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Abstract We review the progress in atomic structure theory with a focus on su-
perheavy elements and the aim to predict their ground state configuration and
element’s placement in the periodic table. To understand the electronic structure
and correlations in the regime of large atomic numbers, it is important to correctly
solve the Dirac equation in strong Coulomb fields, and also to take into account
quantum electrodynamic effects. We specifically focus on the fundamental difficul-
ties encountered when dealing with the many-particle Dirac equation. We further
discuss the possibility for future many-electron atomic structure calculations going
beyond the critical nuclear charge Zcrit ≈ 170, where levels such as the 1s shell dive
into the negative energy continuum (Enκ < −mec

2). The nature of the resulting
Gamow states within a rigged Hilbert space formalism is highlighted.

1 Introduction

The periodic table (PT) of the elements, introduced by Dmitri Mendeleev and
Lothar Meyer, is based on the Pauli and Aufbau (building-up) principle [1]. Ar-
guably, the PT is the most important and useful tool concerning the electronic
structure of atoms and molecules [2–5]. Chemical and physical similarities between
the elements within a group or period obtained from their measurable properties
is often hailed as a building block of the PT, but these patterns also follow from
the underlying electronic shell structure of the atoms. Despite many controversies
concerning the PT, for example, the starting and ending points of the f -block
elements, the placement of the lightest elements hydrogen and helium, observed
anomalies in chemical behavior or even the shape and visual representation [4, 6–
8], it is still going strong after 150 years. Furthermore, with the nuclear synthesis
of the 7p block elements up to oganesson with nuclear charge Z = 118 [9, 10], the
full 7th period of the PT is now complete. Hence, what remains to be solved is
how the PT can successfully be extended both theoretically and experimentally
into the superheavy element region beyond Z = 118 [11–15]. A progress in this
direction has been made by placing the unknown elements up to nuclear charge
Z = 172 into the Periodic Table [16, 17], see for example Fig. 1.



3

The existence and properties of new superheavy elements beyond oganesson
depends on both nuclear and electronic structure properties [18]. There are, how-
ever, a number of open questions and major challenges to both electronic and
nuclear structure theory concerning the accurate prediction of physical and chem-
ical properties of the superheavy elements.∗ For example, to correctly place an
element into the PT and predict its basic properties, one should gain knowledge
of its atomic shell structure, such as ground and excited electronic states and un-
derlying dominant configurations [11, 12]. In the case of dense spectra, which are
prominent in open-shell systems as well as in the superheavy element region where
high principal quantum number and angular momentum states are occupied, de-
tailed knowledge of low-lying excited electronic states are required within a window
of a few eV. This is often a very challenging task as both relativistic and electron
correlation effects play a major role requiring sophisticated multi-reference meth-
ods at the relativistic Dirac-Coulomb-Breit level of theory. Currently, the heaviest
element for which it is possible to compare theory and experiment is lawrencium
(Z = 103) [19, 20].

Moreover, the Dirac-Coulomb Hamiltonian has its limits in strong Coulomb
fields as beyond the critical nuclear charge of Zcrit ≈ 170 for finite-size nuclei, the

∗Here we define the starting point of the superheavy element region at the transactinides,
Z ≥ 103

Fig. 1 Pyykkö’s periodic table extended to Z = 172 (with permission from PCCP [17]).
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1s electron level dives into the negative energy continuum below E = −mec
2 [21–

32]. At the single-particle level of theory, the correct description and interpretation
of the resulting resonances can be given in terms of Gamow states [33–37], but
how such diving states can correctly and accurately be described within a multi-
electron framework, and how the PT can be extended beyond the critical nuclear
charge, are open questions.

At high nuclear charge, the PT is ultimately limited by the nuclear stability,
not by its electronic shell structure [18, 38]. For nuclear structure theory and
corresponding predictions of nuclear stability of isotopes see for example Refs. [18,
38, 39] and references therein. Here we focus solely on the discussion of relativistic
electronic structure theory in the superheavy element region [14, 40–42].

The outline of this Review is as follows. We first discuss the Dirac equation and
its peculiarities compared to the non-relativistic Schrödinger equation, specifically
for electrons in strong Coulomb fields. We discuss the critical nuclear charge in
detail to clarify the region of validity of the Dirac-Coulomb Hamiltonian and dis-
cuss how states embedded in the negative energy continuum should be interpreted.
The process of spontaneous pair creation in a supercritical field is analyzed includ-
ing most recent references. The importance of quantum electrodynamics (QED)
effects and how these can be treated in strong Coulomb fields is outlined. The ma-
jor problem of correctly describing electron correlation for the accurate prediction
of electronic spectra in the superheavy element region is addressed. We review the
current status of electronic structure calculations for the transactinides and discuss
the placement of the elements beyond oganesson into the PT based on quantum
theoretical predictions. The literature on this topic is vast [28, 43–45], including
a rigorous mathematical treatment of the Dirac equation and its generalizations
[29, 46–50].

2 The Dirac Equation in Strong Coulomb Fields

2.1 The QED Lagrangian

Electronic structure theory is based on the QED sector of the Standard Model of
particle physics. Within the Standard Model, electrons are spin-1/2 Dirac fermions,
and their dynamics is described by the QED Lagrangian density

LQED = ih̄cψ̄(x)γµ∂µψ(x)−mec
2ψ̄(x)ψ(x)

−1

4
FµνF

µν − eψ̄(x)γµAµ(x)ψ(x),
(1)

where ψ(x) is the field operator and γµ are the Dirac matrices. The first two terms
in (1) are the kinetic and mass terms describing the free electrons with mass me,
whereas the third term describes the photon field Aµ = (φ,A), corresponding
to the electromagnetic scalar and vector potentials (with Fµν = ∂µAν − ∂νAµ).
The last term corresponds to the interaction between electrons and photons, with
the elementary charge e acting as the coupling constant. The interaction picture
represented by Eq. (1) has been extensively used in quantum field theory and it
has been demonstrated to work to astonishingly high accuracy.
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It would be highly desirable to treat the QED Lagrangian for a many-electron
system in an external Coulomb field to avoid divergencies that appear in pertur-
bative treatments [51]. Such a direct treatment could in principle be performed
through lattice gauge theory which is mathematically well defined [52, 53]. How-
ever, the long-range nature of the Coulomb potential, related to the zero rest-mass
of the photon, currently prevents any accurate computational treatment using lat-
tice gauge theory in finite boxes [54]. Treating the required large boxes is currently
computationally too demanding. However, progress in this field has recently been
made on the nuclear length scale. For instance, a combined lattice QCD+QED
approach has been used to successfully calculate hadron and meson mass differ-
ences, such as the proton-to-neutron mass splitting, and its dependence on both
the strong and electromagnetic coupling constants [55, 56].

2.2 The Many-Electron Dirac-Coulomb-Breit Hamiltonian

Atomic physics calculations are performed in the Hamiltonian formalism derived
from the Langrangian (1) by a Legendre transformation [57–60]. The resulting
first-quantized N-particle Hamiltonian can be written in atomic units (i.e., h̄ =
1, e = 1,me = 1) as [45, 61, 62]:

HD =
N∑
k=1

hk +
N∑
k<l

V ee (rkl) +HQED +Hother,

hk = −icαk ·∇k + βkmec
2 + V (rk),

(2)

where α = γ0γ, β = γ0, rkl = |rk − rl| is the inter-electronic distance, and hk
is the single-particle Dirac Hamiltonian with an external potential V (r), which
can be the physical nuclear potential (accounting for the finite extent of atomic
nuclei), or an effective potential also including electron screening, providing a
better starting point for perturbative calculations [63]. The full electron-electron
interaction V ee (rkl), as derived from QED, will be discussed in Sec. 4.4.2. The
electron-electron interaction is often approximated by

V ee (rkl) =
1

rkl
− 1

2rkl

[
αk ·αl +

(αk · rkl)(αl · rkl)
r2kl

]
, (3)

were the first term is the classical Coulomb interaction, which is the dominant
contribution. The frequency-independent Breit interaction (second term) contains
magnetic interactions and retardation effects up to order 1/c2 and is an important
correction to the fine structure in atoms. Together, Eqs. (2) and (3) form the Dirac-
Coulomb-Breit Hamiltonian, the starting point of most applications in relativistic
electronic structure theory. The importance of the effect of the Breit contribution
to the 1s shell energy of superheavy elements has been pointed out quite early
[64]. QED effects, represented by HQED, which are the focus of Sec. 4, are often
included using effective Hamiltonians [65–69]. The Hamiltonian may also include
additional terms, represented by Hother, such as the ones arising for example from
the hyperfine structure [62, 70], the nucleus-electron Breit term [71], or from weak
interactions [72].
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Fig. 2 Schematic spectrum of the one-particle Dirac operator with potential (in SI units)

V (r) = − e2

4πε0

Z
r

showing the discrete {φd} and positive {φc+} and negative {φc−} energy

continuum states. (a) negatively charged particle of mass m in a Coulomb potential with
eZ > 0, (b) free particle (eZ=0), and (c) the charge conjugated case of an antiparticle of
charge +e and mass m in a Coulomb potential with eZ < 0.

It is worth mentioning that the Hamiltonian (2) is not Lorentz invariant, as
the Breit operator accounts for magnetic interactions and retardation effects only
to order 1/c2 [73]. However, the corresponding deviations are supposed to be small
compared to other sources of errors, such as from the approximate treatment of
electron correlation [74, 75]. For inner shells, the all-order retardation contribution
may not be negligible. Including the Breit operator in a self-consistent process to
obtain its contribution to all-orders can also have a strong effect [76].

In order to describe electrons in the field of high nuclear charges, one first
requires a detailed understanding of the spectrum of the Dirac or Dirac-Coulomb-
Breit Hamiltonian in strong Coulomb fields [22, 24, 26, 28]. One of the major
differences between the (many-particle) Dirac operator and its non-relativistic
counterpart, is that the Dirac operator is not bounded from below and features
a continuum of negative-energy states, as shown in Fig. 2. This gives rise to dif-
ficulties with variational approaches that have plagued the atomic physics and
quantum chemistry communities for a long time [77–85]. This is now seen, how-
ever, as more of a technical problem than a fundamental one† discussed in more
detail in Sec. 3.

†We distinguish between problems of fundamental nature as those where knowledge to
solve a particular problem is not yet available (such as problems involving physics beyond the
standard model, the foundation of quantum field theory and Haag’s theorem [86], etc.) and
those where knowledge is in principle available but the solution of the problem can be very
hard to obtain (such as electron correlation and QED to all orders) or can be solved based on
existing theory (such as resonant states embedded in the scattering continuum).
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2.3 The one-particle Dirac equation

In order to solve the many-electron problem, one must first understand the single-
particle case. Thus, in the following, we consider the stationary Dirac equation for
a single particle.

2.3.1 Point nucleus and self-adjointness

In strong Coulomb fields, a difficulty arises for the Dirac equation modelled with
a point nuclear charge (PNC). To illustrate this, it suffices to consider the radial
form of the one-particle Dirac-Coulomb equation:mec

2 + V (r)− Enκ c
(
− d
dr + κ

r

)
c
(
d
dr + κ

r

)
−mec

2 + V (r)− Enκ

( Pnκ(r)
Qnκ(r)

)
= 0, (4)

with the corresponding four-component orbital spinor

ψnκµ(r) =
1

r

[
Pnκ(r)χκµ(θ, φ)
iQnκ(r)χ−κµ(θ, φ)

]
, (5)

where κ = ±(j+ 1
2 ) for j = `∓ 1

2 . The bound state eigenvalues for the point nuclear
charge, V (r) = −Z/r are [87–89]

Enκ(Z) = mec
2

1 +
(Zα)2[

n− |κ|+
√
κ2 − (Zα)2

]2

−1/2

, (6)

where α is the fine-structure constant (α−1 = 137.035999206(11) [90]). The so-
lution (6) is known as the Sommerfeld fine-structure formula [91]. A historical
overview is given in Weinberg’s book on the quantum theory of fields [92].

It is apparent that a problem occurs when Z > Zcp = |κ|/α, as Enκ(Z) becomes
imaginary [93]. The range of such large Z-values is usually referred to as the critical

nuclear charge region. At the onset of the imaginary solutions, Eq. (6) simplifies to

En,κ(Zcp) = mec
2(n− |κ|)

(
n2 − 2|κ|n+ 2κ2

)−1/2
≥ 0, (7)

and one obtains E1,−1 = 0 for 1s, E2,−1 = E2,1 = mec
2/
√

2 for 2s and 2p1/2
at Zcp = 1/α ' 137.036, and E2,−2 = 0 for 2p3/2 at Zcp = 2/α ' 274.072. The
difference between the behaviour of the nonrelativistic and relativistic 1s energies
with increasing nuclear charge is shown in Fig. 3.

The presence of the critical charge distinguishes the Dirac equation from the
standard Schrödinger equation with a Coulomb potential of a point nuclear charge,
where all values Z ≥ 1 are allowed, although one would run into similar problems
with the Schrödinger equation for potentials of the form V (r) = −Z/rn with n ≥ 2
[95].

To treat atoms with nuclear charges beyond a certain critical charge, Z >

Znsa, where the Dirac operator becomes non-self-adjoint (nsa), one has to carefully
choose an appropriate self-adjoint extension to the basic Dirac-Coulomb operator
together with the correct operator domain [29, 30, 46, 96–100]. For example, this
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Fig. 3 Nuclear charge dependence of the 1s energy levels for hydrogen-like atoms at various
levels of theory using the Dirac equation. If not otherwise stated the results are from Ref. [31].
The models considered are : PNC - point nuclear charge; FNC - finite nuclear charge distribu-
tion; recoil - nuclear recoil effects according to Eq. (8) [94]; recoil+VP - includes the Uehling
vacuum polarization term [94]; VP+SE - includes major QED corrections from vacuum po-
larization and self-energy; NR - nonrelativistic results. Results are also shown for the Ar-like
system with FNC.

can be done by adding additional operators such as the nuclear recoil and Uehling
terms, discussed in section 2.3.2, or by removing the problematic singularity in
the Coulomb term at zero by working with a realistic finite-size nuclear charge
distribution to regularize the Coulomb interaction. The mathematical problem
arises due to the singularity of the Coulomb operator −Z/r at the origin. As a
result, the Dirac operator is not (essentially) self-adjoint anymore in the critical
nuclear charge region. In fact, HD becomes non-self-adjoint [98] for a j-state at Z ≥
Znsa =

√
j(j + 1)/α. For the 1s level this corresponds to Z ≥

√
3/(2α) ' 118.677

[96, 97, 101], which lies just above the nuclear charge of oganesson (Z = 118).
This was pointed out as early as in 1928 by Gordon [89]. For a more rigorous
mathematical analysis on the self-adjointness of the point-charge Dirac-Coulomb
operator we refer the reader to Sec. 9 and the literature cited therein.

On a historical note, the onset of imaginary solutions for the Dirac equation
with the bare Coulomb operator led Feynman to the conclusion that elements
above Z = 137 should not exist. Hence, the element with nuclear charge 137 is
sometimes (jokingly) called Feynmanium [102].

2.3.2 Nuclear Recoil and Uehling terms

For a point-like nucleus, the nuclear recoil operator can be approximated by [94]

HNRB = − 1

2M
∆+ i

(Zα)

2Mr

[
α ·∇ +

1

r2
(α · r)(r ·∇)

]
, (8)
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Fig. 4 Different contributions to the 1s energy level for hydrogen-like atoms, evaluated using
the MCDFGME code [106]. Higher-order VP includes the Wichmann and Kroll (WK) correc-
tion (order α(Zα)3) as well as approximation to the α(Zα)5 and α(Zα)7 potential contribu-
tions. Two-loop self-energy corrections SE-SE, SE-VP and S(VP)E are from Refs. [107–113].
Loop-after-loop VP is approximated by solving the Dirac equation including the Uelhing po-
tential. Finite nuclear size correction and uncertainties on nuclear size are from Ref. [114]. See
also [115, 116] and references therein.

where M is the mass of the nucleus (for a more concise QED treatment see [103]).
This recoil operator can be added to the one-particle Dirac-Coulomb operator. For
a more detailed discussion of nuclear recoil effects see Refs. [104, 105].

In Ref. [94], both the recoil correction and the Uehling potential VU for a point
nucleus were included in the Dirac equation to see how that would change the
Zcp . A value of Zcp(1s) = 144 is then obtained. These additional operators do not
necessarily secure the self-adjointness of HD +HNRB in the critical charge region,
hence, a careful analysis of the 1s eigenfunction at the origin is still required. More
details on vacuum polarization (VP) and on the Uehling potential can be found
in Sec. 4.

Nevertheless, numerical calculations show that the critical charge for the 1s
state before reaching the onset of the negative energy continuum is Zc(1s) ≈ 144.75
due to the nuclear recoil, and Zcp(1s) ≈ 143.95 due to the nuclear recoil-plus-
Uehling term as shown in Fig. 3 [94]. Moreover, the diving of the 2p1/2, 2s and
3s levels comes at nuclear charges of Zcp ≈ 146, 165, and 193 respectively. The
lifting of the 2s/2p1/2 level degeneracy due to the nuclear recoil becomes thus
quite sizable at high-Z values. For Zα < 1, the results including nuclear recoil and
Uehling terms are close to the point nuclear charge (PNC) case, as is the steep
descent of the energy levels towards the critical nuclear charge. On the other hand,
Fig. 4 demonstrates that around Z = 120 the finite nuclear size correction becomes
more important than that originating from the nuclear recoil and Uehling terms.
This is addressed in the following section.
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Fig. 5 Radial proton (left) and neutron (right) densities of doubly-magic nuclei 48Ca, 208Pb,
302Og, and 472164 obtained in nuclear DFT with three different energy density functionals.
The shaded areas indicate the spread of DFT predictions. (Modified from [125].)

2.3.3 Finite nuclear charge distributions

By considering a finite nuclear charge distribution, ρN (r), the problematic singu-
larity at zero is removed. As a result HD becomes self-adjoint for Z > Zcp with real
eigenvalues and real radial functions for the discrete spectrum, and thus represents
the most natural self-adjoint extension to the PNC Dirac Hamiltonian. This was
already realized by Schiff, Snyder and Weinberg as early as in 1939 [93]: In all

these cases where the energy cannot be brought to diagonal form, one must take into

account either existing deviations from the assumed potential, such as the breakdown

of the Coulomb law at small distances, or the reaction of the pair field itself on the

external field.

The potential for an electron interacting with a nuclear charge distribution is
given by

V (r) = −
∫
dR

ρN (R)

|r −R| . (9)

The nuclear charge densities should in principle be obtained using nuclear
density functional theory (DFT) based on realistic energy density functionals, see
Sec. 2.4.2. To obtain the nuclear charge density from computed proton and neu-
tron density distributions, several corrections have to be considered [117–119]. The
nucleon structure is taken into account by folding with the intrinsic form factor
of the free nucleons expressed in terms of the Sachs form factors [120]. The spu-
rious center-of-mass motion can be corrected by an unfolding with the width of
the centre-of-mass vibrations. Finally, one should include the contribution from
the spin-orbit currents [121]. Note that, for the deformed nuclei, the spin-orbit
contributions change gradually as the single-particle spin-orbit strength becomes
highly fragmented by deformation and nucleonic pairing (nucleonic superconduc-
tivity) [119]. Precise nuclear charge densities are essential for interpreting atomic
experiments searching for new physics [122, 123] or for studying effects related to
fundamental symmetry violations [124].
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Realistic nuclear modeling of charge densities is particularly important for the
superheavy nuclei, the existence of which depends on the interplay between the
short-ranged attractive nuclear force and long-ranged electrostatic repulsion, which
rapidly grows with Z. Since the Coulomb repulsion minimizes the total binding
energy of the nucleus by increasing the average distance between protons, the total
energy is significantly lowered by pushing protons toward the nuclear surface. This
mismatch between interaction ranges in superheavy nuclei results in Coulomb
frustration effects [18, 38], which are expected to produce exotic topologies of
nucleonic densities, such as voids (bubbles) or tori. Figure 5 shows the proton and
neutron density distributions of several nuclei predicted by nuclear DFT [125]. The
superheavy nuclei such as 302Og, and 472164 show a clear central depression in the
proton density distributions resulting in a semi-bubble structure. The properties
of Coulomb-frustrated superheavy nuclei, including their characteristic density
distributions and shell structure, have been investigated in numerous studies, see
Refs. [125–127] and references cited therein.

