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A COMPONENT-BASED DATA ASSIMILATION STRATEGY WITH

APPLICATIONS TO VASCULAR FLOWS ∗

Duc-Quang Bui1, Pierre Mollo2, Fabio Nobile3 and Tommaso Taddei4

Abstract. We present a parameterized-background data-weak (PBDW) approach [Y Maday, AT Pa-
tera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933–965] to the steady-state variational data
assimilation (DA) problem for systems modeled by partial differential equations (PDEs) and charac-
terized by multiple interconnected components, with emphasis on vascular flows. We focus on the
problem of reconstructing the state of the system in one specific component, based on local measure-
ments. The PBDW approach does not require the solution of any PDE model at prediction stage
(projection-by-data) and, as such, enables local state estimates on single components, as long as good
background and update spaces for the estimation can be constructed. We discuss the application of
PBDW to a two-dimensional steady Navier-Stokes problem for a family of parameterized geometries,
and investigate instead the effects of enforcing no-slip boundary conditions and incompressibility con-
straints on the background and update spaces to enhance the state estimation. Furthermore, we show
an actionable strategy to train local reduced-order bases (ROBs) for the background space that can
later be used for DA tasks.

1. Introduction

Data assimilation (DA) refers to the process of integrating experimental observations into a possibly parame-
terized mathematical model to achieve better prediction of quantities of interest. In particular, state estimation
is the DA task that addresses the problem of estimating the (unknown) state utrue of a physical system over a
domain of interest Ω ⊂ Rd. This work deals with the problem of estimating the velocity flow field utrue based
on sparse velocity measurements: the ultimate goal of the project is to devise a fast and efficient DA state
estimation procedure to monitor blood flows in the vascular system.

For clinical applications, it is important to estimate the blood flow and derived quantities such as the wall
shear stress over a region of interest. Towards this end, combination of sophisticated 3D models of the vascular
flow with in vivo patient-specific measurements is key to properly inform clinical decisions. A major issue in
this direction is the imposition of inflow and outflow boundary conditions for the 3D vascular model in the
vessel of interest Ω, which are typically largely unknown (see, e.g., [29]): to reduce the impact of boundary
conditions, several authors have proposed to perform simulations over a much larger region Ωnet, encompassing
a network of vessels strictly containing the one of interest [7], with the assumption that boundary conditions
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are better characterized for the larget network Ωnet (e.g. knowledge of pressure or flow rate at the level of the
aortic valve or in peripheral vessels). Clearly, enlarging the computational domain increases the computational
cost and ultimately hinders the ability of numerical simulations to provide reliable answers in a reasonable time
frame.

Localization of the problem to the domain of interest allows to reduce the computational domain — and
ultimately the cost of the DA task — at the price of introducing uncertainty at the (artificial) interface. In this
work, we show that the availability of local measurements in the region of interest enables the solution of DA
tasks without the need to solve global problems, nor even to explicitly characterize the global domain Ωnet at
prediction stage.

Our point of departure is the parameterized-background data-weak (PBDW) approach to state estimation.
PBDW was first introduced in [17] and further extended and analyzed in several subsequent works [2, 4, 8, 11,
18, 26]. The key idea of PBDW is to seek an approximation û = ẑ + η̂ of the state in the region of interest Ω,
employing projection-by-data. The first contribution to û, ẑ ∈ KN , is the deduced background and is designed
to address the uncertainty in the values of the model parameters; as discussed in section 2, given the solution
manifold M that collects the solutions to the problem for all values of the parameters, KN is a N -dimensional
convex closed set that approximates the elements of M. The second contribution to û, η̂ ∈ UM , is the update
estimate and is designed to address the non-parametric uncertainty due to model inadequacy; here, UM is the
M -dimensional linear space spanned by the Riesz representers of the observation functionals that model the
action of the physical transducers on the true state.

PBDW relies on projection-by-data as opposed to projection-by-model (see, e.g., [21]). Projection-by-data
approaches rely exclusively on experimental measurements to estimate the system’s state at prediction stage;
prior knowledge of the physical system, in the form of a mathematical model, is employed at training stage —
i.e., before acquiring measurements — to define the approximation space and/or to define the loss function.
On the other hand, projection-by-model approaches explicitly combine experimental data with a (possibly
parameterized) mathematical model of the system at prediction stage. As observed in [17], projection-by-data
largely eliminates many requirements related to boundary conditions and can accommodate norms that are
considerably stronger than the norms required for well-posedness in projection-by-model. Furthermore, as
discussed in [27], projection-by-data naturally accommodates localization over a subset (or even a manifold) of
Ωnet.

