamics (see eq. (30)) of the MDP are known, then eq. (42)
can be uniquely solved as:

𝑽𝜋 =
(
𝑰 |S | − 𝛾𝑷𝜋

)−1
𝑹𝜋 , (44)
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where 𝑰 |S | is the identity matrix of dimension |S| × |S|.
Finally, from eqs. (37) and (41), it follows directly that the Bellman equation for

the state-action value function can be expressed as:

𝑄 𝜋 (𝑠, 𝑎) =
∑︁
𝑠′∈S

∑︁
𝑟∈R

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) (𝑟 + 𝛾𝑉𝜋 (𝑠′)) , (45)

and thus, once (42) has been solved, 𝑄 𝜋 (𝑠, 𝑎) can be computed from (45).

3.1.2 Optimal policy

The policy 𝜋∗ is said to be optimal if the following condition is satisfied [23]:

𝑉𝜋 (𝑠) ≤ 𝑉𝜋∗ (𝑠) = max
𝑎′∈A

𝑄 𝜋∗ (𝑠, 𝑎′), ∀𝑠 ∈ S. (46)

It can also be shown that every MDP admits a deterministic optimal policy 𝑓𝜋∗ that
satisfies:

𝑓𝜋∗ (𝑠) = argmax
𝑎′∈A

𝑄 𝜋∗ (𝑠, 𝑎′). (47)

Let us now have a look on how the expressions of the state value function and of the
state-action value function changes when they are evaluated for the optimal policy.
More specifically, we limit ourselves to the case of deterministic policies, i.e. those
that satisfy the definition (31). For the optimal deterministic policy, the state value
function in (35) becomes

𝑉𝜋∗ (𝑠) =
∑︁
𝑎∈A

𝑄 𝜋∗ (𝑠, 𝑎)𝜋(𝑎 |𝑠) = max
𝑎∈A

𝑄 𝜋∗ (𝑠, 𝑎) (48)

= max
𝑎∈A

{∑︁
𝑠′∈S

∑︁
𝑟∈R

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) (𝑟 + 𝛾𝑉𝜋∗ (𝑠′))
}
, ∀𝑠 ∈ S (49)

that constitutes a system of non linear equations that cannot be solved using eq. (44).
Regarding the state-action value function in (45), it becomes:

𝑄 𝜋∗ (𝑠, 𝑎) =
∑︁
𝑠′∈S

∑︁
𝑟∈R

𝑝(𝑠′, 𝑟 |𝑠, 𝑎)
(
𝑟 + 𝛾 max

𝑎′∈A
𝑄 𝜋∗ (𝑠′, 𝑎′)

)
(50)

= E𝜋∗

{
𝑟𝑘+1 + 𝛾 max

𝑎′∈A
𝑄 𝜋∗ (𝑠𝑘+1, 𝑎

′)
����(𝑠𝑘 = 𝑠) ∩ (𝑎𝑘 = 𝑎)

}
. (51)

Eq. (47) tells us that to find the optimal deterministic policy 𝑓𝜋∗ (𝑠), the agent only
needs the “optimal” state-action value function 𝑄 𝜋∗ (𝑠, 𝑎), while the knowledge of
the dynamics in eq. (30) is not strictly required. However, 𝑄 𝜋∗ (𝑠, 𝑎) is generally not
available a priori to the agent and it needs to be recursively estimated, which will be
explained following subsection.
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3.2 The SARSA learning algorithm

The learning algorithms are a class of algorithms designed to obtain the optimal
policy associated to a specific MDP. As discussed in 3.1.2, if the “optimal” state-
action value function𝑄 𝜋∗ (𝑠, 𝑎) were a priori known, the optimal deterministic policy
may be obtained by maximizing it as shown in eq. (47). Unfortunately, in most of
the real world applications, 𝑄 𝜋∗ (𝑠, 𝑎) is not available to the agent. In these cases a
“closed-form” solution characterizing the optimal policy does not exist. Nevertheless,
it is still possible to find a good approximation of the optimal policy by applying
some iterative learning procedure [25]. The 𝑄-learning and the SARSA algorithms
are two classic examples of this kind of iterative approximation algorithms. Here,
we limit ourselves to discuss the SARSA iteration process, since it is the one that we
are going to exploit in the application at hand.

The SARSA algorithm, like the 𝑄-learning one, attempts to estimate eq. (50).
The name of the algorithm comes from the succession of operations followed by the
algorithm, i.e. State-Action-Reward-State-Action. The system selects an initial state
𝑠0 ∈ S and an initial state-action value function 𝑄0 (𝑠, 𝑎),∀(𝑠, 𝑎) ∈ S × A, then
proceeds by choosing action 𝑎0 ∈ S following a given policy 𝜋0. Then, the system
repeats the following steps at each time instant.

