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Distribution-free mixed GWMA-CUSUM and CUSUM-GWMA Mann-Whitney charts 

to monitor unknown shifts in the process location 

 

K. Mabude1, J.-C. Malela-Majika1, P. Castagliola2 and S.C. Shongwe1* 

 

Abstract 

The Mann-Whitney (MW) test is one of the most important nonparametric tests used in the 

comparison of the location parameters of two populations. Unlike the t-test, the MW test can 

be used when the assumption of normality fails to hold. In this paper, the MW U statistic is 

used to construct two efficient distribution-free monitoring schemes, namely the mixed 

generally weighted moving average-cumulative sum (GWMA-CUSUM) MW U scheme 

(denoted as U-MGC) as well as its reversed version, i.e. the CUSUM-GWMA MW U scheme 

(denoted as U-MCG). The performances of the proposed schemes are investigated using the 

average run-length (ARL) and average extra quadratic loss (AEQL) values through extensive 

simulations. The newly proposed charts are found to be superior in small shifts detection than 

their competing (existing and others that are briefly introduced here) distribution-free 

Shewhart, EWMA, CUSUM, mixed EWMA-CUSUM, mixed CUSUM-EWMA and GWMA 

MW U charts in many situations. A real-life example is used to demonstrate the design and 

implementation of the new schemes. 

 

Keywords: Asymptotic control limits; Distribution-free; Exact control limits; Mann-Whitney 

U statistic; Mixed GWMA-CUSUM scheme; Mixed CUSUM-GWMA scheme; Phase I; Phase 

II. 

 

1. Introduction 

Shewhart control charts (or monitoring schemes) are well-known and appreciated because of 

their simplicity and quick detection of large shifts in the process parameters. However, they 

are relatively slow in detecting small and moderate shifts in the process. To solve this problem, 

alternative monitoring schemes such as the cumulative sum (CUSUM) and the exponentially 

weighted moving average (EWMA) are recommended (see Page, 1954; Roberts, 1959). The 

CUSUM and EWMA monitoring schemes are efficient in detecting small shifts in the process 

parameters. Many authors have contributed to the improvement of these monitoring schemes; 

see for example, Lucas (1982), Shamma and Shamma (1992), Abbas et al. (2013) and Zaman 

et al. (2015). Lucas (1982) proposed a composite Shewhart-CUSUM (CSCUSUM) monitoring 

scheme that combines the strengths of both Shewhart and CUSUM schemes. To improve the 

sensitivity of the EWMA scheme toward large shifts, Lucas and Saccucci (1990) designed a 
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composite Shewhart-EWMA (CSEWMA) monitoring scheme. The Lucas (1982)’s and Lucas 

and Saccucci (1990)’s schemes were observed to perform better for both small and large mean 

shifts. Capizzi and Masarotto (2010) developed a CSEWMA scheme when the process 

parameters are estimated. Shamma and Shamma (1992) extended the EWMA monitoring 

scheme to a double EWMA (DEWMA) scheme. Zhang and Chen (2005) compared the zero-

state performance of the EWMA and DEWMA schemes designed using the same smoothing 

parameters. Mahmoud and Woodall (2010) compared the performance of the EWMA and 

DEWMA schemes in terms of the zero-state and worst-case average run-length (ARL).  

In order to increase the sensitivity of the EWMA and CUSUM schemes in detecting small 

shifts in the process mean, Abbas et al. (2013) proposed a mixed EWMA-CUSUM (denoted 

as MEC) scheme which is a combination of the EWMA and CUSUM schemes where the 

CUSUM statistic is used as input in the EWMA scheme. Later on, Zaman et al. (2015) 

developed the reversed version of Abbas et al. (2013)’s scheme, the mixed CUSUM-EWMA 

(denoted as MCE) scheme where the EWMA statistic is used as input in the CUSUM scheme. 

They showed that the MEC and MCE schemes outperform the CUSUM and EWMA 

monitoring schemes in detecting small shifts. Moreover, Osei-Aning et al. (2017) confirmed 

Abbas et al. (2013)’s and Zaman et al. (2015)’s findings using autocorrelated observations for 

a first order autoregressive process, respectively. Abbasi et al. (2018) also proposed a 

nonparametric MEC scheme based on the arc sign transformation to efficiently detect moderate 

to large shifts. Malela-Majika and Rapoo (2017) proposed the MCE and MEC monitoring 

schemes based on the Wilcoxon rank-sum statistic (WRS), denoted as W-MCE and W-MEC 

schemes, for monitoring the process location. To improve the performance of the EWMA 

monitoring scheme, Sheu and Lin (2003) proposed an extension of the EWMA scheme called 

the generally weighted moving average (GWMA) monitoring scheme and showed that the 

GWMA scheme performs better than the EWMA scheme in detecting small shifts in the 

process mean. Mabude et al. (2020) proposed the GWMA scheme based on the WRS and 

showed that the GWMA WRS scheme outperforms the EWMA WRS scheme by Li et al. 

(2010) in many situations.  

In an effort to increase the detection ability of the parametric GWMA and CUSUM schemes 

in monitoring small shifts, Lu (2017) proposed the mixed GWMA-CUSUM scheme and its 

reversed version, i.e. CUSUM-GWMA scheme for individual observations. Lu (2017) and Ali 

and Haq (2018a) were the first to propose the GWMA-CUSUM monitoring scheme for 

monitoring samples of size 𝑛 ≥ 1 (including the case of individual observations). However, Lu 

(2017) is the first to introduce the CUSUM-GWMA scheme for individual observations. Next, 



Ali and Haq (2018b) designed GWMA-CUSUM schemes for monitoring the process 

dispersion for subgroup observations. They showed that the GWMA-CUSUM schemes 

outperform the CUSUM, EWMA and EWMA-CUSUM in detecting very small shifts. More 

recently, Huang et al. (2020) studied the GWMA-CUSUM scheme and its reversed version for 

individual observations. It should be noted that the use of control charts for individual 

observations (instead of sub-grouped observations) is a common situation in industrial 

applications as soon as the cost in sampling and/or inspection is high, or if the sampling itself 

implies a destructive testing. The aforementioned GWMA-CUSUM and CUSUM-GWMA 

monitoring schemes are parametric ones since they are designed under the assumption of 

normality or under a specific distribution. When the underlying process distribution departs 

from normality or when it is different from the specified distribution, the performance of 

parametric schemes under both small and large shifts is known to degrade considerably. To 

overcome this problem, nonparametric test statistics can be used to design robust and more 

efficient monitoring schemes. For some recent contributions on nonparametric monitoring 

schemes, see Chen et al. (2020), Shongwe (2020), Wu et al. (2020), Chong et al. (2020), 

Malela-Majika (2020), Song et al. (2020), Alevizakos et al. (2020), Aslam et al. (2020), Shafqat 

et al. (2020) and finally, the chapter-contributed book edited by Koutras and Triantafyllou 

(2020). 

So far, mixed GWMA-CUSUM and CUSUM-GWMA monitoring schemes designed for any 

kind of continuous distributions (and not only limited to the normal distribution) are currently 

unavailable in statistical process monitoring (SPM) literature. Therefore, the design of robust 

monitoring schemes that are able to monitor various types of quality processes without any 

distributional assumption are very important and needed in the SPM literature. Because the 

MW test is one of the most powerful nonparametric tests, in this paper, we develop the mixed 

GWMA-CUSUM (MGC) monitoring scheme and its reversed version, i.e. the mixed CUSUM-

GWMA (MCG) monitoring scheme based on the MW U statistic. These schemes are denoted 

as U-MGC and U-MCG schemes, respectively.  

The rest of this paper is organised as follows: in Section 2, we present the characteristics of the 

proposed monitoring schemes using the MW U statistic. Section 3 investigates the in-control 

(IC) and out-of-control (OOC) run-length profiles as well as the effect of the Phase I and/or 

Phase II sample size on the performance of the proposed schemes. Moreover, the proposed 

schemes are compared to some well-known monitoring schemes under various distributions. 

An illustrative example is given in Section 4 to demonstrate the application of the proposed 

schemes. A summary and recommendations are provided in Section 5. 



  

2. Design of the proposed control charts 

2.1 The MW 𝐔 statistic 

Assume that 𝑋 ={𝑥𝑖, i = 1, 2, 3, …, 𝑚} represents the IC Phase I (or reference) sample with 

unknown continuous cumulative density function (c.d.f.) 𝐹𝑋(𝑥) and 𝑌 ={𝑦𝑡𝑗 , 𝑗 = 1, 2, …, 

𝑛; 𝑡 =1, 2, 3, …} represents the Phase II (or test) sample with c.d.f. 𝐹𝑌(𝑦). The test samples at 

time 𝑡 (𝑡 = 1, 2, 3, …) are assumed to be independent and identically distributed (i.i.d.), from 

each other and, from the reference sample. Let us assume that 𝐹𝑌(𝑦) = 𝐹𝑋(𝑦 − 𝛿), where 𝛿 is 

the shift in the location. The process is considered as IC if 𝛿 = 0, i.e. if 𝐹𝑌(𝑦) = 𝐹𝑋(𝑦). 

The MW U statistic at time 𝑡 = 1, 2, 3, … (denoted as 𝑈𝑡 statistic) represents the total number 

of pairs (𝑥𝑖, 𝑦𝑡𝑗) for which the 𝑦𝑡𝑗 (Phase II sample) are strictly greater than the 𝑥𝑖 (Phase I 

sample), i.e. 

𝑈𝑡 = ∑ ∑ 𝐼(𝑑𝑡𝑖𝑗),

𝑛

𝑗=1

𝑚

𝑖=1

 (1) 

where 𝑡 = 1, 2, 3, … and 𝐼(𝑑𝑡𝑖𝑗) is an indicator function defined as follows: 

  𝑑𝑡𝑖𝑗 =   𝑦𝑡𝑗 − 𝑥𝑖 (2) 

and  

𝐼(𝑑𝑡𝑖𝑗) = {
1   if   𝑑𝑡𝑖𝑗 > 0

0   if   𝑑𝑡𝑖𝑗 ≤ 0
. (3) 

Note that there are 𝑚𝑛 pairs of (𝑥𝑖, 𝑦𝑡𝑗) for each Phase II sample; therefore, 0 ≤ 𝑈𝑡 ≤ 𝑚𝑛. For 

the two most extreme orderings every 𝑥𝑖 precedes every 𝑦𝑡𝑗 (so that 𝑈𝑡 = 0) and every 𝑦𝑡𝑗 

precedes every 𝑥𝑖 (so that 𝑈𝑡 = 𝑚𝑛), respectively. Assuming that no tie is observed, the mean 

𝜇𝑈𝑡
 and variance 𝜎𝑈𝑡

2  of the statistic 𝑈𝑡 are known to be 

𝜇𝑈𝑡
=

𝑚𝑛

2
  

and (4) 

𝜎𝑈𝑡

2 =
𝑚𝑛(𝑚 + 𝑛 + 1)

12
,  

respectively. To keep the notations simple, in the rest of the manuscript 𝜇𝑈𝑡
 and 𝜎𝑈𝑡

2  will be 

denoted as 𝜇𝑈 and 𝜎𝑈
2, respectively. For more details on the MW monitoring scheme, readers 

are referred to Chakraborti and Van de Wiel (2008) and Malela-Majika et al (2016). 

