
HAL Id: hal-03884022
https://hal.science/hal-03884022

Preprint submitted on 4 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-parallelization of sequential data assimilation
problems

Sebastián Riffo, Félix Kwok, Julien Salomon

To cite this version:
Sebastián Riffo, Félix Kwok, Julien Salomon. Time-parallelization of sequential data assimilation
problems. 2022. �hal-03884022�

https://hal.science/hal-03884022
https://hal.archives-ouvertes.fr

TIME-PARALLELIZATION OF SEQUENTIAL DATA ASSIMILATION

PROBLEMS

SEBASTIÁN RIFFO∗, FELIX KWOK† , AND JULIEN SALOMON‡

Abstract. This paper is devoted to the problem of time parallelization of assimilation methods
applying on unbounded time domain. In this way, we present a general procedure to couple the
Luenberger observer with time parallelization algorithm. Our approach is based on a posteriori
error estimates of the latter and preserves the rate of the non-parallelized observer. We then focus
on the case where the Parareal algorithm is used as time parallelization algorithm, and derive a
bound of the efficiency of our procedure. A variant devoted to the case a large number of processors
is also proposed. We illustrate the performance of our approach with numerical experiments.

Key words. Parareal algorithm, Luenberger Observer, data assimilation, time parallelization.

AMS subject classifications. 49M27 , 68W10 , 65K10, 65F08 , 93B40

1. Introduction. The assumptions behind a mathematical model not only de-
termine their range of applicability, but also induce an inevitable gap between predic-
tions and reality. In order to narrow this difference, one can sacrifice the simplicity of
the model or incorporate real data instead, by following a data assimilation (DA) pro-
cedure. Among these approaches, sequential methods construct a new system which
uses the available observations (that arrive uninterrupted in time) to approximate the
true state, whereas variational methods follow an optimal control approach using the
information collected in a fixed amount of time.

In a deterministic context, sequential methods are often called observers. In the
pioneering work [20], Luenberger introduced a dynamic which imitates the original
model, by including an extra term that measures the misfit between the observations
and its own predictions. As long as the original model is observable, this error can be
driven to zero at exponential rate by properly choosing a certain matrix, meaning that
the true state is recovered asymptotically. An alternative is the Kalman filter [17],
which takes into account measurement errors and model inaccuracies represented
by Gaussian white noises (both stationary and mutually uncorrelated), in order to
compute a state estimate that minimizes the mean square error. Note that extensions
to the nonlinear case have been developed, e.g., nonlinear versions of Luenberger
observer [3] and Extended Kalman filter [16].

Significant difficulties appear when applying these techniques to, e.g., meteorol-
ogy [15, 27] or oceanography problems [21, 28, 19, 4]. Here, the number of state
variables and the vast amount of observations lead to very costly computations. To
overcome this issue, one can consider space or time domain decomposition methods,
which accelerate the numerical solution of PDEs using parallel computing. We now
briefly recall the main approaches and refer to [9, 10] for their detailed description.

Since the seminal work of Schwarz [25], spatial domain decomposition and cor-
responding parallelization techniques have seen many qualitative and quantitative
improvements, all of which are nowadays well documented [9, 8]. The time direc-
tion is significantly more complex to parallelize. The solution process of evolutionary

∗CEREMADE, CNRS, UMR 7534, Université Paris-Dauphine, PSL Research University, 75016
Paris, France (reyesriffo@ceremade.dauphine.fr).

†Département de mathématiques et de statistique, Université Laval (felix.kwok@mat.ulaval.ca).
‡INRIA Paris, ANGE Project-Team, 75589 Paris Cedex 12, France and Sorbonne Université,

CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France (julien.salomon@inria.fr).

1

mailto:reyesriffo@ceremade.dauphine.fr
mailto:felix.kwok@mat.ulaval.ca
mailto:julien.salomon@inria.fr

2 F. KWOK, S. RIFFO, AND J. SALOMON

PDEs is indeed intrinsically sequential, so that time decomposition is, at first glance,
not amenable to parallel computing. However, over the last 50 years, many parallel-
in-time methods have been developed [10]. The origins of these approaches can be
traced back to Nievergelt [23], who first introduced the concept that has later been
dubbed Multiple shooting: decompose the time interval into disjoint subintervals and
solve simultaneously a family of initial-value problems, breaking the intrinsic sequen-
tial nature of the time-dependent differential equation. Among these methods, one of
the most recent ones is the Parareal algorithm [18].

Different procedures have been developed to couple space or time parallel meth-
ods with data assimilation problems. Trémolet and Le Dimet [26] were among the
first to address the parallelization of Variational data assimilation problems in me-
teorology. In a continuous setting, they proposed a domain decomposition approach
combined with an adjoint method, by assigning to each subdomain a local version of
a continuous minimization problem, with an extra term on the local cost functional
to enforce the continuity of the state between adjacent domains. Following this ap-
proach, Rao and Sandu [24] apply a quasi-Newton solver to the 4D-Var problem [6],
and time-parallelize the computation of the gradient. A more sophisticated approach
is proposed by D’Amore and Cacciapuoti [7], who combine the Parareal algorithm
with the Multiplicative Parallel Schwarz method (MPS) to solve 4D-Var. Note fi-
nally that time paralellization has also been combined with optimization solvers in
the neighbor field of control [22, 12].

Parallel-in-time algorithms could be quite useful when dealing with long time
intervals, as is the case of sequential DA methods, where information can arrive
uninterrupted. However, coupling these two approaches is not straightforward since
the former generally applies on bounded time intervals. In this paper, we propose a
first general method to time-parallelize an unbounded assimilation method, namely,
the Luenberger observer. Our approach is based on a sequential treatment of time
windows, each windows being processed in parallel.