In the absence of predictions based on realistic nuclear models, schematic ap-
proximations for ρN are often applied. These are sufficient for most applications
in heavy element research. There is a range of nuclear charge models in use and,
for several of these models, analytical expressions for the integral (9) in terms of
standard functions can be found in Ref. [128]. Most implementations in numeri-
cal atomic structure programs apply the (spherical) Fermi two-parameter model
[129, 130]

ρN (R) =
ρ0

1 + e(R−R0)/a
, (10)

where R0 is the half-density radius, a is the diffuseness parameter, and ρ0 is a
normalization constant such that

∫
ρN (R)dR = Z. For many nuclei, this model

reasonably agrees with nuclear DFT calculations. It is to be noted, however, that
a simple model like (10) is bound to fail for superheavy nuclei that exhibit appre-
ciable Coulomb frustration effects, see Fig. 5. Nevertheless, for the valence shell
this nuclear charge model should perform reasonably well even for the superheavy
elements. For example, the Fermi charge distribution have been used for electronic
structure calculations of Ref. [14] in the superheavy element region up to Z = 173.

For the homogeneous nuclear charge distribution analytical expressions for the
radial Dirac components of the wave function exist. In that category of nuclear
models, the simplest one is the uniformly charged spherical shell or top slice (TS)
model, with the nuclear charge being smeared out over a spherical nuclear surface
at radius R0 [128, 131, 132]

ρ(r) =
Z

4πr2
δ(r −R0) . (11)

It results in a potential of the form V (r) = −Z/R0 for 0 ≤ r ≤ R0 together with
the usual Coulomb term V (r) = −Z/r at r > R0. This approximation cuts off
the problematic singularity of the Coulomb potential at nuclear radius R0 and
therefore secures the self-adjointness in the region |E| < mec

2 of the discrete
spectrum [21]. To express the radial Dirac components analytically, one divides
the solution of the Dirac equation into the two regions [0, R0] and [R0,∞) with
an additional boundary condition at R0 to match the two wave functions (see also
Sec. 2.4.4) [28].
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The potential V (r) for the TS model is, however, discontinuous in its first
derivative and is therefore often extended to the homogeneously charged sphere
(HCS) model of the form [133]

ρ(r) = ρ0Θ(1− r/R0), (12)

where ρ0 = 3Z/4πR3
0 and Θ(x) is the Heaviside step function [128, 132]. The re-

sulting HCS potential is of the form V (r) = V0 + V2r
2, where V0 = −3Z/2R0

and V2 = V0/2R
2
0. This potential is discontinuous in its second derivative.‡ It is

clear that by choosing V0 = −Z/R0 and V2 = 0 the TS model is recovered. This
results in a special case of a Fuchs-type differential equation for which analytical
solutions to the Dirac equation can be formulated similarly to the procedure used
for the TS model [135]. The HCS model was recently used to study isotope shifts
using a modified nuclear parameter δ〈r2〉 → δ〈r2γ〉, such that the electronic struc-
ture factor F̃i becomes isotope independent [136–138]. Note that this approximate
expression for the energy shift is valid only when αZR0 � 1 [139], where R0 is
expressed in atomic units. For nuclear charge Z > 137 this expression is manifestly
wrong as γ becomes imaginary.

The HCS model can be further generalized by using a Taylor expansion for the
nuclear density around the origin [128]

ρ(x) = Θ(1− x)
n∑
i=0

aix
i , (13)

with x = r/R0 resulting in a power series for V (r). Breit introduced the simple

potential V (r) = V0 +V2r
n, where V0 = −(n+1)Z/nR0 and V2 = Z/nR

(n+1)
0 [133].

For these nuclear models one can derive the radial Dirac wave function from a
polynomial expansion. [128, 135]. In the region r < R0 for κ > 0 the radial wave
function is expressed as [140]

Pnκ(r) = Nnκr
κ
{
r −

[
(Enκ − V0)(Enκ + 2c2 − V0)

2c2(3 + 2κ)
+

V2(1 + 2κ)

(Enκ + 2c2 − V0)(3 + 2κ)

]
r3 + · · ·

}
Qnκ(r) = Nnκr

κ
{

c(1 + 2κ)

(Enκ + 2c2 − V0)
− Enκ − V0

2c
r2 + · · ·

}
,

(14)

and for κ < 0

Pnκ(r) = Nnκr
|κ|
{

1− (Enκ − V0)(Enκ + 2c2 + V0)

2c2(1 + 2|κ|)
r2 + · · ·

}
Qnκ(r) = Nnκr

|κ|
{
− Enκ − V0
c(1 + 2|κ|)

r +

[
(Enκ − V0)2(Enκ + 2c2 + V0)

2c3(1 + 2|κ|)(3 + 2|κ|)
+

V2
c(3 + 2|κ|)

]
r3 + · · ·

}
.

(15)

Since the exponents of the r|κ|+i terms in (14) and (15) are integers, there is no
problem at the origin and the derivative norm exists. Furthermore, the wave func-
tion is locally absolutely continuous, unlike for the PNC case. To show this more
rigorously, one applies the Weyl-Weidmann limit point - limit circle theorem [141]

‡Because of the discontinuity in the potential at R0, one has to set one of the grid points
in numerical program packages at the nuclear boundary to avoid numerical instabilities [134].
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Fig. 6 The nuclear-size contributions to the ground-state energies of the Li-like uranium
isotopes using a deformed Fermi model for ρN , a fitted Fermi model, and a uniform charge
distribution. (From [145].)

and shows that the Dirac operator is self-adjoint in the range Enκ ∈ [−mec
2,mec

2],
with the Sobolev space W1,2(R+)2 as the natural domain of the Dirac operator.
Hence, for the Dirac equation with a finite-size nuclear charge distribution, the only
critical charge is at the onset of the negative energy continuum at E = −mec

2. Full
analytic expressions for the Dirac wave functions for TS and uniformly charged
nucleus have been derived for s1/2 and p1/2 orbitals and used in the evaluation of
the self-energy with finite size contribution [142, 143].

Shifting from a point nucleus to a model that accounts for the finite nuclear
charge distribution leads to a noticeable contribution to the total electronic energy.
The difference in energy originating from the use of different nuclear charge models
is far smaller [144]. For example, Fig. 6 shows the calculated ground state energy
shift in Li-like uranium due to the finite nuclear charge distribution for the Fermi
and uniform charge distributions [145].

When introducing a finite nuclear charge into the Dirac equation, the degen-
eracy between the states of the same (nj) but with different κ quantum numbers
is lifted. This is most prominently seen between the 2s1/2 and 2p1/2 levels. This
lifting of degeneracy already appears at the nonrelativistic level between levels of
same n but different ` quantum numbers, but to a much smaller extent compared
to the relativistic case [128].

Figure 7 shows the energy difference ∆E between the 2p1/2 and 2p3/2 orbitals
and the 2s1/2 orbital for the hydrogen-like and the Be-like state [40]. The lift-
ing of degeneracy by the finite size of the nuclear charge for the hydrogen-like
system can be qualitatively explained by perturbation theory. However, in the
small region inside the nucleus, the perturbing potential is so large that a first-
order calculation for high nuclear charges is insufficient [146]. In contrast to the
hydrogen-like energy difference, in multi-electron systems the 2s shell lies below
the 2p shell for nuclear charges up to about Z = 120. This comes from the different
effective screening of the nucleus for these two shells, which gave rise in the early
history of quantum theory to the Slater rules [147]. For nuclear charges beyond
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Fig. 7 Orbital energy difference ∆E (in a.u.) of the 2p1/2 (purple) and 2p3/2 (orange) states
relative to the 2s1/2 state (in a.u.). The dashed lines are hydrogenic energy differences. The
solid lines are multi-reference energies for Be-like J = 0 states systems involving the major
configurations 1s2 2s2, 1s2 2p2

1/2
, 1s2 2p2

3/2
.

Z = 120, the 1s2 2p21/2 J = 0 configuration lies below the 1s2 2s2 configuration,

as demonstrated for the Be-like J = 0 state in Fig. 7 and in Ref. [40]. This is
because, in strong Coulomb fields, the Coulomb operator starts to dominate over
the electron-electron repulsion and the atom behaves more hydrogen-like. As a
result of this effect, the 2p1/2 level dives into the negative energy continuum at

a far earlier stage at Zc

(
2p1/2

)
≈ 218 compared to the 2s level at Zc (2s) ≈ 247

[31], see discussion in Sec. 2.4.4 for more details.

2.3.4 1s energy level reaching the negative energy continuum

Figure 3 shows the 1s energy level as a function of nuclear charge for hydrogen-like
systems in the FNC variant, computed using the relativistic atomic program pack-
age GRASP [148]. The calculations predict a critical charge of Zc(1s) = 170.161
(170.017 including QED effects) before diving into the negative energy continuum
[31].

Using different models of nuclear charge distribution, the predictions for the
critical nuclear charge can vary widely between Zc = 164 to 174 for the 1s level
[149, 150], but more realistically between 168 to 172 using the uniform nuclear
charge distribution and neutron numbers varying between N = Z and N = 3Z.
This is demonstrated in Fig. 8, which shows the relation between the rms nuclear
charge radius Rch and the proton number Z. The critical charge as a function
of Rch has been computed using the analytical expressions of Ref. [151]. Filled
squares mark the experimental charge radii [114]. The lines denote the relation
between Rch and Z for three different neutron to proton ratios [152, 153] and the
semi-empirical relation [128]. From the intercept between the dashed and dash-
dotted lines, an estimate for the critical charge is Zc(1s) = 170.26, with a nuclear
charge radius of Rch = 7.19 fm.
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Fig. 8 The nuclear charge radius Rch as a function of Z, using phenomenological expressions
with different neutron/proton ratios (solid lines) and the expression by Andrae [128] (dashed
line). Experimentally known charge radii [114] are marked by orange squares. The critical
charge as a function of nuclear radius obtained with the analytical expression of Ref. [151] is
shown by a dash-dotted line. The Zc (Rch) Numerical values (black square) have been obtained
using the MDFGME code [14, 154] with a Fermi nuclear charge model.

In the context of the above discussion, it is interesting to notice that because
of the mass scaling

√
m of the Dirac equation (4) the critical charge for muonic

atoms (mµ/me = 206.7682830(46) [155]) for a point nucleus is more than an order
of magnitude larger Zµcp(1s) ≈ 1966 compared to the electronic case. Taking into
consideration the finite nuclear radius, the critical value shifts to Zµc (1s) ≈ 2200
[156]. As in the free-particle case, the small component becomes large and takes
over for E → −mec

2.

2.4 Electron states in the super-critical region

In 1969, Pieper and Greiner [135] analyzed in detail the analytical solutions for
FNC models as the limit Enκ = −mec

2 is approached for different (nκ) states. The
coefficients in the r-expansion in (14) and (15) do not exhibit any pathological
behavior, but the radial functions and eigenvalues become complex in the critical
region Enκ < −mec

2 and thus lie outside the natural domain of the self-adjoint
Dirac operator. As a result, the Dirac-Hamiltonian eigenstates embedded in the
continuum cannot readily be reached by standard atomic structure theory. In the
following, we discuss some of the approaches to deal with this problem.

2.4.1 Energy-projected Dirac equation

The relation between the absence of self-adjointness and the appearance of the
negative energy continuum in the spectrum of the Dirac operator was studied
by restricting the Hilbert space to the subspace defined by the positive energy
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continuum states. This can be effectively achieved by means of the projection
technique, analogous to the Feshbach projection technique [157, 158] used in the
context of open quantum systems. Effectively, in this method, the negative-energy
continuum space is removed [71]. The resulting single-particle Dirac Hamiltonian,
the so-called no-pair external field Dirac Hamiltonian, becomes:

ĥ+ = Λ+(hD + Vext)Λ
+ (16)

where Λ+ is the projection operator onto the free-particle positive energy sub-
space of the free-particle Dirac Hamiltonian HFP

D . As long as HFP
D has no zero

eigenvalues, the operator Λ+ can be written as

Λ+ =
1

2

(
1 +

HFP
D

|HFP
D |

)
=
α · p+ βmc√
p2 +m2c2

(17)

where the quotient HFP
D /|HFP

D | is called the sign operator.§ The eigenvalues of
the free-particle Dirac Hamiltonian hD are |E| ≥ mec

2 [29]. The projected Dirac
Hamiltonian (16) can be traced back to Bethe and Salpeter [43, 160], and is there-
fore sometimes referred to as the Bethe-Salpeter operator [161]. As discussed in
[162], the projection operator effectively removes the pair creation and annihi-
lation terms from the Dirac Hamiltonian, i.e., removes the coupling to the pair
creation/annihilation channel.

Intuitively one would expect that various mathematical problems with the
Dirac equation might disappear if the negative-energy continuum states are pro-
jected out. However, if the external field Vext(r) is the simple 1/r potential cor-
responding to a point nucleus, ĥ+ also has a critical charge at which it becomes
non-self-adjoint, just like the standard Dirac operator. In fact, the critical charge
of ĥ+,

Zc =

(
2

π
+
π

2

)
α−1 ≈ 124.16, (18)

is lower than α−1 ≈ 137 [71, 161].¶ The no-pair approach based on the free Dirac
Hamiltonian has therefore been criticized in Ref. [82], where it is shown that it
does not prevent continuum dissolution and that projection operators from the
bound Dirac Hamiltonian must be used instead. The necessity to use projection
operators for correlation orbitals is shown in Ref. [76].

Unlike the Dirac equation, the no-pair operator has a lower bound in the sub-
critical region. This result was further refined in Refs. [163, 164], which demon-
strated that the operator’s eigenvalues are strictly positive [163, 164], in contrast
to the point nucleus Dirac equation, for which the eigenvalues go to zero for in-
creasing nuclear charge up to Zα = 1.

§The Hamiltonian HFP
D , while similar to, is not the same as the no-pair Hamiltonian

often used in relativistic quantum chemistry to avoid the continuum dissolution. In that case,
the projection operator is usually constructed from the positive energy eigenstates of the full
external-field Dirac Hamiltonian, and does not span quite the same space as that of free-
particle states. Furthermore, the corresponding projection operators depends on the nuclear
charge distribution [59, 76, 82, 159].

¶As discussed in Sec. 9, the Dirac equation with a 1/r potential has another critical nu-

clear charge at Zc = (
√

3/2)α−1 ≈ 118.68, when the condition ||HDφ||2 < ∞ is imposed
to guarantee self-adjointness. The projected equation exhibits a similar critical charge at
Zc = (3/4)α−1 ≈ 102.78 [71, Eq. (2.9)].
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Ionization potential 1s1/2 → 2p1/2 1s1/2 → 2p3/2
E ∆Eexp E ∆Eexp E ∆Eexp

DC / PNC 132, 279.93 454.83 98, 064.45 458.84 102, 630.10 451.98
DC / FNC 132, 083.55 258.45 97, 872.42 266.81 102, 433.71 255.59

PDC/ FNC 140, 474.30 8, 649.20 105, 686.10 8, 080.49 110, 767.33 8, 589.21

Exp. 131, 825.10± 4.20 97, 605.61± 16.00 102, 178.12± 4.33

Table 1 Comparison of Dirac-Coulomb calculations with experimental values for the 1s1/2
ionization potential and transition energies of 238U91+. All energies in eV. The rows correspond
to the standard hydrogenic Dirac-Coulomb (DC) equation with point nucleus (PNC), finite
nucleus (FNC), and the free-particle projected Dirac-Coulomb (PDC) equation with a FNC
approximation. The experimental values are taken from Refs. [116, 165] by picking the values
with the lowest uncertainty. The homogeneous uniformly charged sphere model was used. The
difference with experiment and calculation for the FNC value is due to QED corrections which
are not included here.

The projection equation with a finite nuclear potential was initially thought to
remove all the problems with the negative energy continuum. Table 2.4.1 bench-
marks the no-pair approximation against Dirac-Coulomb calculations for the 1s1/2
ionization potential and transition energies of 238U91+. Such highly charged atoms
are important for precision tests of QED [165], and QED results agree with ex-
periments to a few eV [116]. Unlike in the Dirac-Coulomb variant, the results of
the free-particle projected approach shown in Table 2.4.1 compare poorly with
experiment. This indicates that the projected Dirac Hamiltonian appears to be
a far worse starting point than the standard Dirac equation for further QED re-
finements. The reasonable choice of projection operators for the whole range of
nuclear charges Z remains a challenging problem. At this stage, keeping the phys-
ically relevant negative-energy continuum and dealing with directly it seems to
be a better solution. However, this requires to correctly describe resonance states
with E ≤ −mec

2 as discussed in Secs. 2.4.2-2.4.5.

2.4.2 Hartree-Fock-Bogoliubov equation analogy

It is instructive to make an analogy between the one-particle Dirac-Coulomb
Eq. (4) and one-quasiparticle Hartree-Fock-Bogoliubov (HFB; or Bogoliubov-de
Gennes) equation used in the density functional theory (DFT) of superconductors
and atomic nuclei.

The HFB equation in the coordinate representation [166, 167] can be written
as: [

h− λ ∆

−∆∗ −h∗ + λ

][
ui
vi

]
= Ei

[
ui

vi

]
, (19)

where h is the single-particle Hamiltonian; ∆ is the pairing mean-field; λ is the
chemical potential (or Fermi level); Ei is the quasi-particle energy; and ui(r, σ)
and vi(r, σ) are the upper and lower components of quasi-particle wave functions,
respectively, that depend on the spatial coordinates r and spin σ. The main DFT
ingredient is the energy density functional (EDF) that depends on the particle
and pair densities and currents. The mean-fields h and ∆ are determined self-
consistently from the one-body densities and the assumed EDF.
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The quasiparticle vectors are two-component wave functions ui(r, σ) and vi(r, σ),
which acquire specific asymptotic properties [166–169] determining the asymptotic
behavior of local densities. As shown in Fig. 9, the quasiparticle energy spectrum
Ei of HFB consists of discrete bound states, resonances, and non-resonant contin-
uum states. The bound HFB solutions exist only in the energy region |E| < −λ.
The quasiparticle continuum with |E| > −λ consists of non-resonant (scattering)
continuum and quasiparticle resonances.

The HFB equation (19) possesses the quasiparticle-quasihole symmetry. Namely,
for each quasiparticle state (ui, vi) and energy Ei there exists a conjugate quasi-
hole state (v∗i , u

∗
i ) of opposite energy −Ei. That is, the spectrum is composed of

pairs of states with opposite energies, see Fig. 9. The conjugate states can be
related through a discrete symmetry, such as time reversal [170]. In the HFB vac-
uum, corresponding to even number of fermions, all negative-energy eigenstates
are occupied by quasiparticles. This set of quasihole states is referred to as the Bo-
goliubov sea [171, 172]. It follows from the projection property of the generalized
HFB density matrix that if a positive-energy one-quasiparticle state is occupied,
its conjugated negative-energy partner is empty [173], and vice-versa.

The Bogoliubov sea is infinitely deep, in a full analogy with the sea of negative-
energy states of the Dirac equation. In practice, since infinite sums over the Bogoli-
ubov sea cannot be carried out when computing local HFB densities, the number
of HFB-active states must be truncated. Two different ways of achieving this goal
are most often implemented, namely, solution of the HFB equations in a finite
Hartree-Fock space [174] and truncation of the quasiparticle space. The second
method corresponds to truncating directly the quasiparticle space and using a
renormalization or regularization technique to account for the truncated states
[167, 169, 175–179].

The proper treatment of nuclear quasi-particle HFB continuum is important for
accurate description of ground-state properties and excitations [169, 171, 177, 180,
181]. Within the real-energy HFB framework, the HFB equations must be solved
by imposing the scattering boundary conditions on the quasiparticle vectors. If
the outgoing boundary conditions are imposed, the unbound HFB eigenstates have
complex energies; within such Gamow HFB (GHFB) approach [182] the imaginary
energies are related to the particle decay width.