The contribution of the present work is twofold. First, we discuss the application of PBDW to vascular flows
at moderate Reynolds numbers in parametric geometries. Although PBDW is a projection-by-data approach
and does not require the solution of any PDE (not even locally) at prediction stage, it may be convenient to
incorporate physical constraints on the approximation (background and update) spaces for the state estimation.
In this respect, we investigate the effects of imposing no-slip boundary conditions or enforcing the incompress-
ibility constraint on the PBDW estimate û. Second, we illustrate the importance of localization methods for DA
tasks and we present an actionable strategy to train local reduced-order bases (ROBs) to build the background
set KN for vascular flows.

We remark that several approaches for hemodynamics applications based on projection-by-data — but in-
formed by prior knowledge in the form of a PDE — have been considered in the literature (e.g., [1,15]): we refer
to the above mentioned literature and also to the recent lecture notes [20] for a thorough review of the subject.
In particular, PBDW was previously applied to hemodynamic problems by Galarce et al. [8]: as opposed to this
work, the authors of [8] consider the case of perfect (noiseless) measurements and do not address the issue of
enforcing incompressibility of the state estimate. On the other hand, the application of PBDW to localized DA
was first considered in [27] for an acoustic problem: in this work, we investigate the performance of localization
methods for a class of relevant blood flow problems of interest in hemodynamics.

The outline of the paper is as follows. In section 2, we present the problem of interest, we introduce the
localized state estimation problem, and we also present the general PBDW approach for state estimation. In
section 3, we discuss the construction of the background set KN through model order reduction (MOR, [13,22])
techniques, the choice of the update space for PBDW, and the enforcement of the incompressibility constraint.



ESAIM: PROCEEDINGS AND SURVEYS 3

In section 4, we present several numerical investigations to illustrate the performance of the proposed technique
for a representative model problem.

2. Formulation

2.1. Problem statement

We denote by Ωnet ⊂ R2 the network of interest for which we assume to have a precise characterization
of the boundary conditions; we further denote by (unet, pnet) the velocity-pressure pair that solves the steady
Navier-Stokes equations: 

−ν∆unet + (unet · ∇)unet +∇pnet = 0 in Ωnet

∇ · unet = 0 in Ωnet

unet = g on Γnet,in

unet = 0 on Γnet,wall

ν ∂unet

∂n + pnetn = 0 on Γnet,out

(1)

Here, ν is the kinematic viscosity, n denotes the outward unit normal, Γnet,out is the outflow boundary, Γnet,wall

is the boundary associated with the vessel walls; finally, Γnet,in denotes the inflow boundary where we impose
the Dirichlet condition g such that

g(x1, x2) =

(
4
(H − x2)x2

H2

)µbnd
1 (

1 + µbnd
2 sin(3πx2)

) [ 1
0

]
. (2)

Here, H > 0 denotes the length of the inflow boundary, which is assumed to be perpendicular to the x1 axis,
and µbnd

1 , µbnd
2 are unknown parameters that encode our uncertainty in the inflow BCs. Note that for µbnd

1 = 1
and µbnd

2 = 0 the inflow condition corresponds to the standard Poiseuille flow; the sinusoidal term mimics the
effect of a non-symmetric disturbance, while the exponent µbnd

1 primarily influences the normal derivative of
the velocity field at walls.

We interpret Ωnet as the union ofNdd non-overlapping components ω1, . . . , ωNdd
. We assume that ω1, . . . , ωNdd

are instantiations of two archetype components [14] Ω̂1, Ω̂2; that is, there exist two parametric bijections Φ̂1, Φ̂2

and Ndd parameters µnet
1 , . . . , µnet

Ndd
such that

Ωnet =

Ndd⋃
j=1

ωj , with ωj = Φ̂Lj (Ω̂Lj , µnet
j ), j = 1, . . . , Ndd, (3)

where Lj ∈ {1, 2} is the label of the j-th component of the network. In Figure 1(A)-(B), we show the two
archetype components — which we dub as “junction” and “channel” — and the associated finite element (FE)

meshes. Archetype components are glued together at shared ports {Γ̂ip}i=1,2 [14] to form the global network: in
Figures 1(C)-(D), we show two examples of vascular networks Ωnet with 10 instantiated components considered
in the numerical experiments. We observe that the solution (unet, pnet) to (1)-(2) is uniquely characterized by (i)

the set of Ndd labels {Lj}Ndd
j=1 , (ii) the set of geometric parameters −→µ net = (µnet

1 , . . . , µnet
Ndd

) ∈ Pnet =
⊗Ndd

j=1 P̂Lj

where P̂1 and P̂2 are suitable compact sets associated with the geometrical parameters, and (iii) the global
parameter ν and the two parameters µbnd

1 , µbnd
2 associated with the inflow BC g in (2). Practical values of the

parameters ν, µbnd
1 , µbnd

2 considered in the numerical simulations as well as the definitions of the geometrical
parameterization are provided in Appendix A.
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(a) (b)

(c) (d)

Figure 1. Geometrical configurations. (A)-(B) archetype components for junction (left) and
channel (right) and associated finite element meshes. (C)-(D) examples of vascular networks
with Ndd =10 components. Red points denote the coordinates that belong to the components’
ports.