Our paper is organized as follows: we start in Section 3 by proposing a procedure
to couple sequential data assimilation methods with parallel-in-time algorithms, which
involves splitting the unbounded time interval into subintervals of the same length
(windows) and then applying, following a sequential order, the time-parallel solver on
each window. By considering the Luenberger observer as an assimilation method, we
provide an accuracy criterion that preserves its exponential rate of convergence, which
yields an a posteriori estimate of the accuracy of the solver. In order to go further, in
Section 4 we use the Parareal algorithm as a parallel-in-time solver. This allows us to
design an alternative algorithm that provides an a priori estimate of the number of
iterations required on each window, which also enables us to investigate the theoretical
efficiency of the entire procedure. These results are based on a new convergence
estimate that we derive for Parareal when the coarse solver is a contraction mapping.
Finally, we present some numerical results in Section 5.

Throughout this paper, ‖·‖ represents the induced 2-norm of a matrix.

2. The Luenberger observer. Control theory usually requires a complete
knowledge of the state vector. However, due to certain limitations related to a prob-
lem, for instance the number of available measurements, one can often have access
only to partial information. An example which fits into this setting is given by

(2.1)

{
ẋ(t) =Ax(t) +Bu(t), x(0) = x0,

y(t) =Cx(t),

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 3

where A ∈ Mm×m(R), B ∈Mm×p(R) and C ∈Mq×m(R) are assumed to be known.
Here m, p, q ∈ N∗, with p, q < m (and generally q ≪ m in the applications); x ∈ Rm

is the state vector, y ∈ Rq is the measured output, u ∈ Rp and t ∈ (0,+∞). The
initial condition x(0) = x0 is unknown.

In such a situation, one can try to compute an estimate x̂(t) of x(t), knowing only
the input u(t) and output y(t). To tackle this problem, Luenberger [20] proposed to
consider the dynamical system

(2.2)

{
˙̂x(t) =Ax̂(t) +Bu(t) + L [y(t)− ŷ(t)] , x̂(0) = x̂0

ŷ(t) =Cx̂(t)

with L ∈Mm×q(R) the observer gain and x̂0 an arbitrary initial condition. Equations
(2.2) are known as the Luenberger observer or the Identity observer.

The matrix L needs to be specified, but let us already note that it plays an
important role in the estimation error ε(t) := x(t) − x̂(t). Indeed, substracting (2.1)
and (2.2), and then solving the resultant ODE, one obtains

(2.3) ε(t) = e(A−LC)t (x(0)− x̂(0)) .

This last equality shows that the error will decay to zero if the eigenvalues of A−LC
lie in the open left half-plane {z ∈ C : Re{z} < 0}, where Re{z} denotes the real part
of z. This property is related to the observability condition. More precisely, recall
that (2.1) is observable if the rank of the matrix

C :=

C
CA
...

CAm−1

is m. We then have the following result, often called the Identity observer Theorem

[20, p.303]:

Theorem 2.1. Given a completely observable system (2.1), an identity observer

of the form (2.2) exists. Moreover, the eigenvalues of A − LC can be selected arbi-

trarily.

This theorem shows that given a set {µi}i=1,...,m, there exists L satisfying

(2.4) det (sI − (A− LC)) = φ(s),

where φ(s) = (s− µ1) · · · (s− µm), i.e., {µi}i=1,...m are the eigenvalues of A− LC.
Note that for a single-input single-output system, i.e. p = q = 1, one could

determine a unique L ∈ Rm by equating the m coefficients of both polynomials in
(2.4). However, this approach leads to highly nonlinear equations that are in practice
not tractable. Another way to proceed is the Bass-Gura method [5], which requires
the first companion form of A and the coefficients of φ(s). An even more direct
method is the Ackermann’s formula [1] for an observable system, given by

L = φ(A)C−1(0 · · · 0 1)⊤,

which follows from the Cayley-Hamilton Theorem. For its multi-input multi-output
extension, see [2].

Due to Theorem 2.1, we obtain

4 F. KWOK, S. RIFFO, AND J. SALOMON

Proposition 2.2. Suppose that (2.1) is observable and that the eigenvalues of

A− LC are negative and simple. Then, we have

∥∥∥e(A−LC)t
∥∥∥ ≤ γe−µt,

with µ := min
ν∈σ(A−LC)

|ν| and γ := cond(V) =
∥∥V −1

∥∥ ‖V ‖, where V is the matrix whose

rows are the eigenvectors of A− LC.

Combining the latter with (2.3), we obtain in particular

(2.5) ‖ε(t)‖ ≤ γ ‖x(0)− x̂(0)‖ e−µt.

In practice, the term ‖x(0)− x̂(0)‖ is unknown, whereas µ is chosen by the procedure
that designs L, hence known explicitly. Consequently, the previous formula provides
in practice only a rate of convergence for the Luenberger observer.

3. Time-parallelization setting. In what follows, we propose to extend the
combination between data assimilation algorithms and parallelization procedures to
unbounded time intervals, by considering the Luenberger observer. In this case, we
will manage to preserve the exponential rate of convergence of the problem, by an
approach that we call the Diamond strategy.

Let us briefly describe our approach. We proceed by partitioning [0,+∞) into
intervals of the same length that we call windows. Following a sequential order, we
apply a parallel-in-time solver in each of them, up to some level of accuracy related
to a specific accuracy criterion. We then develop an analysis which decomposes the
estimation error into two terms, corresponding respectively to the Luenberger observer
and the parallelization error. Based on that, we propose a suitable bound on the latter,
so that our criterion preserves Luenberger’s rate of convergence.