The quasi-particle HFB continuum can also be treated in an approximate way
by means of a discretization method. The commonly used approach is to impose the
box boundary conditions [169, 177, 183, 184], in which HFB eigenvectors (ui, vi)
are spanned by a basis of L2-integrable orthonormal functions defined on a lattice
in coordinate space and vanish at box boundaries. In this approach, referred to as
the L2 discretization, quasi-particle continuum of HFB is represented by a finite
number of box states. The structure of the discretized continuum depends on the
size and geometry of the box [185]. In the context of the Dirac equation, scalar
confinements at the level of strong Coulomb fields need to be explored, for example
within a finite element approach [186, 187].‖

There are two kinds of quasiparticle HFB resonances. The particle resonances

represent metastable states that have large particle (upper) component, i.e., the

‖Confinement potentials need to be introduced in scalar form, i.e. added to the mass
term. Adding a confinement to the potential term causes the spectrum to become completely
continuous [28, 29, 188].



19

bound quasiparticles

on
e-

qu
as

ip
ar

tic
le

 H
FB

 e
ne

rg
y 

bound quasiholes

quasipaticle continuum

quasihole continuum

(chemical potential)

E < λ

E > −λ

−λ

λ

resonances

Fig. 9 One-quasiparticle HFB spectrum. The bound states exist in the energy region |E| <
−λ, where λ is the chemical potential (negative for a particle-bound system).

normalization of ui is much larger than that of vi. The deep-hole resonances are
associated with excitations of low-lying hole states of the s.p. Hamiltonian h. For
those states, the lower component vi dominates. The deep-hole resonances acquire
decay width through the coupling to the pairing channel [168, 169].

Quasiparticle resonances can be directly calculated using coordinate-space Green’s
function technique [189, 190] and GHFB [182]. For approaches based on the L2-
discretization, approximate methods have been developed to deal with HFB reso-
nances. Since the HFB quasiparticle resonances are highly-localized states whose
energies are weakly affected by the box size, the stabilization method based on box
solutions with different box sizes [177, 191] can be used to obtain the resonance
energies and widths. Besides the stabilization method, a straightforward smooth-
ing and fitting technique that utilizes the smoothed occupation numbers obtained
from the dense spectrum of box states has been successfully used [177].

Summarizing this section, there are many similarities between the single-particle
Dirac problem and one-quasiparticle HFB problem:

– The corresponding equations have a similar two-component form.
– In both cases, the energy spectra are symmetric with respect to zero energy.

In the Dirac case, this is related to charge conjugation. In the HFB case,
this is due to the quasiparticle-quasihole symmetry. For a recent discussion
of particle–hole symmetries of multi-fermion systems (such as band insulators
or superconductors) and the charge-conjugation symmetry of relativistic Dirac
fermions, see Ref. [192].
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– In both cases, the resonances can be divided into particle resonances with
the upper component dominating over the lower component and the hole reso-
nances, for which the lower component dominates. At Z ≈ Zc, the diving states
resemble hole resonances of HFB.

– In both cases, one deals with spectra that are partly discrete and partly con-
tinuous. The continuum space contains metastable states (resonances) that are
embedded in the non-resonant background.

– The Dirac and HFB spectra are bound neither from above nor from below.
This leads to a variational collapse (Dirac) and difficulties with the use of the
imaginary time method (for both Dirac and HFB), see, e.g., Ref. [193] for a
remedy.

– In both cases, one has to deal with continuum-space truncations.

Those analogies can be helpful when tackling similar problems or interpreting
similar phenomena with the Dirac equation. See also Refs. [192, 194] for relevant
examples.

2.4.3 Perturbative approach

For narrow resonances with energies close to E = −mec
2, the energy eigenstates

can be obtained perturbatively. To this end, one can employ the two-potential
approach [195] to the decay of a metastable state [196, 197]. Within this method,
the potential describing the decaying system can be decomposed into V = V0 +V ′,
where V0 represents the bound-state potential of a closed quantum system and
V ′ is the closing potential. When applied to the diving states, one can assume
V0 in the form of the Coulomb potential of the finite nuclear charge distribution
with Z0 < Zc and V ′ = (Z′/Z0)V0, where Z > Zc and Z′ = Z − Z0 [24, 28]. This
decomposes the overcritical Dirac Hamiltonian into HD = HD0

+ V ′. Seeking for
an expression of the discrete 1s state as a solution to the overcritical Hamiltonian,
the approximate eigenvector is chosen to be

ψE(x) = a(E)ψ0
1s(x) +

∫ −mec2
−∞

dE′ b(E′, E)ψ0
E′(x), (20)

where ψ0
1s(x), the 1s bound state, and ψ0

E′(x), a continuum state with energy E′,
are the solutions of the total Dirac equation just before diving. a(E) and b(E′, E)
are coefficients to be determined [198]. This leads to the perturbative expression
for the 1s state energy embedded in the continuum

Ecr
1s = E0

1s +∆E1s + F1s(E), (21)

where
∆E1s = 〈ψ0

1s(x)|V ′(x)|ψ0
1s(x)〉 ∝ Z′ (22)

and

F1s(E) = −
∫
dE′

|〈ψ0
E′(x)|V ′(x)|ψ0

1s(x)〉|2

E − E′ ∝ −Z′2 . (23)

The dash in the integral (23) indicates the Cauchy principal value. The function
F1s(E) in (21) introduces an energy distribution to E0

1s +∆E1s with a width of

ΓE = 2π|VE |2 ∝ γZ′2. (24)

The width can be interpreted in terms of the positron escape width [24, 28].
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2.4.4 Analytical continuation

One-particle resonances embedded in the negative energy continuum can be found
by extending the Dirac eigenvalue problem into the complex domain. One ap-
proach is based on solving the Dirac-equation eigenproblem with the incoming

boundary condition. The resulting discrete resonant (Gamow) states have complex
energies E = E0 + iΓ/2 with a positive imaginary part Γ , termed supercritical in
the remainder of this review. This interpretation differs from the usual complex-
energy description of decaying Gamow states for which E = E0− iΓ/2. Indeed, the
supercritical negative-energy electron resonances can be interpreted in terms of
resonances in scattering of positive-energy positron propagating backwards in time

according to the Feynman-Stückelberg interpretation [199, 200].
Complex-energy solutions for the differential equation are obtained using the

appropriate boundary conditions, analogous to states in the discrete region. This
has, for example, been studied for the spectrum of the Dirac equation with a spheri-
cal well potential [201–203] and for a Coulomb cut-off potential [28, 151, 194, 203,
204], for which the solutions can be analytically expressed. Alternatively, solu-
tions to the Dirac equation can be analytically continued into the complex plane
by complex scaling or by introducing a complex absorbing potential [205–209].
In the following, we discuss the complex-energy solutions following the analytical
continuation approach of Ref. [204], in which the nuclear potential is assumed to
be constant inside the sphere of radius R0.

At distances up to a cut-off radius R0, the solution to the radial Dirac equation
is given by the Bessel functions:(

P (r)
Q(r)

)
= C

√
βr

( ∓J∓(1/2+κ)(βr)

J±(1/2−κ)(βr)
β

E+mec2+
Zα
R0

)
, (25)

where β =
√

(E + Zα/R0)2 −m2c4 and upper (lower) signs correspond to κ < 0
(κ > 0). For r > R0, the solutions are given by the Dirac equation with a Coulomb
potential. A combination of exponential and confluent hypergeometric functions
satisfy the boundary conditions [210]:(

P (E, r)
Q(E, r)

)
=

( √
mec2 + E

−
√
mec2 − E

)
eikrρiτ

(
f1(E, r)
f2(E, r)

)
(26)

Here, τ =
√

(Zα)2 − κ2, ρ = −2ikr,−ik =
√

(mec2 − E)(mec2 + E), and the func-
tions fi contain Kummer’s confluent hypergeometric functions. The full analytical
form can be found in Ref. [204]. ∗∗ The poles of the S-matrix correspond to the
resonant states; these are found by matching the P/Q ratio of (25) and (26) at R0.
This results in real eigenenergies for solutions in the domain E0 ∈ [mec

2,−mec
2].

Solutions with E0 ≤ −mec
2 are embedded in the negative energy continuum, and

are of the form E = E0 + i
2Γ with real energies E0 < −mec

2 and widths Γ > 0.
The states in the continuum diverge as r →∞ and are identified as Gamow wave
functions, see Sec. 2.4.5 below for a detailed description. Note that at the critical
energy E = −mec

2 the upper Dirac component P in Eq. (26) vanishes at large dis-
tances. This means that close to Zc the diving resonances resemble the deep-hole
HFB states discussed in Sec. 2.4.2.

∗∗A linear combination of the two-parameter Tricomi function and the exponential terms
eikr and e−ikr, is given in Ref. [151].
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Fig. 10 Single particle energy levels as a function of the nuclear charge Z. Solid lines corre-
sponds to the real part of the energy E0, the dashed lines to the complex contribution i

2
Γ . En-

ergies are obtained by analytical continuation for a nuclear cut-off of Rcut = 0.031 in units of
h̄/(mc). The critical charges are highlighted with a vertical dash-dotted line (Zc(1s1/2) ≈ 177,
Zc(2p1/2) ≈ 218, Zc(2s1/2) ≈ 247).

Energies of several single-particle states, obtained by the exact approach as
detailed above are shown in Fig. 10. The energies are similar to the perturbative
result of Sec. 2.4.3 at close vicinity to Zc but deviate at larger Z values as expected.

Figures 11 and 12 show the (outgoing Gamow) wave function of a 1s resonant
state embedded in the negative energy continuum for (hypothetical) nuclei with
charges Z = 185 and Z = 300, respectively. The wave function at short range is
localized close to the nucleus. At large distances from the nucleus (panels (b) and
(d)) the wave function is dominated by the term eikr and shows an exponential
increasing oscillatory behaviour.

2.4.5 Gamow states

The narrow resonances embedded in the continuum are essentially Gamow reso-
nant states. Gamow states are generalized eigenfunctions of linear operators with
complex eigenvalues, which do not belong to the natural domain of a self-adjoint
operators in the standard Hilbert space formalism. The mathematical foundation
lies in a rigged Hilbert space (RHS) formalism [36], which is outlined in Sec. 10.
In scattering theory, Gamow states describe capturing or decaying states corre-
sponding to the poles of the scattering matrix in the complex-momentum space.

Gamow states have been extensively used in nuclear and atomic physics for
describing resonances and other quasi-stationary states [37, 182, 211–219]. They
were originally introduced in 1928 as resonance states by Gamow to describe α

decay of nuclei [33, 34] and by Siegert [35]†† to describe scattering cross sections.
For a detailed discussion of Gamow states in nuclear physics see Refs. [220, 221].

††Gamow states are sometimes also called Siegert states.



23

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

(a)

Re(P)
Im(P)

Re(Q)
Im(Q) -0.4

-0.2

 0

 0.2

 0.4

 0  10  20  30  40  50  60  70  80

(b)

-120

-100

-80

-60

-40

-20

 0

 20

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

(c)

Re(P2 + Q2)
Im(P2 + Q2)

-0.1

-0.05

 0

 0.05

 0.1

 0  10  20  30  40  50  60  70  80

(d)

distance r (-h/(mc))

Fig. 11 Individual unnormalized P and Q components (a), (b) and the unnormalized density
of the 1s wave function (c), (d) for an atom with Z = 185 and Rcut = 0.031 in units of h̄/(mc).

Asymptotically, the resonant states un(En, r) obey the outgoing (or incoming)
boundary condition

un(En, r)−−−→r→∞Ol(knr) ∼ eiknr (27)

where kn = γn − iκn (for details see Ref.[212]). As shown in Fig. 13, the bound
states with kn = iκn (κn > 0) lie on the positive imaginary k-axis while the
antibound (or virtual) states with κn < 0 lie on the negative imaginary k-axis.
The decaying resonant states with (κn, γn > 0) lie in the fourth quadrant of the
complex k-plane while the capturing resonant states with (κn > 0, γn < 0) lie in
the third quadrant. The resonant-state trajectories in complex k-plane near the
continuum thresholds E = ±mec

2 have been analysed in Ref. [203].
The single-particle resonant states, augmented by complex-energy scattering

continuum states u(k, r) lying on the contour L obey the Berggren completeness
relation [212]: ∑

n

|un〉〈un|+
∫
L
|u(k)〉〈u(k)|dk = 1. (28)

Since complex-energy continuum states belong to the RHS, the metric has to
be generalized by introducing a biorthogonal basis for the radial wave functions.
In particular, contrary to the Hilbert space situation, no complex conjugation
appears in the radial wave functions of bra vectors [212, 221]. That is why the
radial densities of 1s states shown in Figs. 11 and 12 are defined through squared
upper and lower Dirac components [182]. Moreover, the radial integrals must be
regularized as the Gamow states with Im(k) < 0 exponentially diverge as r →∞,
see Figs. 11 and 12. This can be done by various techniques [224–226], including



24

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

(a)Re(P)
Im(P)

Re(Q)
Im(Q)

-600

-400

-200

 0

 200

 400

 600

 0  1  2  3  4  5  6  7

(b)

 0

 10000

 20000

 30000

 40000

 50000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

(c)

Re(P2 + Q2)
Im(P2 + Q2)

-60000

-40000

-20000

 0

 20000

 40000

 60000

 0  1  2  3  4  5  6  7

(d)

distance r (-h/(mc))

Fig. 12 Similar as in Fig. 11 but for an atom with Z = 300.

the external complex scaling method [227]. The very reason for the asymptotic
growth of the Gamow state wave function at large r is the fact that such a state
represents the stationary approach to the intrinsically time-dependent problem of
decay. Indeed, the exponential temporal decrease of the wave function amplitude
must be complemented by its exponential spatial increase, and this assures that
the particle number is conserved [228].

It is important to note, that due to the charge conjugation property of the
Dirac equation, the appearance of the electron Gamow state in the negative-energy
continuum results in the presence of a positron resonant state in the positive-energy
continuum [203, 204]. This suggest an interpretation of diving electron states in
terms of positron scattering resonances, see Sec. 2.5.

As discussed in Sec. 2.4.2, resonances can also be described within the real-
energy framework of standard quantum mechanics. The commonly used approach
is based on the dense continuum discretization, elimination of the smooth non-
resonant background, and fitting the resonance peaks [177]. Another approach
is the stabilization method, in which resonances are extracted from phase shifts
obtained from box solutions obtained by assuming different box sizes [177, 191,
229, 230]. For very narrow resonances, perturbative methods, such as the two-
potential method of Sec. 2.4.3 can also be used.

Despite some work on resonances embedded in the continuum [28, 151, 203,
204], a direct utilization of Dirac Gamow states in atomic many-body calculations
is practically nonexistent. The basic mathematical formulation rests on the rigged
Hilbert space structure which comes with its own challenges. To be of use in atomic
structure calculations of the superheavy elements, Dirac Gamow states need be
studied within a multi-electron framework. Computing Dirac Berggren ensemble
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Fig. 13 Location of resonant states in the complex momentum plane. The Berggren com-
pleteness relation, Eq. (28), used in the decay context involves the bound states (b) lying
on the imaginary k-axis, scattering states on the L contour (solid thick line), and resonant
decaying states (d) in the fourth quadrant of the complex k-plane lying between the real axis
and L. For problems involving capture, the capturing resonant states (c) need to be considered
and the scattering contour needs to be moved to the third quadrant. The antibound states
(a) can be included in the generalized completeness relation, see For general expansions of the
resolvent, see Refs. [214, 215]. The antibound (virtual) states (a) can be included in the gen-
eralized completeness relation; in this case the scattering contour has to be slightly deformed
[222, 223].

defined in Eq. (28), which can be used in a numerical atomic structure program
packages, will offer many exciting avenues.

2.5 Positron production in the super-critical regime

The QED vacuum is unstable in the presence of a strong electromagnetic field
above the Schwinger field limit, ES = m2

ec
3/eh̄ = 1.32× 10−18 V m−1 (or the

equivalent intensity of IS =2.3× 1029 Wm−2) [231], and decays by emitting electron-
positron pairs [232–234]. In the case of a potential barrier, it results in the much
discussed and debated Klein’s paradox.

As pointed out in Ref. [235], pair production cannot be described within a
one-body Dirac theory: it requires quantum field theoretical treatment within a
time-dependent rigged Fock-space formalism that dynamically couples particles
(electrons) and holes (positrons) in the Dirac continuum. A close non-relativistic
analogy to this problem is a two-nucleon nuclear decay of a Gamow resonance
[236]. A concise mathematical treatment in terms of incoming and outgoing elec-
tron/positron states is given by Rumpf, where the outgoing basis may be connected
with the ingoing one by a unitary Bogoliubov transformation [237–239]. For further
details see Ref. [240].
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As discussed in Sec. 2.4.5, the resonance states of the supercritical Dirac equa-
tion are the Gamow states. The physical interpretation of an electron state em-
bedded in the continuum was extensively studied by the Frankfurt group [28].
According to these works, if an empty level is embedded in the negative energy
continuum, the initially neutral vacuum can spontaneously decay into a positron
and a bound electron with a supercritical energy. In such a case, an empty level in
the Dirac sea is interpreted as a positronic state, with the positron escaping the
supercritical field. After two positrons are emitted, the supercritical K-shell has
been successively filled with two electrons, and the Pauli principle prevents further
decay [23, 28, 135, 241–245].‡‡ The resonance’s width has been interpreted as the
positron escape width with the characteristic time τE = h̄/Γ for the pair creation
process.

This picture of pair creation was debated [151, 203, 246] on the basis of the
unitarity of the S-matrix. Indeed, the unitarity of the partial scattering matrix is
equivalent to the absence of inelastic channels, in particular, the absence of spon-
taneous electron-positron creation. in which it has been proven that for a static

external field the probability of pair creation is exactly zero [29, p. 298]. However,
the probability for pair creation does not go exactly to zero as the time derivative
of the external field approaches zero. Instead, in the adiabatic limit one observes a
sudden jump in the probability of adiabatic pair creation for critical fields which
may be defined as spontaneous pair creation [29]. That is, one requires only a
weak time dependence to trigger pair creation. Consequently, rather than to talk
about “spontaneous pair creation”, it has been recommended to use “adiabatic
pair creation” [247, 248]. Recently, the vacuum polarization energy decline and
spontaneous positron emission in QED under Coulomb supercriticality were ex-
plored within the Dirac-Coulomb problem with an external static or adiabatically
slowly varying spherically symmetric Coulomb potential created by a uniformly
charged sphere [249]. It was found that in the supercritical region the vacuum
polarization energy is a decreasing function of the Coulomb charge, resulting in a
decay, with a vacuum polarization energy EVP

ren ∼ −Z4/R(Z), which provides the
required energy for positron emission ([249] Eq. (104)). Here R(Z) is the nuclear
radius. The vacuum polarization and its effect on the value of supercritical Z are
also studied in [250]. This debate could, however, have been avoided by referring
to Thaller’s work on scattering operators [29].

In principle, one could initiate pair creation using intensive laser fields above
the Schwinger limit IS (see Ref. [251] for a recent review). One proposal is by using
multiple§§ focused beams from x-ray free electron lasers [252]. Repeated cycles of
particle creation and annihilation can take place in tune with the laser frequency
and the production of a few hundred particle pairs per laser period can occur.
As an analogous approach, Ref. [253] proposed a model of the quantum Dirac
field realized by ultra–cold fermionic atoms in an optical lattice. Here, numerical
simulations demonstrate the effect of spontaneous pair creation in the optical
analogue system. Yet another possibility is to use a strong laser beam coupled to
an atomic or molecular system with a strong Coulomb field as found for example in

‡‡We could, in principle, excite an electron from the filled Gamow 1s1/2 state in the con-

tinuum into one of the discrete states above −mec2. This creates another hole in the state
embedded in the negative energy continuum and the possibility for yet another pair creation.

§§An electromagnetic plane wave that fulfills E2 = B2 and E · B = 0 cannot produce
electron-positron pairs.
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graphene [246, 254–256]. A Schwinger-like production of hot electron-hole plasma
in semi-metallic graphene has been claimed to be observed for the first time only
very recently [257].