SARSA

At each iteration, the SARSA algorithm operates as follows:

1. receive reward 𝑟𝑘+1 from the environment,
2. reach state 𝑠𝑘+1,
3. choose action 𝑎𝑘+1 following a certain policy 𝜋𝑘 that depends on 𝑄𝑘 (𝑠, 𝑎),
4. update 𝑄 as

𝑄𝑘+1 (𝑠𝑘 , 𝑎𝑘) =(1 − 𝛼𝑘+1)𝑄𝑘 (𝑠𝑘 , 𝑎𝑘) + 𝛼𝑘+1 (𝑟𝑘+1 + 𝛾𝑄𝑘 (𝑠𝑘+1, 𝑎𝑘+1))
=𝑄𝑘 (𝑠𝑘 , 𝑎𝑘) + 𝛼𝑘+1 (𝑟𝑘+1 + 𝛾𝑄𝑘 (𝑠𝑘+1, 𝑎𝑘+1) −𝑄𝑘 (𝑠𝑘 , 𝑎𝑘)).

(52)

If the policy 𝜋𝑘 guarantees that each couple (𝑠, 𝑎) ∈ S × A is visited infinitely
many times and under additional condition on the sequence of scalars {𝛼𝑘} ∈ (0, 1)
(see [23] end [15]) then:

lim
𝑘→+∞

𝑄𝑘 (𝑠, 𝑎) = 𝑄 𝜋∗ (𝑠, 𝑎). ∀(𝑠, 𝑎) ∈ S × A (53)

How can we assure that this condition holds? This is the focus of the following
subsection.
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3.2.1 𝜺-greedy policy

In order to guarantee that each couple (𝑠, 𝑎) ∈ S×A is visited infinitely many times,
we can force the agent to “explore” the state-action space, instead of just using the
optimal action. Specifically, according to eq. (47), the optimal greedy action at the
iteration 𝑘 is given by:

𝑎
(𝑔𝑟𝑒𝑒𝑑𝑦)
𝑘

= arg max
𝑎′∈A

𝑄 𝜋𝑘−1 (𝑠𝑘 , 𝑎′). (54)

Even though choosing the greedy action at each time instant seems a good (op-
timal) choice, unfortunately it doesn’t guarantee that each couple (𝑠, 𝑎) is visited
infinitely many times. To force the agent to explore, one of the more widely adopted
solutions is the Y-greedy policy that consists on selecting the greedy (optimal) action
with probability 1 − Y and a random action with probability Y, i.e.

𝜋
(1)
𝑘

(𝑠𝑘) =
{
𝑎
(𝑔𝑟𝑒𝑒𝑑𝑦)
𝑘

, with probability 1 − Y
U
{
A \ {𝑎 (𝑔𝑟𝑒𝑒𝑑𝑦)

𝑘
}
}
, with probability Y

(55)

where U{·} denotes a function that selects randomly one of the elements specified
by its argument with uniform probability and the apex “(1)” is used to diversify the
Y-greedy policy from the two variations that will be introduced in Sec. 4.4. The Y
parameter controls the exploration-exploitation trade-off: for low values of Y, the
agent selects the greedy (optimal) action with high probability (exploitation), while
for high values of Y the action is most likely chosen randomly (exploration).

After having introduced the basics of the RL theory, we are now ready to map the
radar detection/weighting matrix selection problem, introduced at the end of Sec.
2.2, into this framework and find a solution to it.

4 A RL-based detection algorithm for MMIMO radar

In this section, we merge the asymptotic results on the robust, CFAR, Wald-type
detector presented in Sec. 2 with the RL framework briefly summarized in Sec.
3. This cross-fertilization between asymptotic statistics and learning methodologies
allows us to present a fully cognitive and robust detection scheme characterized by
the CFAR property (with respect to a wide class of disturbance model satisfying
Assumption A1) and, at the same time, to maximize the detection performance
without the need of any a priori information on the environment [2].

We start this section by mapping the general MDP-related concepts on the
MMIMO radar detection problem. We show that, in this specific application, the
state is related to the number of detected targets, the action to the number of angu-
lar bins where the system focuses its power, and the reward to an estimate of the
probability of detection of the targets. Along with the similarity, it is important to
highlight that the radar detection problem presents a crucial difference with respect
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to the standard RL machinery: the radar environment is not stationary. This fun-
damental aspect will be discussed in Sec. 4.4. Consequently, some modifications
aiming at taking into consideration possible non-stationarities, will be discussed and
the final resulting algorithm presented. An important remark on the index 𝑘 is in
order now. In Sec. 2, we used the index 𝑘 to define the discrete time indexing the
acquired observations, while in Sec. 3, 𝑘 was adopted to characterize the iterations
of the RL algorithm. In the following, we continue to use the index 𝑘 for both
the above-mentioned quantities since, from an algorithmic point of view, they are
basically “the same thing”. In fact, as we will amply discuss ahead, the proposed
algorithm will perform a new iteration when a new snapshot is acquired.