3.1. Framework. In order to accelerate the assimilation and take advantage of
a time-parallelization procedure, we propose to divide the time interval [0,+∞) into
windows of a given length T > 0 denoted by

Wℓ := (Tℓ−1, Tℓ), ℓ ≥ 1,

where Tℓ = ℓ · T with ℓ ∈ N. Then, we solve (2.2) on each window, in a sequential
order, using a time-parallel algorithm. Let us describe how this last method applies.

Given ℓ ≥ 1 and a fixed window Wℓ, we decompose the latter into N subintervals
of length ∆T

Wℓ =

N−1⋃

n=0

(tℓn, t
ℓ
n+1),

with tℓn = Tℓ−1 + n∆T and N∆T = T , as shown in Figure 1.

Since time moves forward, parallelizing in this direction requires on each subinter-
val the introduction of initial conditions X̂h

ℓ,n. These are assumed to be obtained from
the time-parallelization procedure under consideration. In this setting, the parameter
h is used in the notation to account for the accuracy of the procedure. In this way,
we introduce a parallel version of (2.2) in each subinterval (tℓn, t

ℓ
n+1), namely

(3.1)

{
˙̂x‖(t) =Ax̂‖(t) + Bu(t) + L

[
y(t)− Cx̂‖(t)

]

x̂‖(t
ℓ+
n) =X̂h

ℓ,n,

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 5

W1

T0 = t10 t11 t12 t13 t14 T1 = t15

Wℓ

Tℓ−1 = tℓ0 tℓ1 tℓ2 tℓ3 tℓ4 Tℓ = tℓ5

Figure 1: Notation associated with the parallelization setting in the case N = 5.

where x̂‖(t) denotes the approximation of x̂(t) obtained by the parallel-in-time solver,

see Figure 2. When n = 0, we consider as initial conditions X̂h
0,0 = x̂0 and X̂h

ℓ,0 =

x̂‖(T
−
ℓ) for ℓ > 0, meaning that x̂‖ is continuous at Tℓ and that windows are treated

sequentially, as announced above.

t

x0

x̂0

T

∆T

Tℓ−1 Tℓ Tℓ+1tℓn

X̂h
ℓ,n

x̂‖(t
ℓ
n

-
)

Figure 2: A time-parallelized observer

3.2. The Diamond strategy. Let ℓ ≥ 1. Imposing initial conditions induces
discontinuities at the interfaces tℓn, n = 1, . . . , N − 1 of the subintervals. These jumps

are defined by Jh
ℓ,n := X̂h

ℓ,n − x̂‖(t
ℓ−
n). The success of the parallel method relies on

their decay to zero as ℓ increases. To analyze this decay we clarify the relation between
the solution of (2.1) and the parallelized observer (3.1).

Lemma 3.1. Let ℓ > 0. Under the assumptions of Proposition 2.2, we have

(3.2)
∥∥ε‖(Tℓ)

∥∥ ≤ γ

‖x(0)− x̂(0)‖+

ℓ∑

j=1

eµjT ‖J h
j ‖

 e−µℓT

where ε‖(t) := x(t)− x̂‖(t) is the error associated with the approximation (3.1) and

(3.3) J h
ℓ := −

N−1∑

n=1

e(A−LC)(N−n)∆TJh
ℓ,n.

6 F. KWOK, S. RIFFO, AND J. SALOMON

Proof. Let ℓ ≥ 1. We have

ε‖(t
ℓ−
n) =x(tℓn)− x̂‖(t

ℓ−
n) = e(A−LC)∆Te−(A−LC)∆T

(
x(tℓn)− x̂‖(t

ℓ−
n)

)

=e(A−LC)∆T (x(tℓn−1)− x̂‖(t
ℓ+
n−1))

=e(A−LC)∆T (x(tℓn−1)− X̂h
ℓ,n−1))

=e(A−LC)∆T (x(tℓn−1)− x̂‖(t
ℓ−
n−1)− Jh

ℓ,n−1)

=e(A−LC)∆T (ε‖(t
ℓ−
n−1)− Jh

ℓ,n−1),

so that

ε‖(Tℓ) = ε‖(t
ℓ
N) = e(A−LC)T ε‖(t

ℓ
0) + J

h
ℓ = e(A−LC)T ε‖(Tℓ−1) + J

h
ℓ ,

where we have used the continuity of x̂‖ in Tℓ = tℓN and Tℓ−1 = tℓ−1
N . In the same

way, we obtain

ε‖(Tℓ) = e(A−LC)ℓT ε‖(0) +
ℓ∑

j=1

e(A−LC)(ℓ−j)TJ h
j .

The result is obtained by taking the norm and using Proposition 2.2.

Recall that our approach aims at preserving Luenberger’s rate of convergence.
Thanks to Lemma 3.1, we can now define a criterion to reach this goal.

Proposition 3.2. Given an arbitrary parameter γ̃ > 0, let us assume that h
satisfies

(3.4) γ

N−1∑

n=1

eµn∆T ‖Jh
ℓ,n‖ ≤ γ̃

e−µ(ℓ−1)T

2ℓ
,

for all ℓ ≥ 0. Then, the rate of convergence of x̂‖(t) to x(t) is bounded by µ, i.e.

(3.5)
∥∥ε‖(Tℓ)

∥∥ ≤ γ (‖x(0)− x̂(0)‖+ γ̃) e−µℓT .

Proof. Using (3.4) and (3.3), we find that

‖J h
ℓ ‖ ≤

N−1∑

n=1

γe−µ(N−n)∆T‖Jh
ℓ,n‖ ≤ γ̃

e−µℓT

2ℓ
.

Combining this inequality with (3.2), we deduce that

‖ε‖(Tℓ)‖ ≤

‖x(0)− x̂(0)‖+

ℓ∑

j=1

eµjT · γ̃
e−µjT

2j

 γe−µℓT

=γ

‖ε‖(0)‖+ γ̃

ℓ∑

j=1

1

2j

 e−µℓT

≤γ
(
‖ε‖(0)‖+ γ̃

)
e−µℓT .