2.2 The CUSUM MW U scheme 



Page (1954) introduced the CUSUM monitoring scheme for a quick detection of small and 

moderate shifts in the process mean. The plotting statistics of this chart consider an equal 

weighted combination of the current and past observations. In this section, we introduce a 

similar plotting statistic using the MW U statistic. Thus, the plotting statistics of the CUSUM 

chart based on the MW U statistic are given by  

𝐶𝑡
+ = max [0, (𝑈𝑡 − 𝜇𝑈 − 𝐾𝐶) + 𝐶𝑡−1

+ ] 

and                                                 (5) 

𝐶𝑡
− = max [0, (𝜇𝑈 − 𝐾𝐶 − 𝑈𝑡) + 𝐶𝑡−1

− ] 

for 𝑡 = 1, 2,3, …, where 𝐾𝐶 = 𝑘𝐶𝜎𝑈 is the reference parameter (or coefficient) of the CUSUM 

chart. The starting values 𝐶0
+ and 𝐶0

− are typically initialized to zero. The charting statistics are 

plotted against the upper control limit 𝐻𝐶 > 0, with 𝐻𝐶 = ℎ𝐶𝜎𝑈, where ℎ𝐶 > 0 is the control 

limit coefficient of the CUSUM scheme. The process is considered to be OOC if the charting 

statistic (i.e. 𝐶𝑡
+ or 𝐶𝑡

−) falls on or above the control limit 𝐻𝐶 for any value of 𝑡, that is 𝐶𝑡
+ ≥

𝐻𝐶 (or 𝐶𝑡
− ≥ 𝐻𝐶), otherwise, the process is considered to be IC. Note that in this paper, the 

CUSUM monitoring scheme using the MW U statistic is denoted as U-CUSUM chart. 

2.3 The GWMA MW U scheme 

Following Sheu and Lin (2003)’s idea, the charting statistics of the U-GWMA scheme, denoted 

as 𝐺𝑡, is given by 

𝐺𝑡 = ∑(𝑞(𝑖−1)𝛼
− 𝑞𝑖𝛼

)𝑈𝑡−𝑖+1

𝑡

𝑖=1

+ 𝑞𝑡𝛼
𝑈0, 𝑡 = 1, 2, 3, … (6) 

where 𝑞 ∈ [0, 1) and 𝛼 > 0 are two parameters to be fixed. The starting value of the U statistic 

at t = 0 is considered to be equal to 𝜇𝑈 (i.e. 𝑈0 = 𝜇𝑈). For more details on the GWMA plotting 

statistic, readers are referred to Sheu and Lin (2003). 

In particular, the expected value of (6) is given by  

𝐸(𝐺𝑡) = 𝜇𝐺𝑡
= 𝐸 [∑(𝑞(𝑖−1)𝛼

− 𝑞𝑖𝛼
)𝑈𝑡−𝑖+1

𝑡

𝑖=1

+ 𝑞𝑡𝛼
𝜇𝑈] = 𝜇𝑈, (7) 

and the variance of (6) is then defined by  

𝑉𝑎𝑟(𝐺𝑡) = 𝜎𝐺𝑡

2 = 𝜎𝑈
2𝑄𝑡, (8) 

where 

𝑄𝑡 = ∑(𝑞(𝑖−1)𝛼
− 𝑞𝑖𝛼

)
2

𝑡

𝑖=1

. 



Therefore, the time varying control limits of the U-GWMA monitoring scheme can be 

calculated as 

𝑈𝐶𝐿𝐺𝑡
 / 𝐿𝐶𝐿𝐺𝑡

= 𝜇𝐺𝑡
± 𝐿𝜎𝑈√𝑄𝑡 (9) 

where 𝐿 (𝐿 > 0) is the coefficient representing the distance from the center line to the control 

limits. This coefficient is used to fix the predefined nominal IC 𝐴𝑅𝐿 (𝐴𝑅𝐿0) value. 

Note that when 𝛼 = 1, it can be shown that 

𝑉𝑎𝑟(𝐺𝑡) = 𝜎𝐺𝑡

2 = (1 − 𝑞)
1 − 𝑞2𝑡

1 + 𝑞
𝜎𝑈

2. (10) 

Therefore, when the process has been running for a long time, that is, when 𝑡 → ∞, the variance 

of the U-GWMA scheme is given by 

𝑉𝑎𝑟(𝐺𝑡) = 𝜎𝐺
2 = 𝑚𝑛 (

𝑚 + 𝑛 + 1

12
) (

1 − 𝑞

1 + 𝑞
). (11) 

In Equation (11), when 1 − 𝑞 = 𝜆 (i.e., 𝑞 = 1 − 𝜆), the U-GWMA scheme is equivalent to the 

U-EWMA monitoring scheme. The U-GWMA scheme gives a signal at the sampling time t if 

the U-GWMA scheme plotting statistic, 𝐺𝑡, plots outside of the control limits defined in 

Equation (9). 

2.4 Design of the mixed GWMA-CUSUM MW U monitoring scheme 

The U-MGC scheme is constructed by combining the GWMA and CUSUM charts using the 

MW U statistic. That is, the charting statistic of the U-GWMA scheme in Equation (6) is used 

as input of the charting statistics of the U-CUSUM scheme in Equation (5). Hence, at the 

sampling time t, the charting statistics of the proposed U-MGC monitoring scheme (denoted 

as 𝑀𝐺𝐶𝑈𝑡

+  and 𝑀𝐺𝐶𝑈𝑡

− ) are then defined by  

𝑀𝐺𝐶𝑈𝑡

+ = max [0, (𝐺𝑡 − 𝜇𝑈 − 𝐾𝑡) + 𝑀𝐺𝐶𝑈𝑡−1

+ ] 

and                                                 (12) 

𝑀𝐺𝐶𝑈𝑡

− = max [0, (𝜇𝑈 − 𝐾𝑡 − 𝐺𝑡) + 𝑀𝐺𝐶𝑈𝑡−1

− ] 

where 𝐾𝑡 is a time-varying reference value. The starting values 𝑀𝐺𝐶𝑈0

+  and 𝑀𝐺𝐶𝑈0

−  are typically 

taken to be equal to 0 and 𝐾𝑡 is given by 

𝐾𝑡 = 𝑘 (𝑉𝑎𝑟(𝐺𝑡))
1
2 = 𝑘 𝜎𝑈√𝑄𝑡, (13) 

where 𝑘 is the reference parameter (or coefficient) of the GWMA scheme. 

When 𝛼 = 1, Equation (13) simplifies to 

𝐾𝑡 = 𝑘𝜎𝑈 ((1 − 𝑞)
1 − 𝑞2𝑡

1 + 𝑞
)

1
2

. (14) 



Therefore, the exact (or time varying) upper control limit (i.e. Case E) is given by 

𝐻𝑡 = ℎ(𝑉𝑎𝑟(𝐺𝑡))
1
2 = ℎ 𝜎𝑈√𝑄𝑡, (15) 

where ℎ > 0 is the control limit coefficient used to fix the predefined nominal IC 𝐴𝑅𝐿0. 

When 𝛼 = 1, as 𝑡 → ∞, the exact and asymptotic (i.e. Case E and Case A) upper control limits 

of the proposed U-MGC scheme are given by 

𝐻𝑡 = ℎ𝜎𝑈 ((1 − 𝑞)
1 − 𝑞2𝑡

1 + 𝑞
)

1
2

 (16) 

and  

𝐻 = ℎ𝜎𝑈 (
1 − 𝑞

1 + 𝑞
)

1
2

, (17) 

respectively. The charting statistic of the U-MGC scheme are plotted against the upper control 

limit 𝐻𝑡 > 0 (or 𝐻 > 0) in Case E (or Case A) and the process is said to be OOC if the charting 

statistic 𝑀𝐺𝐶𝑈𝑡
 (i.e. 𝑀𝐺𝐶𝑈𝑡

+  or 𝑀𝐺𝐶𝑈𝑡

− ) falls on or above the upper control limit for any value 

of 𝑡, that is, 𝑀𝐺𝐶𝑈𝑡
≥ 𝐻𝑡 (or 𝑀𝐺𝐶𝑈𝑡

≥ 𝐻). 

2.5 Design of the mixed CUSUM-GWMA MW U chart 

Unlike the U-MGC chart presented in the previous sub-section, the U-MCG chart is 

constructed by combining the CUSUM and GWMA charts using the MW U statistic. That is, 

the charting statistic of the U-CUSUM chart in Equation (5) is used as input of the charting 

statistic of the U-GWMA chart in Equation (6). Hence, the two charting statistics of the 

proposed U-MCG chart are defined by 

𝑀𝐶𝐺𝑈𝑡

+ = ∑(𝑞(𝑖−1)𝛼
− 𝑞𝑖𝛼

) 𝐶𝑡−𝑖+1
+

𝑡

𝑖=1

+ 𝑞𝑡𝛼
𝑀𝐶𝐺𝑈0

+ , 𝑡 = 1, 2, 3, … 

 

and (18) 

𝑀𝐶𝐺𝑈𝑡

− = ∑(𝑞(𝑖−1)𝛼
− 𝑞𝑖𝛼

) 𝐶𝑡−𝑖+1
−

𝑡

𝑖=1

+ 𝑞𝑡𝛼
𝑀𝐶𝐺𝑈0

− , 𝑡 = 1, 2, 3, … 

 

where the initial (or starting) values of 𝑀𝐶𝐺𝑈𝑡

+  and 𝑀𝐶𝐺𝑈𝑡

−  charting statistics are equal to 𝜇𝑈 as 

defined in Equation (7), respectively; that is, 𝑀𝐶𝐺𝑈0

+ = 𝑀𝐶𝐺𝑈0

− = 𝜇𝐶𝑡
. The mean and variance 

of the 𝑀𝐶𝐺𝑈𝑡

+  and 𝑀𝐶𝐺𝑈𝑡

−  charting statistics are given by 

𝐸(𝑀𝐶𝐺𝑈𝑡

+ ) = 𝐸(𝑀𝐶𝐺𝑈𝑡

− ) = 𝜇𝐶𝑡
  

and (19) 

𝑉𝑎𝑟(𝑀𝐶𝐺𝑈𝑡

+ ) = 𝑉𝑎𝑟(𝑀𝐶𝐺𝑈𝑡

− ) = 𝑄𝑡𝜎𝐶𝑡

2 .  



The control limits of the proposed U-MCG chart are 

𝑈𝐶𝐿/𝐿𝐶𝐿 = 𝜇𝐶𝑡
± 𝐿 ∙ 𝜎𝐶𝑡

√𝑄𝑡, (20) 

where 𝐿 is the width coefficient and 𝜇𝐶𝑡
 and 𝜎𝐶𝑡

 are the time-varying mean and variance of the 

charting statistics of the U-CUSUM scheme in the IC situation up to specific time 𝑡 and when 

𝑡 → ∞, they both become constant. 