Our goal is to estimate the velocity field utrue := unet|Ω in one of the deployed components Ω = ωj⋆ based
on M local measurements of the state

ym = ℓom(utrue) + εm, m = 1, . . . ,M, (4a)

where ε1, . . . , εM are random disturbances, and ℓo1, . . . , ℓ
o
M : [H1(Ω)]2 → R are given by

ℓom(v) =
1

2πσ2
o

∫
Ω

exp

(
− 1

2σ2
o

∥x− xom∥22
)
[cos(θm), sin(θm)] · v(x) dx (4b)
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for some {xom}Mm=1 ⊂ Ω, σo > 0, {θm}Mm=1 ⊂ [0, 2π). In the numerical experiments, we generate xom
iid∼

Uniform(Ω) and θm
iid∼ Uniform(0, 2π); on the other hand, we consider random Gaussian noise of the form

ε1, . . . , εM
iid∼ N

(
0,

(
std({ℓom(utrue)}m)

SNR

)2
)

(4c)

where std({xm}m) is the sample standard deviation of the vector {xm}m and SNR is the signal-to-noise ratio
that will be specified in the numerical results.

Some comments are in order.

• The particular form of the observation functionals in (4b) is consistent with the choice in [8] for Doppler
ultrasound imaging measurements. Note that ℓo1, . . . , ℓ

o
M are continuous linear functionals in [H1(Ω)]2.

• If we denote by µ =
(
ν, µbnd

1 , µbnd
2 ,−→µ net

)
the vector of parameters and by P the corresponding parameter

domain, we may introduce the solution manifold

M := {unet(µ)|Ω : µ ∈ P}. (5)

Note that evaluating an element of the manifold M requires to solve the equations (1) over the whole
domain Ωnet at prediction stage: it is thus extremely expensive for practical applications. Moreover, the
exact topology of the network might be only partially known. These considerations justify the interest
for localized DA techniques.

• In our presentation, we assumed that (i) the true state utrue solves the Navier-Stokes equations (1) at
moderate Reynolds number for some unknown value of the physical and geometric parameters µ (i.e.,
non-parametric uncertainty is negligible for the problem at hand); and (ii) the geometry Ω of the domain
of interest is fixed and is known exactly — even if the exact shape of the full network is unknown. The
particular — steady-state, two-dimensional — PDE model considered is inadequate for realistic vascular
flows: it is thus necessary to resort to more appropriate PDE models to achieve accurate blood flow
reconstructions. The application of PBDW in combination with more realistic 3D unsteady models
is beyond the scope of the present work. Nevertheless, since PBDW relies on projection-by-data, we
envision that the present study might represent an important step towards the development of robust
DA techniques for real-world hemodynamics applications.

2.2. PBDW approach to state estimation

We review the PBDW formulation for state estimation as presented in [9]. We introduce the Hilbert space

X over Ω endowed with the inner product (·, ·) and the induced norm ∥ · ∥ =
√

(·, ·). Then, the partial spline
model (PSM, [31]) reads: find û = ẑ + η̂ such that

(ẑ, η̂) ∈ arg min
(z,η)∈M×X

ξ∥η∥2 + ∥ℓo(z + η)− y∥22, (6)

where ℓo = [ℓo1, . . . , ℓ
o
M ]T : X → RM is the vector of observation functionals and M is the solution manifold

(5). PSM reads as a regularized nonlinear least-square problem where the penalization term ∥η∥2 is designed
to penalize deviations from the manifold M and ξ > 0 is a weighting parameter that balances the importance
of prior knowledge (encoded in M) with the data misfit ∥ℓo(z+ η)−y∥2. We also remark that PSM reduces to
the well-known 3D-VAR formulation [16] when M reduces to a singleton. Problem (6) is highly nonlinear and
non-convex; furthermore, it requires solutions to the full model. It is thus ill-suited for real-time computations.

To address these issues, we introduce the rank-N approximation of the elements of M:

MN :=

{
N∑
n=1

α̂n(µ)ζn : µ ∈ P

}
,
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where {ζn}Nn=1 ⊂ X is a suitable reduced-order basis that is designed to accurately approximate elements of M
and α̂ : P → Rn is a vector-valued function of generalized coordinates that can be obtained using projection-
by-model — i.e., by solving a suitable (Petrov-)Galerkin reduced-order model. If we introduce the convex set
A that approximates the range of the function α̂, α̂(P), we obtain the convex approximation of MN

KN :=

{
N∑
n=1

αnζn : α ∈ A

}
. (7a)

Substitution of M with KN in (6) leads to the general PBDW formulation: find û = ẑ + η̂ such that

(ẑ, η̂) ∈ arg min
(z,η)∈KN×X

ξ∥η∥2 + ∥ℓo(z + η)− y∥22. (7b)