The result then follows from ε‖(0) := x(0)− x̂‖(0) = x(0)− x̂(0).

Note that (3.4) actually deals with an a posteriori quantity and, as such, can be used
as a criterion to fix the level of accuracy of the time-parallelization procedure used in
line on each window. We are now in a position to describe precisely our algorithm: the
procedure for estimating x(t) at t = MT for some M ∈ N is detailed in Algorithm 3.1.

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 7

Algorithm 3.1 Diamond strategy

Input: A,C, x̂0, T,N, (µi)i=1,...m, γ̃, L

Output:(tℓn)n=0,...,N
ℓ∈N

, (X̂h
n,ℓ)n=0,...,N

ℓ∈N

L := place(A,C, (µi)i=1,...,m) {place computes L, as in Theorem 2.1}
µ := min

ν∈σ(A−LC)
|ν|

∆t := T
N

ℓ := 0
repeat

Tℓ := ℓT
(∀n ∈ {1, . . . , N}) tℓn := Tℓ + n∆T
if ℓ = 0 then

X̂h
ℓ,0 := x̂0

else

X̂h
ℓ,0 := x̂‖(T

−
ℓ−1)

end if

Determine h such that (3.4) holds
{X̂h

ℓ,n}n=1,...,N−1 := GTP(X̂h
ℓ,0) {Using a generic time-parallelization procedure

(GTP)}
Compute x̂‖ on Wℓ, by (3.1)
Assign ℓ← ℓ+ 1

until ℓ = M

4. Time Parallelization. Note that Algorithm 3.1 is defined independently of
the chosen the parallel-in-time solver, since the jumps are computed a posteriori.
However, by specifying it, we can study in more detail the conditions that makes the
criterion (3.4) satisfied and the complexity of the overall procedure. Indeed, having
in hand an a priori estimate of the jumps, one can determine the accuracy h required
on each window and bound the efficiency of the Diamond strategy. In this way,
we consider the Parareal algorithm as the time-parallel method (denoted by GTP in
Algorithm 3.1).

4.1. The Parareal algorithm. Introduced by Lions, Maday and Turinici [18],
the Parareal algorithm decomposes the solution of an evolution problem by means of a
partition of the considered bounded time interval. Assigning each of the corresponding
subintervals to a processor, it alternately updates the initial conditions and solves the
(smaller) problems on the subintervals in parallel, reducing the computational cost of
the overall solution. Let us describe the algorithm more precisely. Given the problem

(4.1)

{
u̇(t) =f(u(t)), t ∈ [0, T]

u(0) =u0,

decompose [0, T] into a partition of M subintervals (tn−1, tn). Consider then two
solvers F and G, that compute a fine and a coarse numerical approximation of u,
respectively. The former is considered to be computationally expensive and conse-
quently restricted to the (parallel) solution of initial-value problems with high ac-
curacy in each subinterval (tn−1, tn), whereas the latter is faster and can be used
for solving (sequentially) on large intervals as [0, T]. For an arbitrary initial condi-
tion ũ given in t = tn−1, denote the corresponding local approximations of u(tn) by

8 F. KWOK, S. RIFFO, AND J. SALOMON

F(tn, tn−1, ũ) and G(tn, tn−1, ũ), respectively. In this framework, (u(tn))n=1,...,M is

approximated by (Uk
n)n=1,...,M , which is computed according to Algorithm 4.1.

Algorithm 4.1 Parareal algorithm

Input: u0, T,M,Tol
Output: (tn)n=1,...,M , (Uk∗

n)n=1,...,M

∆T := T
N , t0 := 0

U0
0 := u0 {Initialization of the initial conditions}

for 1 ≤ n ≤M do

tn := n∆T
U0
n := G(tn, tn−1, U

0
n−1)

end for

k := 0
repeat

Uk
0 := u0

for 1 ≤ n ≤M do

Uk+1
n := F(tn, tn−1, U

k
n−1) + G(tn, tn−1, U

k+1
n−1)− G(tn, tn−1, U

k
n−1)

Jk
n := Uk

n − u(t−n)
k ← k + 1

end for

until max
1≤n≤M

∥∥Jk
n

∥∥ ≤ Tol

k∗ := k − 1

Notice that the superscript k in Algorithm 4.1 plays the role of the parameter h,
introduced in the previous section.

Gander and Vandewalle show in [14] that the parareal algorithm reads as a multi-
shooting algorithm, in the sense that the method is an approximate Newton method.
Indeed, solving the multiple shooting equations with the Newton’s method yields

Uk+1
n = un−1(tn, U

k
n−1) +

∂un−1

∂Un−1
(tn, U

k
n−1)(U

k+1
n−1 − Uk

n−1),

where un−1(tn, U
k
n−1) denotes the exact solution of (4.1) at tn, with initial condition

Uk
n−1 at tn−1. Approximating the exact solution un−1(tn, U

k
n−1) using the fine solver

and the Jacobian term
∂un−1

∂Un−1
(tn, U

k
n−1)(U

k+1
n−1 − Uk

n−1) by a difference on a coarse

grid, gives

(4.2) Uk+1
n = F(tn, tn−1, U

k
n−1) + G(tn, tn−1, U

k+1
n−1)− G(tn, tn−1, U

k
n−1).