4.1 The set of the states

The detection procedure starts by applying the Wald-type detector in (26) to all the 𝐿
angular bins previously defined in Sec. 2.2. Consequently, given the decision statistic
at the 𝑘 𝑡ℎ time instant associated to the 𝑙𝑡ℎ angular bin Λ𝑘,𝑙 ∈ IR, let us first define
the following quantity [1]:

Λ̄𝑘,𝑙 ≜

{
1, if Λ𝑘,𝑙 ≥ _
0, if Λ𝑘,𝑙 < _

. (56)

In words, Λ̄𝑘,𝑙 is equal to 1 when the decision statistic is over the threshold _,
otherwise it is equal to 0. Then, the state of the system at time instant 𝑘 can be
defined as 𝑠𝑘 = 𝑠 (𝑖𝑘 ) with:

𝑖𝑘 ≜ min
{ 𝐿−1∑︁
𝑙=0

Λ̄𝑘,𝑙 , 𝐾

}
(57)

where
∑𝐿−1
𝑙=0 Λ̄𝑘,𝑙 is simply the number of target detected at time 𝑘 . Consequently,

the set of all the possible states indexed by eq. (57) constitutes the state space of our
MDP:

S ≜
{
𝑠 (𝑖)

}𝐾
𝑖=0 (58)

where 𝐾 < ∞ is the maximum number of detectable targets.

4.2 The set of the actions

The set of the actions of the MDP in our application is defined as

A ≜
{
𝑎 ( 𝑗 )

}𝐾
𝑗=0. (59)
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Specifically, if the SARSA algorithm selects action 𝑎 ( 𝑗𝑘 ) at time instant 𝑘 , then
the system focuses its power in the 𝑗𝑘 angular bins with the highest decision statistic
according to the following procedure. Let

{
𝑙
(𝑛)
𝑘

}𝐿
𝑛=1 be the set containing the indexes

of the angular bin corresponding to the sequence of the decision statistics at time
instant 𝑘 ordered in a descending way, i.e.Λ

𝑘,𝑙
(1)
𝑘

≥ Λ
𝑘,𝑙

(2)
𝑘

≥ ... ≥ Λ
𝑘,𝑙

(𝐿)
𝑘

. Moreover,
let us define the set:

Ω𝑘 ≜

{
∅ , if 𝑗𝑘 = 0
{𝑙 (𝑛)
𝑘

} 𝑗𝑘
𝑛=1 , if 𝑗𝑘 ≠ 0

(60)

containing the indexes of the angular bins associated to the 𝑗𝑘 highest decision
statistics. Then, as discussed in [1, 26], the action made by the system is to choose
the weighting matrix𝑾𝑘 by solving the following constrained optimization problem:

𝑾𝑘 =


𝑾𝑜𝑟𝑡 ≜

√︃
𝑃𝑚𝑎𝑥

𝑁𝑇
· 𝑰𝑁𝑇

, if Ω𝑘 = ∅{
arg max

𝑾
min
𝑙∈Ω𝑘

𝒂𝑇
𝑇
(a𝑙)𝑾𝑾𝐻 𝒂∗

𝑇
(a𝑙)

subject to tr
{
𝑾𝑾𝐻

}
≤ 𝑃𝑚𝑎𝑥

, if Ω𝑘 ≠ ∅
(61)

where 𝑰𝑁𝑇
denotes the 𝑁𝑇 × 𝑁𝑇 identity matrix. The choice of the matrix 𝑾𝑘 is not

univocal since the beampattern depends on the autocorrelation matrix 𝑹𝑾 ≜ 𝑾𝑾𝐻

and there are infinitely many different W with the same 𝑹𝑾 . The algorithm chooses
one W among them arbitrarily.

4.3 The reward function

The choice of the reward is a crucial part of every reinforcement learning algorithm
and its definition strictly depends on the application at hand. Since in this chapter
we are dealing with a radar detection problem, the reward to be maximized should
be linked to the 𝑃𝐷 of the system.

As already described in Sec. 2.2, the 𝑃𝐷 associated to a target in the 𝑙𝑡ℎ angular
bin at time 𝑘 in the massive MIMO regime can be estimated/approximated as :

�̂�𝐷,𝑘,𝑙 ≜ 𝑄1

(√︃
Ẑ𝑘,𝑙 ,

√
_

)
= 𝑄1

(√︁
Λ𝑘,𝑙 ,

√
_

)
, (62)

where the non-centrality parameter 𝜍, defined in (21), has been substituted by its
consistent estimate: 2

2 We suppose that the sequence of actions at time instant 𝑘 starts when the radar receives the first
snapshot. Thus, the received vector at time 𝑘 is associated to the transmitted waveform at time 𝑘 − 1
and so we use 𝒉𝑘−1,𝑙 and 𝛼𝑘−1,𝑙 to compute the Wald-test statistic at time 𝑘. This is a different
notation from the one adopted in [1].
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Ẑ𝑘,𝑙 ≜ 2|�̂�𝑘−1,𝑙 |2
| |𝒉𝑘−1,𝑙 | |4

𝒉𝐻
𝑘−1,𝑙 �̂�𝑘,𝑙𝒉𝑘−1,𝑙

eq. (29)
= 2

|𝒉𝐻
𝑘−1,𝑙 · 𝒚𝑘,𝑙 |

2

𝒉𝐻
𝑘−1,𝑙 �̂�𝑘,𝑙𝒉𝑘−1,𝑙

= Λ𝑘,𝑙 . (63)