The U-MCG chart is constructed by plotting the charting statistics 𝑀𝐶𝐺𝑈𝑡

+  and 𝑀𝐶𝐺𝑈𝑡

−  against 

the sample number or sampling time 𝑡. The process is said to be OOC if the charting statistic 

𝑀𝐶𝐺𝑈𝑡
 (i.e. 𝑀𝐶𝐺𝑈𝑡

+  or 𝑀𝐶𝐺𝑈𝑡

− ) falls beyond the control limits defined in Equation (20), that is, 

for any value of 𝑡, 𝑀𝐶𝐺𝑈𝑡
≥ 𝑈𝐶𝐿 (or 𝑀𝐶𝐺𝑈𝑡

≤ 𝐿𝐶𝐿). 

 

3. Performance study of the proposed control charts 

3.1 Performance measures 

The performance of a monitoring scheme for specific shifts in the process parameter is usually 

measured using the average run-length (ARL) values. The ARL is defined as the number of 

rational subgroups to be plotted before the control chart signals for the first time. In practice, 

to avoid many false alarms, one must ensure that when the process is IC (i.e. 𝛿 = 0, where 𝛿 is 

the shift in the location as defined in sub-section 2.1), the IC ARL (denoted as 𝐴𝑅𝐿0) value is 

set to be equal (or close) to some high desired values such as 370 and 500. When the process 

is OOC (i.e. 𝛿 ≠ 0), small OOC ARL (𝐴𝑅𝐿1) values reveal that the chart performs better for 

that specific shifts. When the actual shift delta is unknown and the only available information 

is an interval [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥] in which this shift is likely to occur, the literature recommends the 

use of some overall performance measure (see for example, Ou et al. (2012), Sanusi et al. 

(2017) and Malela-Majika and Rapoo (2017)) like, for instance, the average extra quadratic 

loss (AEQL) defined as 

𝐴𝐸𝑄𝐿 =
1

∆
∑ 𝛿2 × 𝐴𝑅𝐿(𝛿),

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

 (21) 

where ∆ is the number of increment between 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥. The AEQL metric is 

recommended when the magnitude of the shift is more important (i.e. the quality practitioner 

is interested in shifts according to their magnitude). When comparing several schemes or sets 

of parameters, the one that yields the minimum AEQL value is considered to be the best. In 

other words, the smaller the AEQL value, the more efficient the chart is in detecting shifts in 

the process parameter.  



3.2 Performance analysis 

3.2.1 Determination of the optimal design parameters 

A short description on how the optimal values are obtained for the control limits coefficients 

(i.e. h and L) of the U-MGC and U-MCG schemes that are used to fix a specified nominal 𝐴𝑅𝐿0 

value are provided in this section. In this paper, h and L are determined as follows: (i) the values 

of h (or L) that yield attained 𝐴𝑅𝐿0 values as close as possible to the nominal 𝐴𝑅𝐿0 value of 

500 are computed using the N(0,1) distribution for Cases A and E; (ii) the OOC ARLs and the 

corresponding AEQL values are computed separately for Case A and for Case E. The h (or L) 

that provides the minimum value of the AEQL is considered to be the optimal design parameter. 

This is also checked under other probability distributions to make sure that the attained 𝐴𝑅𝐿0 

remains closer to the nominal value of 500. 

3.2.2 IC design and robustness of the proposed MCG and MGC monitoring schemes 

The IC robustness is one of the most important keys in the design and implementation of 

monitoring schemes. If the IC characteristics of a monitoring scheme, such as the IC average 

and median of the run-length (𝐴𝑅𝐿0, 𝑀𝑅𝐿0, etc.) are the same (or almost the same) across all 

continuous distributions, the scheme under consideration is said to be IC robust. To 

demonstrate the IC robustness of the proposed monitoring schemes, a Monte Carlo simulation 

was conducted to compute the IC characteristics of the proposed monitoring schemes for some 

symmetrical and skewed distributions. The following distributions are considered in this paper: 

(i) Standard normal distribution, denoted as N(0,1), to study the effect of symmetrical 

distributions, 

(ii) Gamma distribution with the parameter 𝜔 = 3 and 𝛽 = 1, denoted as GAM(3, 1), to  

study the effect of skewed distributions, 

(iii) Student’s t distribution with degrees of freedom 𝜈 = 3, denoted as t(3), to study the 

effect of heavy-tailed distributions. 

The above distributions have been transformed to have a unit variance and a mean equal to 0 

for a fair comparison of the U-MGC and U-MCG schemes under different probability 

distributions. 



Table 1: Attained 𝐴𝑅𝐿0 values and optimal parameters of the U-MGC and U-MCG monitoring schemes for a nominal 𝐴𝑅𝐿0 of 500 when 𝑘 ∈ {0.1, 0.5}, 𝛼 = 1, 𝑞 ∈ 

{0.1,0.2,…,0.8} and (m, n) = (100, 5) under different distributions 

Case Chart 𝑘 Distribution 
𝒒 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

C
a

se
 A

 

U
-M

G
C

 0.1 

N(0,1) 501.55 500.72 499.73 500.30 502.68 502.41 498.77 499.59 

GAM(3,1) 511.05 509.61 513.42 509.46 509.23 487.33 513.24 501.54 

t(3) 502.30 493.47 501.25 510.11 503.47 499.40 507.82 512.64 

𝒉 22.868 26.719 31.367 36.684 44.589 55.194 69.497 94.289 

0.5 

N(0,1) 500.56 499.18 500.24 505.73 500.55 499.81 501.76 506.84 

GAM(3,1) 498.77 507.06 513.54 501.47 508.26 500.06 510.11 509.55 

t(3) 509.34 496.44 504.00 498.99 503.21 502.01 504.20 501.49 

𝒉 6.199  7.332 8.733 10.524 12.922 16.394 21.672 31.454 

U
-M

C
G

 0.1 

N(0,1) 500.52 501.59 500.05 502.11 501.76 498.01 509.48 499.05 

GAM(3,1) 494.22 490.27 489.26 512.65 498.30 509.01 494.35 514.81 

t(3) 493.05 500.24 499.64 510.12 491.20 495.92 508.22 497.24 

𝑳 21.384 23.634 26.431 29.362 32.582 37.162 44.313 54.313 

0.5 

N(0,1) 499.02 502.20 500.61 500.10 503.41 501.37 501.35 504.53 

GAM(3,1) 494.29 496.54 498.20 500.73 501.81 510.03 509.79 503.53 

t(3) 509.07 509.83 509.82 512.67 503.25 500.15 498.29 496.42 

L 5.740 6.234 6.784 7.384 8.088 8.898 9.8283 11.029 

C
a

se
 E

 

U
-M

G
C

 0.1 

N(0,1) 502.19 500.96 505.90 501.85 500.26 500.71 503.10 501.86 

GAM(3,1) 521.47 510.49 502.54 492.97 506.48 504.49 501.02 505.33 

t(3) 493.23 507.81 501.29 493.81 500.12 497.08 496.28 506.18 

𝒉 22.909 26.931 31.673 36.869 44.362 55.340 70.240 95.241 

0.5 

N(0,1) 500.48 500.99 499.19 498.95 508.45 500.54 502.21 504.73 

GAM(3,1) 491.32 500.05 495.97 489.44 491.09 498.23 509.91 509.90 

t(3) 501.77 490.00 516.01 483.76 520.18 506.92 493.82 496.20 

𝒉 6.203  7.298 8.755 10.505 12.981 16.491 21.631 31.592 

U
-M

C
G

 0.1 

N(0,1) 500.06 498.81 499.58 510.67 504.65 509.79 501.92 502.10 

GAM(3,1) 504.71 507.03 508.08 493.52 510.50 509.50 506.76 511.01 

t(3) 504.39 521.43 498.09 498.91 506.11 517.94 495.47 518.89 

𝑳 19.484 19.478 19.315 19.163 19.092 18.931 18.420 18.001 

0.5 

N(0,1) 500.59 499.76 500.94 502.84 505.76 504.57 505.96 504.44 

GAM(3,1) 511.02 500.25 493.41 509.73 501.30 495.31 500.42 510.62 

t(3) 509.51 496.24 516.14 494.61 514.44 489.48 512.07 509.29 

L 5.210 5.060 4.952 4.831 4.651 4.418 4.161 3.6933 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2: Attained 𝐴𝑅𝐿0 values and optimal parameters of the U-MGC and U-MCG monitoring schemes for a nominal 𝐴𝑅𝐿0 of 500 when 𝑘 ∈{0.1, 0.5}, 𝑞 ∈ {0.1,0.5,0.7}, 𝛼 

∈ {0.1, 0.8, 1.5, 2.5} and (m, n) = (100, 5) under different distributions 
   𝒒 0.1 0.5 0.7 

Case Chart 𝑘 𝜶 0.1 0.8 1.5 2.5 0.1 0.8 1.5 2.5 0.1 0.8 1.5 2.5 

C
a

se
 A

 

U
-M

G
C

 0.1 

N(0,1) 500.45 499.54 502.48 501.39 500.78 498.51 500.76 502.91 501.00 500.43 500.11 506.38 

GAM(3,1) 511.33 509.36 505.53 505.19 503.20 507.59 504.16 510.82 502.04 498.32 499.77 504.60 

t(3) 504.01 501.44 499.29 503.32 504.18 502.44 501.24 501.55 505.39 504.21 503.01 501.11 

𝒉 21.493 22.718 22.849 22.826 28.256 46.794 40.084 34.337 31.343 76.963 54.601 37.676 

0.5 

N(0,1) 502.04 502.04 499.81 498.78 504.04 501.99 502.22 500.92 501.9 500.1 500.6 501.55 

GAM(3,1) 510.93 504.34 500.43 502.44 503.18 504.27 511.35 503.41 501.74 502.31 504.06 503.12 

t(3) 501.33 501.96 503.46 505.46 500.23 500.33 501.67 500.04 503.11 501.64 500.46 501.66 

𝒉 5.632 6.226 6.229 6.223 6.616 13.429 11.648 9.787 7.029 24.045 16.378 10.848 
U

-M
C

G
  0.1 

N(0,1) 501.54 502.05 500.16 501.16 499.51 502.18 497.88 498.11 501.51 500.31 501.44 500.25 

GAM(3,1) 506.23 500.01 504.45 503.66 500.95 510.06 501.39 505.18 500.46 508.22 502.26 501.05 

t(3) 500.85 503.88 501.49 502.23 502.51 504.05 501.77 502.22 509.34 501.56 500.49 503.21 

L 20.886 21.462 21.496 21.539 26.836 34.036 30.386 27.726 32.936 47.053 37.374 29.289 

0.5 

N(0,1) 501.68 499.98 500.16 498.33 503.56 501.29 500.1 506.04 500.52 502.03 498.84 503.06 

GAM(3,1) 503.26 502.33 502.05 505.18 501.2 499.26 501.2 501.46 507.29 512.07 503.15 497.46 

t(3) 505.54 500.16 504.11 500.46 502.42 500.19 503.34 500.79 501.65 502 500.39 502.69 