It follows that the convergence is super linear and that the number of iterations re-
quired to satisfy the criterion (3.4) will not necessarily increase linearly with respect
to M . In addition, these authors obtain an estimate which shows that after k iter-
ations, the algorithm gives rise to the fine solution on the first k subintervals. An
improvement of their estimate, due to Gander and Hairer [11], assumes that the coarse
solver must satisfy a Lipschitz condition

‖G(tn, tn−1, y)− G(tn, tn−1, z)‖ ≤ (1 + c∆T) ‖y − z‖ ,

for a positive constant c. However, this result does not capture the enhanced con-
vergence rate when the differential equation itself exhibits decaying behaviour, i.e.,

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 9

when c < 0. Since we are interested in coupling this algorithm with the Luenberger
observer and taking advantage of its decaying behavior, we provide a result adapted
to this case, which follows from [13].

Theorem 4.1 (Convergence of the Parareal algorithm for decaying problems).
Given an initial condition z at time tn−1, let F(tn, tn−1, z) and G(tn, tn−1, z) be

be the exact solution at time tn and its approximation by a coarse integrator respec-

tively. Assume that the local truncation error τ(tn, z) := F(tn, tn−1, z)−G(tn, tn−1, z)
satisfies for all y and z

‖τ(tn, z)‖ ≤α,(4.3)

‖τ(tn, y)− τ(tn, z)‖ ≤β ‖y − z‖ ,(4.4)

where α, β > 0 are constants, and that F and G are Lipschitz with respect to the initial

conditions:

(4.5)
max {‖F(tn, tn−1, y)−F(tn, tn−1, z)‖ , ‖G(tn, tn−1, y)− G(tn, tn−1, z)‖} ≤ η ‖y − z‖ ,

for a constant η ∈ (0, 1). The error
∥∥Uk

n − u(tn)
∥∥ at iteration k is bounded by Bk

n,

defined by

(4.6) Bk
n :=

0 n ≤ k

αβk
n−k−1∑
i=0

(
k+i
k

)
εi n > k.

Remark 1. Suppose that (4.3) and (4.5) are satisfied for some α > 0 and η ∈
(0, 1), then (4.4) holds with β := 2η, so that (4.4) seems unnecessary. However, using

β := 2η does not necessarily give useful bounds when 0.5 < η < 1.

Proof. Using Definition (4.2) and the fact that F corresponds to the exact solution
on (tn−1, tn), we obtain

Uk
n − u(tn) =F(tn, tn−1, U

k−1
n−1) + G(tn, tn−1, U

k
n−1)− G(tn, tn−1, U

k−1
n−1)

−F(tn, tn−1, u(tn−1))

=τ(tn, U
k−1
n−1)− τ(tn, u(tn−1)) + G(tn, tn−1, U

k
n−1)− G(tn, tn−1, u(tn−1)).

Taking norms and combining the resulting inequality with (4.4) and (4.5) gives

∥∥Uk
n − u(tn)

∥∥ ≤ β
∥∥Uk−1

n−1 − u(tn−1)
∥∥+ ε

∥∥Uk
n−1 − u(tn−1)

∥∥ .

The error in the initial condition can be estimated similarly. We have

U0
n − u(tn) =G(tn, tn−1, U

0
n−1)−F(tn, tn−1u(tn−1))

+ G(tn, tn−1, u(tn−1))− G(tn, tn−1, u(tn−1)) + F(tn, tn−1, u(tn−1))

≤α+ η
∥∥U0

n−1 − u(tn−1)
∥∥ ,

which gives, by means of (4.3) and (4.5)
∥∥U0

n − u(tn)
∥∥ ≤ α+ η

∥∥U0
n−1 − u(tn−1)

∥∥ .

Therefore, an upper bound Bk
n for

∥∥Uk
n − u(tn)

∥∥ satisfies the recurrence relation

Bk
n =βBk−1

n−1 + ηBk
n−1,(4.7)

B0
n =α+ ηB0

n−1,(4.8)

10 F. KWOK, S. RIFFO, AND J. SALOMON

with Bk
0 = 0 for all k. This recurrence can be solved by means of generating functions,

namely, by defining the formal power series

ρk(ζ) =
∑

n≥1

Bk
nζ

n.

Multiplying (4.7) and (4.8) by ζn and summing over n ≥ 1 gives

ρk(ζ) =βζρk−1(ζ) + ηζρk(ζ),

ρ0(ζ) =
αζ

1− ζ
+ ηζρ0(ζ),

which can be solved by induction and yields the explicit formula

ρk(ζ) =
αβkζk+1

(1− ζ)(1 − ηζ)k+1
.

Expanding ρk(ζ) in a power series leads to

ρk(ζ) =αβkζk+1
(∑

i≥0

ζi
)(∑

j≥0

(
k+j
k

)
(ηζ)j

)
= αβkζk+1

∑

n≥0

(n∑

i=0

(
k+i
k

)
ηi
)
ζn

=
∑

n≥0

(
αβk

n∑

i=0

(
k+i
k

)
ηi
)
ζn+k+1.

Then, for n ≤ k we have Bk
0 = . . . = Bk

k = 0; whereas for n > k, we obtain

Bk
n = αβk

n−k−1∑

i=0

(
k+i
k

)
ηi,

and the result follows.

We can derive from the previous result an estimate on the jumps.

Corollary 4.2. After k iterations of Algorithm 4.1, the jump J̃k
n := Uk

n −u(t−n)

satisfies

∥∥∥J̃k
n

∥∥∥ ≤ 2Bk
n.

Proof. Since F is an exact solver, we have
∥∥∥J̃k

n

∥∥∥ =
∥∥Uk

n −F(tn, tn−1, U
k
n−1)

∥∥

≤
∥∥Uk

n − u(tn)
∥∥+

∥∥u(tn)−F(tn, tn−1, U
k
n−1)

∥∥

≤Bk
n +

∥∥F(tn, tn−1, u(tn−1))−F(tn, tn−1, U
k
n−1)

∥∥

≤Bk
n + η

∥∥u(tn−1)− Uk
n−1

∥∥ = Bk
n + ηBk

n−1 ≤ 2Bk
n,

since η ∈ (0, 1) and Bk
n−1 ≤ Bk

n. The result follows from (4.7).