Let us now define the set Ψ𝑘 ≜
{
𝑙
(𝑛)
𝑘

}𝐾
𝑛=1 where 𝑙 (𝑛)

𝑘
, ∀𝑛 are the ordered indexes

of the angular bins already defined in subsec. 4.2 and the sets :

Φ𝑘 ≜

{
∅ , if 𝑖𝑘 = 0,{
𝑙
(𝑛)
𝑘

}𝑖𝑘
𝑛=1 , if 𝑖𝑘 ≠ 0,

(64)

Φ̄𝑘 ≜ Ψ𝑘 \Φ𝑘 =
{
𝑙 ∈ Ψ𝑘 : 𝑙 ∉ Φ𝑘

}
, (65)

where 𝑖𝑘 is defined in (57). The set Φ𝑘 contains the indexes associated to the angular
bins where the decision statistic is over the threshold if these are less then 𝐾 ,
otherwise contains the ones associated to the 𝐾 with the highest decision statistic.
The set Φ̄𝑘 is the complement of Φ𝑘 with respect to Ψ𝑘 .

Following [1], we are finally ready to introduce the reward function as:

𝑟𝑘 ≜
∑︁
𝑙∈Φ𝑘

�̂�𝐷,𝑘,𝑙 −
∑︁
𝑙∈Φ̄𝑘

�̂�𝐷,𝑘,𝑙 . (66)

Remark. The role of the second “negative term” in eq. (66) can be explained by
means of the following example. Suppose that there are three targets present in the
environment and that the system selects action 𝑎𝑘 = 𝑎 (3) with Ω𝑘 containing the
indexes of the three targets. If the three targets have high SNR, the reward at the next
time instant 𝑟𝑘+1 will be slightly less than 3. Suppose now that the system selects
action 𝑎𝑘+1 = 𝑎 (5) , misses one target due to a miss-detection event, and detects
only the two most powerful targets. If the negative term weren’t considered then the
reward 𝑟𝑘+2 would be slightly less then 2, while with the negative term it will be
decreased with the term �̂�𝐷,𝑘+2,𝑙 associated to the missed target that can be as high
as 𝑄1 (

√
_,
√
_) ≊ 0.55 if _ is chosen to guarantee 𝑃𝐹𝐴 = 10−4. The presence of this

negative term increases the reward loss between a good choice and a poor choice of
the action.

We note, in passing, that the reward function in eq. (66) is an example among the
infinitely many others that can be built around the concept of detection probability.
As an example, a reward with an additional negative term has been recently proposed
in [28]. Determining an optimal (if it exists) reward function is still an open problem
and active field of research.

After having introduced the reward function and before discussing the impact of
the violation of the stationarity assumption of the environment, we summarize here
the main step of the proposed weighting matrix selection algorithm.

RL-based, 𝑾𝑘-selection algorithm

Initialization: Let us choose 𝑘 = 0 as the starting point in time.
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1. At time 𝑘 = 0, the system is in state 𝑠 (0) and selects action 𝑎 (0) , so the first
transmitted waveform is 𝑾0 = 𝑾𝑜𝑟𝑡 ,

2. According to analysis in [18], the matrix optimal state-action value function in
eq. (50) is initialized as 𝑸0 = 𝑰𝐾+1.

At time instant 𝑘 , once the system collects the set of observations {𝒚𝑘,𝑙}𝐿𝑙=1, the
sequence of instruction executed by the algorithm are the following:

3. compute the Wald-type statistics Λ𝑘,𝑙 given in eq. (26) for each angular bin in the
considered grid Θ = {\𝑙}𝐿𝑙=1,

4. compute Λ̄𝑘,𝑙 as in (56),
5. compute state 𝑠𝑘 as described in subsec. 4.1,
6. compute the reward 𝑟𝑘 as in (66)
7. select action 𝑎𝑘 according to the Y-greedy policy in eq. (55),
8. compute Ω𝑘 and 𝑾𝑘 as described in 4.2,
9. update the matrix 𝑸𝑘 according to the SARSA iteration in eq. (52),

10. transmit the new waveforms using the computed weight matrix 𝑾𝑘 .

From the previous list of algorithmic steps, the roles that the Y-greedy policy
selection and the SARSA algorithm play in the recursive evaluation of the weighting
matrix 𝑾𝑘 it is now clear. However, these two fundamental building blocks of the
required learning strategy depend on two crucial hyper-parameters : the Y for the
Y-greedy policy in eq. (55) and the 𝛼𝑘 for the SARSA updating equation in eq. (52).
In the next subsections, an adaptive and data-dependent methodology to select these
two parameters will be provided.