If ℓo(z) = 0 implies z ≡ 0 for any z ∈ KN , then it is possible to show that the solution to (7b) exists and is
unique (cf. [9, Proposition 2.1]); furthermore, the optimal update η̂ belongs to the M -dimensional update space

UM := span{qm}Mm=1, where (qm, v) = ℓom(v) ∀ v ∈ X , m = 1, . . . ,M. (7c)

The solution to (7) does not rely on an explicit characterization of the elements of the manifold M, and
can thus be solved without having to query the underlying PDE model (projection-by-data) — in particular,
we do not have to prescribe boundary conditions on ∂Ω. We further observe that, if the set A in (7a) is of
the form {α ∈ RN : Aα ≤ b} for some matrix-vector pair (A,b), problem (7b) is equivalent to a quadratic
programming problem with linear constraints of size N +M . In Appendix B, we discuss in detail the algebraic
counterpart of the PBDW statement in (7) and we provide further details concerning the actual implementation
of the method.

We observe that PBDW depends on several elements that should be carefully selected: (i) the ROB {ζn}Nn=1

and the convex set A in (7a); (ii) the inner product (·, ·) that informs the update space UM in (7c); and (iii)
the choice of the hyper-parameter ξ. Furthermore, for incompressible flows, we should also discuss the practical
enforcement of the incompressibility constraint. We address these issues in the subsequent section.

We further observe that the effectiveness of the PBDW approach strongly depends on the existence of accurate
low-dimensional rank-N approximations (cf. (7a)) of the solution manifold M: in the setting of localized data
assimilation, for diffusion-dominated problems, this property is ensured by the rapid spatial evanescence of
high-frequency modes (see, e.g., [24]); on the other hand, we envision that a linear reduction approach might
not be effective in the high-Reynolds number regime.

3. Methodology

In this section, we discuss the construction of the many elements of the PBDW formulation for the two-
dimensional model problem introduced in section 2. In section 3.1, we discuss the finite element (FE) dis-
cretization; in section 3.2, we present the data compression strategy for the construction of the background
sets KN ; then, in section 3.3, we propose an actionable strategy for the enforcement of the incompressibility
constraint. Finally, in section 3.4, we discuss the choice of the ambient space X and of the hyper-parameter ξ
in (7).

3.1. Finite element formulation

We denote by T̂ (i) =

({
x̂
(i)
ℓ

}Nhf,(i)

ℓ=1
, T(i)

)
the FE mesh associated with the i-th archetype component with

nodes
{
x̂
(i)
ℓ

}Nhf,(i)

ℓ=1
and connectivity matrix T(i). We rely on a P2-P1 Taylor-Hood (TH) FE discretization [28];

we denote by X̂ (i)
hf and Q̂(i)

hf the TH-FE spaces for velocity and pressure, respectively, associated with the mesh
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T̂ (i). Given u ∈ X̂ (i)
hf , we denote by u ∈ R2Nhf,(i) the corresponding FE vector of nodal values. Then, we define

the deformed meshes (we omit explicit dependence on parameter for simplicity)

T (j)
net =

({
Φj

(
x̂
(Lj)
ℓ

)}Nnet,(j)

ℓ=1
, T(Lj)

)
, where Φj = Φ̂Lj (·;µnet

j ), Nnet,(j) = Nhf,(Lj), (8)

and the associated FE spaces X (j)
hf and Q(j)

hf , for j = 1, . . . , Ndd. Finally, we introduce the global FE mesh Tnet
as the union of the local deployed meshes {T (j)

net : j = 1, . . . , Ndd} and the associated velocity and pressure spaces

Xhf and Qhf . Given u ∈ Xhf , we denote by uj ∈ X (j)
hf the corresponding restriction to ωj , for j = 1, . . . , Ndd.

By construction, given the FE mesh-vector pair (T (j)
net ,u) associated with the field u ∈ X (j)

hf , we have that

the corresponding pair (T̂ (Lj),u) identifies the mapped field u ◦Φj ∈ X̂ (Lj)
hf . We further observe that if u ∈ Xhf

satisfies the weak incompressibility constraint

∫
Ωnet

(∇ · u) q dx = 0 ∀ q ∈ Qhf , (9a)

then, for all j = 1, . . . , Ndd, the restriction uj = u|ωj
should satisfy

∫
ωj

(∇ · uj) q dx = 0 ∀ q ∈ Q(j)
hf,0 := {q′ ∈ Q(j)

hf : q′|
Γ
(j)
p

= 0}, (9b)

where Γ
(j)
p = Φj(Γ̂

(Lj)
p ) is the union of all ports of ωj (cf. Figure 1). Condition (9b) can be interpreted as an

additional piece of information that the PBDW state estimate should (at least approximately) satisfy.