4.2. Combination with Luenberger observer. We now use the Parareal
scheme to define the initial conditions (X̂k

n,ℓ)n=0,...,N
ℓ∈N

of the time-parallelized Luen-

berger observer (3.1), meaning that

(4.9)

{
X̂k

ℓ,n =F(tℓn, t
ℓ
n−1, X̂

k−1
ℓ,n−1) + G(t

ℓ
n, t

ℓ
n−1, X̂

k
ℓ,n−1)− G(t

ℓ
n, t

ℓ
n−1, X̂

k−1
ℓ,n−1)

X̂0
ℓ,n =G(tℓn, t

ℓ
n−1, X̂

0
ℓ,n−1), X̂0

ℓ,0 = x̂‖(T
−
ℓ).

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 11

Recall that in this setting, jumps are obtained during the execution of Algorithm 4.1
and are consequently known a posteriori. In order to estimate the efficiency of Al-
gorithm 3.1, we now propose on the contrary to derive a priori upper bounds of the
number of iterations observed in practice and complexity. Given a tolerance parameter
Tol and let define the corresponding efficiency of Algorithm 3.1 by

(4.10) E :=
τs
Nτp

where τs and τp are the CPU time required to achieve ‖ε(t)‖ ≤ Tol using a sequential
solver and ‖ε‖(t)‖ ≤ Tol using a parallel solver, respectively. Recall that N represents
the number of available processors (and hence, subintervals).

Theorem 4.3. We neglect the time of interprocessor communication in the com-

putational time. Let τG and τF be the computational times associated with one coarse

and one fine solution of (2.2) on a interval of length T . The efficiency of the algorithm

satisfies

(4.11) E≥
ℓTolτF

τF +NτG

ℓTol

‖∑

ℓ=1

kℓ

−1

,

where

kℓ :=min
k

{
k : 2γ

N−1∑

n=k+1

e−µ(N−n)∆TBk
n ≤ γ̃

e−µℓT

2ℓ

}
,

ℓTol :=

⌈
1

µT
log

(
γ
‖x(0)− x̂(0)‖

Tol

)⌉
,

ℓTol‖ :=

⌈
1

µT
log

(
γ
‖x(0)− x̂(0)‖+ γ̃

Tol

)⌉
,

where ⌈.⌉ denotes the ceiling function.

The integers ℓTol and ℓTol‖ are upper bounds for the number of windows required to

obtain
∥∥ε‖(Tℓ)

∥∥ ≤ Tol and
∥∥ε‖(Tℓ)

∥∥ ≤ Tol, respectively. Let us denote by kobsℓ the
actual number of iterations performed in Algorithm 3.1 in the window Wℓ. We will
see that kobsℓ is bounded by kℓ.

Proof. Using Corollary 4.2, we find that at if kℓ iterations of (4.9) are done by
Algorithm 3.1 in the window Wℓ, the left-hand side of (3.4) satisfies

γ

N−1∑

n=1

e−µ(N−n)∆T ‖Jkℓ

ℓ,n‖ ≤2γ

N−1∑

n=1

e−µ(N−n)∆TBkℓ
n

=2γ

N−1∑

n=kℓ+1

e−µ(N−n)∆TBkℓ
n ≤ γ̃

e−µℓT

2ℓ
,

meaning that (3.4) is satisfied. As a consequence, we have

(4.12) kobsℓ ≤ kℓ.

Because of (2.5) and (3.5), the number of windows required to get ‖ε(t)‖ ≤ Tol and
‖ε‖(t)‖ ≤ Tol are bounded by ℓTol and ℓTol‖ , respectively. In view of (4.9) and since we

12 F. KWOK, S. RIFFO, AND J. SALOMON

neglect the time of interprocessor communication, the part of the total computational
time spend required by Algorithm 3.1 to deal with the window Wℓ is given by τp,ℓ =
kobsℓ (τFN +τG).On the other hand, the fine solver needs τs,ℓ = τF to complete one solve
of (2.2) on Wℓ on the fine grid. Because of (4.12), the efficiency satisfies

E ≥
ℓTolτF

τF +NτG

ℓTol

‖∑

ℓ=1

kobsℓ

−1

≥
ℓTolτF

τF +NτG

ℓTol

‖∑

ℓ=1

kℓ

−1

,

which is the desired estimate.

4.3. Variable window approach. Using the results of the previous section,
we can propose a variant of Algorithm 3.1 devoted to the case of a large number of
processors. Instead of always using the same window length T , we now choose the
window length Tℓ as a function of a prescribed number of iterations kℓ, in a way that
ensures that the error estimate in Corollary 4.2 falls below the given tolerance after kℓ
iterations. Since the parareal error must decrease at the same rate as the assimilation
error as t increases, the number of iterations kℓ must increase with ℓ; therefore, we
will fix the number of parareal iterations applied on each window to k′ℓ := ℓ, and
determine the window length Tℓ a priori using Corollary 4.2. For the sake of clarity,
we denote by (W ′

ℓ)ℓ∈N the corresponding set of windows. Suppose that the windowW ′
ℓ

is composed of Nℓ subintervals of lengths ∆T , i.e., W ′
ℓ =

⋃Nℓ−1
n=0 (tℓn, t

ℓ
n+1) and define,

for ℓ ∈ N, T ′
ℓ := tℓ+1

0 = tℓNℓ
, meaning that T ′

ℓ =
∑ℓ

j=1 Nj∆T if ℓ > 0 and T ′
0 = 0.