4.4 Adaptivity in non-stationarity radar environments

The crucial assumption underlying the theoretical RL framework presented in Sec.
3 is the stationarity of the MDP, i.e. the environment has to remain unchanged over
time. However, in radar applications, the environment is intrinsically non-stationary
since position, Signal to Noise Ratio (SNR) and even the number of the targets may
vary over time as well as the disturbance statistics. The first consequence of this
non-stationarity is that the concept of optimal policy loses its meaning. In fact, the
optimal policy depends on the dynamics of the environment: if the dynamics change,
the optimal policy will change accordingly. This clearly makes the definition of a
globally optimal policy impossible in non-stationary MDPs.

If the temporal evolution of the environment is slow enough, a possible way
out is to split a non-stationary MDP in a sequence of approximately stationary
MDPs. Consequently, a “stationary-based” learning approach may be implemented
in each sub-MDP. However, some considerations on how to handle the transition
phase between two approximately stationary sub-MDPs is in order. Specifically, we
should find out a strategy that makes the adopted learning algorithm, in our case
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the SARSA one, more robust to the changes in the environment, that in the radar
application at hand are represented by changes in the number of targets, in their
SNRs or in their angular positions. In particular, the aspects that we are going to
investigate in the following subsections are: 1) definition of a policy tailored on the
specific radar environment, 2) adaptive selection of the parameters Y and 𝛼 for the
SARSA learning algorithm.

4.4.1 A new policy for MMIMO radar detection

In this subsection, we present two new policies able to provide significant improve-
ments with respect to the standard Y-greedy policy introduced in eq. (55) of Sec.
3.2.1. Here, we limit ourselves to provide a short operative definition of the two
policies, while additional details and in-depth discussions are provided in [18].

1. Quasi 𝜺-greedy policy:

𝜋
(2)
𝑘

(𝑠𝑘) =
{
U
{
A′ (𝑠𝑘) \ {𝑎 (𝑔𝑟𝑒𝑒𝑑𝑦)𝑘

}
}
, w.p. Y

𝑎
(𝑔𝑟𝑒𝑒𝑑𝑦)
𝑘

, w.p. 1 − Y
(67)

where A′ (𝑠 (𝑖) ) ≜ {𝑎 ( 𝑗 ) , 𝑗 = 𝑖, ..., 𝐾}. The aim of this policy is to minimize
possible miss-detection events that can be generated during the exploration phase.
Specifically, suppose that the system is in state 𝑠 (𝑖) , than the quasi 𝜺-greedy policy
avoids that, in the exploration phase, the radar is focusing its power in a number
of angular bins less than 𝑖, that corresponds to the number of potential detected
targets.

2. Quasi 𝜺-greedy policy with target recovery:

𝜋
(3)
𝑘

(𝑠𝑘 , 𝑠𝑘−1) ≜
{

arg max
𝑎∈A

𝑄𝑘 (𝑠𝑘−1, 𝑎) , 𝑖𝑘 < 𝑖𝑘−1

𝜋
(2)
𝑘

(𝑠𝑘) , 𝑖𝑘 ≥ 𝑖𝑘−1.
(68)

This policy has been introduced in [18] to handle the target loss problem: if, at
the time instant 𝑘 , the radar detects an higher or equal number of targets with
respect to the one detected at time 𝑘 − 1, then the policy in eq. (68) select the new
action according to the quasi Y-greedy policy in eq. (67). On the contrary, if the
number of detected targets at time 𝑘 is smaller than the one at the previous time
instant 𝑘 − 1, the algorithm tries to recover them as soon as possible by choosing
the greedy action associated to the state at the previous time instant 𝑠𝑘−1.

It is worth stressing here that the two proposed policies are tailored on the
specific non-stationary, radar detection problem at hand. Consequently, no general
performance improvement can be claimed for scenarios different from this one.
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4.4.2 Adaptive selection of the SARSA hyper-parameters

The setting of the hyper-parameter of a learning algorithm is a critical step in the
implementation of a learning algorithm. Despite its direct impact on the overall
system performance, this setting is generally made heuristically by the practitioner
starting from some previous knowledge of the problem at hand. In non-standard
environment, their setting is even more problematic due to the fact that, when the
dynamics of environment changes, the original parameter selection is no longer
“valid”.

The problems related to the choice of the hyper-parameter 𝜺 and 𝜶 of the SARSA
algorithm for our radar detection problem at hand has been discussed first in [1].
Therefore, in [18], a fully adaptive and data-dependent algorithm able to automat-
ically select both 𝜺 and 𝜶 in the SARSA algorithm has been proposed and its ef-
fectiveness proven through extensive numerical simulation. This adaptive algorithm
can be summarized as follows.