L 5.534 5.721 5.736 5.742 8.127 8.079 7.709 7.186 12.897 9.857 9.031 7.476 

C
a
se

 E
 

U
-M

G
C

 0.1 

N(0,1) 499.42 498.90 501.51 507.35 495.90 503.80 495.92 502.03 501.75 501.48 506.48 508.28 

GAM(3,1) 500.95 507.08 500.23 512.73 510.13 504.79 495.41 500.99 514.41 509.26 512.70 497.24 

t(3) 509.03 501.34 502.19 499.65 492.73 501.07 500.55 504.42 492.89 494.73 512.12 496.48 

𝒉 21.349 22.728 22.890 23.032 28.252 47.060 39.871 34.674 31.203 78.034 54.604 37.501 

0.5 

N(0,1) 500.51 501.47 499.87 494.86 500.16 502.77 498.22 498.40 503.54 515.71 498.07 508.03 

GAM(3,1) 496.60 503.44 491.19 500.57 508.17 500.08 494.64 501.38 499.14 498.28 501.17 493.94 

t(3) 506.77 494.06 501.45 511.04 501.24 507.10 501.14 499.13 510.41 499.20 506.56 496.05 

𝒉 5.626 6.206 6.213 6.216 6.642 13.367 11.515 9.780 7.103 23.826 16.503 10.755 

U
-M

C
G

  0.1 

N(0,1) 509.35 503.24 509.75 502.37 498.94 499.06 500.74 503.89 496.12 511.32 506.48 508.28 

GAM(3,1) 503.76 498.30 494.24 510.24 491.01 493.45 501.94 504.24 504.72 503.68 514.10 498.79 

t(3) 516.42 493.75 499.96 490.53 496.31 491.46 498.72 509.28 511.44 497.77 499.03 493.93 

L 20.876 21.359 21.532 21.542 26.856 34.040 30.397 27.754 32.952 47.067 37.389 29.298 

0.5 

N(0,1) 502.12 499.77 500.43 499.78 497.22 500.21 501.63 500.33 509.09 503.70 500.35 490.07 

GAM(3,1) 501.55 497.07 500.49 506.43 498.61 503.97 500.92 499.81 518.19 503.85 499.01 493.61 

t(3) 499.32 505.01 502.20 510.19 498.64 499.72 505.37 503.32 494.66 504.11 512.92 505.08 

L 5.589 5.803 5.832 5.846 8.207 8.122 7.949 7.287 13.112 9.974 9.152 7.606 

 

 



Tables 1 and 2 display the actual 𝐴𝑅𝐿0 values and design parameters of the proposed U-MCG 

and U-MGC schemes when (m, n) = (100, 5) for a nominal 𝐴𝑅𝐿0 of 500. For instance, when 

𝛼 = 1, 𝑞 = 0.5 and 𝑘 = 0.1, then it is found that the design parameter ℎ = 44.589 is such that 

the U-MGC scheme in Case A yields 𝐴𝑅𝐿0 values of 502.68, 509.23 and 503.47 under the 

N(0,1), GAM(3,1) and t(3) distributions, respectively. It is important to note that when 𝛼 = 1 

(with 𝑞 = 1 − 𝜆), then the GWMA scheme reduces to the EWMA scheme; thus, this implies 

that the results in Table 1 correspond to the mixed EWMA-CUSUM and mixed CUSUM-

EWMA MW U (denoted as U-MEC and U-MCE) schemes. Stated differently, when 𝛼 = 1 

(with 𝑞 = 1 − 𝜆), then the U-MGC scheme reduces to the U-MEC scheme and similarly, the 

U-MCG scheme reduces to the U-MCE scheme. The results in Tables 1 and 2 show that for 

both Cases A and E, the 𝐴𝑅𝐿0 values of the U-MGC and U-MCG schemes are close enough 

to the nominal value of 500 across all the distributions considered in this study. These findings 

confirm that the U-MGC and U-MCG schemes are IC robust.  

Moreover, the findings in Tables 1 and 2 as well as in Figures 1 and 2 can be summarized as 

follows: 

• Regardless of Case A or E, the control limit coefficient (i.e. ℎ) is an increasing function 

of 𝑞; i.e. the larger (smaller) the value of 𝑞, the wider (narrower) the control limit of 

the U-MGC scheme (see Figure 1(a)). 

• For small reference constants (i.e. 𝑘 values), the ℎ values increases rapidly for both 

Cases E and A. However, for large 𝑘 values, ℎ increases at a small rate for both Cases 

E and A. Moreover, the smaller (larger) the magnitude of 𝑘, the wider (narrower) the 

control limit of the U-MGC scheme.  

• The Case A’s h values of the U-MGC scheme are slightly different from the Case E’s 

h values (see Figure 1(a)). 

• For the U-MCG scheme, in Case A, the control limit constant (i.e. 𝐿) is an increasing 

function of 𝑞. However, in Case E, 𝐿 is a decreasing function of 𝑞 at a small rate (see 

Figure 1(b)). Note that in Case A, for small 𝑘 values, 𝐿 increases at a high rate (see 

Figure 1(b)).  

• For both Case A and Case U, regardless of the value of 𝛼, the smaller (larger) the 

magnitude of 𝑘, the wider (narrower) the control limit (see Figure 2). Moreover, when 

𝑘 is kept fixed the larger (smaller) the value of 𝑞, the wider (narrower) the control limit 

of the U-MGC scheme (see Figures 2(a)-(d)).  



• A thorough examination of Figure 2 shows that for very large values of 𝛼, the control 

limits converge toward a unique value regardless of the value 𝑞. 

 

  

(a) U-MGC scheme (b) U-MCG scheme 

Figure 1. Optimal parameters of the proposed monitoring schemes when 𝛼 = 1, 𝑘 ∈ {0.1, 0.5} and (m, n)  

= (100, 5) for a nominal 𝐴𝑅𝐿0 of 500  

 

 

  
(a) Case A U-MGC scheme (b) Case A U-MCG scheme 
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(c) Case E U-MGC scheme (d) Case E U-MCG scheme 

Figure 2. Optimal parameters of the proposed monitoring schemes when (m, n)  = (100, 5), 𝛼 ∈ {0.1, 0.8, 

1.5, 2.5}, 𝑘 ∈ {0.1, 0.5} and (m, n)  = (100, 5) for a nominal 𝐴𝑅𝐿0 of 500 

 

3.2.3 OOC Performance of the U-MCG and U-MGC monitoring schemes 

This section investigates the OOC performance of the proposed U-MCG and U-MGC schemes 

for specific shifts as well as for an overall performance. The performance of the new schemes 

is first investigated when 𝛿𝑚𝑖𝑛 = 0, 𝛿𝑚𝑎𝑥 = 2.5, (𝑞, 𝛼, 𝑘) = (0.1, 0.1, 0.1), 𝑚 ∈ {50, 100, 400} 

and 𝑛 ∈ {5, 10} for a nominal 𝐴𝑅𝐿0 value of 500; and  secondly, when 𝛿𝑚𝑖𝑛 = 0, 𝛿𝑚𝑎𝑥 = 2.5, 

(𝑚, 𝑛) = (100, 5) and 𝑘 ∈ {0.1, 0.5} for different values of 𝛼 and 𝑞 under the N(0,1), GAM(3,1) 

and t(3) distributions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Alpha

h

2.51.50.80.1

80

70

60

50

40

30

20

10

0

Variable

(q,k)=(0.7,0.1)

(q, k) =(0.1, 0.5)

(q, k)=(0.5, 0.5)

(q,k)=(0.7,0.5)

(q, k) =(0.1, 0.1)

(q, k)=(0.5, 0.1)

Alpha

L

2.51.50.80.1

50

40

30

20

10

0

Variable

(q,k)=(0.7,0.1)

(q, k) =(0.1, 0.5)

(q, k)=(0.5, 0.5)

(q,k)=(0.7,0.5)

(q, k) =(0.1, 0.1)

(q, k)=(0.5, 0.1)



Table 3: Case E 𝐴𝑅𝐿 and 𝐴𝐸𝑄𝐿 values of the U-MGC and U-MCG schemes along with their design parameters 

for different Phase I and Phase II sample sizes when (𝑞, 𝛼, 𝑘) = (0.1, 0.1, 0.1) for a nominal 𝐴𝑅𝐿0 value of 500 
  Scheme MGC MCG 

  m 50 100 400 50 100 400 

Distribution Shift n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 

N(0,1) 

0.00 508.10 495.75 499.42 505.52 507.43 490.67 502.56 495.73 504.38 496.29 499.76 505.02 

0.25 154.64 131.88 84.66 71.58 43.77 31.04 146.09 145.40 83.82 66.73 41.18 30.50 

0.50 28.80 20.74 22.32 17.86 19.83 14.59 29.15 20.16 20.66 17.19 18.20 14.16 

0.75 17.04 12.56 13.74 11.76 13.29 9.88 16.31 11.98 12.91 11.29 11.82 9.59 

1.00 12.86 9.61 10.06 9.07 9.00 7.72 12.36 9.12 9.45 8.72 8.67 7.44 

1.25 10.63 8.03 8.03 7.61 7.62 6.49 10.25 7.60 7.51 7.31 7.15 6.28 

1.50 9.31 7.32 7.03 6.70 6.58 5.74 8.94 6.68 6.54 6.42 6.15 5.53 

1.75 8.45 6.69 6.30 6.12 5.91 5.17 8.12 6.10 6.18 5.90 5.38 5.07 

2.00 7.87 6.33 5.74 5.66 5.40 5.00 7.55 5.69 5.68 5.41 4.95 4.87 

2.25 7.43 6.08 5.71 5.43 5.10 4.86 7.19 5.31 5.44 5.09 4.66 4.49 

2.50 7.15 5.73 5.41 5.36 5.01 4.50 7.02 5.07 5.34 5.01 4.47 4.13 

AEQL 21.65 17.15 16.20 15.40 14.77 13.05 20.94 15.69 15.61 14.62 13.53 12.41 

t(3) 

0.00 492.08 499.97 509.03 493.39 502.18 494.66 507.38 512.85 509.88 500.61 495.43 499.53 

0.25 80.17 69.32 37.48 30.65 29.23 21.07 73.28 62.44 36.52 28.44 26.85 20.51 

0.50 18.50 13.77 14.97 11.67 13.37 10.60 17.88 13.05 14.11 11.35 12.71 10.33 

0.75 12.65 9.52 9.82 7.95 9.12 7.59 12.17 9.05 9.24 7.80 8.72 7.37 

1.00 10.18 7.69 7.61 6.58 7.27 6.24 9.81 7.30 7.11 6.19 6.89 6.03 

1.25 8.92 6.96 6.72 5.71 6.26 5.57 8.58 6.40 5.96 5.57 5.94 5.30 

1.50 8.16 6.51 6.02 5.24 5.66 5.07 7.83 5.90 5.62 5.27 5.37 4.98 

1.75 7.69 6.21 5.60 4.89 5.26 4.94 7.39 5.54 5.42 4.93 5.08 4.70 

2.00 7.37 5.97 5.38 4.58 5.10 4.71 7.15 5.27 5.20 4.62 4.91 4.39 

2.25 7.20 5.74 5.33 4.41 5.03 4.46 6.99 5.12 5.17 4.52 4.67 4.17 

2.50 7.09 5.57 5.30 4.34 5.01 4.26 6.87 5.05 5.11 4.35 4.45 4.08 

AEQL 19.30 15.31 14.20 11.93 13.34 11.78 18.63 13.84 13.56 11.94 12.47 11.21 

GAM(3,1) 