2.6 Experimental perspective: heavy-ion collisions

It was proposed, that pair creation should occur in the collision between two bare
nuclei with total charge number exceeding the critical value, such as the case for
two U92+ ions with a combined nuclear charge of Z = 184 [28, 244]. The collision
system will have a supercritical regime time for ∼2.3× 10−21 s for the U92++U92+

collision at center-of-mass energy of Ecm =740 MeV [245] as shown in Fig. 14. The
expected lifetime of the supercritical resonance state is ∼392× 10−21 s, which is
two orders of magnitude shorter than the time required for vacuum decay. The
probability of pair production is therefore estimated to be around 1% for the 1s
level [209]. Early attempt to observe this effect [258] using ions without a 1s1/2
hole failed. The use of cooled U92+ ions in the ESR storage ring of GSI/FAIR
[259] could allow to observe this effect for the first time. A test experiment using
collisions of a Xe54+ beam on a Xe gas jet target is underway [260].

Fig. 14 The low-lying energy levels formed by the collision of two uranium nuclei as functions
of time. The arrows a, b, and c denote different dynamical pair-creation mechanisms and the
arrow d indicates the spontaneous pair creation. The 1s state dives into the negative-energy
continuum for about 1× 10−21 s. Figure taken from [209]; see also [202].

The spontaneous emission is not the only process that can occur during the
collision.¶¶ It is generally masked by a dynamical positron emission, which is
induced by the time-dependent potential of the colliding nuclei above the Coulomb

¶¶One should not forget possible weak decay processes such as the electron capture that is
a common decay mode of proton rich nuclei, albeit the time frame for weak decays is much
longer than for nuclear or electronic transitions [261]. Take for example the work on relativistic
quantum dynamic calculations of the probability of K-vacancy production in the Xe-Xe54+

collision at 30 MeV [262].
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Fig. 15 Schematic Feynman diagram for the dynamical pair creation for the (inelastic) colli-
sion of two heavy nuclei with mass numbers and nuclear charges (A1, Z1) and (A2, Z2) respec-

tively, where the outgoing nucleus binds an electron (Z
′
2 + e−). Two colliding nuclei create a

strong electromagnetic field, strong enough to generate an electron positron pair [267]. Col-
liding nuclei are represented by normal lines while wavy lines refer to virtual photons and the
lines with arrows correspond to leptons (electrons and positron). The double line represents a
bound electron.

barrier [209, 263–266]. In this mechanism, the two colliding nuclei create a strong
electromagnetic field, strong enough to generate electron-positron pairs. The pair
creation in heavy atom collisions is visualized by the Feynman diagrams in Fig.
15 [202].

While the spontaneous pair creation works only in the supercritical regime,
the dynamical pair creation takes place in both subcritical [264] and supercritical
modes if the collision energy is high enough [268, 269]. Experimental verification of
spontaneous pair creation and the distinction from the dynamical process is how-
ever challenging as the energy-differential spectra of emitted positrons by sponta-
neous vacuum decay are indistinguishable from the spectra of positrons emitted
by the dynamical process. There are however a range of different approaches that
should make vacuum decay observable. One example is by collisions with nuclear
sticking, in which nuclei are bound to each other for some period of time by nuclear
forces allowing for few nuclear rotations. In this very short time frame, typically
of the order of 1× 10−21 s to 1× 10−20 s [270, 271], there is an increase in pair
creation probability that can only be explained with the spontaneous pair creation
mechanism [27, 244, 266]. Additionally, it has been shown that the pair-production
probability varies as a function of nuclear collision velocities in the supercritical
and subcritical region, allowing for the detection of vacuum decay experimentally
[209, 272]. The impact of the vacuum polarization on the value of Zc in the case of
heavy ions collisions is considered in Ref. [250]. Moreover, it has been argued [209]
that the positron spectra for symmetric collisions of heavy ions with 83 ≤ Z ≤ 96
as a function of the collision energy should show a signature of the transition to
the supercritical regime.
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3 Multi-Configuration Dirac-Hartree-Fock

With very few exceptions [273, 274], one treats the multi-electron Dirac equation
within mean-field theory, that is either at the D-HF (Dirac-Hartree-Fock) level
or by using D-DFT (Dirac density functional theory) [275, 276], with the latter
method being more popular in molecular calculations. It is fair to say that the
accuracy of current density functional approximations cannot compete with wave-
function-based methods (for a recent critical analysis on DFT see Ref. [277]),
especially when QED effects need to be included. At an early stage of atomic
structure calculations, however, DFT in the form of D-HF-Slater theory did play an
important role as electron correlation is approximately included in such a scheme
[278]. Here, we focus on modern multi-reference D-HF electronic structure theory
for static correlation describing correctly the states of a given Jπ symmetry, with J
being the total angular momentum and π the parity. Dynamic electron correlation
and its effects on atomic structure is described in Sec. 5 below.

Like in the nonrelativistic HF case, to obtain the correct ground state symmetry
and low-lying electronic transitions in open-shell cases, one requires the correct
description of static correlations. In finite basis-set calculations this requires a set
of Slater determinants in a multi-reference treatment within a nonrelativistic or
relativistic coupling scheme. In relativistic atomic numerical program packages
such as GRASP [60, 148, 279–281] or MDFGME [14, 154], this is done through
linear combinations of multi-shell configurational state functions (CSF’s) within a
jj-coupling scheme [45]:

Ψi(J
π,MJ ) =

∑
r

criΦr (γνJ
π,MJ ) , (29)

where the Φr wavefunctions share the same overall total angular momentum J ,
corresponding MJ , and parity π. The quantity γν stands for all other values such
as angular momentum recoupling and seniority numbers [45]. Each CSF Φr is a
linear combination of Slater determinants

Φr (γνJ
π,MJ ) =

∑
i

di

∣∣∣∣∣∣∣∣
φi1(r1) . . . φiN (r1)

...
. . .

...

φi1(rN ) . . . φiN (rN )

∣∣∣∣∣∣∣∣ , (30)

where φ are the Dirac four-component orbital spinors defined in Eq. (5), and the
coefficients di are determined such that the CSF is an eigenstate to both J2 and Jz.
The eigenvalues and eigenvectors (configuration mixing coefficients cri) are then
obtained by diagonalizing the Hamiltonian matrixHij = 〈Ψi(Jπ,MJ )|HD

∣∣Ψj(Jπ,MJ )
〉
.

Multi-reference methods (including complete active space SCF) used in the
quantum chemistry community have been reviewed extensively [282–284]. A com-
prehensive account on MCSCF theory in relativistic atomic structure calculations
(usually termed MCDHF) has been provided in a textbook [45] and several pub-
lications [285, 286]. The construction of these multi-reference functions can be a
formidable task if many high angular momentum open-shell j-states are involved
[45]. The multi-reference treatment, therefore, provides a challenge for superheavy
element calculations where the electronic spectrum becomes very dense and, as
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a result, the multi-reference space becomes huge.∗∗∗ In addition, SCF conver-
gence problems can arise for nearly-degenerate states. Nonetheless, for few-electron
systems, high-accuracy in excitation energies can be achieved if both QED and
dynamic correlation effects are included, see Secs. 4.4 and 5, respectively. High-
accuracy atomic structure calculations are also required, for example, in the search
of physics beyond the standard model (BSM) [116, 122, 287–296].

Numerical program packages, such as MCHF for the nonrelativistic [297] case
or GRASP and MDFGME for the relativistic case, apply the finite difference
method (FDM) [298]. Alternatively, the finite element method (FEM) employ-
ing, for example, B-splines (piecewise polynomials) [186, 299–301] can be used,
as implemented for example in the program AMBiT [302]. The use of B-splines
has certain advantages in relativistic atomic structure calculations [300]. As the
radial wave functions are restricted to an interval [0, Rc], the atoms are spherically
confined within a radius Rc set large enough (usually around 40 a u ) to achieve
accurate numerical results. This discretizes the positive and negative real-energy
continuum. It thus allows for an easy implementation of projection operators [76].
This method could therefore be well suited to approximately describe diving oc-
cupied levels with E < −mec

2 at charges Z > Zc.
††† The virtual space created

can be used for a successive electron correlation procedure, such as configura-
tion interaction or coupled cluster or MCDF. In all these numerical procedures
one usually chooses exponentially spaced grid points (called knots in FEM) with
r = r0e

t, t > 0, to describe the radial wave function φ(r) accurately in the near nu-
clear region. We note that the correct description of the wave function in the inner
core region is mandatory for the accurate treatment of relativistic effects [303, 304].
B-splines have also been used to create basis sets to perform many-body perturba-
tion theory [300, 305, 305, 306] or to do MCDF calculations, as they can be used
to implement projection operators with the nucleus and electrons average poten-
tial, and obtain correlation orbitals [76]. More recently an improved method, the
dual kinetic balance [186], has been proposed to obtain basis sets free of spurious
states.

The systems of coupled integro-differential equations obtained in multi-configuration
methods are intrinsically very non-linear. In particular exchange potentials for
correlation orbitals are inversely proportional to the square of the configuration
weight, and can then be huge. Initial configuration state functions for an SCF cal-
culation are usually obtained from either the Thomas-Fermi model or from single-
particle Dirac-Coulomb solutions using screened nuclear charges [45]. However, se-
vere convergence problems can be experienced when, for example, diffuse orbitals
are involved such as for high angular momentum functions or negatively charged
atoms, or when doing correlation calculations with highly-excited configurations.
In such cases, choosing the right initial guess becomes important. Convergence
issues within the MCDF procedure have been discussed in Refs. [40, 45, 307, 308].
In some cases the problem occurs due to the relativistic nature of the atom or
ion being studied. When going to very high-Z the angular coupling goes from
LSJ coupling to almost pure JJ coupling. In that case the weight of some of the

∗∗∗This is similar to the strong correlation problem in solid state physics to describe, for
example, metallic systems.

†††The accuracy of such a discretization procedure has been shown to be poor, when it comes
to the description of narrow resonance states [177]. In such a case, the preferred method to
deal with these resonances is the Gamow-state framework.
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configurations contributing to a given LSJ level becomes very small and severe
convergence problems are observed [40].

When the four components of the spinor in relativistic methods are each al-
lowed to vary independently, the matrix representations of the Dirac operator will
fail to give the right formal nonrelativistic limit, resulting in an energy below the
true numerical value, known as variational collapse or finite basis set disease [79].
It arises whenever one wants to expand wave functions in a given basis replac-
ing operators by their matrix representation. To prevent such an unwanted effect,
certain boundary conditions such as the kinetic balance (which is automatically
considered in numerical calculations) have to be imposed which ensures the cor-
rect relation between the large and small component [45, 79, 85]. In finite basis
set treatments of the D-HF equations, using for example Slater or Gaussian type
basis sets, small errors may nevertheless occur due to variational problems (pro-
lapse). Since the kinetic balance condition implicitly projects onto the positive
energy states, it is possible that, due to the incompleteness of the basis set, the
total energy lies below the one obtained from numerical DHF calculations [159].
This can be avoided by freezing the inner core functions such that core orbitals
are sufficiently well described, or by restricting the size of the s and p basis sets, or
by making use of specifically derived prolapse-free Gaussian basis sets [309–312].

Upon inclusion of the Breit operator in Eq. (2), coupling of the positive and
negative continuum states occurs due to electron-electron interaction, leading to
the non-existence of a discrete spectrum. This is known as continuum dissolu-
tion or the Brown–Ravenhall disease [77], and can be avoided by removing all
Slater determinants containing negative-energy orbitals using a projection opera-
tor, effectively eliminating electron-positron pair contributions [59]. The projection
operator is usually constructed from the positive energy eigenstates of the full ex-
ternal field Dirac Hamiltonian, leading to the no-pair Hamiltonian of Sec. 2.4.1.
(For a recent discussion on this topic see [313].) For the case where photon-matter
field interactions are removed, a single Slater determinant (D-HF solution) auto-
matically includes the HF projection operators on positive energy states [314], i.e.,

the low-frequency Breit interaction has been shown to cause no variational failure
when included in the iterative solutions of the D-HF equations [315, 316]. Thus,
the Breit interaction has been successfully applied perturbatively [74] as well as
in variational treatments [45, 76, 316–321], where the solutions of the Dirac-Breit-
HF equations serve as a starting point for further electron correlation and QED
treatments.

An other issue with Dirac-Fock codes is the fact that for levels originating from
the same LS level, they may give wrong values. It was shown in [322] that the
2p1/2−2p3/2 fine structure energy in B-like ions and the 2p5 J = 3/2−2p5 J = 1/2
one in F-like ions did not provide the right value for light elements. The non-
relativistic limit obtained by setting the speed of light to a high value was not
zero as it should have been. At the time the proposed solution was to remove
the energy splitting obtained for c→∞ from the relativistic value. More recently
it was shown that this effect could be handled by doing large scale correlation
calculations to obtain those level energies, including all single excitations, even
the ones obeying the Brillouin theorem [323]. The same issue was also identified
in the evaluation of forbidden transitions probabilities [324].
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4 Quantum Electrodynamic Effects

Besides the corrections stemming from relativistic electron correlation described
in Sec. 3, corrections issued from bound-state quantum electrodynamics must be
added to get accurate predictions. The need for such corrections was demonstrated
by two famous experimental discoveries. The first discovery, made by Lamb and
Retherford, was the non-degeneracy between the 2p1/2 and 2s1/2 states, in con-
tradiction to the Dirac equation, which gives degenerate levels [325]. The second
discovery, made by Kusch and Foley, was that the electron Landé g-factor is not
exactly equal to 2 in Na and Ga [326], later understood to be due to the anomalous
magnetic moment of the electron. The experimental discoveries were followed by
the theoretical work of Bethe [327], Feynman [200, 328], Schwinger [234, 329–331]
and Tomonaga [332], which lead to the foundation of QED, the principle of which
remains unchallenged up to now [116].

The derivation of the different QED contributions starts from the QED La-
grangian (1). Several methods have been proposed to calculate all-order QED
corrections which are necessary for applications to high-Z elements. However, it is
not trivial to define physical particle states in the presence of an external gauge
field within the framework of gauge invariant quantum field theory [240]. Pio-
neering works on all-order vacuum polarization [333–335] have led to the modern
calculations. The first accurate all-order calculation of the 1s self-energy [336, 337]
showed that Zα expansions used up to that time were non-convergent at medium-
and high-Z. A first attempt to evaluate the 1s1/2 state self-energy in superheavy
elements was done in Ref. [338]. It was followed by the calculation of the self-
energy contribution of the 1s1/2 level for finite nuclei up to Z = 170 [339]. This
evaluation has recently been extended to all states up to n = 5 and J = 5/2 [340].
The method described in Ref. [336] is based on the S-Matrix formalism, which
allow a full treatment of QED corrections in one-electron systems and to calculate
corrections to the electron-electron interaction in few-electron systems beyond the
no-pair approximation [341, 342], provided there is a well isolated reference sys-
tem. A review of QED corrections in low-Z one-electron systems can be found in
Ref. [343].

The Bethe-Salpeter equation [43] is a real two-body equation that has been
used to derive, for example, higher-order recoil corrections in hydrogen [344] be-
yond what can be obtained with the Breit equation (see, e.g., Ref. [343] and ref-
erences therein). The Bethe-Salpeter equation has, however, some fundamental
problems [345, 346] and it becomes soon intractable for many-electron systems.
For the efficient treatment of many-electron systems one requires a Hamiltonian
approach (e.g., the Dirac-Coulomb-Breit Hamiltonian as a starting point) with ad-
ditional effective QED perturbation terms that describe the multi-electron system
to the required accuracy. The Bethe-Salpeter equation can in principle be trans-
formed into two independent equations that match the equations of Hamiltonian
relativistic quantum mechanics [347]; there is also the quasipotential approach
[348]).

Three methods have been developed to deal with bound state QED (BSQED)
calculations, in particular in heavy-elements. The original one is based on the S-
matrix formalism. A detailed description of the S-matrix formalism and review
of QED calculations based on it can be found in Refs. [143, 349]. An overview of
this method is given in subsection 4.1. Approaches capable of dealing with quasi-
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degenerate reference states have been proposed by using (i) a method based on
the two-times Green function [350–352] (Subsec. 4.2) and (ii) a covariant version
of RMBPT based on the time-evolution operator, which allow to treat more easily
degenerate and quasi-degenerate states [353–356] (Subsec. 4.3). In practice, the
complexity of the involved calculation is the main limitation to the use of any of
these approaches, and approximate methods had to be devised.

BSQED is usually based on the Furry bound picture [357]. The unperturbed
Dirac Hamiltonian HD contains the Coulomb field of the nucleus, such that the
Coulomb potential is included to all orders. The electron-electron interaction is
treated as a perturbation given by the potential

Vε,g = gHIe
−ε|t|, (31)

where g is a formal expansion parameter and the interaction Hamiltonian is

HI = jµAµ − δM(x), (32)

which contains a mass renormalization term. As the electromagnetic interactions
can act at an infinite distance, the term e−ε|t| is added to turn off adiabatically
the interaction at t = ±∞ to recover the unperturbed states before and after the
interaction.

The electron-positron field operators defined on an appropriate Fock-space are
expanded in terms of electron and positron annihilation and creation operators,

ψ(x) =
∑

En>−mec2
anφn(x) +

∑
Em<−mec2

b†mφm(x), (33)

while the BSQED Hamiltonian is given as [240],

H0 =
∑

En>−mec2
Ena

†
nanφn(x)−

∑
Em<−mec2

Emb
†
mbmφm(x), (34)

where an an electron annihilation operator for an electron in state n, with energy
En > −mec

2 and b† a positron creation operator for a positron in state m with
energy Em < −mec

2. For the Gamow states that dive into the negative energy
continuum and have complex energies, the formalism has to be further extended.
It should be noted that the formalism in Eqs.(33) and (34) is the proper quantum-
field theory replacement for the Hamiltonian with projection operators given in Eq.
(16), which is based on the Dirac sea definition of the positrons. Yet, for practical
applications in many-electron systems, the BSQED formalism is too difficult to
use, and has not been used beyond second-order corrections.

The expressions (33) and (34) are usually formulated in terms of the posi-
tive (En > 0) and negative (En < 0) spectrum of the Dirac operator, loosely
termed electronic and positronic states [143]. Such terminology originates from a
free-particle QED formalism [358, 359], and was later adopted for Coulomb fields
describing a point nuclear charge where the lower part of the discrete spectrum
terminates at En = 0 at Zα = 1. As already pointed out, for the general case of
a finite nucleus the energy can become negative and eventually the state can dive
below E = −mec

2 for Z ≈ 170. Hence the terminology of positive and negative
energy states makes only sense if one shifts the spectrum up by mec

2 where the
lower continuum starts then at E < 0.
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4.1 S-matrix formalism

The evaluation of the energy shift in QED for an isolated q-electron state with
no real photons |Nq; 0〉 = |n1, . . . , nq; 0〉, is made through the Gell-Mann and Low
theorem [360, 361], symmetrized by Sucher [362]

∆ENq = lim
ε→0
g→1

iεg

2

∂

∂g
log 〈Nq; 0|Sε,g |Nq; 0〉 , (35)

where the adiabatic S-matrix is given by

Sε,g = lim
t→∞

Uε,g(−t, t), (36)

and Uε,g is the adiabatic evolution operator defined as

Uε,g (t1, t2) = Te−i
∫ t2
t1
dtVε,g(t) , (37)

where T is the time ordering operator.
The next step is to expand the connected adiabatic S-matrix in power of the

coupling constant g as done in Refs. [143, 349, 359, 363, 364]

g
∂

∂g
log 〈Sε,g〉C

∣∣∣∣
g=1

=

〈
S
(1)
ε,1

〉
C

+ 2
〈
S
(2)
ε,1

〉
C

+ 3
〈
S
(3)
ε,1

〉
C

+ · · ·

1 +
〈
S
(1)
ε,1

〉
C

+
〈
S
(2)
ε,1

〉
C

+
〈
S
(3)
ε,1

〉
C

+ · · ·

=
〈
S
(1)
ε,1

〉
C

+ 2
〈
S
(2)
ε,1

〉
C
−
〈
S
(1)
ε,1

〉2
C

+ 3
〈
S
(3)
ε,1

〉
C
− 3

〈
S
(1)
ε,1

〉
C

〈
S
(2)
ε,1

〉
C

+
〈
S
(1)
ε,1

〉3
C

+ 4
〈
S
(4)
ε,1

〉
C
− 4

〈
S
(1)
ε,1

〉
C

〈
S
(3)
ε,1

〉
C
− 2

〈
S
(2)
ε,1

〉2
C

+ 4
〈
S
(1)
ε,1

〉2
C

〈
S
(2)
ε,1

〉
C
−
〈
S
(1)
ε,1

〉4
C
, (38)

where the connected S-matrix is defined by

〈Sε,g〉C = 〈Nq; 0|Sε,g |Nq; 0〉C =
∑
j

〈
S
(j)
ε,1

〉
C
, (39)

with 〈
S
(j)
ε,1

〉
C

= 〈Nq; 0|S(j)
ε,1 |Nq; 0〉C . (40)

Connected diagrams are diagrams with external legs, which are bound-state
wave functions like the ones in Figs. 16, 18 and 19. The disconnected diagrams,
which have only closed loops, only contribute to the energy of the vacuum. Ex-
amples of disconnected diagrams for one- and two-electron systems are shown in
Fig. 17. Each order in Eq. (38) has poles at εj , which cancel out only if all terms
of a given order are calculated simultaneously. For example, for j = 2 both terms

of 2
〈
S
(2)
ε,1

〉
C
−
〈
S
(1)
ε,1

〉2
C

must be calculated together to cancel the 1/ε2 pole.