Let 𝑟𝑘 be the reward in eq. (66) at time instant 𝑘 . Let us define the sequence
{𝑑𝑘 , ∀𝑘} of real numbers defined as:

𝑑𝑘 ≜

{
𝑟1 , 𝑘 = 1
𝑟𝑘 − 𝑟𝑘−1 , 𝑘 ≠ 1

. (69)

Then, the hyper-parameters and the time instant 𝑘 + 1, i.e. Y𝑘+1 and 𝛼𝑘+1, can be
obtained according to the following strategy:

𝑥𝑘+1 =


max{𝑐1 · 𝑥𝑘 , 𝑥𝑚𝑖𝑛}, |𝑑𝑘 | < [1

min{𝑐2 · 𝑥𝑘 , 𝑥𝑚𝑎𝑥}, [1 < |𝑑𝑘 | < [2

𝑥𝑚𝑎𝑥 , |𝑑𝑘 | > [2

(70)

where 𝑥𝑘 corresponds to Y𝑘 or 𝛼𝑘 , 𝑐1 ∈ (0, 1) and 𝑐2 ∈ (1, +∞). The initial value
of 𝑥 is set to 𝑥0 = 𝑥𝑚𝑎𝑥 . The values 𝑐1, 𝑐2, [1 and [2 are constants, and depend on
which parameter (i.e. Y𝑘 or 𝛼𝑘) we are considering. Table 1 lists all their values. Note
that 𝑥𝑘+1 is not updated if the SARSA algorithm was in exploration mode in the two
previous time instants, i.e. 𝑘 − 1 and 𝑘 . This choice is motivated by the following
observation. If the SARSA algorithm selects a random action (possibly far from
the greedy one) at time instant 𝑘 , the reward 𝑟𝑘+1 may drop due to some (possibly
multiple) miss-detection causing |𝑑𝑘+1 | = |𝑟𝑘+1 − 𝑟𝑘 | to surpass [1 even though the
scenario has not changed. If the algorithm then chooses the correct action at time
𝑘 + 1, the reward 𝑟𝑘+2 rises back to a value around 𝑟𝑘 , but |𝑑𝑘+2 | = |𝑟𝑘+2 − 𝑟𝑘+1 | is
likely to be over [1 due to the low value of 𝑟𝑘+1.

Finally, let us provide some insight behind the choices of the thresholds [1 and
[2. Clearly, their value are linked to the maximum range of variation of the reward
function. Since the one proposed in eq. (66) is basically a linear combination of
probabilities of detection, its values will vary (in absolute value) of something close
to 1 when the radar misses one target or detects a new one. Consequently, a reasonable
choice for [1 is 0.5. On the same line, [2 should be chosen large enough to guarantee
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Table 1: Values to be used for the adaptive selection of Y and 𝛼.

𝑥 𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥 𝑐1 𝑐2 [1 [2

Y 0.1 0.8 0.8 2 0.5 1.8
𝛼 0.2 0.6 0.9 2.5 0.5 1.8

that the value of Y𝑘+1 or 𝛼𝑘+1 is set to its maximum value only when an abrupt
change in the scenario happens (i.e. a new target appears or an old one disappears).
Some numerical analysis have showed that [2 ≥ 1.8 is a good choice.

4.5 Simulation results

In the following, a numerical analysis of the previous theoretical results is presented.
Specifically, we will start by describing the static and dynamic scenarios used in
our simulations. Then, in Sec. 4.5.2, we show that the original policies and the
proposed adaptive selection of the SARSA hyper-parameters lead to a remarkable
performance improvement. Finally, Sec. 4.5.3 is dedicated to the comparison of
the proposed original RL-based beamforming with more classical strategies. As the
simulation results show, the RL-based algorithm is the closest one to the performance
benchmark with respect to the other competing methods.

4.5.1 The scenarios under investigation

Let us start by introducing the parameters that we keep unchanged in all the settings
described below. As in [7, 1], the disturbance vector 𝒄 in eq. (8) is assumed to be
sampled from a complex circular, autoregressive process of order 𝑝 = 6 (AR(6)):

𝑐𝑛 =
∑︁𝑝

𝑖=1
𝜌𝑖𝑐𝑛−𝑖 + 𝑤𝑛, 𝑛 ∈ (−∞, +∞). (71)

The innovations {𝑤𝑛,∀𝑛} are complex 𝑡-distributed, independent and identically
distributed (i.i.d.) random variables whose pdf is by:

𝑓𝑤(𝑤𝑘) =
_

𝜎𝑤𝜋

(
_

[

)_ (
_

[
+ |𝑤𝑘 |2

𝜎2
𝑤

)−(_+1)
(72)

with _ = 2, 𝜎2
𝑤 = 1 and [ = _/(𝜎2

𝑤(_ − 1)). The coefficients of the AR(6)
process are 𝜌1 = 0.5𝑒− 𝑗2𝜋0.4, 𝜌2 = 0.6𝑒− 𝑗2𝜋0.2, 𝜌3 = 0.7, 𝜌4 = 0.4𝑒 𝑗2𝜋0.1,
𝜌5 = 0.5𝑒 𝑗2𝜋0.3 and 𝜌6 = 0.6𝑒 𝑗2𝜋0.35 that lead to a Power Spectral Density (PSD)
𝑆𝑐 (a) ≜ 𝜎2

𝑤

��1 −∑𝑝

𝑛=1 𝜌𝑛𝑒
−j2𝜋𝑛a

��−2 plotted in Fig. 1. Note that, for ULA arrays with
_/2 inter-element spacing, the spatial frequency a is related to the angular grid by
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Fig. 1 Normalized power
spectrum of the noise process.
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a ≜ 1
2 sin(\). While satisfying Assumption 1, this disturbance model is much more

general than the white Gaussian one usually adopted in MIMO radar literature and
it allows us to check the claimed robustness property of the Wald-type test proposed
in Sec. 2.2. The other parameters that are kept constant in all the scenarios are:

• The nominal 𝑃𝐹𝐴 is chosen to be equal to 10−4.
• The number of the transmitting and receiving antennas, respectively 𝑁𝑇 and 𝑁𝑅,

are both equal to 100.
• The angular grid, expressed in terms of spatial frequency a, is selected as

{
a𝑙 =

− 1
2 + 𝑙

𝐿

}𝐿−1
𝑙=0 , where 𝐿 = 20.