0.00 503.32 505.15 500.95 506.72 516.96 493.35 498.21 497.01 497.19 502.10 499.27 496.58 

0.25 164.70 172.15 79.28 64.96 42.58 30.71 178.87 145.00 65.19 52.88 34.95 25.89 

0.50 30.57 21.28 19.06 17.86 18.89 14.40 26.11 17.79 18.79 14.92 15.75 12.40 

0.75 16.95 12.66 12.14 11.69 12.13 9.74 14.70 10.74 12.23 10.01 10.44 8.53 

1.00 12.84 9.64 9.08 9.06 9.12 7.51 11.40 8.43 9.29 7.85 8.06 6.78 

1.25 10.64 8.03 7.44 7.61 7.42 6.29 9.65 7.10 7.75 6.70 6.75 5.84 

1.50 9.31 7.05 6.44 6.68 6.36 5.53 8.59 6.40 6.80 5.99 5.97 5.13 

1.75 8.45 6.41 5.79 6.12 5.71 4.98 7.92 5.94 6.16 5.56 5.36 4.90 

2.00 7.87 6.04 5.33 5.76 5.21 4.80 7.44 5.58 5.80 5.13 4.83 4.82 

2.25 7.43 5.79 5.07 5.34 5.04 4.65 7.18 5.29 5.54 4.87 4.80 4.36 

2.50 7.15 5.44 5.02 5.07 5.01 4.30 7.02 5.10 5.22 4.81 4.74 4.05 

AEQL 21.75 16.84 14.78 15.16 14.44 12.56 20.60 15.26 15.51 13.67 13.37 11.86 

Design parameters 22.549 22.879 21.909 22.767 19.094 19.972 21.839 21.863 20.876 22.156 18.441 19.642 

 

Table 3 displays the Case E performance of the U-MGC and U-MCG monitoring schemes in 

terms of the 𝐴𝑅𝐿 and 𝐴𝐸𝑄𝐿 values when (𝑞, 𝛼, 𝑘) = (0.1, 0.1, 0.1), 𝑚 ∈ {50, 100, 400} and 

𝑛 ∈ {5, 10} for a nominal 𝐴𝑅𝐿0value of 500. For 𝑚 ≤ 50, in terms of the 𝐴𝐸𝑄𝐿 values, it can 

be observed that the overall sensitivity of the U-MGC and U-MCG schemes increases as the 

Phase I and/or Phase II sample size(s) increase(s). In terms of the 𝐴𝑅𝐿 values, the U-MGC and 

U-MCG schemes perform better under heavy-tailed distributions regardless of the size of the 

shift in the location parameter. However, under small and moderate shifts, they perform better 

under symmetrical distributions compared to the skewed ones. Note though, they are similarly 

sensitive under symmetrical and skewed distributions for large shifts. When 𝑚 > 50, in terms 

of the 𝐴𝑅𝐿 and 𝐴𝐸𝑄𝐿 values, the sensitivity of the U-MGC and U-MCG schemes increase as 

the Phase I and/or Phase II sample size(s) increase(s). They both perform better under non-

normal distributions. Moreover, when the Phase I is kept fixed, the larger (smaller) the Phase 

II sample size, the larger (smaller) the design parameter. However, when the Phase II sample 

size is kept fixed, the larger (smaller) the Phase I sample size, the smaller (larger) the design 

parameter. Note that similar findings are also observed for the Case A performance of the U-



MGC and U-MCG schemes. To preserve writing space, the rest of this paper will focus on the 

investigation of the performance of the U-MGC and U-MCG scheme when 𝑚 = 100 and 𝑛 = 

5.  

Table 4: Case A OOC 𝐴𝑅𝐿 values of the U-MGC and U-MCG monitoring schemes for a nominal 𝐴𝑅𝐿0 value 

of 500 when  𝑘 ∈ {0.1, 0.5}, 𝛼 = 1, 𝑞 ∈ {0.1,0.3, 0.5, 0.7} and (m, n) = (100, 5) 
   MGC chart MCG  chart 

𝑘 Distribution 
𝒒     

𝜹 
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 

0.1 

N(0,1) 

0.25 80.53 79.32 78.07 77.41 79.18 81.82 77.96 84.67 

0.50 24.02 21.73 18.44 14.94 22.71 23.09 23.15 23.97 

1.00 12.67 9.81 8.44 7.72 11.26 11.51 11.00 12.87 

1.50 8.76 7.14 6.51 4.79 8.18 8.52 8.84 9.89 

2.00 7.04 6.07 4.93 4.07 6.95 7.26 7.61 8.63 

2.50 6.30 6.01 5.22 3.43 6.23 6.79 7.04 8.04 

t(3) 

0.25 37.19 33.58 30.40 30.22 38.34 38.52 38.78 38.74 

0.50 16.21 13.71 12.13 9.17 15.91 16.16 16.34 17.38 

1.00 8.88 8.00 7.12 5.21 8.93 9.27 9.61 10.63 

1.50 7.41 6.17 5.31 4.34 7.18 7.51 7.87 8.89 

2.00 6.82 5.89 4.65 3.82 6.47 6.91 7.20 8.20 

2.50 6.28 5.43 4.61 3.29 6.14 6.52 7.03 8.03 

GAM(3,1) 

0.25 65.66 64.76 63.99 64.76 66.30 76.04 67.25 63.34 

0.50 19.74 17.52 14.67 12.94 19.80 20.08 20.09 21.00 

1.00 10.22 9.02 7.04 6.16 10.31 10.67 10.91 11.95 

1.50 7.99 6.73 5.49 4.73 7.82 8.18 8.51 9.55 

2.00 6.73 5.99  4.88 3.91 6.89  7.15 7.51  8.52 

2.50 6.25 5.47 4.79 4.00 6.23 6.86 7.03 8.03 

0.5 

N(0,1) 

0.25 99.52 114.52 136.11 204.14 84.23 88.42 93.50 84.90 

0.50 13.24 12.85 18.23 37.42 11.79 11.97 12.21 12.08 

1.00 5.18 4.20 3.87 4.23 4.39 4.47 4.66 4.57 

1.50 2.97 2.97 2.34 1.80 3.07 3.20 3.27 3.12 

2.00 2.42 2.56 2.10 1.21 2.50 2.70 2.78 2.47 

2.50 2.15 2.22 1.65 1.09 2.13 2.25 2.36 2.10 

t(3) 

0.25 35.87 45.33 60.81 128.79 35.33 31.26 32.42 31.72 

0.50 7.54 6.95 7.04 13.05 6.80 6.84 7.02 7.21 

1.00 4.00 3.04 2.67 2.32 3.37 3.46 3.59 3.47 

1.50 2.69 2.49 2.00 1.42 2.60 2.80 2.90 2.58 

2.00 2.32 2.20 1.84 1.19 2.23 2.35 2.45 2.21 

2.50 2.14 2.10 1.29 1.11 2.11 2.15 2.18 2.09 

GAM(3,1) 

0.25 97.05 137.00 178.90 335.23 102.81 93.09 94.59 92.02 

0.50 10.15 13.35 17.14 43.77 9.71 9.81 10.19 10.01 

1.00 4.06 3.78 3.03 3.99 3.90 4.06 4.18 4.12 

1.50 3.03 2.69 2.31 2.00 2.98 3.06 3.12 2.99 

2.00 2.19 2.14  2.16 1 .31 2.49  2. 76 2.87  2.41 

2.50 2.07 2.03 1.93 1.20 2.22 2.23 2.39 2.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Case E OOC 𝐴𝑅𝐿 values of the U-MGC and U-MCG monitoring schemes for a nominal 𝐴𝑅𝐿0 value 

of 500 when  𝑘 ∈ {0.1, 0.5}, 𝛼 = 1, 𝑞 ∈ {0.1,0.3, 0.5, 0.7} and (m, n) = (100, 5) 
    MGC scheme MCG  scheme 

𝑘 Distribution 
𝒒      

𝜹  
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 

0.1 

N(0,1) 

0.25 83.54 86.06 90.90 93.78 82.98 83.73 83.95 80.65 

0.50 23.87 26.78 29.26 34.32 22.80 22.89 23.40 23.88 

1.00 11.90 13.44 15.21 18.51 11.29 11.51 11.95 12.86 

1.50 8.71 9.94 11.34 14.10 8.24 8.48 8.97 9.89 

2.00 7.35 8.45 9.76 12.27 7.00 7.23 7.73 8.64 

2.50 6.87 7.90 9.05 11.34 7.00 6.75 7.08 8.05 

t(3) 

0.25 40.69 44.84 47.12 53.06 37.64 38.88 39.72 39.25 

0.50 16.92 18.82 21.04 25.08 16.00 16.07 16.60 17.30 

1.00 9.49 10.80 12.04 15.19 9.00 9.22 9.72 10.66 

1.50 7.61 8.74 10.09 12.63 7.24 7.49 7.97 8.90 

2.00 7.00 8.03 9.23 11.65 6.53 6.88 7.27 8.20 

2.50 6.61 7.65 8.98 11.18 6.18 6.49 7.05 8.03 

GAM(3,1) 

0.25 70.33 81.09 82.49 85.97 68.42 69.53 61.94 66.77 

0.50 20.85 23.56 25.85 30.54 19.92 20.18 20.50 21.19 

1.00 10.95 12.48 14.10 17.22 10.39 10.60 11.08 11.98 

1.50 8.35 9.54 10.93 13.63 7.89 8.17 8.63 9.56 

2.00 7.23 8.32  9.63 12.15 6.93  7.14 7.64  8.53 

2.50 6.92 7.93 9.05 11.39 6.30 6.82 7.06 8.04 

0.5 

N(0,1) 

0.25 86.81 82.53 81.64 80.29 87.61 88.89 89.64 89.86 

0.50 11.80 12.21 13.40 15.68 11.71 11.61 12.14 12.07 

1.00 4.56 5.22 6.28 8.20 4.35 4.47 4.60 4.61 

1.50 3.22 3.80 4.72 6.39 3.08 3.19 3.26 3.13 

2.00 2.80 3.16 4.09 5.59 2.54 2.68 2.78 2.51 

2.50 2.37 3.01 4.08 5.07 2.13 2.24 2.34 2.12 

t(3) 

0.25 31.13 30.42 27.09 28.84 32.24 31.42 32.70 31.28 

0.50 6.90 7.65 8.97 11.08 6.82 6.88 7.08 7.18 

1.00 3.54 4.16 5.11 6.82 3.38 3.48 3.59 3.51 

1.50 2.89 3.31 4.21 5.76 2.62 2.79 2.88 2.63 

2.00 2.44 3.06 4.02 5.23 2.22 2.33 2.41 2.24 

2.50 2.20 3.01 4.00 5.06 2.11 2.15 2.18 2.11 

GAM(3,1) 