The S-matrix formalism is not limited to the evaluation of QED energy shifts.
It can also be used for the evaluation of radiative corrections to one- [365, 366]
and two-photon [367] emission probability for example, and line shapes [368].
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From the definition of the S-matrix (36) and the evolution operator (37) one
obtains for the matrix element of order j:

S
(j)
ε,g =

(−ig)j

j!

∫
d4xj . . .

∫
d4x1e

−ε|tj | . . . e−ε|t1|T [HI (xj) . . . HI (x1)] . (41)

These matrix elements can be expressed in terms of the electron propagator and
photon propagator. The electron propagator is connected to the Dirac bound elec-
tron Green’s function by

SF (x, y) = 〈0|T
[
ψ (x) ψ̄ (y)

]
|0〉

=

{ ∑
En>0 φn (x) φ̄n (y) tx > ty

−
∑
En<0 φn (x) φ̄n (y) tx < ty

=
−i
2π

∫
CF

dzG (x2,x1, z(1 + iδ)) γ0e−iz(t2−t1). (42)

The electron Green’s function in (42) is the solution of [143, 349]

(−iα ·∇2 + V (|x2|) + βm− z)G (x2,x1, z(1 + iδ)) = δ (x2 − x1) . (43)

The energies of the bound states are given by the poles of the Green’s function
along the real axis.

The contraction of the two photon field operators in (41) gives

〈0|Aµ (x2)Aν (x1) |0〉 = gµνDF (x2 − x1) (44)

where

DF (x2 − x1) = − i

(2π)4

∫
d4q

e−iq·(x2−x1)

q2 + iδ

=
1

(2πi)

∫ +∞

−∞
dq0H (x2 − x1, q0) e−iq0(t2−t1) (45)

In Eq. (45), H (x2 − x1, q0) is the photon Green’s function, given by

H (x2 − x1, q0) = −e
−bx21

4πx21

x21 = |x2 − x1| , b = −i
(
q20 + iδ

) 1
2
, <(b) > 0. (46)

As noted by Dyson, the expansion in power of α of Eq. (35) has a radius of
convergence equal to zero [52]. The series in α is thus only an asymptotic series
that diverges for n ≥ 1/α. Thanks to the small value of α, this is not an issue
unlike for the strong interactions.

The first-order contribution in Eq. (38), the mass renormalization term, can
be written as:

∆E
(1)
n = lim

ε→0

1

2
iε
〈
S
(1)
ε,1

〉
c

= −δm
∫
dxφ†n (x) γ0φn (x) . (47)

The three possible second-order connected diagrams are shown in Figs. 16 (first
order, one-electron QED corrections) and 18 (electron-electron interaction). They
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(a) (b)

Fig. 16 Bound state QED corrections of lowest order with the usual labelling of Feynman
diagrams. (a) vacuum polarisation; (b) one-electron self-energy. Elementary charge e is included
for clarity. DF and SF are the Dyson (photon) and Feynman (electron/positron) propagators
respectively. The double line represents a propagator in the field of the nucleus. Ψn`j represents
a bound electron wave function.

A B

Fig. 17 Example of disconnected diagrams of order α, which only contribute to the vacuum
energy. (a): one electron case, (b): two-electron case.

originate from the second-order term in Eq. (38) which can be explicitly written
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(a)

Fig. 18 Similar as in Fig. 16 but for the electron-electron interaction Feynman diagram.

(a) (b)

Fig. 19 Similar as in Fig. 16 but for the second-order electron-electron interaction Feynman
diagrams: (a) ladder diagram; (b) crossed diagram.

(in natural units) as

〈
S
(2a)
ε,1

〉
c

=
1

(4πi)

∫ +∞

−∞
dq0

∫
d4x2

∫
d4x1e

−ε(|t2|+|t1|)e−iq0(t2−t1)
e−bx21

4πx21{ ∑
m2n2m1n1

ei(En2−Em2)t2ei(En1−Em1)t1

×φ†n2
(x2) γ0γµφm2 (x2)φ†n1

(x1) γ0γνφm1 (x1)

×〈Nq; 0| : a†n2
am2a

†
n1
am1 : |Nq; 0〉

−2Tr

[
γµ
−i
2π

∫ +∞

−∞
dzG (x2,x2, z(1 + iδ)) γ0

]
×
∑
nm

ei(En−Em)t1φ†n (x1) γ0γνφm (x1) 〈Nq; 0| a†nam |Nq; 0〉

+
−i
π

∫ +∞

−∞
dz
∑
nm

ei(Ent2−Emt1−iz(t2−t1))

×φ†n (x2) γ0γµG (x2,x1, z(1 + iδ)) γ0γνφm (x1)

×〈Nq; 0| a†nam |Nq; 0〉
}
. (48)

Those diagrams are of the order of α/π since they have two vertices.
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4.2 Two-times Green’s function method

This method is based on the generalisation of the Green’s function (42) to a system
of N electrons [350, 352]. The 2N−times Green’s function is defined as

G(x′1 · · ·x′N ;x1 · · ·xN ) =
〈
0|T

[
ψ(x′1) · · ·ψ(x′N )ψ̄(x1) · · · ψ̄(xN )

]
|0
〉
. (49)

It can be expressed as

G(x′1, . . . x
′
N ;x1, . . . xN ) (50)

=
〈0|T

[
ψin(x′1) · · ·ψin(x′N )ψin(xN ) · · ·ψin(x1)

]
exp {−i

∫
d4z HI(z)}|0〉

〈0|T [exp {−i
∫
d4z HI(z)}] |0〉

=
{ ∞∑
m=0

(−i)m

m!

∫
d4y1 · · · d4ym 〈0|

[
Tψin(x′1) · · ·ψin(x′N )ψin(xN ) · · ·ψin(x1)

× HI(y1) · · ·HI(ym)] |0〉
}{ ∞∑

l=0

(−i)l

l!

∫
d4z1 · · · d4zl 〈0|T [HI(z1) · · ·HI(zl)] |0〉

}−1

.

Two-times Green’s function method starts by keeping only two times in Eq.
(50), setting t1 ≡ t2 · · · ≡ tN ≡ t and t′1 ≡ t′2 · · · ≡ t′N ≡ t

′. This operation does not
lead to any loss of information. For an isolated level a of an N-electron atom, with

an unperturbed energy E
(0)
a , the energy shift is given by

∆Ea =

1
2πi

∮
Γ dE

(
E − E(0)

a

)
∆Gaa(E)

1 + 1
2πi

∮
Γ dE∆Gaa(E)

, (51)

where Gaa(E) is the mean value for state a of the Fourier transform of the two-
times Green’s function (50). A perturbation expansion of Gaa(E) in powers of the
fine structure constant α generates results similar to those shown in section 4.1.

In the case of two quasi-degenerate levels, one can use the 4-times Green’s
function in a similar manner.

G(x′1x
′
2;x1x2) =

〈0|T
[
ψin(x′1)ψin(x′2)ψin(x2)ψin(x1)

]
exp {−i

∫
d4z HI(z)}|0〉

〈0|T [exp {−i
∫
d4z HI(z)}] |0〉

.

(52)
In this case, the perturbation expansion is realized on the subspace containing
the two quasi-degenerate levels. This procedure can formally be extended to any
number of quasi-degenerate states.

4.3 Covariant evolution-operator procedure

The covariant evolution-operator method has been developed in Refs. [356, 369–
372]. The method also starts from the evolution operator, and applies Relativistic
Many-Body Perturbation Theory methods (RMBPT). It is closely related to the
two-times Green’s function method discussed in the previous subsection. In con-
trast to the S-matrix formalism, which cannot handle quasi-degenerate states due
to the energy-conservation condition caused by the integration over all times, the
covariant evolution operator procedure has been successfully applied to quasi-
degenerate states. The method is based on the fact that at t = 0, the Green’s
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(a) (b)

Fig. 20 Self-energy screening diagrams of order (α/π)2.The other notations are defined in
the legend of Fig. 16.

operator is equivalent to the RMBPT wave operator, which is obtained as so-
lution of a generalized Bloch equation. Additionally, in the standard evolution
operator, time runs only in the forward direction and is therefore not relativisti-
cally covariant. By allowing the time to evolve forwards as well as backward, the
relativistic covariance is restored. This method allows to evaluate non-QED many
body effects to high-order and to take into account first and second order QED
diagrams as well, at least in simple systems.

4.4 Calculation of QED corrections

There are several kinds of QED corrections that need to be evaluated for com-
puting transition energies in superheavy elements. In the first category, there are
one-electron corrections like the self-energy and the vacuum polarization shown
in Fig. 16. These corrections concern all atoms. The Feynman diagram for the
electron-electron interaction is shown in Fig. 18. It contains the Breit interaction
and all-order retardation corrections. This diagram can be iterated to provide
higher-order corrections to the electron-electron interaction as shown in Fig. 19.
The latter diagrams and similar ones with more photons provide QED corrections
to the correlation energy. The full ladder diagram in Fig. 19(a) contains both the
correlation contribution present in many-body theories like RMBPT, MCDF or
RCI, and pure QED corrections, which involve positrons. The crossed diagrams
in Fig. 19(b) provides pure QED corrections not included in many-body calcula-
tions. A last category of Feynman diagrams contains electron-electron interaction
corrections to one-electron correction, like self-energy screening presented in Fig.
20. These two last categories concern atoms with at least two electrons.

4.4.1 One-electron radiative corrections

The energy shift due to one-electron radiative corrections of order i, corresponding
to an ensemble of diagrams with 2i vertices, is formally of order (α/π)imec

2, but
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after renormalization it can be written as:

∆E
(i)
(n,κ) =

(α
π

)i (Zα)4

n3
F

(i)
n,κ (Zα)mec

2, (53)

where F
(i)
n,κ(Zα) is a slowly varying function of Z for a level of quantum numbers

(n, κ). For low Z, one can write an expansion of F
(i)
n,κ(Zα) as an expansion in

powers of Zα and log
(
(Zα)−2

)
. The lower-order coefficients of this expansion can

be found in Refs. [373, 374]. As shown in [336], this expansion is not convergent
at medium to high-Z. For superheavy elements, we will thus only consider results
evaluated to all orders in Zα.

We now discuss the evaluation of the self-energy diagram 16(b). The 1s1/2
self-energy has been evaluated to all-orders for 5 ≤ Z ≤ 120 for point nucleus
[68, 337, 338, 375, 376]. The finite nuclear-size correction is important for high-
Z and small values of the principal quantum number and for s and p states. It
is negligible for larger values of |κ|. The self-energy for the 1s1/2 state has been
evaluated in [142, 143, 338, 377]. In Ref. [338], it was evaluated up to Z = 160 and

in Ref. [339] up to Z = 170. An extension of the evaluation of F
(1)
1s (Zα) for i = 1

for point nuclei up to Z = 137 has been performed recently [378] and for uniformly
charged nuclei up to Z = 135 [379] with radii in the range 1.5 fm to 7.3 fm. The
work from Ref. [68] has been extended recently to Z = 170 [340]. In both works,
the self-energy for a given Z value is calculated for a specific nuclear size, using the

Fermi model. A comparison between the different values of F
(1)
1s (Zα) for i = 1 and

finite nuclear size is shown in Fig. 21. All calculations are in good agreement with
each other, that is within the differences of the nuclear model and size applied.

In the case of excited states, the self-energy has been evaluated for ns, np1/2,
np3/2 and nd3/2 states for 5 ≤ Z ≤ 110 and 2 ≤ n ≤ 5 in Refs. [336, 375, 376, 380,
381]. The point-nucleus self-energy of ns, np and nd states up to n = 5 can also be

found in Ref. [68] for 10 ≤ Z ≤ 120. Reference [382] contains the values of F
(1)
n,κ(Zα)

for nd3/2 to ng9/2 up to n = 5 for a point nucleus. The finite size of correction
for 2s states and 2p1/2 states can be found in [142, 143, 377] for 26 ≤ Z ≤ 100,
for 10 ≤ Z ≤ 120 in [68] and for 100 ≤ Z ≤ 170 in [340]. The comparison between
different theoretical values with and without finite size correction for 2s, 2p1/2 and
2p3/2 states is shown in Fig. 21. The divergence of the point-nucleus values when

Z → α−1 ≈ 137 for states with |κ| = 1 is visible for both 2s and 2p1/2 states. It is
in fact even more pronounced than for the 1s state.

For larger values of n and Z > 120 there are no published results for F
(1)
n,κ(Zα).

A large scale effort has been recently undertaken to provide values of F
(1)
n,κ(Zα)

to cover the range of interest for superheavy elements. The values of F
(1)
n,κ(Zα)

with all possible κ for all 1 ≤ n ≤ 10 and Z up to 137 have been evaluated for
point nuclei [378]. The point nucleus values for all possible |κ| > 1 for n = 5 are
plotted in Fig. 22, together with values from Refs. [68, 340] for p and d states. The

functions F
(1)
n,κ(Zα,R) including finite nuclear size correction for 3 ≤ n ≤ 6 and

|κ| = 1 (s and p1/2 states) have been evaluated for Z up to 135, with values of R,
the mean spherical radius in the 1.5 fm to 7.3 fm [379].

The vacuum polarization correction of order one in (α/π), presented in Fig. 16(a)
can be evaluated with good enough accuracy by using an expansion in power of
Zα. The potential of order α(Zα), with only one interaction with the nucleus is
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Fig. 21 Values of the F (1)(Zα) function in the high-Z and supercritical region. Top: compar-
ison between finite size values for 1s1/2. Bottom: comparison between finite-size and point nu-
cleus values for the n = 2 shell. References: [a]=[379], [a1]=[378], [b]=[338], [c]=[339], [d]=[68],
[e]=[340].

called the the Uehling potential VU. The next term in the expansion, of order
α(Zα)3 is called the Wichmann-Kroll potential VWK. All orders calculations of
the vacuum polarization have been performed in [383, 384]. The Uehling potential
[385] is evaluated as

VU(r) = −2α

3π

Z

r

∫
[1,∞)

exp
(
−2α−1ξr

)(
1 +

1

2ξ2

) √
ξ2 − 1

ξ2
dξ (54)

if one treats the nucleus as a point charge. An analytical formula for the Uehling
potential in terms of modified Bessel functions has been provided in Ref. [386]. The
expression in (54) can be extended to a finite nuclear charge distribution [387, 388].
The Uehling potential can be added to the Dirac equation potential, providing an
easy way to include the loop-after-loop vacuum polarization correction to all orders
[81].
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(Zα) functions in the high-Z and supercritical region.

The Wichmann-Kroll contribution VWK to the vacuum polarization is of order
α(Zα)3; it can be written approximately for r → 0 as [333],

VWK(r) ≈α(Zα)3

π

[(
−3

2
ζ(3) +

π2

6
− 7

9

)
1

r
+ 2πζ(3)

−π
3

4
+

(
−6ζ(3) +

π4

16
− π2

6

)
r +O(r2)

]
(55)

where ζ(n) is the Riemann zeta function. For more details see for example Refs. [384,
389]. An efficient numerical method to evaluate VWK without low-r expansion is
given in [390]. Additional terms on this expansion of order α(Zα)5 and α(Zα)7,
corresponding to 5 and 7 interactions with the nucleus in the vacuum-polarization
loop, are approximately known. They have been used in muonic atoms for many
years [333, 391–393]. Numerical methods to evaluate them can be found in Ref.
[390].

One should also add next-order terms with i = 2 in (53). These terms are of
the order of (α/π) ≈ 2 × 10−3 compared to the two-vertex terms (see Fig. 4) but
the leading coefficients in their Zα expansion can be large. These terms represent,
e.g., two-loop self-energy, two-loop vacuum-polarization corrections, and mixed
self-energy vacuum-polarization terms. The corresponding Feynman diagrams are
shown for example in Refs. [110, 321, 349]. Some of these terms can be easily cal-
culated, such as the Källen-Sabry contribution to the vacuum polarization [394]
for which a potential is known [387]. The two-loop self-energy terms have been
evaluated for one- [107, 108, 111–113, 395, 396] and three-electron atoms [397] for
30 ≤ Z ≤ 100, but only for n = 1 and n = 2 states. Mixed self-energy vacuum po-
larization diagrams have been evaluated in [110, 398, 399]. Whilst these diagrams
are important for inner shell electron energies, they are not expected to contribute
significantly to the outer-shell energies of superheavy elements compared to cor-
relation effects. The evaluation of the diagrams of order (α/π)2, which are easier
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Fig. 23 Dirac energy, self-energy, and vacuum polarization near Zc = 1/α for a point nucleus.
The Uehling and Wichmann and Kroll vacuum polarization contributions have been evaluated
with the MDFGME code and the self-energy is from [378] and evaluated to all order in Zα.

to calculate, like the Källen-Sabry term or the loop-after-loop Uehling contribu-
tion, can provide the needed order of magnitude to assess the importance of the
uncalculated ones on specific cases.

In Fig. 23 we show the evolution of the QED contributions of order α and of the
Dirac energy for the 1s state as a function of 1/α−Z with non-integer values of Z,
to show what happens near the critical Zc = 1/α in the case of a point nucleus. It
shows that the self-energy becomes nearly independent of Z and that the vacuum
polarization becomes the dominant contribution almost one order of magnitude
larger than the self-energy. The total energy to that order becomes close to −mec

2.
Although the Wichmann-Kroll contribution is very small, it remains to be checked
how the all-order vacuum polarization and the sum of higher-order contributions
would behave. The same comparison for finite size nucleus does not show the same
effect: the self-energy and vacuum polarization remain of the same size and their
values are strongly reduced.

4.4.2 Two-electron radiative and non-radiative corrections

Concerning the calculation of atomic spectra of heavy and superheavy elements,
the bottleneck in terms of accuracy in such many-electron systems still lies in the
treatment of electron correlation (see discussion in Sec. 5). There are, however,
mixed terms between radiative corrections and the electron-electron interaction
that need to be considered. The main one is known as self-energy screening (see Fig.
20). It has been evaluated by direct calculation of the Feynman diagrams only for
n = 1 and n = 2 states [400, 401]. These terms containing self-energy loops cannot
be put into the form of an exact potential, and thus cannot be easily generalized
to arbitrary atoms. It would therefore be useful to formulate an approximate QED
potential that could describe the screened Lamb-shift and other atomic properties
sufficiently accurately and could be successfully used in molecular calculations.



44

One could then introduce a (model) perturbation Hamiltonian to represent the
radiative part of QED corrections of the form

∆H̃QED = VU + VWK + hSE + hh.o.t., (56)

where VU is the Uehling potential, VWK is the Wichmann and Kroll potential,
hSE the self energy model potential and hh.o.t. represents two-loops contribu-
tions. The aim of this operator is to include approximate QED corrections to the
electron-electron operators, with negligible errors compared to the electron corre-
lation treatment. In addition, the matrix elements of this QED Hamiltonian can
be added to the CI matrix or to the Hamiltonian matrix and differential equation
in the MCDF procedure.