Since the number of iterations is now fixed for each window, we simply denote by Jℓ,n
(instead of Jℓ

ℓ,n) the jumps observed at tℓn. Lemma 3.1 then translates as follows.

Lemma 4.4. Let ℓ > 0. Under the assumptions of Proposition 2.2 and still de-

noting by ε‖(t) := x(t) − x̂‖(t) the error associated with the approximation (3.1), we
have

(4.13)
∥∥ε‖(T ′

ℓ)
∥∥ ≤ γ

‖x(0)− x̂(0)‖+

ℓ∑

j=1

eµT
′
j‖Jj

′‖

 e−µT ′

ℓ

where

(4.14) Jℓ
′ := −

Nℓ−1∑

n=1

e(A−LC)(Nℓ−n)∆TJℓ,n.

Proof. As in the proof of Lemma 3.1, we have

ε‖(t
ℓ−
n) = e(A−LC)∆T (ε‖(t

ℓ−
n−1)− Jℓ,n−1),

hence

ε‖(T
′
ℓ) = ε‖(t

ℓ
Nℓ

) = e(A−LC)(T ′
ℓ−T ′

ℓ−1
)ε‖(t

ℓ
0) + J

′
ℓ = e(A−LC)(T ′

ℓ−T ′
ℓ−1

)ε‖(T
′
ℓ−1) + J

′
ℓ ,

where we have used the continuity of x̂‖ in T ′
ℓ = tℓNℓ

and T ′
ℓ−1 = tℓ−1

Nℓ
. In the same

way, we obtain

ε‖(Tℓ) = e(A−LC)T ′
ℓε‖(0) +

ℓ∑

j=1

e(A−LC)(T ′
ℓ−T ′

j)J ′
j .

The result is obtained by taking the norm and using Proposition 2.2.

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 13

The rate of convergence can now be preserved a priori.

Proposition 4.5. Given γ̃ > 0 an arbitrary parameter, define Nℓ recursively by

(4.15) Nℓ := max

{
N : 2γ

N−1∑

n=ℓ

eµn∆TBℓ
n ≤ γ̃

e−µT ′
ℓ−1

2ℓ

}
.

Then, the rate of convergence of x̂‖(t) to x(t) is bounded by µ, i.e.

(4.16)
∥∥ε‖(T ′

ℓ)
∥∥ ≤ γ (‖x(0)− x̂(0)‖+ γ̃) e−µT ′

ℓ .

Note that Bℓ
n = 0 for n ≤ ℓ, so that

∑N−1
n=ℓ eµn∆TBℓ

n = 0 if Nℓ = ℓ + 1. Hence,
Nℓ ≥ ℓ+ 1.

Proof. Using successively Proposition 2.2, (4.14), Corrollary 4.2 and (4.15), we
find that:

‖Jℓ
′‖ ≤γ

Nℓ−1∑

n=1

e−µ(Nℓ−n)∆T ‖Jℓ,n‖

≤2γ

Nℓ−1∑

n=1

e−µ(Nℓ−n)∆TBℓ
n = 2γ

Nℓ−1∑

n=1

eµn∆TBℓ
ne

−µ(T ′
ℓ−T ′

ℓ−1
)

≤γ̃
e−µT ′

ℓ

2ℓ
.

Combining this last equation with (4.13), we get:

∥∥ε‖(T ′
ℓ)
∥∥ ≤γ

‖x(0)− x̂(0)‖+

ℓ∑

j=1

eµT
′
j γ̃

e−µT ′
j

2j

 e−µT ′

ℓ

≤γ

‖x(0)− x̂(0)‖+ γ̃

ℓ∑

j=1

1

2j

 e−µT ′

ℓ

≤γ (‖x(0)− x̂(0)‖+ γ̃) e−µT ′
ℓ

The result then follows from ε‖(0) := x(0)− x̂‖(0) = x(0)− x̂(0).

5. Numerical experiments. The present section is devoted to some numerical
experiments for the Luenberger observer. For this purpose, we use

A =

[
0 1
−1 −2

]
, B =

(
0
1

)
, C =

(
0
1

)
, v(t) = 3 + 0.5 sin(0.75t).

We remark that the initial condition on System (2.1) is unknown, but we perform the
experiments with x(0) = (0, 0)⊤. We then construct the observer x̂(t) by setting as
initial condition x̂(0) = (2, 1)⊤ and the eigenvalues of A − LC. For the latter, we
consider {−0.25,−0.5} and {−2,−4} as possible choices.

To introduce the parareal procedure, given N available processors, we set

T = 1, δT = ∆T =
T

N
, Tol = 10−8,

where δT denotes the time step associated with G, chosen as a one step solver for the
sake of simplicity. We use the Backward Euler method to define both propagators F
and G.

14 F. KWOK, S. RIFFO, AND J. SALOMON

5.1. Diagonalized system. We recall that the essential part of Theorem 4.1 is
the contraction factor η. For the Luenberger observer (2.2), we have

η = max
{∥∥∥[I − δt(A− LC)]−

∆T/δt
∥∥∥ ,

∥∥[I −∆T (A− LC)]−1
∥∥
}
.

where δt is the time step associated with F , assumed to be constant. Even if we
choose the eigenvalues of A − LC to guarantee a decaying rate of convergence, η is
not necessarily smaller than one. For this reason, we consider instead a diagonalized
observer

(5.1)

{
˙̂z(t) =Dẑ(t) + V −1(Bu(t) + Ly(t))

ẑ(0) =V −1x̂0

where ẑ = V −1x̂ and D = V −1(A− LC)V .
Due to the change of variables, γ = 1. We determine the constants α, β and η by

Proposition 5.1. Let F and G be defined by the Backward Euler scheme, with

time steps δt and δT , respectively. We assume that ∆TK ≤ 1 and (5.1) satisfies

M := sup
(ẑ,t)

∥∥Dẑ + V −1(Bu(t) + Ly(t))
∥∥ <∞

K := max

{
‖D‖ , sup

t>0

∥∥V −1(Bu̇(t) + Lẏ(t))
∥∥
}

<∞.