3.2. Construction of the background set

We rely on global FE solves to construct reduced order bases (ROBs) {ζ(i)n }Nn=1 and sets A(i) ⊂ RN for each
archetype component1. Algorithm 1 outlines the computational procedure: we generate ntrain random networks
Ωnet and we approximate the corresponding solution (unet, pnet) to (1) using the TH-FE method (as in section
3.1, we omit explicit dependence on the parameter to simplify notation); we extract the local solutions, map
them back onto the reference configuration, and populate the datasets of local solutions for each archetype

component; then, we apply proper orthogonal decomposition (POD, [23, 30]) with respect to the H1(Ω̂i) inner
product to obtain the local ROBs and we define the sets {A(i)}i=1,2 as the minimal hyper-rectangles that
contain the projected training data onto the POD subspace. In Algorithm 1, notation POD(D, (·, ·), N) signifies
that we apply POD on the set D based on the inner product (·, ·) and we extract the first N dominant modes.
We rotate the velocity field as follows: ũj = Rot(−θj)(uhfnet|ωj

◦ Φj), where θj is the angle between the inlet
port of the j-th deformed component and the x1 axis, and Rot(θ) is the two-dimensional rotation matrix
Rot(θ) = [cos(θ),− sin(θ); sin(θ), cos(θ)].

1To shorten notation, we here assume that the size N of the ROBs is the same for all components.
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Algorithm 1 Construction of the background sets (7a)

1: Generate ntrain global parameters {µ(k)}ntrain

k=1 .

2: Set D(i) = ∅ for i = 1, 2.

3: for k = 1, 2 . . . , ntrain do
4: Solve the TH-FE problem associated to (1) for µ = µ(k).

5: Update the local datasets: D(i) = D(i) ∪ {Rot(−θj)(uhfnet|ωj
◦ Φj), j = 1, . . . , Ndd : Lj = i} for i = 1, 2.

6: end for

7: Generate the ROBs: {ζ̃(i)n }Nn=1 = POD
(
D(i), (·, ·)H1(Ω̂i), N

)
for i = 1, 2

8: Define A(i) =
⊗N

i=1[a
(i)
n , b

(i)
n ] with a

(i)
n = minw∈D(i)

(
w, ζ̃

(i)
n

)
H1(Ω̂i)

, b
(i)
n = maxw∈D(i)

(
w, ζ̃

(i)
n

)
H1(Ω̂i)

, for

i = 1, 2, n = 1, . . . , N .

Algorithm 1 relies on the generation of global networks and global parameters; we postpone the definition of
the sampling distribution used to generate the training set to Appendix A. We also observe that the approach
relies on ntrain global solves and might thus be particularly expensive. In the MOR literature, this motivated
the development of localized training techniques [3, 5, 24, 25]: a detailed analysis of these approaches as well as
their application to the model problem at hand is beyond the scope of this paper. In the numerical experiments,
we empirically investigate the impact of the size Ndd of the network used at training stage.

Algorithm 1 generates the “master” reduced sets K̃(i)
N = {

∑N
n=1 αnζ̃

(i)
n : α ∈ A(i)} ⊂ X̂ (i)

hf . Given a new

geometry Ω of type i ∈ {1, 2} such that Ω = Φ̂i(Ω̂(i);µnet) for some µnet ∈ P̂i, we consider the background set2

KN :=

{
N∑
n=1

αnζn : α ∈ A(i)

}
, with ζn = Rot(θ)

(
ζ̃(i)n ◦

(
Φ̂i(·;µnet)

)−1
)
, n = 1, . . . , N, (10)

where θ denotes the angle between the inlet boundary of Ω and the x1 axis.

We observe that each element of the ROBs {ζ̃(i)n }n for i = 1, 2 can be stored as a FE mesh-vector pair and then
instantiated at prediction stage by deforming the mesh as described in (8). Clearly, the set KN defined in (10)
is not weakly-divergence free in the sense of (9b). To address this issue, in the framework of MOR of parametric
PDEs in parameterized geometries, several authors have proposed the use of Piola transformations (see, e.g., [6]
and the references therein). A thorough investigation of the impact of the use of the Piola transformation in
our framework is beyond the scope of the present paper.

3.3. Enforcing the incompressibility constraint through artificial measurements

In order to weakly enforce the incompressibility constraint, we propose to introduce a set of “artificial”
measurements of the form

ℓdiv(u) =

[∫
Ω

ψ1 (∇ · u) dx, . . . ,
∫
Ω

ψK (∇ · u) dx
]T

, for ψ1, . . . , ψK ∈ L2(Ω), K ∈ N. (11a)

We further define the space QK = span{ψk}Kk=1. Recalling (9b), we have that ℓdiv(utrue) = 0 if ψ1, . . . , ψK ∈
Qhf,0(Ω) whereas, for arbitrary choices of ψ1, . . . , ψK ∈ L2(Ω), in general ℓdiv(utrue) ̸= 0, yet ∥ℓdiv(utrue)∥2
converges to zero as the mesh size decreases. We consider ψ1, . . . , ψK to be orthonormal in L2: this implies that