0.25 95.04 72.90 71.58 60.21 111.58 99.79 86.32 87.85 

0.50 9.89 10.10 11.36 13.56 9.82 9.69 9.87 10.03 

1.00 4.11 4.78 5.76 7.64 3.92 4.04 4.18 4.13 

1.50 3.08 3.66 4.47 5.17 2.99 3.05 3.11 3.02 

2.00 2.88 3.08  4.02 5.52 2.51  2. 74 2.00  2.49 

2.50 2.42 3.00 4.00 5.04 2.06 2.21 2.00 2.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Case E OOC 𝐴𝑅𝐿 values of the U-MGC and U-MCG monitoring schemes for a nominal 𝐴𝑅𝐿0 value 

of 500 when  𝑘 = 0.1, 𝑞 𝜖 {0.1, 0.5, 0.7}, 𝛼 𝜖 {0.1, 0.8, 1.5, 2.5} and (m, n) = (100, 5)  
   MGC scheme MCG  scheme 

Distribution 𝒒 𝜶     

𝜹 
0.1 0.8 1.5 2.5 0.1 0.8 1.5 2.5 

N(0,1) 

0.1 

0.25 84.66 80.04 87.48 83.77 83.68 92.47 92.13 88.61 

0.50 22.32 16.63 14.63 12.60 20.66 13.56 12.05 12.00 

1.00 10.06 7.42 4.56 4.55 9.45 6.34 4.35 4.37 

1.50 7.03 5.21 4.31 3.94 6.54 4.73 3.44 3.21 

2.00 5.74 3.80 3.51 3.43 5.68 3.17 3.03 2.84 

2.50 5.41 3.39 3.32 3.30 5.34 3.01 2.73 2.54 

0.5  

0.25 81.37   77.29 75.95 80.27 78.99 87.54 88.22 92.00 

0.50 15.31 13.46 12.80 12.46 12.82 11.79 11.85 12.06 

1.00 7.29 6.52 5.81 4.45 6.36 4.576 4.64 4.61 

1.50 5.47 4.92 4.32 4.03 4.95 4.22 3.37 3.34 

2.00 4.94 4.17 3.88 3.39 4.23 3.49 3.00 3.02 

2.50 4.49 4.00 3.41 3.05 4.04 3.11 2.80 3.00 

0.7 

0.25 90.08 105.05 97.33 90.12 84.13 78.27 78.83 80.10 

0.50 18.86 26.25 21.66 18.12 14.26 14.75 13.35 13.36 

1.00 8.65 10.49 8.99 7.98 6.94 8.04 6.63 6.51 

1.50 7.17 9.42 7.43 10.81 5.18 7.43 5.16 5.86 

2.00 6.55 8.44 6.70 9.26 4.82 6.14 4.98 4.58 

2.50 5.87 6.89 5.50 8.54 3.69 5.45 4.12 4.44 

t(3) 

0.1 

0.25 37.48 30.64 29.08 29.87 36.52 33.10 32.56 31.14 

0.50 14.97 9.12 7.64 7.19 14.11 7.66 7.01 6.80 

1.00 7.61 5.51 4.37 4.36 7.11 4.27 3.98 3.53 

1.50 6.02 4.92 4.14 3.99 5.62 3.52 3.13 2.99 

2.00 5.38 3.54 3.39 3.11 5.20 3.11 2.97 2.74 

2.50 5.30 3.18 3.10 3.02 5.11 3.00 2.49 2.40 

0.5 

0.25 29.40 26.89 29.87 27.91 25.19 30.22 34.08 32.65 

0.50 7.42 9.12 8.39 8.02 5.70 6.93 7.06 7.01 

1.00 3.79 5.30 4.70 4.36 3.13 3.44 3.68 3.64 

1.50 3.11 4.32 3.97 3.52 2.75 2.84 3.07 3.08 

2.00 3.00 4.05 3.54 3.17 2.54 2.66 2.89 3.01 

2.50 2.92 4.01 3.23 3.06 2.34 2.42 2.62 3.00 

0.7 

0.25 45.32 55.93 51.71 47.14 39.93 41.49 39.93 39.00 

0.50 10.89 16.87 12.77 10.11 7.99 8.18 6.59 6.53 

1.00 6.68 10.06 7.97 7.23 5.81 6.23 5.49 5.06 

1.50 5.86 9.82 6.24 6.06 4.81 5.40 5.21 4.82 

2.00 4.21 8.80 5.67 5.34 4.34 4.70 4.51 4.19 

2.50 4.01 7.27 5.22 4.81 3.57 3.78 3.68 3.53 

GAM(3,1) 

0.1 

0.25 86.02 82.09 83.01 80.72 91.05 96.36 90.01 94.69 

0.50 19.06 10.50 9.84 9.93 18.72 9.86 10.00 9.94 

1.00 9.08 6.11 4.70 4.52 8.78 4.10 4.17 3.97 

1.50 6.74 5.01 4.33 4.12 5.84 3.76 3.21 3.03 

2.00 5.63 3.60 3.47 3.15 5.23 3.15 3.00 2.81 

2.50 5.41 3.26 3.18 3.08 5.01 3.04 2.57 2.46 

0.5 

0.25 77.23 67.08 68.94 78.44 105.63 82.19 89.70 99.84 

0.50 10.05 11.68 10.97 10.63 8.31 9.91 10.00 9.95 

1.00 4.45 6.02 5.34 4.98 3.29 4.10 4.24 4.20 

1.50 3.24 4.73 4.15 3.93 2.89 3.11 3.17 3.15 

2.00 3.00 4.09 3.92 3.28 2.52 2.73 3.00 3.00 

2.50 3.00 4.04 3.47 3.07 2.40 2.57 2.94 3.00 

0.7 

0.25 75.30 82.57 82.04 75.94 72.79 76.25 68.42 68.38 

0.50 15.50 16.33 17.98 14.88 11.59 11.87 10.42 10.30 

1.00 8.49 10.24 8.81 7.90 7.01 7.12 6.75 6.40 

1.50 7.77 9.89 7.98 6.41 6.81 6.46 7.33 5.49 

2.00 6.41 8.31 6.58 5.16 5.17 5.05 5.94 4.69 

2.50 5.90 7.54 5.02 4.60 4.30 4.42 4.29 3.72 

 

The findings in Tables 4 to 6 can be summarized as follows: 

(i) When 𝛼 = 1 (see Tables 4 and 5),  

• for small reference constants, in Case A, the sensitivity of the U-MGC scheme 

increases as 𝑞 increases regardless of the nature of the underlying process 

distribution. However, the sensitivity of the U-MCG scheme is almost the same 

regardless of the value of 𝑞 except for very small shifts (0 < 𝛿 ≤ 0.25) where the 

sensitivity of the U-MCG scheme decreases in the intervals 0.1 ≤ 𝑞 ≤ 0.3 and 0.5 

≤ 𝑞 ≤ 0.7,  



• in Case E, when 𝑘 is small, the sensitivity of the U-MGC scheme decreases as 𝑞 

increases regardless of the nature of the underlying process distribution,  

• in Case A, when 𝑘 is large, the sensitivity of the U-MGC scheme decreases as 𝑞 

increases for small shifts in the location parameter, and it performs the worst for 

large values of 𝑞. However, for moderate and large shifts in the location parameter, 

the sensitivity of the U-MGC scheme increases as 𝑞 increases. For the U-MCG 

scheme, under the 𝑁(0,1) distribution, for small shifts, when 0 < 𝑞 ≤ 0.5, the 

sensitivity of the U-MCG scheme decrease as 𝑞 increases. When 0.5 < 𝑞 < 1, the 

sensitivity of the U-MCG scheme increases as 𝑞 increases.  For moderate and large 

shifts in the location parameter, the sensitivity of the U-MCG scheme is almost the 

same for all 𝑞 values. Under non-normal distribution, the U-MCG scheme performs 

the worst for small values of 𝑞. Its performance tends to be the same as 𝑞 increases. 

For moderate and small shifts, the sensitivity of the U-MCG scheme is almost the 

same for all 𝑞 values, and  

• in Case E, when 𝑘 is large, regardless of the nature of the underlying process 

distribution, the sensitivity of the U-MGC scheme decreases as 𝑞 increases except 

for very small shifts where the performance of the U-MGC scheme increases as 𝑞 

increases. From small-to-large shifts, the sensitivity of the U-MCG scheme is 

almost the same for all values of 𝑞 regardless of the nature of the distribution, except 

for very small shift under skewed distribution, where the sensitivity of the U-MCG 

scheme increases as 𝑞 increases. 

(ii) When 𝛼 ≠ 1 (see Table 6), 

• for small values of 𝑞 (i.e. 0 < 𝑞 < 0.5), the sensitivity of both the U-MGC and U-

MCG schemes increases as 𝛼 increases regardless of the nature of the distribution, 

• for 0.5 ≤ 𝑞 < 0.7, regardless of the nature of the distribution, the sensitivity of the 

U-MGC scheme increases in the interval 0 < 𝛼 ≤ 1.5 and remains almost the same 

for 𝛼 > 1.5. However, the sensitivity of the U-MCG scheme increases when 0 <

𝛼 ≤ 1 and remains almost the same when 𝛼 > 1, and  

• in Case E, for large values of 𝑞 (i.e. 0.7 ≤ 𝑞 < 1), regardless of the nature of the 

distribution, the sensitivity of the U-MGC scheme decreases in the interval 0 < 𝛼 < 

1 and increases when 𝛼 > 1. For small and moderate shifts, the sensitivity of the U-

MCG scheme remains almost the same under skewed and heavy-tailed distributions 

when 0 < 𝛼 < 1. Under symmetrical distributions, the sensitivity of the U-MCG 



scheme decreases when 0 < 𝛼 < 1. For large shifts and 𝛼 > 1, under symmetrical 

and heavy-tailed distributions, the sensitivity of the U-MCG scheme is almost the 

same.  

Note that the Case A of the above discussion yields the same findings. Therefore, to preserve 

writing space, the results are not displayed in this study.  

 

  
(a) N(0,1) distribution in Case E (b) t(3) distribution Case E 

  
(c) N(0,1) distribution in Case A (d) t(3) distribution in Case A 

Figure 3. AEQL values of the U-MGC and U-MCG schemes when 𝛼 = 1, 𝑘 ∈ {0.1, 0.5} and (m, n)  = (100, 5) for 

a nominal 𝐴𝑅𝐿0 of 500 under the normal and non-normal distribution 

 

Figure 3 displays the overall performance of the proposed schemes when 𝛿𝑚𝑎𝑥 = 2.5, (𝑚, 𝑛) 

= (100, 5), 𝑘 ∈ {0.1, 0.5}  and 𝛼 = 1 for different values of 𝑞 under normal and non-normal 

distributions. From Figure 3, the following is observed in terms the overall performance (i.e. 