The non-radiative part in Eq. (2) is dominated by the electron-electron inter-
action, which is obtained by evaluating the Feynman diagram of Fig. 18. It is given
in atomic units and in the Coulomb gauge by

V (rij , ωij) =
1

rij
−
αi ·αj
rij

−
αi ·αj
rij

(cos (αωijrij)− 1)

+ (αi ·∇i) (αj ·∇j)
cos (αωijrij)− 1

(αωij)2rij
, (57)

where ωij = Ei − Ej is the energy of the photon exchanged between the two
electrons. The ∇ operator acts only on rij and not on the following wave func-
tion. The Breit operator [402–404] in Eq. (3) corresponds to the expansion of
Eq. (57) in powers of α = 1/c up to the second order. It is then independent of
ωij . The frequency-dependent part is called higher-order retardation. This finite
frequency contribution becomes important at high nuclear charges [321]. The fre-
quency dependent Breit interaction has been explored in detail in many works
[66, 76, 314, 405–407]. The main difficulty lies in the definition of ωij in CI or
MCDF calculations, where the energy of an individual orbitals is not physical and
can also reach very negative values, much lower than −mec

2 [66, 76, 407]. The
gauge dependence of the resulting energy shift has been discussed in detail in
Refs. [74, 408].

The second-order diagrams of Fig. 19 have been evaluated in Refs. [341, 342,
409, 410] for the ground state and n = 2 excited states of two-electron atoms. They
contains specific QED corrections beyond what can be obtained by many-body
treatment of the interaction in Eq. (57) with the necessary projection operators.
These corrections contains the positron part of the ladder diagram 19 (a) and the
contribution from the cross-ladder diagram 19 (b).

4.4.3 Effective QED Hamiltonians

To bring the self-energy term into a useful effective Hamiltonian form, hSE, is
the most challenging part as this operator is inherently non-local. Nevertheless,
many attempts were made to estimate the self-energy shift in atomic spectra by
approximations. Earlier ones were summarized in [411]. Approximations based on
effective Z values to account for electron screening were introduced in the early
versions of GRASP [412]. The Welton approximation [413] was introduced in the
MDFGME code in 1987 [65] for s-states and generalized to ` ≥ 0 in [66]. Effective
operators directly based on BSQED have been introduced more recently [68, 340].
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In Ref. [411], a local self-energy potential was introduced in a simple Gaussian
form

hSE(r) =
(
b0 + b1Z + b2Z

2
)

exp
{
−(β0 + β1Z + β2Z

2)r2
}
, (58)

which serves as a rough estimate. Here bi and βi are adjustable parameters and
the Gaussian is located close to the nucleus.

A far more accurate expression for an effective self-energy Hamiltonian has
been proposed in Ref. [67] to be

hSE(r) = Φmag(r) + Φel(r) + Φlow(r), (59)

with the magnetic form factor

Φmag(r) =
α

4πm
iγ · ∇

[
φ(r)

(∫ ∞
1

dt
e2trm

t2
√
t2 − 1

− 1

)]
, (60)

where φ(r) is the electric potential of the nucleus. The last two terms are contri-
butions from the electric form factor decomposed into a high- and a low-frequency
part,

Φel(r) =A(Z)
α

π
φ(r)

∫ ∞
1

dt
e−2trm

√
t2 − 1

[(
1− 1

2t2

)
(

log(t2 − 1) + 4 log

(
1

Zα
+

1

2

))
− 3

2
+

1

t2

]
(61)

The (long-range) low-frequency contribution is given by

Φlow(r) = −B(Z)Z4α5me−Zr/aB , (62)

where B(Z) = 0.074 + 0.35Zα is a coefficient adjusted to reproduce the radiative
shifts for the high Coulomb p-levels [67], and aB is the Bohr radius. This expression
of the self-energy operator was implemented into the program GRASP [280] by
simply replacing the Coulomb potential −Z/r by its extension to the finite nucleus
case [321]. Later, this has been correctly folded into the self-energy potential lead-
ing to more complicated expressions, which slightly improves the self-energy shifts
[414]. To improve the SE corrections for the s-levels, and especially for the 1s1/2
level, in multi-electron systems the prefactor A(Z) in (61) was chosen to be de-
pendent on the principal quantum number n [321]. More recently, both coefficients
A(Z) and B(Z) were refitted and made dependent on the angular momentum `

[414].
To go beyond models with adjustable parameters, one can in principle go back

to first principle QED and use a spectral decomposition of the self-energy operator

hnlSE =
∑
i,j

|ψi〉DSE
i,j

〈
ψj
∣∣ (63)

where {ψi} represents a complete set of hydrogenic wave functions (including both
continua), and the matrix elements DSE

i,j need to come from accurate self-energy
calculations. This has been explored [415] with limited success because of the basis
set restrictions imposed and the underlying slow convergence of this sum, which
is well known from direct exact QED evaluations [143, 336, 337]. Furthermore,
the off-diagonal elements DSE

i,j with i 6= j are crucial and cannot be neglected. To
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Fig. 24 Energy levels for the dominant configurations of the Group 10 elements Ni, Pd, Pt,
and Ds. The values for Ni, Pd, and Pt are from the NIST database [419]. The Ds levels are from
Ref. [42]. Different colors are used to distinguish between the three different configurations:
green [(n − 1)d8 ns2], blue [(n − 1)d9 ns] and black [3d10]. For Pd, there are intruder states
(not shown here) arising from the [(n− 1)d9 np] configuration (for Pt from the [(n− 1)d9 np]
and [(n− 1)d8 ns np] configurations), which mix with several of the low energy states shown.
Thus, some configuration assignments (especially for the 3P0 level) are approximate at best.
For Ds, a dense spectrum arising from the [6d7 7s2 7p] configuration intrudes into the normal
spectrum and only few predicted lines of even parity are shown [42]. Adapted from Ref. [1].

this end, an additional exponential type semi-local operator has been added to
reduce the matrix elements Dij in size for the subsequent spectral decomposition
[68, 416],

hSE = hslSE + hnlSE, (64)

with

hslSE(r) =
∑
κ

Vκ(r)Pκ. (65)

The semi-local operator

Vκ(r) = Aκe
−r/λc (66)

differentiates between the different κ states through the projection operator Pκ
(for the definition see Ref. [416]). Here λc is the Compton wavelength. For details
see Refs.[68, 416]. A recent extension to superheavy elements up to nuclear charge
Z = 170 has been carried out in Ref. [340]. This scheme gives very accurate results
for the self-energy. One wonders if a semilocal ansatz in the same form of a pseu-
dopotential applied commonly in electronic structure theory could be efficiently
used as well [417, 418] for all-electron QED treatments in molecules for example. It
would certainly be an improvement to the original local ansatz [411] and possibly
of sufficient accuracy in molecular calculations.
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5 Electron Correlation

The accurate computational treatment of both static and dynamic electron cor-
relation in atomic open-shell multi-electron systems is a daunting task. Even for
the lightest elements such as nickel, a correct description of the many low-lying
states arising from the 3d8 4s2, 3d9 4s and 3d10 configurations is currently not
available. For example, using Gaussian type basis sets (GTOs), Ref. [420] applied
large-scale complete active space second-order perturbation theory (CASPT2) cal-
culations including relativistic corrections for nickel correlating 18 electrons within
14 orbitals. These calculations resulted in the following excitation energies with
respect to the 3D(d9s) ground state (j-averaged experimental values set in paren-
theses): 3F −0.08 eV (0.03 eV), 1D 0.32 eV (0.33 eV), 1S 1.77 eV (1.74 eV). Figure
24 shows the energy levels for the Group 10 elements. From this it is clear that
the correct prediction of the ground state symmetry is difficult for atoms with
dense spectra. This problem will become worse when degenerate high angular mo-
mentum states are involved such as in the lanthanides and actinides and for the
superheavy elements.

One of the main workhorses in relativistic atomic structure theory is the con-
figuration interaction (CI) method with a predetermined set of CSFs where the
radial shapes of the one-electron orbital spinors remain unchanged. In a typical
CI procedure, the active virtual and core space are systematically increased and
higher angular momentum functions added to test convergence against the final
value. The resulting CI wave functions are then used for calculating QED effects,
albeit QED matrix elements can be directly added to the CI matrix resulting in
correlated QED calculations (this still needs to be explored for the SHEs). These
CI techniques are invaluable for obtaining accurate properties to, for example, test
the standard model [421]. However, as the size of a CI calculation scales exponen-
tially with the excitation level (the number of determinants is Ndet ∼ nmNm

v /(m!)2

with n being the number of electrons, Nv the number of virtual orbitals and m the
excitation level), the CI method is often combined with many-body perturbation
theory for electron correlation (CI+MBPT) to allow for an efficient treatment
of important core excitations [422]. Again, because of the large computer time
involved one rarely goes beyond second-order MBPT, although calculations for
atoms with one valence electron (Cs and Tl for example) have been performed up
to third order [423, 424]. A mix of MBPT and CC methods has also been used for
evaluating electron affinities for Ca and Sr [425].

A very popular electron correlation method within the quantum chemistry
community is coupled cluster (CC) theory originally proposed by Coester and
Kuemmel [426] for nuclear interactions, and subsequently brought into electronic
structure theory [427]. There are several excellent papers, books and reviews on
CC applications [428–435]. In CC theory, the ground state wave function is related
to the DHF ground state configuration by an exponential operator containing the
cluster operator T ,

Ψ0 = eTΨDHF
0 , (67)

with T = T1+T2+ . . . and Tn are the n-particle excitation operators. For example,
if one restricts to double excitations only (T = T2, CCSD), the cluster operator is

T2 =
∑

i<j,r<s

trsij c
†
rc
†
scicj , (68)
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where trsij are the coupled-cluster amplitudes, determined through a variational

procedure, and c†r and ci are electron creation and annihilation operators for single-
particle states r (virtual) and i (occupied), respectively.

This scheme can be extended from the Hilbert space to the Fock space for-
malism (FSCC) where in addition electrons are removed (ionization) or added
(attachment) [436–440]. FSCC theory has been successfully applied for atomic
properties of heavy and superheavy elements [19, 441–445]. One may like to chose
a multireference wave function instead of ΨDHF

0 for the starting point in coupled-
cluster theory, termed multi-reference coupled-cluster (MRCC) theory [446–453],
which, however, has its computational challenges [454]. Because of the steep com-
putational scaling, single-reference coupled-cluster theory is usually restricted to
CCSD(T) (the golden standard of quantum chemistry), where the single and dou-
ble contributions to the coupled-cluster amplitudes are determined variationally,
and the triples are obtained by perturbation theory. Most coupled-cluster cal-
culations are using GTOs as the underlying basis set, but the coupled-cluster
scheme can easily be adapted to numerical procedures such as FEM using B-
splines [452, 455, 456].

In atomic structure theory a popular approximation to CC theory is the so-
called all-order CI method (AOCI) where one keeps only the linear terms in the
expansion, i.e., Ψ0 = (1 + T1 + T2 + . . . )ΨDHF

0 [457–460]. For core excitations, one
can add MBPT (AOCI+MBPT) [457]. This method has successfully been used
for predicting spectra of multi-electron systems with large number of electrons
[460, 461]. For an alternative method combining configuration interaction with
perturbation theory with a large number of valence electrons see Ref. [462]. How-
ever, high accuracy electronic structure calculations of spectra with uncertainties
below 1× 10−3 eV are usually limited to few electron systems [66, 463–466]. Such
calculations are important to test QED and subsequently the standard model as
well [116, 287, 467–470]. Despite the computational limitations and challenges to
treat relativistic many-electron systems with a high number of electrons, the ion-
ization potential and electron affinity have recently been obtained for gold to meV
accuracy compared to experiment [75]. Gold is a special case that can still be
treated accurately as the ionization and electron attachment involves mainly the
valence 6s shell. The computational cost comes, however, from a very soft po-
larizable 5d core giving rise to large core and core-valence correlation effects. For
these calculations, relativistic CC theory up to pentuple excitations were required,
that is single reference DHF-CCSDTQ(P) theory including Breit and lowest-order
QED interactions, to achieve almost (but not quite) experimental accuracy [75].

For systems with two or more electrons in open-shells, as this is the case
for most actinide and transactinide elements, the electronic many-body treat-
ment remains a major challenge for the foreseeable future. For example, using
MRCI plus relativistic corrections for the ionization potential of neutral ura-
nium, U[5f36d17s2](5L6) →U+[5f37s2](4I9/2), gave a value of 6.062 eV (at the
DHF+Breit level one gets 5.540 eV) [471] compared to the experimental value of
6.194 05(6) eV [472] achieving practically an accuracy in the 0.1 eV region. Such
calculations are computationally expensive and often may not be sufficient to pre-
dict the correct sequence of states within a window of about 1 eV. For comparison,
pseudopotentials which replace the core by an effective Hamiltonian give results
accurate to about 0.1 eV for atomic spectra [473, 474], and are therefore not al-
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ways suitable for applications in atomic physics if high accuracy is required. An
all-order correlation potential method based on Green’s functions has been devel-
oped [475, 476] and applied to many-electron systems into the superheavy element
region. Future developments may include density matrix renormalization group
(DRMG) methods [477], or even machine learning algorithms to estimate the elec-
tron correlation error compared to experiment. It is clear that for dense spectra,
efficient electron correlation methods and algorithms need to be further developed
to efficiently study atoms with a high number of electrons (such as the superheavy
elements) including QED effects [478, 479]. An additional difficulty comes from the
very large size reached by the calculation of configuration with two-large angular
momenta orbitals like 6dn 5gm for example. The 6d95g9 J = 2 LSJ configura-
tion has 1895 JJ configurations and ≈30.300 determinants, leading to ≈1.3× 107

Coulomb integrals, ≈3.8× 107 magnetic integrals and ≈3.1× 107 retardation in-
tegrals. The 6d65g12 J = 0 LSJ configuration leads to 3360 JJ configurations and
≈256.000 determinants and the number of angular integrals cannot be indexed by
a 32 bit integer. Such unusual configurations, including for example the 5g18 J = 0
configuration, may become competing candidates for the ground state of the Og
isoelectronic sequence at very large Z.

Finally, the question arises if one should include the negative energy continuum
(NEC) in the electron correlation procedure. For the lighter elements, the gap
from the lowest bound state to the negative energy continuum is almost E =
2mec

2, larger than the gap to the positive energy continuum. The correlation term
estimated perturbatively turned out to be of the order of Ecor(NEC) ∼ (Zα)3 [300].
For the Z = 50 He-like ion, Ecor(NEC)= 0.004 71 eV [300], which implies that this
term needs to be included for high precision tests on few electron systems with high
nuclear charge. We need to be reminded that in the Z → ∞ nonrelativistic limit
the electron correlation contribution for a He-like atom is −0.046 663 254 a.u. [480].
For the relativistic case, this limit is not accurately known [313], see also Ref. [481]
for a detailed discussion. However, perturbation theory will eventually break down
if the occupied level comes close to the negative energy continuum, or even dives
into it. Ref. [482] studied the effect of removing the no-virtual-pair approximation
on the correlation energy of the He isoelectronic sequence. They showed that for
He-like Ds (Z = 110) the correlation energy changes from −2.019 eV to −1.391 eV
due to the NEC inclusion. The use of projection operators using a B-spline basis set
build with direct Dirac-Fock potentials and their effect on the correlation energy
were studied in [76] for the ground state of He-like ions. The larger impact on the
relativistic correlation energy was shown to be due to the magnetic and retardation
interaction. To illustrate the effect near Zc we have used the MDFGME code
(2022 version) to calculate more precisely the correlation energy for the 1s2 1S0,
with a fully relaxed wave function including 44 configurations, from 1s2 to 7i2

and projection operators. The Breit interaction was included in the self-consistent
process. The relativistic Coulomb contribution changes sign around Z = 90. The
magnetic contribution is largely dominant, with a value of −80 eV at Z = 170,
while the retardation contribution going to 25 eV and the Coulomb part to 15 eV
as can be seen in Fig. 25. It should be noted that a phenomenological inclusion of
the negative energy continuum is not really consistent as the crossed diagram of
Fig. 18, not included in the correlation contribution, is expected to contribute.
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Fig. 25 He-like ions contribution to the correlation energy obtained with a fully MCDF
calculations using B-spline basis set and the full operator from Eq. (48). Orbitals up to 7i have
been included.

6 Atomic Structure Calculations of the Superheavy Elements

6.1 Dominant Electron Configurations

Electron configurations are needed for placing the elements into their correct place
in the PT and to discuss their chemical behaviour [1]. Systematic D-HF calcu-
lations of total atomic energies of ground state configurations and symmetries
(within the jj-coupling scheme) for the Li (Z = 3) to Db (Z = 105) isoelectronic
series up to Og, including QED effects, have been provided in Ref. [483]. Predicted
dominant configurations, ionization potentials, electron affinities and dipole polar-
izabilities for the transactinides, Z = 102−122, are collected in Table 2. Concerning
the elements with nuclear charge Z = 105 − 110, the Table does not distinguish
between the j = 3/2 and 5/2 occupations for the 6d level. Moreover, whenever
spin-orbit coupling becomes large, the assigned (nonrelativistic) LS symmetry has
to be taken with some care. For example, the ground-state electron configuration
of Fl has a J = 0 spin and positive parity, and one expects strong mixing between
the 3P and 1S states due to spin-orbit coupling. Furthermore, for a variety of
elements, the electronic ground and low lying excited configuration states mix,
making it difficult to unambiguously assign a ground-state configuration.

Table 3 lists the ground state linear combination of the CSFs for a selection
of elements, obtained within a multi-reference treatment using GRASP [148]. For
Rf, there is a single dominant configuration, 6d23/2 in contrast to Db, for which a

strong mixing is predicted between the 6d3/2 and 6d5/2 levels (the two CSFs with

identical configurations have different seniority numbers ν=0 and 2 for the 6d25/2
occupation [45]). Also for Ds (2 holes in the 6d shell) a substantial mixing between
two configurations is expected. Less mixing is predicted between the strongly spin-
orbit separated 7p1/2 and 7p3/2 levels in Fl, Mc, and Lv. Hence, the ground states
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Table 2 Atomic number Z and element symbol E according to IUPAC and predicted ground-
state properties: dominant valence shell configuration and term symbol for the ground elec-
tronic state, ionization potential Ip and electron affinity EA in eV, and dipole polarizability
αD in atomic units. If possible, the most accurate value was taken from the literature. For
error estimates and methods used see the cited references.

Z E configuration Ip EA αD Refs.

102 No [Rn]5f147s2 6.626 - 111 [484–486]
103 Lr [No]6d13

2
(2D 3

2
) 4.96 - 323 [19, 20, 487]

104 Rf [No]6d23
2

(3F2) 6.01 - 115 [487, 488]

105 Db [No]6d3(3F3/2) 6.814 1.189 42.5 [489–491]

106 Sg [No]6d4(5D0) 7.7 - 40.7 [137, 489]
107 Bh [No]6d5(6S5/2) 8.6 - 38.4 [137, 489]

108 Hs [No]6d6(5D4) 9.5 - 36.2 [137, 489]
109 Mt [No]6d7(4F9/2) 10.4 - 34.2 [137, 489]

110 Ds [No]6d8(3F4) 9.562 0.830 32.3 [491]
111 Rg [No]6d43/2d

5
5/2(2D 5

2
) 11.03 1.97 30.6 [488, 489, 492]

112 Cn [No]6d10(1S0) 12.02 0 27.64 [488, 492, 493]
113 Nh [Cn]7p11

2
(2P 1

2
) 7.49 0.73 29.85 [492, 494–496]

114 Fl [Cn]7p21
2

(1S0) 8.65 0 30.59 [488, 492, 493, 497]

115 Mc [Cn]7p21
2
p13

2
(2P 3

2
) 5.574 0.313 70.5 [444, 498]

116 Lv [Cn]7p21
2
p23

2
(3P2) 6.855 0.776 - [444]

117 Ts [Cn]7p21
2
p33

2
(2P 3

2
) 7.654 1.602 76.3 [444, 499]

118 Og [Cn]7p6(1S0) 8.888 0.076 57.98 [500–503]
119 Uue [Og]8s1(2S1/2) 4.783 0.663 169.7 [443, 504, 505]

120 Ubn [Og]8s2(1S0) 5.851 0.021 162.6 [445]
121 Ubu [Ubn]8p11

2
(2P 1

2
) 4.447 - - [488]

122 Ubb [Ubn]7d13
2

8p11
2

(1D2) 5.651 - - [488]

Table 3 Selected ground state CSF’s obtained within a multi-reference DHF treatment using
GRASP.