∥ℓdiv(u)∥2 = sup
ψ∈QK , ∥ψ∥L2=1

(∇ · u, ψ)L2(Ω)=

 K∑
j=1

(∇ · u, ψj)2L2(Ω)

 1
2

. (11b)

2Once again, we omit dependence on the parameter µnet.
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Furthermore, given the instantiated ROB {ζn}Nn=1 (cf. (10)), we choose

QK=N = span{∇ · ζn}Nn=1, n = 1, . . . , N ; (11c)

given the orthonormal basis {ψdiv
n }Nn=1 of QN , we set ℓdivn (v) =

∫
Ω
ψdiv
n (∇·v) dx for all v ∈ X and n = 1, . . . , N.

Notice that, with this choice, ℓdiv(utrue) ̸= 0 since qdivn /∈ Qhf,0(Ω). Since ℓdiv1 , . . . , ℓdivN are linear continuous
functionals in X ⊂ H1(Ω), the PBDW formulation with artificial measurements reads exactly as (7) withM+N
measurements and thus an M +N -dimensional update space: more precisely, we have

(ẑ, η̂) ∈ arg min
(z,η)∈KN×UM+N

ξ∥η∥2 + ∥ℓo(z + η)− y∥22 + ∥ℓdiv(z + η)∥22. (12a)

where
UM+N = span{qm}Mm=1 ∪ span{qdivn }Nn=1, with (qdivn , v) = ℓdivn (v) ∀ v ∈ X . (12b)

In the numerical experiments, we investigate the impact of the artificial measurements on performance.

3.4. Choice of the ambient space X and the hyper-parameter ξ

In this work, we choose X = {v ∈ Xhf(Ω) : v|Γnet,wall∩∂Ω = 0} equipped with the H1(Ω) inner product

(w, v) =

∫
Ω

∇w : ∇v + wv dx.

This choice is justified by the fact that, since the elements of KN are not divergence-free, the correction η̂
might also contribute to ensure the fulfillment of the incompressibility constraint. On the other hand, since the
elements of the background space satisfy the no-slip conditions, it is important to ensure that also the update
space belongs to H1

0,Γnet,wall∩∂Ω(Ω). Note that the particular choice of the inner product depends on the physical

domain; therefore, the update space cannot be precomputed at training stage and should thus be computed for
any new configuration. For this reason, as currently implemented, the method is not well-suited for real-time
mesh-independent computations: in section 4, we comment on the computational cost of the state estimation
procedure. We envision that, provided that the measurements’ locations are known a priori, we might employ
MOR techniques to the solution to the parameterized Riesz problems and ultimately speed up the assembly of
the update space.

We observe that the PBDW statement (7) (and equivalently (12)) depends on the choice of the regularization
parameter ξ. As discussed in [26], the optimal choice of ξ depends on the ratio between the experimental noise,
the number of measurements, and the accuracy of the background: it is thus highly problem-dependent and
difficult to estimate a priori. In this work, we rely on holdout validation (see, e.g., [12]) to tune ξ: we randomly
split the dataset of measurements into a training set and a validation set; we solve the PBDW problem for
several values of ξ in a given set Ξtrain ⊂ R+ and we pick ξ⋆ that minimizes the mean square error over the
validation set; finally, we solve PBDW over the whole dataset of measurements with ξ = ξ⋆. In the numerical
experiments, we consider a 80%− 20% training-validation split.

4. Numerical results

We present the results of the numerical investigations for the model problem introduced in section 2. We
assess performance through the vehicle of a dataset of simulations, which are constructed using ntest = 10
networks with Ndd = 10 components; In more detail, we randomly pick five components of type “junction” and
five components of type “channel” among the ones present in the dataset of test networks. The figures below
provide the behavior of the relative L2 or H1 prediction error

E[utrue] =
∥utrue − û∥⋆
∥utrue∥⋆

, ⋆ = H1(Ω) or ⋆ = L2(Ω); (13)
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To properly take into account the experimental noise, we repeat the estimation Nrep = 100 times and we show
the 25 − 50 − 75 quantiles of the error over the selected instantiated components and the evaluation of the
random noise.

Figure 2 investigates the influence of the size Ndd of the networks used at training stage. In more detail, we
build the background space KN with A = RN based on ntrain simulations on networks with Ndd components
and then we measure the relative projection error

Eproj[utrue] =
infζ∈KN

∥utrue − ζ∥H1(Ω)

∥utrue∥H1(Ω)

on the test set. To ensure that the training sets are all of comparable size, we set ntrain =
⌊

200
Ndd

⌋
. We observe

that the projection error reaches a plateau for Ndd ≳ 5 or 6 for both archetype components and all values of
N ; this result suggests that — for the considered operating conditions — the training can be performed on
networks of modest size.