• The maximum number of targets is assumed to be 𝐾 = 5.
• The maximum transmitted power is 𝑃𝑚𝑎𝑥 = 1.

We can now proceed with the description of the four considered scenarios consist-
ing of both static and dynamic scenarios. In the dynamic cases the number of targets,
their SNRs and positions can vary over time. Note that each target is completely
determined by its angular bin index (along with its spatial frequency), SNR and time
interval in which it is present in the scenario. All the required information are stored
in Table 2, while a short description of each scenario is provided in the following:

• Scenario 1 contains two static targets.
• Scenario 2 contains a single static target.
• Scenario 3 contains two dynamic targets that move towards and then outwards the

radar. We characterize this dynamics by assuming that their SNR varies linearly
over time during both phases, as shown in Fig. 5a.

• Scenario 4 contains 3 dynamic targets appearing and disappearing: target 1 dis-
appears at time instant 101, target 2 disappears at time instant 301 and target 3
appears at time instant 201, as shown in Table 2.

The interested reader may find the whole code that we implement to carry
out the proposed simulative analysis here: https://github.com/lisifra96/
Improved_RL_algorithm_mMIMO_radar.
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Table 2: Target scenarios.

Scenario
Time

Target
Angular

a 𝑆𝑁𝑅𝑑𝐵

Interval Bin

1 5 -0.30 -22
1 [1,300]

2 17 0.30 -19

2 [1,100] 1 17 0.30 -20

1 7 -0.20 variable
3 [1,200]

2 15 0.20 (Inset Fig.5a)

4

[1,100]
1 4 -0.35 -18

2 12 0.05 -19

[101,200] 2 12 0.05 -19

[201,300]
2 12 0.05 -19

3 18 0.35 -22

[301,400] 3 18 0.35 -22

4.5.2 Validation of the new policy with adaptive hyper-parameters selection

At first, we provide a numerical validation of the original policies, proposed in Sec.
4.4.1, and of the strategy, proposed in Sec. 4.4.2, to select adaptively the SARSA
hyper-parameters 𝛼 and Y. Let us start by comparing in terms of probability of
detection (𝑃𝐷) the “standard” Y-greedy policy with the two original quasi Y-greedy
policy in eq. (67) and quasi Y-greedy policy with target recovery in eq. (68). The
comparison is reported in Fig. 2 in terms of probability of detection (𝑃𝐷) evaluated
for the two static targets of the Scenario 1. Since the results are similar, here we
show only the results for target 2 (see Table 2). As we can clearly see, both the
quasi Y-greedy policy and quasi Y-greedy policy with target recovery outperform the
“standard” Y-greedy one. Specifically, the quasi Y-greedy policy with target recovery
has the best performances among the three policies.

Let us now move on with the validation of the adaptive selection strategy of the
SARSA hyper-parameters. To this end, for the analysis of the 𝜖 parameter we consider
the Scenario 1 with two static targets. In Fig. 3, we compare the 𝑃𝐷 of the adaptive Y
algorithm with the two “non-adaptive” cases with Y = Y𝑚𝑖𝑛 (the exploitation phase
is dominant) and Y = Y𝑚𝑎𝑥 (the exploration phase is dominant). The parameter 𝛼 is
kept constant and equal to 0.5. In Fig. 4, we do a similar analysis for the adaptive
selection of 𝛼 by keeping Y constant and equal to 0.5. The adopted set-up is the
Scenario 2, where a single static target is present. As the simulation results show, the
adaptive strategy has the remarkable ability to combine the positive effects of both
exploration phase (characterized by high values of Y and 𝛼) and of the exploitation
phase (low values of Y and 𝛼). In fact, in the initial transition phase, when the system
has to gather information about the surrounding environment the adaptive strategy
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Fig. 2 Policy comparison:
𝑃𝐷 of target 2 (Scenario 1).
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Fig. 3 Adaptive vs static Y:
𝑃𝐷 of target 2 (Scenario 1).
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Fig. 4 Adaptive vs static 𝛼:
𝑃𝐷 of target 1 (Scenario 2).
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selects high values of Y and 𝛼. Then, their values are gradually reduced in order to
fully exploit the acquired knowledge of the environment and maximize the 𝑃𝐷 .
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4.5.3 Performance comparison: the learning gain

This last subsection is dedicated to the comparison of the RL-based detection algo-
rithm described in Sec. 4 with two “non RL-based”algorithms and a performance
benchmark. For the RL-algorithm, we use the SARSA learning strategy with the
following setting:

• 𝛾 = 0.8 as in [1].
• Quasi Y-greedy policy with target recovery in eq. (68).
• Adaptive selection of 𝛼 and 𝜖 according to eq. (70).