AEQL values): 
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(i) In Case E (see Figures 3(a)-(b)),  

• the overall performance of the proposed U-MGC and U-MCG schemes  deteriorates 

as 𝑞 increases except for the 0.7 ≤ 𝑞 < 1 where the sensitivity of the U-MCG 

scheme for 𝑘 = 0.5 increases, 

• the U-MGC and U-MCG schemes perform better for large values of the reference 

constants (i.e. k) regardless of the underlying process distribution, and 

• the U-MCG scheme is superior to the U-MGC scheme for all values of 𝑞 regardless 

of the underlying process distribution. 

(ii) In Case A (see Figures 3(c)-(d)), 

• regardless of the nature of the distribution, the sensitivity of the U-MCG scheme 

deteriorates as 𝑞 increases when 𝑘 = 0.1; whereas, the sensitivity of the U-MGC 

scheme for a reference constant of 0.1 increases as 𝑞 increases. However, when 𝑘 = 

0.5, the sensitivity of the U-MGC scheme increases in the interval 0 < 𝑞 ≤ 0.6 and 

decreases for 0.6 < 𝑞 < 1; whereas, the sensitivity of the U-MCG scheme 

deteriorates in the interval 0 < 𝑞 ≤ 0.6 and increases for 0.6 < 𝑞 < 1. 

• under the normal distribution, the U-MGC scheme with a reference constant of 0.5 

is superior, except for large values of 𝑞 for which the U-MGC scheme with small 

values of 𝑘 outperforms all other designs followed by the U-MCG scheme with 𝑘 = 

0.5. However, under non-normal distributions, the U-MGC scheme with a reference 

constant of 0.5 is superior except for large values of 𝑞 for which the U-MGC scheme 

with small values of 𝑘 outperforms all other designs followed by the U-MCG 

scheme with 𝑘 = 0.5. 

• under both normal and non-normal distributions, the U-MCG scheme with 𝑘 = 0.1 

is inferior compared to other designs.  

 



  
(a) Under N(0,1) distribution (k = 0.1) (b) Under N(0,1) distribution (k = 0.5) 

  
(c) Under t(3) distribution (k = 0.1) (d)  Under t(3) distribution (k = 0.5) 

Panel 1: U-MGC scheme 

 

 

 

  
(a) Under N(0,1) distribution (k = 0.1) (b) Under N(0,1) distribution (k = 0.5) 
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(c) Under t(3) distribution (k = 0.1) (d)  Under t(3) distribution (k = 0.5) 

Panel 2: U-MCG scheme 

 

Figure 4. AEQL values of the U-MGC and U-MCG schemes when 𝛼 = {0.1, 0.8, 1.5, 2.5}, 𝑘 ∈ {0.1, 0.5} and (m, 

n)  = (100, 5) for a nominal 𝐴𝑅𝐿0 of 500 under the normal and non-normal distribution 
 

Figure 4 displays the overall performance of the proposed schemes when 𝛿𝑚𝑎𝑥 = 2.5, (𝑚, 𝑛) 

= (100, 5) and 𝑘 ∈ {0.1, 0.5} for different values of 𝛼 and 𝑞 under normal and non-normal 

distributions. The findings in Figure 4 can be summarized as follows: 

• Under the 𝑁(0,1) distribution and small reference coefficients, the U-MGC scheme 

performs better for small values of 𝑞 for all possible values of 𝛼. Moreover, the U-

MGC scheme designed using 𝑘 = 0.5 is superior to the one with 𝑘 = 0.7 when 0 < 𝛼 ≤ 

1.25; however, the converse is observed when 𝛼 > 1.25. For large reference 

coefficients, the U-MGC scheme with large values of 𝑞 performs better, except when 

0.68 < 𝛼 ≤ 1.15, as the U-MGC scheme with 𝑘 = 0.1 performs better in that scenario. 

Under non-normal distributions, for small reference coefficients, the U-MGC scheme 

performs better for small values of 𝑞, for all possible values of 𝛼. However, for large 

reference coefficients, the U-MGC scheme with large values of 𝑞 performs better 

except when 0.59 < 𝛼 ≤ 1.31, as the U-MGC scheme with 𝑘 = 0.1 performs better in 

this scenario (see Figure 4-Panel 1). 

• Under both normal and non-normal distributions, for small reference coefficients, the 

U-MCG scheme performs better for small values of 𝑞, for all possible values of 𝛼. For 

large reference coefficients, the U-MCG scheme performs better for large values of 𝑞, 

for all possible values of 𝛼. However, the U-MCG scheme designed using 𝑘 = 0.5 is 
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superior to the one with 𝑘 = 0.1 when 0 < 𝛼 ≤ 0.75; whereas, the converse is observed 

when 𝛼 > 0.75 (see Figure 4-Panel 2). 

 

3.2.3 Performance comparison 

In this section, the proposed U-MCG and U-MGC schemes are compared to a number of MW 

U-type monitoring schemes: (i) Shewhart (denoted MW U), (ii) EWMA (denoted U-EWMA), 

(iii) CUSUM (denoted U-CUSUM), (iv) mixed EWMA-CUSUM (denoted U-MEC), (v) mixed 

CUSUM-EWMA (denoted U-MCE) and, (vi) GWMA (denoted U-GWMA). The MW U 

scheme was first discussed in Chakraborti and Van de Wiel (2008), the U-CUSUM and U-

EWMA schemes are equivalent to the existing CUSUM and EWMA WRS schemes discussed 

in Li et al. (2010), the U-GWMA scheme is introduced in Section 2.3 here and the U-MEC and 

U-MCE schemes are introduced in Table 1 here. The comparison is conducted when (𝑚,𝑛) = 

(100,5), 𝑘 = 0.5, (q, α, 𝜆) = (0.9, 1.5, 0.1) and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 500 

under the 𝑁(0,1), 𝑡(3) and 𝐺𝐴𝑀(3,1) distributions. Tables 7 to 9 present the IC and OOC 

performances of the competing schemes for specific shifts as well as their overall performances 

and their corresponding design parameters. The latter are determined such that the actual 𝐴𝑅𝐿0 

value is closer or equal to the nominal 𝐴𝑅𝐿0 value. The schemes that perform better are shaded 

in grey. When two columns are shaded, the schemes under consideration are similar (or almost 

similar) in performance. To study the overall performance for small, moderate and large shifts, 

the 𝐴𝐸𝑄𝐿 values were calculated using Equation (21) where 𝐴𝐸𝑄𝐿1, 𝐴𝐸𝑄𝐿2 and 𝐴𝐸𝑄𝐿3 

correspond to small, moderate and large shifts with 𝛿𝑚𝑎𝑥 = 0.75, 1.5 and 2.5, respectively; 

whereas, 𝐴𝐸𝑄𝐿4 and 𝐴𝐸𝑄𝐿5 correspond to small-to-moderate (i.e., 0 < 𝛿 ≤ 1.5) and small-to-

large shifts (i.e., 0 < 𝛿 ≤ 2.5), respectively.  

Table 7: Case E performance comparison of eight monitoring schemes under the N(0, 1) distribution when (m, 

n) = (100, 5), (q, α, 𝜆) = (0.9, 1.5, 0.1) for a nominal 𝐴𝑅𝐿0 value of 500 
Shift (𝜹) MW U U-CUSUM U-GWMA U-EWMA U-MCE U-MEC U-MGC U-MCG 

0.00 499.76 503.91 501.22 502.05 505.40 503.51 498.82 501.45 

0.25 249.04 343.37 220.59 335.62 262.28 255.36 87.17 87.40 

0.50 62.17 123.24 46.26 114.22 122.73 129.74 14.28 11.72 

0.75 18.73 37.37 13.55 28.61 35.17 35.98 12.10 6.14 

1.00 7.24 15.00 5.57 12.84 15.04 14.97 9.06 4.37 

1.25 3.56 9.59 2.89 7.93 9.44 9.54 8.27 3.53 

1.50 2.12 7.09 1.90 5.65 7.06 7.15 6.76 3.08 

1.75 1.52 5.80 1.45 4.35 5.70 5.73 5.34 2.78 

2.00 1.24 4.86 1.21 3.52 4.88 4.89 5.08 2.53 

2.25 1.11 4.28 1.10 2.97 4.28 4.30 4.01 2.29 

2.50 1.04 3.86 1.04 2.54 3.88 3.87 4.00 2.13 

𝑨𝑬𝑸𝑳𝟏 13.88 24.43 10.99 21.87 22.29 22.88 5.27 3.95 

𝑨𝑬𝑸𝑳𝟐 5.86 15.31 4.79 12.65 15.23 15.32 12.40 5.61 

𝑨𝑬𝑸𝑳𝟑 5.43 20.75 5.34 14.58 20.72 20.77 20.49 10.88 

𝑨𝑬𝑸𝑳𝟒 9.87 19.87 7.89 17.26 18.76 19.10 8.84 4.78 

𝑨𝑬𝑸𝑳𝟓 8.10 20.22 6.87 16.19 19.54 19.77 13.50 7.22 

Parameter

s 
k = 2.795 ℎ𝐶  = 5.298 L = 2.665 L = 2.991 L = 338 H = 338.4 ℎ = 31.293 L = 5.195 

𝐴𝐸𝑄𝐿1  is the AEQL for small shifts only (0 < 𝛿 ≤ 0.75)  



𝐴𝐸𝑄𝐿2  is the AEQL for moderate shifts only (0.75 < 𝛿 ≤ 1.5)  

𝐴𝐸𝑄𝐿3  is the AEQL for large shifts only (1.5 < 𝛿 ≤ 2.5)  

𝐴𝐸𝑄𝐿4  is the AEQL for small-to-moderate shifts (0 < 𝛿 ≤ 1.5) 
𝐴𝐸𝑄𝐿5  is the AEQL for small-to-large shifts (0 < 𝛿 ≤ 2.5) 

Table 8: Case E performance comparison of eight monitoring schemes under the t(3) distribution when (m, n) = 

(100, 5), (q, α, λ) = (0.9, 1.5, 0.1) for a nominal 𝐴𝑅𝐿0 value of 500 
Shift (𝜹) MW U U-CUSUM U-GWMA U-EWMA U-MCE U-MEC U-MGC U-MCG 

0.00 500.69 502.60 512.71 504.33 495.64 510.75 496.84 503.69 

0.25 185.41 253.74 147.37 241.17 221.82 229.14 42.06 42.26 

0.50 31.72 45.87 19.66 42.24 38.60 37.21 13.42 6.81 

0.75 7.21 13.64 5.04 11.52 12.43 11.99 10.16 4.24 

1.00 2.81 7.98 2.36 6.83 11.04 11.43 8.78 3.36 

1.25 1.69 5.83 1.58 4.94 7.77 7.69 8.04 2.93 

1.50 1.31 4.72 1.30 3.79 5.96 6.01 6.55 2.62 

1.75 1.18 4.07 1.17 2.96 4.93 4.99 5.24 2.38 

2.00 1.11 3.62 1.11 2.43 4.30 4.31 5.09 2.24 

2.25 1.07 3.30 1.08 2.12 3.84 3.85 4.04 2.16 

2.50 1.05 3.05 1.06 2.08 3.52 3.53 4.01 2.10 

𝑨𝑬𝑸𝑳𝟏 7.86 11.67 5.65 10.70 10.17 10.12 3.90 2.24 

𝑨𝑬𝑸𝑳𝟐 2.80 9.24 2.58 7.69 12.20 12.32 12.48 4.61 

𝑨𝑬𝑸𝑳𝟑 5.01 15.68 5.03 10.63 18.43 18.52 20.48 10.08 

𝑨𝑬𝑸𝑳𝟒 5.33 10.45 4.12 9.20 11.18 11.22 7.96 3.43 

𝑨𝑬𝑸𝑳𝟓 5.20 12.54 4.48 9.77 14.08 14.14 12.97 6.09 

Parameters k = 2.795 ℎ𝐶  = 5.298 L = 2.665 L = 2.991 L = 336 H = 338.4 ℎ = 31.293 L = 5.195 