(a) (b)

Figure 2. Relative H1 projection error for the two archetype components: junction (A) and
channel (B). Training set is based on global solves in networks withNdd = 2, . . . , 10 components;
the test set is extracted from ntest = 10 simulations in networks with 10 components.

Figure 3 shows the behavior of the L2 relative prediction error (13) of the PBDW estimate for the channel
component with respect to the size N of the background set and for two choices of M and SNR. As in
(12), M denotes the number of local measurements (4) in the component of interest; the number of artificial
measurements is set equal to N . We recall that PBDW is ill-posed for N > M . We observe that the optimal
value of N weakly depends on the amount of measurements and also on the experimental noise. We remark that
the introduction of the box constraints (see definition of KN in Algorithm 1) is important to stabilize results
for large values of N (see [9]). In all cases considered, the introduction of artificial measurements improves
performance of the state estimation procedure.

Figure 4 shows the behavior of the relative L2 prediction error with respect to the signal-to-noise ratio
SNR, for two choices of M and N and for the two archetype components. We observe that the introduction
of artificial measurements is beneficial, particularly for noisy (i.e., small SNR) measurements. The impact
of artificial measurements on performance is also a function of the number of available measurements M .
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(a) (b)

(c) (d)

Figure 3. Relative L2 prediction error with respect to the background set dimension N , for
two choices of SNR and two choices of the number of measurements in the component of
interest M . Results refer to the channel components. The acronym AM stands for artificial
measurements; the number of artificial measurements is set equal to N .

Note that the results in Figure 4(B) may be justified by the fact that ℓdiv(utrue) ̸= 0 due to the numerical
discretization error.

Figure 5 shows the behavior of the relative L2 prediction error with respect to the numberM of measurements
in the range [25, 100] for two values of N and SNR. As for the previous test cases, we observe that the
introduction of artificial measurements is beneficial for moderate values of M .

Figure 6 investigates the effect of artificial measurements on the divergence of the predicted field. For
consistency with the underlying numerical scheme, we compute the dual norm:

Ediv[û] = sup
q∈Qhf :q|Γp=0

∫
Ω
(∇ · û) q dx
∥q∥L2(Ω)

. (14)



12 ESAIM: PROCEEDINGS AND SURVEYS

(a) (b)

(c) (d)

Figure 4. Relative L2 prediction error with respect to the signal-to-noise ratio SNR, for two
choices of M and N , and both junction (top) and channel (bottom) components.

Note that the TH FE solution utrue satisfies Ediv[utrue] = 0 for any selected component Ω. Figures 6 (A) and
(B) show the results for the junction component with respect to the background dimension N , for M = 50,
and for SNR = 50 and SNR = 1000, respectively; Figures 6 (C) and (D) replicate the test for the channel
component. We observe that the introduction of the artificial measurements improves the satisfaction of the
divergence-free constraint for the junction component; on the other hand, we find that artificial measurements
are less impactful for the channel component. We conjecture that this is due to the particular parametric
deformations considered for the two archetype components.

Figure 7 shows the wall-clock computational cost in seconds of the PBDW procedure; computations are
performed using the cluster ROMEO3 of the University of Reims. We show results with respect to the number
of measurements for various choices of the background dimension N , for both PBDW and PBDW with arti-
ficial measurements. To facilitate the interpretation, we report both the total prediction cost and the cost of

3https://romeo.univ-reims.fr/
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(a) (b)

(c) (d)

Figure 5. Relative L2 prediction error with respect to the number of measurements M , for
two choices of N and SNR, and both junction (top) and channel (bottom) components.

computing the update space. We observe that for this problem the cost of PBDW is below 0.5 seconds for all
choices of M,N , with and without cross-validation and artificial measurements. We also observe that the cost
of computing the update space exceeds 75% of the total prediction cost in the absence of holdout validation,
while it is approximately 50% of the total prediction cost in the presence of holdout validation for the selection
of the Tykhonov regularization parameter ξ.

5. Conclusion

We illustrated the application of the PBDW approach to a two-dimensional incompressible flow problem
in parametric geometries. In more detail, we discussed the localization of the state estimation problem to
a subregion of interest of the global network, and the weak enforcement of the incompressibility constraint
through the introduction of suitable artificial measurements. No-slip BCs at vessels’ walls are enforced by
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(a) junction (b) junction

(c) channel (d) channel

Figure 6. Behavior of Ediv[û] with respect to the background set dimension N , for two choices
of SNR and for both junction and channel components.

(a) junction, without holdout validation (b) junction, with holdout validation

Figure 7. Average prediction computational cost (in seconds). Results refer to the junction
component.

properly selecting the ambient space X . Numerical results of section 4 show that the introduction of artificial
measurements improves performance, particularly for moderate values of M and SNR; furthermore, they also
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suggest that training of localized spaces might be performed on significantly smaller networks than the ones
considered at prediction stage.