Z E CSF

104 Rf ψJ=2 = 0.9300φ(6d23/2) + 0.0350φ(6d13/2d
2
5/2)− 0.1230φ(6d25/2)

105 Db ψJ=3/2 = 0.7869φ(6d33/2)− 0.5083φ(6d23/2d
1
5/2)−

0.2510φ(6d13/2d
2
5/2,0) + 0.2327φ2(6d13/2d

2
5/2,2)− 0.0727φ(6d35/2)

110 Ds ψJ=4 = 0.9775φ(6d45/2) + 0.2110φ(6d33/2d
5
5/2)

114 Fl ψJ=0 = 0.9955φ(7p21/2)− 0.095φ(7p23/2)

115 Mc ψJ=3/2 = 0.9932φ(7p21/2p
1
3/2) + 0.099φ(7p11/2p

2
3/2)−

0.061φ(7p33/2)

116 Lv ψJ=0 = 0.9984φ(7p21/2p
2
3/2) + 0.057φ(7p13/2p

3
3/2)

of the 7p block elements can be unambiguously assigned to a single dominant
configuration.

6.2 Ionization potentials

Ionization potentials (Ip) and electron affinities (EA) are important for discussing
the chemical behaviour of an element. For example, Mulliken’s (empirical) defini-
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ionization potentials obtained by a linear fit, which are explained in the main text.

tion of the (dimensionless) electronegativity χ [506] of an element takes the sum
of both properties in units of eV, χ = (0.187/eV)(Ip + EA) + 0.17.

The predicted ionization potentials for the transactinides are summarized in
Fig. 26. Only for the elements up to the actinides ionization potentials have been
determined experimentally. The experimental value of 4.96+0.05

−0.04 eV for Lr is in
good agreement with the value of 4.963(15) eV obtained from relativistic coupled
cluster calculations, CCSD(T), which include Breit and QED contributions [19,
20].

Concerning the accuracy of the data listed in Table 2, the decrease in the
ionization potential of Ds compared to Mt and Rg is a reminder for the limited
accuracy of the electron correlation treatment of open-shell systems, as this de-
crease is most likely due to the fact that the CIPT (configuration interaction with
perturbation theory) method of Refs. [137, 489] overestimates ionization poten-
tials of the last 6d-block elements (they give error bars of about 1 eV). Their CIPT
values show a steady increase in the ionization potential from Mt (10.3 eV) to Ds
(11.2 eV) to Rg (12.2 eV) and Cn (13.1 eV). We therefore took their lowest listed
values (fitting parameter a=0 in Table III of Ref. [489]) to show a more likely
trend for the transactinides in Fig. 26, i.e., 5.91 eV (Db), 6.83 eV (Sg), 7.70 eV
(Bh), 8.57 eV (Hs), 9.43 eV (Mt), and 10.3 eV (Ds). The most accurate values for
the ionization potentials, electron affinities and polarizabilities (including excited
states to confirm the correct ground state symmetry) of a transactinide element
come from Fock-space coupled cluster theory [436, 439, 440, 442, 443].



53

Figure 26 shows a smooth increase in the ionization potentials for the 6d (Pe-
riod 7) elements due to an increase in nuclear charge causing the 6d shell to
become more compact. This is consistent with the lighter d-block elements. They
do, however, start at a lower ionization potential compared to the lighter systems.
This can be explained by the more diffuse and relativistically-expanded 6d orbitals.
However, starting at Bh, where occupation of the relativistically-destabilized 5d5/2
shell begins, we observe a higher ionization potential compared to the lower d-block
elements in the PT, most likely due to a less sufficient screening of the nucleus
by the 6d orbitals compared to the 5d orbitals. A drop in the ionization potential
from the Group 12 to the Group 13 is expected as the underlying ns-shell and fully
occupied (n− 1)d-shell are more compact compared to the np-shell. Moreover, the
s-shell undergoes a strong relativistic stabilization.

6.3 QED effects

Calculated vacuum polarization ∆EVP
n`j and self-energy ∆ESE

n`j (absolute value)
contributions to the total electronic energy for element Ubn (Z = 120) are shown
in Fig. 27. As both VP and SE operators act in the close vicinity of the nucleus [31],
the major QED contributions come from the 1s1/2 and p1/2 shells. We also observe
a decrease in QED contributions with increasing principal quantum number n for
fixed (`j), a decrease with increasing angular quantum number ` for fixed n and
increasing total quantum number j for fixed n`. This can all be explained by the
changing density around the nucleus with changing combinations of (n`j).

As we are interested in valence shell properties, one needs to know if QED-
related changes in shell occupations stem from the valence shell or from relaxation
effects of deeper-lying core shells. As shown in Eq. (53), QED effects of the valence

shell vary as 1/n3. Figures 21 and 22 show the strong decrease of F
(1)
(n,κ)(Zα) with

increasing |κ| values for calculations with finite-size correction. This is illustrated
in Fig. 27 for Ubn (Z = 120). We therefore list in Table 4 the QED per-shell D-HF
contributions to the ionization potentials for some selected atoms, Cn, Nh, and
Ubn (Z = 112, 113 and 120), as well as the QED contributions to the electron
affinities of Nh and Uue (Z = 119).

Regarding the valence shell ionization potential, for Cn most of the QED effect
comes from the relaxation of the 7s shell. The large contribution from 6p3/2 may
come as a surprise, whereas for the 6p1/2 shell we have cancellation effects between
the VP and SE contributions. For the Nh ionization, we see a slightly different
picture with a small QED contribution due to an almost perfect cancellation of
the 7p1/2 and 7s2 shell contributions. For the Ubn ionization potential, we ob-
tain the largest contribution from the 8s shell, but the 7p3/2 and 7s shells also
have substantial contributions (our result here deviates from the value given in
Ref. [321]). Regarding the individual shell contributions to the electron affinities
(defined here as positive values) of Nh and Uuh, we observe for both elements
that the main contribution comes from the shell where the electron occupation is
altered, however there are also large contributions of shells where the occupations
stay the same. These results show that relaxation effects are important. For Cn,
the dominant contribution does not come from the shell where the electron oc-
cupation is altered as QED effects are much larger for relaxing the s shell than
removing an electron from the underlying d-shell.
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Fig. 27 Absolute values for the vacuum polarization |∆EVP
n`j | (solid lines) and self-energy
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n`j | (dashed lines) for different (n`j) shells (per electron) of Ubn (Z=120). The formalism

of Ref. [67] for the self-energy and the Uehling potential with a finite nuclear charge distribution
was used [321]. All shell contributions to the VP have a negative sign, all shell contributions
to the SE have a positive sign except for the 4f5/2 and 5f5/2 shells.

We note that Og was predicted to be the first rare gas element with a non-zero
electron affinity of 0.080 eV [41, 503, 507], where the Breit interaction contributes
with −3× 10−4 eV and QED with −3× 10−3 eV, the latter already comparable in
size to the quadruple contributions in a CC treatment [503].

As shown in Fig. 28, the VP and SE contributions for the valence shell ioniza-
tion potentials approximately obey a simple power law [321]

E(Z) = CZγ . (69)

The exponent γ of the VP is roughly 40 to 50% larger than the one of the SE,
and we observe a lower scaling for the valence-p shell compared to the s-states. An
logarithmic-scale extrapolation to high Z shows that the VP and SE curves cross
at Z = 160 for the Group 11 and Z = 139 for the Group 1 elements.

For the superheavy elements beyond nuclear charge Z = 120, the accurate
treatment of electron correlation methods still remains the major bottleneck. It
could therefore be sufficient to include QED and Breit interactions at a perturba-
tive level, especially if higher-` states are involved and shell relaxation effects are
small. For example, Ref. [14] performed calculations on a series of transactinides
with Z ≥140 . For the elements with Z = 171, 172, and 173 QED effects contribute
to the ionization potential by 1.7 %, 0.1 %, and 1.2 %, respectively (the very low
value for Z = 172 comes from an almost exact screening of the SE and an exact
cancellation of VP in the neutral and singly ionized case [14].
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Table 4 QED contributions to the ionization potentials of Cn, Nh and Ubn and electron
affinities of Nh and Uue obtained from D-HF calculations using GRASP [321]. For Nh the
QED contributions are shown in eV rather than in percentage as cancellation effects in the
valence shell lead to a very small total QED contribution to the ionization potential.

Element Cn Nh Ubn Nh Uue

ionization potentials electron affinities

Transition 1S0(6d107s2) 2P1/2(7s27p11/2) 1S0(8s2) 2P1/2(7p11/2) 2S1/2(8s1)

→ 2D5/2(6d43/2d
5
5/27s2) →1S0(7s2) →2S1/2(8s1) →1S0(7p21/2) →1S0(8s2)

QED tot (eV) 0.0227 -0.0003 0.0110 0.0021 -0.0020
QED VP (eV) -0.0150 0.0029 -0.0060 0.0005 0.0031
QED SE (eV) 0.0377 -0.0032 0.0170 0.0026 -0.0051

7s (79.9%) 7p1/2 (−0.0109 eV) 8s (78.1%) 7s (356%) 8s (123 %)

6d5/2 (-17.6%) 7s2 (0.0104 eV) 7p3/2 (35.3%) 7p1/2 (-227%) 7p3/2 (-68.9%)
Contributions 6p3/2 (22.2%) 7s (-16.7%) 6d5/2 (18.9%) 7s (41.6 %)

to total 6s (14.5%) 6p3/2(4.9%) 6d3/2 (11.9%) 6p3/2 (-7.3%)
QED effect 6d5/2 (7.9%) 6s (-3.8%) 6p3/2 (-20.6%) 6s (6.2 %)

6p1/2 (2.0%) 6p1/2 (-29.7%)
1s (-0.7%) 6s (-19.7%)

The accurate treatment of QED effects is more important when it comes to the
prediction of inner shell ionization potentials [508, 509], especially for high-Z few
electron systems [116], or for K-capture rates for neutron deficient nuclei [510].
For the latter, little theoretical work in this direction has been done so far [511].

6.4 Atomic static dipole polarizabilities

Atomic static dipole polarizabilities αD are very useful quantities for chemical
reactions and are, for example, used in the simulation of temperature dependent
atom-at-a-time experiments of transactinides absorbed on surfaces such as gold
or quartz [493, 493, 496, 512–517]. Dipole polarizabilities are proportional to the
inverse of the ionization potential, αD ∼ I−1

p [518], which can be argued from the
sum-over-states formula. Empirically one approximately finds αD = 6.67I−2

p a.u.
(with RMSD of 0.93 a.u.).

Calculated dipole polarizabilities are listed in Table 2. They have recently been
reviewed for the known elements in the PT [519], where periodic trends were also
discussed. Note that we only discuss here the scalar component of the polarizability
tensor as shown in Table 2. If strong spin-orbit coupling is involved, one requires
knowledge of the MJ -resolved components for the Stark effect in open-shell atoms
[520].

The start of a new shell occupation usually increases the polarizability; this is
seen for Lr, Nh, Mc and element 119. The rather large DHF+CI+Breit+QED po-
larizability for Lr comes with large estimated uncertainties [487, 519]. Nevertheless,
we see a decreasing trend in dipole polarizabilities across the transactinide series,
and perhaps the spin-orbit splitting is not large enough to explain an increase in
αD from Sg to Bh upon occupation or the 6d5/2 shell.
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Periodic Table. Data are taken from Ref. [321]

6.5 Electron Localization Function

The concept of the electron localization function (ELF) was introduced in Ref. [521],
and later applied to atoms, molecules and the solid state [522, 523]. More recently,
the concept was extended to nucleon localization functions (NLF) in nuclear struc-
ture theory [524–526]. The ELF provides a measure of finding an electron in the
vicinity of another same-spin electron located at a given position r:

Dσ(r) =

1 +

(
τσ(r)ρσ(r)− 1

4 |∇ρσ(r)|2

ρσ(r)τTF
σ (r)

)2
−1

, (70)

where spin σ is ↑ or ↓, ρσ is the electron spin density, τσ is the kinetic energy density,
∇ρσ is the electron density gradient, and τTF

σ is the Thomas-Fermi kinetic energy
(of the uniform electron gas). The ELF can be seen as a tool to identify regions
where electrons are localized or delocalized (for a review see for example Ref. [527]).
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The ELF assumes values between 0 and 1, where a value close to 1 indicates that
the probability of finding two same-spin electrons close to each other is very low
(high level of electron localization) and the ELF value of 0.5 corresponding to
the limit of a hypothetical uniform Fermi gas of the same density (high level of
electron delocalization). ELFs are therefore ideal to show the changes in electron
localization due to the influence by other atoms or by relativistic effects. The
discussion of ELF and NFL in superheavy nuclei can be found in Ref. [502]

To demonstrate the importance of relativistic effects for the superheavy ele-
ments we show in Fig. 29 the ELFs for Cn, Fl, and Og in comparison with their
lighter congeners. The apparent delocalization is due to scalar relativistic effects in
the case of Cn, and due to spin-orbit effects for both Fl and Og. The appreciable
relativistic effects are already notable for Hg. It has been argued that the large
spin-orbit splitting in the 7p shell of Og with 10.13 eV is responsible for a uniform-
gas-like behavior in the valence region [502]; see also discussion in Ref. [500].

6.6 Examples of relativistic effects on the chemistry of SHE

Relativistic effects have a profound influence on the chemistry of the transactinides.
For example, due to the large relativistic 7s stabilization, Cn is expected to behave
like a rare gas with a low predicted melting and boiling point of −18(30) °C and
77(10) °C, respectively (at the nonrelativistic level ca. 370 °C and 970 °C respec-
tively) [529, 530]. In contrast, relativistic effects can cause the Group-18 element
Og to be a semi-conductor and a solid at room temperature (RT) with an electron
localization function resembling that of a Thomas-Fermi gas [502, 531, 532]. The
trends in melting points for the Group 12, 14 and 18 of the periodic table are
summarized in Fig. 30. Each of the predicted melting points for the three super-
heavy elements are very close to room temperature and are highly influenced by
relativistic effects.
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As another example, we take the closed 7p21/2 shell of the Fl atom (Period 7,

Group 14), for which the relativistic effects are predicted to cause a large 7p1/2 −
7p3/2 spin-orbit splitting. This explains the maximum in the ionization potential in
Fig. 26 and its expected low melting temperature [530]. Furthermore, the d-block
transactinides are expected to always ionize out of the 6d shell as the fully occupied
7s shell undergoes a very strong relativistic energetic stabilization and contraction.
This was pointed out early on for Rg, which adopts the d9s2 configuration rather
than the usual d10s arrangement [441, 534]. For further reading, see Refs. [514, 535–
537].

7 General Considerations

7.1 Placing new elements on the periodic table

The correct placement of the elements in the PT (see Fig. 1) has been a matter of
intense debate [2, 13, 15]. Besides the evident ordering of elements according to
their atomic number Z, the additional two principles for the placement of atoms
into the PT are the Pauli principle, derived from the spin-statistics theorem, and
the Aufbau principle, derived from mean-field theory [1, 5]. The Pauli principle
dictates that only one electron can be put into a (spin-)orbital, or in the relativis-
tic case into an orbital with quantum numbers (n, `, j,mj). The electrons then fill
the orbitals in the order of increasing orbital energy, leading to the Aufbau princi-
ple, where the leading configuration for each element can be obtained from either
Kohn-Sham or from MCSCF theory [1]. By formatting the PT in two dimension,
the configurations of valence electrons are repeated within a row with increased
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Z 8s 5g 6f 7d 8p1/2 8p3/2 9s 9p1/2
119 1 0 0 0 0 0 0 0
120 2 0 0 0 0 0 0 0
121 2 0 0 0 1 0 0 0
122 2 0 0 1 1 0 0 0
123 2 0 1 0 2 0 0 0
124 2 0 2 0 2 0 0 0
125 2 0 4 0 1 0 0 0
126 2 1 4 0 1 0 0 0
127 2 2 3 0 2 0 0 0
128 2 3 3 0 2 0 0 0
129 2 4 3 1 1 0 0 0
130 2 5 3 1 1 0 0 0
131 2 6 3 0 2 0 0 0
132 2 7 3 0 2 0 0 0
133 2 8 3 0 2 0 0 0
134 2 8 4 0 2 0 0 0
135 2 9 4 0 2 0 0 0
136 2 10 4 0 2 0 0 0
137 2 11 4 0 2 0 0 0
138 2 12 4 0 2 0 0 0
139 2 13 3 1 2 0 0 0
140 2 14 3 1 2 0 0 0
141 2 15 2 2 2 0 0 0
142 2 16 2 2 2 0 0 0
143 2 17 2 2 2 0 0 0
144 2 18 2 2 2 0 0 0
145 2 18 3 2 2 0 0 0
146 2 18 4 2 2 0 0 0
147 2 18 5 2 2 0 0 0
148 2 18 6 2 2 0 0 0
149 2 18 6 3 2 0 0 0
150 2 18 6 4 2 0 0 0
151 2 18 8 3 2 0 0 0
152 2 18 9 3 2 0 0 0
153 2 18 10 3 2 0 0 0
154 2 18 11 3 2 0 0 0
155 2 18 12 3 2 0 0 0
156 2 18 13 3 2 0 0 0
157 2 18 14 3 2 0 0 0
158 2 18 14 4 2 0 0 0
159 2 18 14 5 2 0 0 0
160 2 18 14 6 2 0 0 0
161 2 18 14 7 2 0 0 0
162 2 18 14 8 2 0 0 0
163 2 18 14 9 2 0 0 0
164 2 18 14 10 2 0 0 0
165 2 18 14 10 2 0 1 0
166 2 18 14 10 2 0 2 0
167 2 18 14 10 2 0 2 1
168 2 18 14 10 2 0 2 2
169 2 18 14 10 2 1 2 2
170 2 18 14 10 2 2 2 2
171 2 18 14 10 2 3 2 2
172 2 18 14 10 2 4 2 2

9s

9p1/2

8p3/2

8s

5g

6f

7d

Fig. 31 Predicted ground state configurations for the elements with atomic numbers Z= 1
Empty orbitals in green, filled orbitals in blue and the partly filled orbitals in yellow. 19-172
[16]. This diagram visualizes the difficulty with placing the SHE elements in the PT. Whereas
some elements have a definite place, a handful of elements, such as Z = 121− 125, cannot be
uniquely placed. The elements Z = 133 and Z = 134 share the same place, just as Z = 148,
149 and 150. Also the 5g and 6f elements contain higher-order occupations of 6f and 7d state.

principal quantum numbers. Since, in the nonrelativistic approach, the valence
electrons dictate the angular distribution of the wave functions, there is a peri-
odicity of the chemical properties [1, 538, 539]. Relativistic effects, on the other
hand, can substantially alter the behavior of an element. This is especially ob-
served for the main group and late transition elements [1, 3, 514, 540–543]. These
relativistic effects as well as electron correlation contributions lead to exceptions
to the Aufbau principle, which cause difficulties with the element placement. Elec-
tron configurations can alter within a group of the PT as well, and the Group 10
elements serve as a perfect example. Here one has the dominant electron configu-
ration 3d84s2 for Ni, 4d10 for Pd, 5d96s1 for Pt, and 6d87s2 for Ds. Yet, inspection
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of the excited states reveals that apart from the principal quantum number, all
three configurations (n− 1)d8ns2, (n− 1)d9ns1 and (n− 1)d10 are close in energy
[1]. Another difficulty is the correct placement (starting and ending point) of the
f -block elements [544, 545], see Fig. 31. This makes the PT a somehow fuzzy
concept in the superheavy region.