 

Tables 9: Case E performance comparison of eight monitoring schemes under the 𝐺𝐴𝑀(3,1) distribution when 

(m, n) = (100, 5), (q, α, 𝜆) = (0.9, 1.5, 0.1) for a nominal 𝐴𝑅𝐿0 value of 500 
Shift (𝜹) MW U U-CUSUM U-GWMA U-EWMA U-MCE U-MEC U-MGC U-MCG 

0.00 501.79 504.46 492.77 511.47 501.49 506.61 497.39 514.48 

0.25 392.71 405.86 313.61 364.14 311.63 315.83 62.21 94.33 

0.50 113.51 100.22 64.44 91.05 59.99 57.64 17.09 9.94 

0.75 34.18 19.43 19.85 15.77 14.66 14.91 12.47 5.30 

1.00 11.27 12.62 6.76 10.28 9.44 9.79 9.84 3.88 

1.25 4.54 7.97 2.95 6.54 6.99 7.01 8.69 3.50 

1.50 2.17 6.11 1.76 4.70 5.08 5.04 8.01 3.26 

1.75 1.34 5.03 1.28 3.72 4.01 3.99 5.60 3.07 

2.00 1.08 4.32 1.08 3.11 3.34 3.33 5.24 2.83 

2.25 1.01 3.85 1.01 2.79 2.84 2.87 4.01 2.51 

2.50 1.00 3.52 1.00 2.48 2.52 2.52 4.00 2.33 

𝑨𝑬𝑸𝑳𝟏 24.05 20.45 15.63 18.13 14.24 14.18 5.06 3.79 

𝑨𝑬𝑸𝑳𝟐 7.75 12.94 5.11 10.36 10.60 10.69 13.81 5.56 

𝑨𝑬𝑸𝑳𝟑 4.95 18.54 4.90 13.36 13.94 13.95 20.85 12.00 

𝑨𝑬𝑸𝑳𝟒 15.90 16.70 10.37 14.24 12.42 12.44 9.44 4.67 

𝑨𝑬𝑸𝑳𝟓 11.52 17.43 8.18 13.89 13.03 13.04 14.00 7.60 

Parameters 𝑘 = 2.795 ℎ𝐶  = 5.298 L = 2.665 L = 2.991 L = 336 H = 338.4 ℎ = 31.293 𝐿 = 5.195 

 

From Table 7, it can be seen that under the 𝑁(0,1) distribution, the U-MCG scheme performs 

better for small shifts in the location parameter; whereas, the U-CUSUM, U-EWMA, U-MEC 

and U-MCE have the worst performances for small shifts (see the 𝐴𝐸𝑄𝐿1 values). However, 

the U-GWMA and MW U schemes perform better than all competing schemes considered in 

this study under moderate and large shifts (see the 𝐴𝐸𝑄𝐿2 and 𝐴𝐸𝑄𝐿3 values). Moreover, for 

small-to-moderate shifts, the U-MCG scheme outperform all competing schemes (see the 

𝐴𝐸𝑄𝐿4 values); while the U-GWMA scheme performs better for small-to-large shifts (see the 

𝐴𝐸𝑄𝐿5 values). From Tables 8 and 9, it can be observed that under the 𝑡(3) and 𝐺𝐴𝑀(3,1) 

distributions, the U-MCG scheme outperforms the competing schemes under small shifts (see 

the 𝐴𝐸𝑄𝐿1 values). Under moderate shifts, the U-GWMA scheme is superior compared to all 



other competing schemes (see the 𝐴𝐸𝑄𝐿2 values). For large shifts, the Shewhart MW U scheme 

performs better (see the 𝐴𝐸𝑄𝐿3 values). In addition, under the 𝑡(3) distribution, for small-to-

moderate shifts in the location parameter, the U-MCG scheme is superior to all competing 

schemes (see the 𝐴𝐸𝑄𝐿4 values); while the U-GWMA scheme performs better for small-to-

large shifts (see the 𝐴𝐸𝑄𝐿5 values). Under the 𝐺𝐴𝑀(3,1) distribution, for both small-to-

moderate and small-to-large shifts in the location parameter, the U-MCG scheme is superior to 

all competing schemes considered in this study (see the 𝐴𝐸𝑄𝐿4 and 𝐴𝐸𝑄𝐿5 values). In the 

latter comparison, the U-CUSUM, U-EWMA, U-MEC and U-MCE schemes do not have a 

range of shift values where they yield a better performance for the considered AEQL situations. 

It can also be seen that the proposed U-MCG scheme with (q, α) = (0.9, 1.5) has very interesting 

run-length characteristics regardless of the size of the shift. However, for these parameters, the 

U-MGC schemes performs relatively worst especially for moderate and large shifts. This poor 

performance of the U-MGC scheme is due to the large value of 𝑞. In some other situations, the 

U-MGC scheme presents very interesting run-length characteristics (see for instance, Tables 4 

to 6). 

 

4. Illustrative example 

In this section, the implementation and application of the proposed U-MGC and U-MCG 

monitoring schemes is illustrated using the data on the inside diameters of piston rings 

manufactured by a forging process from Montgomery (2005, page 223). The first set of data 

contains hundred and twenty five Phase I observations (m = 125) collected when the process 

was considered to be IC. These data are used as the Phase I data for which a goodness of fit 

test for normality is not rejected. The second set of data contains fifteen test samples each of 

size n = 5 which are considered to be the Phase II data. The proposed monitoring schemes are 

designed in Case E when 𝑘 ∈ {0.1, 0.5}, 𝛼 ∈ {0.5, 1.5} and 𝑞 ∈ {0.1, 0.5} for a nominal 𝐴𝑅𝐿0 

value of 500. When 𝑘 = 0.1, (𝑞, 𝛼) = (0.5, 1.5), (0.1, 1.5) and (0.5, 0.5), we have ℎ = 38.862, 

22.362 and 47.764 which are the control limit coefficients of the U-MGC scheme with 𝐴𝑅𝐿0 

values of 499.58, 500.52 and 501.57, respectively. However, when 𝑘 = 0.5, we have ℎ = 

11.423, 6.224 and 12.569 so that the corresponding 𝐴𝑅𝐿0 values are 499.58, 500.52 and 

501.57, respectively. The plot of the U-MGC schemes’ plotting statistics for 𝑘 = 0.1 and 0.5 

are shown in Figure 5. It is observed that when 𝑘 = 0.1, (𝑞, 𝛼) = (0.5, 1.5), (0.1, 1.5) and (0.5, 

0.5), the proposed U-MGC scheme gives a signal on the seventh, sixth and ninth Phase II 

subgroups, respectively (see Figure 5(a)). However, when 𝑘 = 0.5, (𝑞, 𝛼) = (0.5, 1.5), (0.1, 1.5) 



and (0.5, 0.5), the proposed U-MGC scheme gives a signal on the third, second and fourth 

Phase II subgroups, respectively (see Figure 5(b)). 

  
(a) MGC scheme with 𝑘 = 0.1 (b) MGC scheme with 𝑘 = 0.5 

Figure 5. Implementation of the U-MGC scheme for the Montgomery (2005)’s piston ring data 

 

For the U-MCG scheme, when 𝑘 = 0.1, (𝑞, 𝛼) = (0.5, 1.5), (0.1, 1.5) and (0.5, 0.5), we have 

𝐿 = 18.606, 19.076 and 33.642 with 𝐴𝑅𝐿0 values equal to 500.78, 498.38 and 499.46, 

respectively. However, when 𝑘 = 0.5, we have 𝐿 = 4.829, 5.743 and 7.646 with 𝐴𝑅𝐿0 values 

of 503.01, 499.44 and 500.57, respectively. The plot of the U-MCG scheme plotting statistics 

for 𝑘 = 0.1 and 0.5 are shown in Figure 6. It is observed that when 𝑘 = 0.1, (𝑞, 𝛼) = (0.5, 1.5) 

and (0.1, 1.5), the proposed U-MGC scheme gives a signal on the twelfth and fourteenth Phase 

II subgroups, respectively (see Figures 6(a)-(b)). When 𝑘 = 0.1 and (𝑞, 𝛼) = (0.5, 0.5), the 

proposed U-MCG scheme does not give a signal in Phase II (see Figure 6(c)). However, when 

𝑘 = 0.5, (𝑞, 𝛼) = (0.5, 1.5), (0.1, 1.5) and (0.5, 0.5), the U-MCG scheme gives a signal on the 

fifth, third and second Phase II subgroups, respectively (see Figure 6(d)-(f)). Therefore, in these 

conditions, the U-MGC scheme is more sensitive compared to the U-MCG scheme since it 

gives a signal sooner. 
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(a) (𝑞,𝛼,𝑘) = (0.5, 1.5, 0.1) (b) (𝑞,𝛼,𝑘) = (0.1, 1.5, 0.1) (c) (𝑞,𝛼,𝑘) = (0.5, 0.5, 0.1) 

   
(d) (𝑞,𝛼,𝑘) = (0.5, 1.5, 0.5) (e) (𝑞,𝛼,𝑘) = (0.1, 1.5, 0.5) (f) (𝑞,𝛼,𝑘) = (0.5, 0.5, 0.5) 

Figure 6. Implementation of the U-MCG scheme for the Montgomery (2005)’s piston ring data 
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5. Conclusion and recommendations 

In an effort to efficiently monitor small location shifts in a two-sample distribution-free 

scenario, in this paper, the mixed GWMA-CUSUM and CUSUM-GWMA MW U monitoring 

schemes (denoted as U-MGC and U-MCG schemes) are proposed. The newly proposed 

schemes are revealed to be more efficient than the numerous MW-type schemes in monitoring 

small shifts in the process location. Thus, practitioners are recommended to use the proposed 

U-MCG monitoring scheme to efficiently detect small shifts. Note though, the U-GWMA 

scheme discussed herein is recommended for moderate shifts and both the Shewhart MW U 

and U-GWMA schemes are recommended when monitoring large shifts in the process location. 

In terms of the overall performance, the U-MCG scheme is recommended for monitoring 

small-to-moderate shifts and the U-GWMA scheme is preferred for monitoring small-to-large 

shifts. Since the proposed U-MGC scheme is relatively insensitive to large shifts, the design of 

an improved version is needed. Therefore, in future we intend to investigate the performance 

of the combined Shewhart-MGC MW U schemes as well as the Shewhart-MCG MW U 

schemes in order to further improve the sensitivity of the proposed schemes in monitoring 

moderate to large shifts in the location parameter.  
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