In order to highlight the performance gain that the learning can bring into the
MMMIO radar detection problem, we compare the proposed RL-based algorithm
with two non RL algorithms:

• Orthogonal waveform selection: The radar/agent chooses the orthogonal beam-
former at each iteration, i.e.

𝑾𝑘 = 𝑾𝑜𝑟𝑡 . (73)

This choice is clearly the easiest to implement since it doesn’t require any kind of
memory. On the other hand the system doesn’t take advantage of its high focusing
capability to improve its performance.

• Non RL (NRL) beamforming: The NRL algorithm exploits the information
gathered from the decision statistic to focus the transmitted power. The 𝑾 matrix
is the solution of the optimization problem in (61) with the set Ω𝑘

Ω𝑘 ≜

{
∅ , if 𝑖𝑘 = 0{
𝑙
(𝑛)
𝑘

}𝑖𝑘
𝑛=1 , if 𝑖𝑘 ≠ 0

. (74)

No state-action-reward cycle is adopted here. The beamforming depends only on
the values of the test statistics.

As upper bound to the maximum achievable detection performance we use a
clairvoyant beamforming that select the 𝑾 matrix as the solution of the optimisation
problem in eq. (61), with Ω𝑘 being the set containing the angular bins corresponding
to the exact position of the targets.

The above-mentioned algorithms are compared by using the Scenarios 3 and 4. As
previously said, Scenario 3 contains two targets characterized by a constant angular
position but with a SNR that varies linearly over time, as shown in Fig. 5a. The 𝑃𝐷
reached by the orthogonal, NRL and RL beamforming algorithms are compared with
the performance benchmark in Fig. 5 for the two targets. It is immediate to verify
that the RL-beamformer outperforms the orthogonal and the NRL ones and it is not
that far from the (unachievable) upper bound. This proves the effectiveness of the
proposed learning strategy in collecting information from the environment and to
use them to maximize the 𝑃𝐷 . This learning gain also explains the delay in the decay
of the 𝑃𝐷 (that starts at around 𝑘 = 110) with respect to the decrease of the targets
SNR (that begins at 𝑘 = 100). The system in fact exploits the acquired information
stored in the 𝑄 matrix to contrast the SNR drop.
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Fig. 5: Probability of detection of the two targets in scenario 3. The inset figure in
(a) shows the SNR of both targets expressed in dB.

Finally, let us investigate how the three beamforming algorithms react to a dynamic
environment as the one in Scenario 4, where the three considered targets appear and
disappear over time. Fig. 6 shows the evolution of the 𝑃𝐷 for each target over time.
The figures can be easily understood by comparing the progress of the 𝑃𝐷 curves with
the targets dynamics given in Table 2. In particular, this result highlight the ability
of the RL-algorithm to better adapt itself to abrupt changes in the environment. This
desirable “adaptivity property” has its roots in the SARSA learning strategy and in
the proposed adaptive hyper-parameters selection. In fact, if we compare the targets
dynamics in Table 2 (Scenario 4) with the temporal evolution of 𝛼𝑘 plotted in Fig.
7, it is immediate to verify that the selection strategy in eq. (70) is perfectly able to
detect the abrupt changes and to update the parameters accordingly.

5 Conclusions

In this chapter, we studied the problem of multi-target detection for a MMIMO
radar. A hybrid approach combining RL and a robust Wald-type detector has been
proposed to solve this problem through cognitively optimizing the transmitted wave-
form without any prior knowledge of the surrounding environment. Such approach
can be exploitable within a non-cooperative ISAC framework, where both systems
cause possible unknown interference/disturbance on each other while sharing the
same resources. This kind of disturbance can lead to a degradation of the sensing
performance due to the low power of the reflected signals from the targets. In addi-
tion, further challenges arise if the environment is time varying. In our simulations,
the proposed approach was capable of detecting multiple targets with high 𝑃𝐷 while
maintaining the CFAR property in both static and time varying scenarios even if the
target SNR is low or the disturbance is strong. Furthermore, the proposed simulative
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Fig. 6: Probability of detection of the three targets in scenario 4.

Fig. 7 Temporal evolution of
𝛼𝑘 in scenario 4.
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analysis showed the capability of self-adaptation of the algorithm to abrupt changes
in the environment. Benefiting from the waveform diversity and large DoFs of the
Massive MIMO radar, the proposed system could be also used for dual functional
MIMO radar-communication in the more complex scenario in which the two systems
cooperate. In this case, the transmit covariance matrix could be optimized in order to
satisfy both radar and communication constraints, and to create a beam, among the
others, dedicated to communication purposes. This is an interesting area of ongoing
and future research under the ISAC framework.
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