In view of the application of our approach to real-world hemodynamics problems, much work is still needed.
First, we wish to extend our approach to three-dimensional unsteady problems, with fully-automated geometry

registration techniques for the construction of the mapping Φ : Ω̂⋆ → Ω for new configurations. Second, we wish
to develop localized training techniques to avoid expensive global solves (cf. Algorithm 1): in this respect, recent
works on localized training for nonlinear PDEs [3, 25] might represent the point of departure for the definition
of effective background sets KN . Third, we here propose to build the set KN purely based on approximation
considerations. As discussed in the literature, approximation performance depends on the product between
approximation and stability (see, e.g., [17, Proposition 2]). If the observation functionals in (7) are known a
priori, it might be important to devise specialized data compression techniques that are explicitly informed by
the available observations [19].

A. Parameterization of the model problem

We consider ν ∈ [0.05, 0.2] and we set (µbnd
1 , µbnd

2 ) ∈ [0.4, 1] × [−0.1, 0.1] in (1); note that the Reynolds
number ranges from 5 to 20 for all test cases. To define the deformation maps, we first prescribe parametric
analytic expressions of the boundaries in terms of 6 independent parameters β for each archetype component

in the parameter regions P̃1 and P̃2, and then we extend the map to the whole domain through transfinite
interpolation [10] (cf. Figure 8); to ensure continuity, we also consider a rotation parameter θ, a shift x̄, and a
scaling factor s; it is thus convenient to write the maps as

Φ̂i(x̂;µnet := [β, θ, x̄, s]) = x̄+ sRot(θ)Φ̃i(x̂;µ), i = 1, 2, β ∈ P̃i,

where Φ̃1, Φ̃2 are the piece-wise transfinite maps associated with the partitions Figure 8. To generate each
global network, we proceed iteratively as described in Algorithm 2.

Algorithm 2 Generation of global networks.

1: Initialize Ωnet = ∅ with Np = 0 ports.

2: for j = 1, . . . , Ndd do

3: Sample the component index i ∼ Uniform({1, 2}) and the parameter βj ∼ Uniform(P̃i).
4: if i = 1 then

5: Set ωj = Φ̃i(Ω̂i;βj).
6: else
7: Sample the port ℓ ∈ Uniform ({1, . . . , Np}) to which the new component will be attached.

8: Determine the orientation θ, the scale s and the shift x̄ of the new component.

9: Set ωj = x̄+ sRot(θ)Φ̃i
(
Ω̂i;βj

)
.

10: end if

11: Update Ωnet = Ωnet ∪ ωj and update the list of ports {Γℓ}
Np

ℓ=1.

12: end for

B. Algebraic PBDW formulation

We review the algebraic counterpart of the PBDW formulation (7) as implemented in our code; we refer
to [9, section 2.2] for further details. Towards this end, given the trial ROB {ζn}Nn=1 and the Riesz representers
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(a) (b)

Figure 8. Geometrical mappings. Maps Φ̃1, Φ̃2 are defined by prescribing parametric analytic
expressions of the boundaries via transfinite interpolation.

{qm}Mm=1, we define the matrices L ∈ RM×N and K ∈ RM×M such that

Lm,n = ℓom(ζn), Km,m′ = ℓom(qm′) = (qm, qm′), m,m′ = 1, . . . ,M, n = 1, . . . , N.

Then, we define α̂ ∈ RN and η̂ ∈ RM such that

û(x) =

N∑
n=1

(α̂)n ζn(x) +

M∑
m=1

(η̂)m qm(x), x ∈ Ω.

Finally, we obtain the algebraic counterpart of (7):

(α̂, η̂) ∈ arg min
(α,η)∈A×RM

ξηTKη + ∥Kη + Lα− y∥22. (15)

Since problem (15) is quadratic in η, we have the following relationship between η̂ and α̂:

η̂ = Wξ (y − Lα̂) , Wξ := (ξId+K)
−1
, (16a)

which can be restated as Kη̂ + Lα̂− y = −ξη̂. By substituting (16a) in (15), we then find that

ξη̂TKη̂ + ∥Kη̂ + Lα̂− y∥22 = ξ (y − Lα̂)
T
WξW

−1
ξ Wξ (y − Lα̂) ,

which implies

α̂ ∈ arg min
α∈A

∥y − Lα∥Wξ
. (16b)

We conclude that the solution to (15) can be decomposed in the solution to an N -dimensional constrained
optimization problem followed by an M -dimensional linear problem.

Algorithm 3 summarizes the computational procedure. If (15) needs to be solved for several values of ξ, it is
convenient to compute and store the eigendecomposition of K to speed up the computation of Wξ.
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Algorithm 3 Solution to (7).

1: Compute Wξ := (ξId+K)
−1

.

2: Solve α̂ ∈ argminα∈A ∥y − Lα∥Wξ
.

3: Compute η̂ = Wξ (y − Lα̂).
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