7.2 Dominant ground state configurations predicted by electronic structure
calculations

A number of authors have tried to predict the dominant electron configuration(s)
beyond the element with nuclear charge Z = 118 [11, 12, 16, 17, 534, 535, 546, 547].
Early attempts were made by using D-HF-Slater calculations for the range Z =
118−131 [11, 548, 549]. However, these mean-field studies did not explicitly include
static and dynamic electron correlations. Since the total energies of different con-
figurations differ little from one another in many cases, inclusion of configuration
interaction can lead to a change of the ground-state symmetry and configuration.
To improve the early results, multi-configuration Dirac–Fock calculations have
been carried out [16] with inclusion of a total angular momentum coupling scheme
(see Sec. 3) and the Breit correction. These results were extended to chemically
plausible ions [17], to differentiate between free ions and ions in chemical com-
pounds. The resulting PT is shown in Fig. 1. In this work, the starting point of
the 5g elements has been placed at Z = 121 (in contrast to Ref. [16] that places
the starting point at Z =126). Because of the high density of states in the region
beyond Z = 120, it becomes quite difficult to pick the dominant configuration
and ground state symmetry. For example, Ref. [14] showed from average level
(AL) calculations that for the element with Z = 140 the ground state configura-
tion is 8s28p27d6f35g14 in agreement with Ref. [16], but this could change if the
state of specific symmetry is optimized and more configurations are included. This
shows that more work is required to determine the ground state configurations and
symmetries, as well as associated chemical behaviour [17]. Possible candidates for
configurations for the elements up to Z = 172, taken from Ref. [16], are visualized
in Fig. 31. Needless to say that for the superheavy elements relativistic effects are
crucial and need to be correctly accounted for as they can lead to a noticeable
violation of simple regularities such as for the Group 11 elements where Rg adopts
a configuration with a hole in the 6d5/2 shell instead of the 7s shell [441].

The third pillar (beside the atomic number and electron configuration) for
building the PT comes from chemical properties, similar as how the plausible
chemical ions were taken into consideration for the placement of atoms in Ref. [17].
We have learned in the past few decades that relativistic effects can alter chemical
properties substantially [540, 541], especially in the superheavy element region
[1, 18, 514]. Regarding the chemical properties of the SHE beyond Z = 120, there
is no information available except from the computational studies. For example, it
has been shown [550] that the 5g-electrons for the elements with atomic numbers
Z = 125−129 are core-like and only act as spectators, similar to the 4f electrons in
the lanthanides. It is clear that more work needs to be done to study the chemical
properties in the Z > 120 region, which will help designing future atom-at-a-time
chemistry experiments [551].
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7.3 Periodic Table - How far can we go?

Oganesson was the heaviest element and nihonium the last element to be added
officially into the PT [552]. Thus the 7th period of elements is now complete.
The question arises if one can go much further in the atomic number. From an
electronic point of view, there is no limitation to Z. While the correct description
of multi-electron systems with Z > Zc ≈ 170 is still a difficult problem, and
the inclusion of Gamow states for multi-electron systems needs to be addressed,
the real limitation to the PT comes from the nuclear stability [18, 553]. In the
transactinide region, Z > 103, in early days known as the sea of instability [554],
the half-life of the elements varies between hours

(
266
103Lr

)
and seconds

(
294
118Og

)
or

below. Although there is a small predicted region of increased stability between
Z=114-126 and N = 184 with predicted lifetimes of hours or even days [18, 555–
557], it is currently not clear how far the PT can be extended from the nuclear
point of view. Indeed, the IUPAC defines an element to exist if its lifetime is longer
than Tel≈1× 10−14 s, which is the time it takes for electron cloud to form around
the nucleus. This means that for atomic nuclei living shorter than Tel it makes no
sense to talk about atoms and chemistry [18, 553].

The lifetimes of most known superheavy nuclei are governed by the competi-
tion between α-decay and spontaneous fission (SF). The corresponding lifetimes
predicted by a particular DFT model [558] are shown in Fig. 32. For a survey of
various predictions of α-decay and SF lifetimes, see Refs. [261] and [559], respec-
tively. The shortest SF half-lives, reaching down to 10−10 s, are predicted for nuclei
from a narrow corridor formed by 280Hs, 284Fl, and 284Og. This corridor of fis-
sion instability separates the regions of superheavy nuclei synthesized in hot- and
cold-fusion reactions. Moving towards more neutron-rich nuclei beyond N = 184,
dramatic decrease of SF lifetimes, below 10−15 s is expected, see Fig. 32(b) and
Ref. [560].

It is to be noted that predictions of nuclear models in the region of superheavy
nuclei are very sensitive to both input (forces, functionals) and theoretical frame-
work used. Consequently, theoretical lifetime estimates, especially for SF, often
differ by many orders of magnitude [559]. The heaviest nuclei synthesized so far
are all proton-rich; hence, they can in principle decay by means of electron capture
or β+/EC process. So far, no such decay modes have been observed in the upper
superheavy region, and this indicates that they cannot compete with the dominant
α -decay and SF modes. Indeed, according to theory β+/EC lifetimes shorter than
1 s are expected in nuclei that lie rather far from the current superheavy region
[261].

Experiments to synthesize new superheavy nuclei and elements beyond Og
are underway [561, 562]. If discovered, these systems will be crucial for testing
many-body nuclear structure theories [18]. To explore their chemistry will be very
challenging, however.

8 Conclusions

Atomic structure theory developed enormously over the past decades to the extend
where QED can be tested to high precision for few-electron systems. However, for
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many-electron systems the accurate description of both QED and electron corre-
lation effects remains a major challenge [479]. But even here progress has been
made for elements with large atomic numbers [14]. While the negative energy
continuum is required for QED, is creates a formidable conceptual and compu-
tational challenge, especially when bound states approach the negative energy
continuum threshold. The correct description of diving (Gamow) states within a
multi-electron formalism including QED effects still needs to be explored. It is clear
that effects associated with the negative energy continuum distinguishes the Dirac
from the Schrödinger equation in both mathematical and in physical terms [29].
Once these problems are solved, there is no limitation to the treatment of atoms
beyond the critical nuclear charge. The PT, seen as the foundation for chemistry,
is therefore not limited to a certain nuclear charge region, but limited by nuclear
stability [18]. The future looks bright for superheavy element synthesis and associ-
ated chemistry experiments, which require the support of accurate electronic and
nuclear structure theory.
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Table 5 Norm and expectation value existences for different ranges of nuclear charges Z and
parameter ±γ(Z) = ±

√
1− (Zα)2 appearing in the radial 1s function of hydrogenic atoms

with potential V (r) = −Z/r. The symbol S stands for the Sobolev norm (S = 1 for Dirac and
2 for Schrödinger) which requires the gradient norm to exist for the Dirac-Coulomb operator
(first and second derivatives for the Schrödinger case).

System range ‖φ‖2 〈φ|H |φ〉 ‖φ‖(S)2 ‖Hφ‖2
Schrödinger Z > 0 yes yes yes yes

Dirac +γ(Z) 0 < Zα <
√

3/2 yes yes yes yes

Dirac +γ(Z)
√

3/2 ≤ Zα < 1 yes yes no no

Dirac −γ(Z) 0 < Zα <
√

3/2 no no no no

Dirac −γ(Z)
√

3/2 ≤ Zα < 1 yes no no no

9 Appendix A: The Self-Adjointness of the Dirac-Coulomb Hamiltonian

In the two appendices we address some of the more mathematical features of
the Dirac equation, the self-adjointness problem and (in the next section) the
rigged Hilbert space formalism for Gamow states. Both aspects often lead to some
misunderstandings in the community and are therefore discussed briefly here.

To explain the non-self-adjointness at critical charge in correct mathematical
terms, we require the L2-norm of the derivative || ddrφ||2 to exist (or the gradient
norm for the three-dimensional case) for the eigensolutions as the Dirac equation
is a first-order differential equation (see discussion of Sobolev spaces further be-
low). The radial solutions for a point charge nucleus φ(r) have the general form

φ(r) = anκ(2Zr)γe−ZrfP,Qnκ,Z(r) with the exponent γ = ±
√
κ2 − (Zα)2 and fP,Qnκ,Z(r)

containing expressions of Pnκ(r) and Qnκ(r) in terms of confluent hypergeometric
functions [89]. Unlike for the Schrödinger equation, γ is a non-integer and deriva-
tives lead to negative r-exponents. As a result, both || ddrφ||2 and ||HDφ||2 become

infinite if γ ≤ 1
2 leading to Zc1α =

√
3/2 as discussed in Sec. 2.4.1. In contrast,

for the nonrelativistic radial Schrödinger equation, all derivative norms exist, i.e.,

|| d
n

drn φNR||2 < ∞, as only integers appear in the r-exponent. This leads often to
misunderstandings as the L2 Hilbert space only requires the norm ||φ||2 to exist,
but as soon as we introduce an unbound differential operator such as HD we have
to deal with the domain of such an operator and the existence of certain expec-
tation values and derivative norms. For a more detailed analysis using the Weyl’s
limit point - limit circle theorem, generalized to the Dirac equation by Weidmann
[141], the reader is referred to a recent paper by Gallone [99]. The various norm
existences for different nuclear charge regions are summarized in Table 5.

To rephrase the self-adjointness condition in different terms, a self-adjoint ex-
tension of the radial Dirac operator should have the following domain [29, 141]:
dom(HD) = {φ ∈ L2(R+)2| each component of φ is locally absolutely continuous;
HDφ ∈ L2(R+)2; deficiency indices d{φ(r = 0)} = (0, 0)} (see also Hogreve [98]),
where L2(F)n ≡ L2(F) ⊗ Cn over a field F (F ≡ R+ and n = 2 for the radial
Dirac equation) [29]. This allows us to select the Sobolev space W1,2(R+)2 [29, 46]
as the natural domain for the (unbound) Dirac operator (or similarly for a four-
component wave function in the three-dimensional case W1,2(R3)2) lying dense in
L2(R+)2, such that dom(HD) ⊆ W1,2(R3)2 ⊆ L2(R3)2. The domain problem of the
Dirac-Coulomb operator has been very recently discussed and critically analyzed
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by Estaban [563]. In the subcritical nuclear charge region (
√

3/2 ≤ Zα ≤ 1), φ is an
eigenfunction to a non-self-adjoint Dirac-Coulomb Hamiltonian with real eigenval-
ues and norm ||φ||2 <∞, but does not belong to dom(HD) (HD self-adjoint)! More
generally, one looks for the largest subdomain of the Hilbert space that remains
invariant under the action of certain powers of required operators (observables)
including the Hamiltonian of the system, which is known as the maximal invariant
subspace of the algebra generated by these operators [564].

A note of caution should be added here. If we eliminate the small compo-
nent and focus on the resulting second-order differential equation, the underlying
Sobolev space is now W2,2(R3)2, which makes the conditions more stringent for
the norm existence. In any case, we seek for an appropriate self-adjoint extension
of HD [48, 101, 565] as physics does not restrict atoms to a maximum critical
charge (except for nuclear instability which is an entirely different matter [39]).
The necessary boundary condition for securing the self-adjointness of the Dirac
operator at the origin has been discussed in detail by Kuleshov [151] and Gitman
[48, 566]. The physical realization of this boundary condition is the introduction
of a finite nuclear charge density [21].

Last we mention that mathematically, there are many self-adjoint extensions
which can be realized for the Dirac operator. For example, Kato showed that a
potential energy matrix of the form Vik = a/2r+ b with a < 1 and b > 0 makes the
Dirac operator essentially self-adjoint on certain domains [567]. For a more recent
discussion on possible self-adjoint extensions we refer to [565].

10 Appendix B: The Rigged Hilbert Space Formalism

If we consider the spectrum of the Dirac-Coulomb operator, σ(HD), we need to
include the discrete (d) and both the positive (+) and negative (−) continuum
states (c) (cf. Figure 2), i.e., σ(HD) = {φd} ∪ {φc+} ∪ {φc−}. The continuum states
are important in scattering (resonance) theory and are essential for the quantum
mechanical completeness relation. It is well known, however, that unlike the dis-
crete states, the continuum states lead to domain problems for unbound operators,
i.e., they are not normalizable and therefore do not belong to the quantum me-
chanically relevant L2 space. As a result, von Neumann’s original Hilbert space
formalism requires an extension to include such (generalized) functions. Contin-
uum states are properly defined within an extended or rigged Hilbert space (G)
formalism [568–574] originally proposed for the quantum mechanical framework
by Roberts, Antoine and Bohm [575–579].‡‡‡ In fact, rigged Hilbert spaces are
the structures required for both the discrete orthonormal and continuous bases to
coexist [580]. Their existence for self-adjoint operators on separable Hilbert spaces
is guaranteed by the Gelfand-Maurin nuclear spectral theorem.

In strict mathematical terms, the rigged Hilbert space (RHS) G is defined
as a triple of topological vector spaces G = (Φ,H, Φ×), called the Gelfand triple
[581], generated by an infinite dimensional separable Hilbert space H such that the
denseness relation is Φ ⊆ H ⊆ Φ×. Here, Φ is a (complete) nuclear Fréchet space,
also called test-function space (not necessarily a Hilbert space, which enables to

‡‡‡The term rigged Hilbert space is misleading as G is not a Hilbert space per se, but is
generated from a Hilbert space H.
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use the nuclear spectral theorem of Gelfand and Maurin [568, 581]), and Φ× is
the topological dual (or topological conjugate) of Φ, that is the complete space of
continuous anti-linear functionals on Φ (also called distribution or Schwartz space).
The RHS structure includes an inductive limit of a sequence of topological spaces
Φ(n) in which the topologies get rapidly coarser with increasing n [574, 582], e.g.,

we might think of a series of Sobolev spaces Wk+1,2 ⊆ Wk,2, with W1,2 ⊆ L2. It is
clear from this example that these subspaces have different norms (or semi-norms
for the more general nuclear spaces [574]).

The RHS formalism provides a correct mathematical foundation to Dirac’s
original bra and ket notation [574, 583], used extensively in quantum theory. Need-
less to say that the Dirac delta “function” is a distribution required for the prop-
erties of continuum states belonging to Φ× rather than Φ. To cite Bohm [569]:
The difference between [the rigged] Hilbert space formulation and the usual [von Neu-

mann] Hilbert space formulation appears to be minor from a physicists point of view,

but is essential from a mathematical point of view and leads far to tremendous mathe-

matical simplification; in fact it justifies the mathematically undefined operations that

the physicists have been accustomed to in their calculations. The RHS formalism can
easily be generalized to a rigged Fock space formalism required in quantum field
theory [584–586].§§§

To be more specific, the Gelfand triple for the spectrum of the Dirac operator
is chosen as Φ ⊆dom(HD) ⊆ L2 ⊆ Φ×. Vectors in Φ will be complex linear, and the
vectors in Φ× are complex antilinear continuous functionals compatible with the
scalar product in the underlying Hilbert space, e.g., F : ψ ∈ Φ→ C. For example,
we define the action F ∈ Φ× on ψ ∈ Φ as an extension to the Hilbert space product
F (ψ) = 〈ψ|F 〉 = 〈F |ψ〉∗. This action is linear to the right and antilinear to the
left.¶¶¶ Continuity is defined such that if ψn → ψ for n→∞, ψn ∈ Φ,ψ ∈ L2 then
F (ψn)→ F (ψ) in C.

States with given quantum numbers n, κ, when diving into the negative en-
ergy continuum, have complex eigenenergies [151, 204] and therefore move out of
the natural domain of the self-adjoint operator HD. We need to give such states
belonging to a subset of distributions in the space Φ× a physical interpretation,
however, we need first to interpret such generalized eigenfunctions (or eigenfunc-
tionals) from a mathematical point of view.

Let A : Φ → Φ a (closed) linear operator and A× : Φ× → Φ× its natu-
ral extension of the usual adjoint operator A† such that F (Aψ) = A×F (ψ) =
〈Aψ|F 〉 = 〈ψ|A×F 〉 for all ψ ∈ Φ,F ∈ Φ×. According to the Riesz representation
theorem, for every F ∈ Φ× and linear operator A there exist a unique complex
function φ with complex eigenvalue λ, Aφ = λφ such that for all ψ ∈ Φ we have
F (Aψ) = 〈Aψ|F 〉 = 〈ψ|A×φ〉 = λ∗〈ψ|φ〉 [569]. We call φ the generalized eigenfunc-
tion of A with respect to F . These extended eigenstates can be used in the normal
way using Dirac’s notation keeping in mind that these may not be normalizable
and, in general, have complex eigenvalues. Of course, the scalar product 〈ψ|φ〉
always needs to be finite which may require a specific (semi)norm definition or
regularization of integrals.

§§§As quantum operators (in first quantization) act on Hilbert spaces, quantum field opera-
tors act on Fock spaces.
¶¶¶There is always another rigged Hilbert space Φ ⊆ H ⊆ Φ∗, where Φ∗ is the dual space of
Φ containing the continuous, linear functionals over Φ [575, 587]. Dirac’s bras and kets belong
to Φ∗ and Φ×, respectively, and both spaces are isometrically isomorph.
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Phys. A 166, 173 (1971), ISSN 0375-9474, URL
http://www.sciencedirect.com/science/article/pii/0375947471904210.

23. Y. B. Zeldovich and V. S. Popov, Soviet Physics Uspekhi 14, 673 (1972),
URL https://doi.org/10.1070/pu1972v014n06abeh004735.

24. B. Müller, H. Peitz, J. Rafelski, and W. Greiner, Phys. Rev. Lett. 28, 1235
(1972), URL https://link.aps.org/doi/10.1103/PhysRevLett.28.1235.

25. V. S. Popov and V. D. Mur, Sov. J. Nucl. Phys. 18 (1974).
26. J. Reinhardt and W. Greiner, Rep. Prog. Phys. 40, 219 (1977), URL

https://doi.org/10.1088%2F0034-4885%2F40%2F3%2F001.
27. J. Reinhardt, B. Müller, and W. Greiner, Phys. Rev. A 24, 103 (1981), URL

https://link.aps.org/doi/10.1103/PhysRevA.24.103.
28. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong

Fields (Springer, Berlin, 1985).
29. B. Thaller, The Dirac equation (Springer, Berlin, 1992), URL

https://doi.org/10.1007/978-3-662-02753-0.
30. D. M. Gitman, A. D. Levin, I. V. Tyutin, and B. L. Voronov, Phys. Scr. 87,

038104 (2013), URL https://doi.org/10.1088/0031-8949/87/03/038104.
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556. C. E. Düllmann and M. Block, Sci. Am. 318, 48 (2018), URL
https://www.scientificamerican.com/article/the-quest-for-superheavy-elements-and-the-island-of-stability/.

557. K. Chapman, Philosophical Transactions of the Royal Society A 378,
20190535 (2020), URL http://doi.org/10.1098/rsta.2019.0535.

558. A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87, 024320 (2013),
URL https://link.aps.org/doi/10.1103/PhysRevC.87.024320.

559. A. Baran, M. Kowal, P.-G. Reinhard, L. Robledo, A. Staszczak, and
M. Warda, Nucl. Phys. A 944, 442 (2015), ISSN 0375-9474, URL
http://www.sciencedirect.com/science/article/pii/S037594741500130X.



94

560. S. A. Giuliani, G. Mart́ınez-Pinedo, and L. M.
Robledo, Phys. Rev. C 97, 034323 (2018), URL
https://link.aps.org/doi/10.1103/PhysRevC.97.034323.

561. J. Khuyagbaatar, A. Yakushev, C. E. Düllmann, D. Ackermann,
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582. P. Blanchard and E. Brüning, in Mathematical Methods in Physics (Springer,

2015), pp. 439–453.
583. P. A. M. Dirac, The principles of quantum mechanics, 27 (Oxford university

press, 1981).
584. N. N. Bogolubov, A. Logunov, and I. Todorov, Reading, Mass (1975).
585. I. Antoniou, M. Gadella, I. Prigogine, and G. P. Pronko, Journal of Math-

ematical Physics 39, 2995 (1998), https://doi.org/10.1063/1.532235, URL
https://doi.org/10.1063/1.532235.

586. E. Celeghini, M. Gadella, and M. A. del Olmo, Axioms 8 (2019), ISSN 2075-
1680, URL https://www.mdpi.com/2075-1680/8/3/89.

587. R. de la Madrid, Journal of Mathematical Physics 53,
102113 (2012), https://doi.org/10.1063/1.4758925, URL
https://doi.org/10.1063/1.4758925.