Then, the constants associated with both propagators in Theorem 4.1 are given by

α =∆T 2

(
K(M + 1)

2(1−∆TK)

)
,

β =
∥∥∥[I − δtD]−

∆T/δt − [I −∆TD]−1
∥∥∥ ,(5.2)

η =max
{∥∥∥[I − δtD]−

∆T/δt
∥∥∥ ,

∥∥[I −∆TD]−1
∥∥
}
.(5.3)

The proof is standard, but for the sake of completeness is presented in Appendix A.

5.2. Evolution of kℓ. As a first experiment, since the jumps involved in (3.4)
allows us to compute the sequence kobs := {kobsℓ }ℓ, we propose to compare its behavior
with its a priori estimate

kth := {kℓ}ℓ,

where the latter sequence is provided by Theorem 4.3.

We observe in Figure 3 that increasing γ̃ leads to enlarge the number of windows
in which the algorithm requires only 1 iteration. This is expected, due to the term
γ̃e−µℓT present in Proposition 3.2.

5.3. Observed efficiency. Our second experiment consists of comparing the
observed efficiencies for both sequences kobs and kth, using different values of γ̃, N
and δt. To evaluate Eobs, the execution time for the parallel and sequential solvers was
computed with the functions tic and toc of MATLAB (version 9.4.0.813654 (R2018a)).

As we notice previously, increasing γ̃ improves the algorithm performance, but
the difference between Eobs(kobs) and Eobs(kth) still remains, as observed in Figure
4a. In Figure 4c, the gap between these values varies slightly, showing that δt small

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 15

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

w
in

d
o

w

0 2 4 6 8 10 12
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

w
in

d
o

w
(a) γ̃ = 10−3

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

w
in

d
o

w

0 2 4 6 8 10 12
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

w
in

d
o

w

(b) γ̃ = 1.

0 20 40 60 80 100
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

w
in

d
o

w

0 5 10 15
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

w
in

d
o

w

(c) γ̃ = 103.

Figure 3: Comparison between kth and kobs, forN = 16 and δt = ∆T
25 . The eigenvalues

of A− LC are {−0.25,−0.5} (left) and {−2,−4} (right).

16 F. KWOK, S. RIFFO, AND J. SALOMON

enough does not affect the efficiency significantly. Increasing the number of processors
N makes this difference smaller and also improves the efficiency of the algorithm, as
shown in Figure 4b. Another way to narrow this gap is choosing smaller eigenvalues for
A− LC. As Figure 4 suggests, the comparison between {−0.25,−0.5} and {−2,−4}
shows that Eobs(kth) increases, whereas Eobs(kobs) becomes smaller.

Figure 4 also shows that the observed efficiencies satisfy

Eobs(kth) ≤ Eobs(kobs),

which is simply because the sequence kth underperforms kobs.
Finally, we recall that kth is useful for estimating the efficiency. Assuming that

τG∆T is negligible, we denote this estimate by

Eth
0 = ℓTol‖

ℓTol

‖∑

ℓ=1

kℓ

−1

.

with ℓTol‖ given by Theorem 4.3. We note that this value predicts quite well Eobs(kth)
in all the tests.

5.4. Variable window approach. In the following, we set M = 100, ∆T =
1/16 and {−0.8,−1} as eigenvalues of A− LC.

The Diamond strategy and the Variable window approach are different in nature,
but we can compare them by considering the number of parareal iterations as a
function of time. Denoting by kvw the sequence of parareal iterations associated with
the latter, we observe in Figure 5 that starts performing better than kth, but in the
long term underperforms the a priori estimate.

Increasing γ̃ leads to a slightly better performance of the Variable window ap-
proach, but the behavior previously described still remains. As a consequence of this,
the observed efficiency of this procedure is smaller than Eobs(kth), as shown in Figure
6a.

In contrast to the previous subsection, when the observed efficiency depends on
δt, we observe in Figure 6b a “jump” instead of a linear behaviour, due to a decrease in
the total number of windows. This can be explained as a “blindness” to the tolerance:
although the parallelized observer can be closer to the real solution at the end of a
window, the Variable window approach does not take this into account and constructs
the next one with more than enough subintervals. In principle, the Diamond Strategy
faces the same problem, but it is solved using small windows.

Acknowledgments. This work was supported by ANR Ciné-Para (ANR-15-
CE23-0019) and ANR/RGC ALLOWAP (ANR-19-CE46-0013/A-HKBU203/19), by
Swiss National Science Foundation grant 200020 178752, and by Hong Kong Research
Grants Council (ECS 22300115 and GRF 12301817).

REFERENCES

[1] J. Ackermann. Der entwurf linearer regelungssysteme im zustandsraum. Regelungstechnik,
20:297–300, 1972.

[2] J. Ackermann. On the synthesis of linear control systems with specified characteristics. Auto-
matica, 13:89–94, 1977.

[3] C. Afri, V. Andrieu, L. Bako, and P. Dufour. State and parameter estimation: A nonlinear
Luenberger observer approach. IEEE Transactions on Automatic Control, 62(2):973–980,
2017.

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 17

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 210
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 210

(a) E(γ̃), for N = 16 and δt = ∆T

25
.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

24 25 26 27
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

24 25 26 27

(b) E(N), for δt = ∆T

25
and γ̃ = 210.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) E(δt), for N = 16 and γ̃ = 210.

Figure 4: Comparison between Eobs(kobs), Eobs(kth) and Eth
0 . The eigenvalues of

A− LC are {−0.25,−0.5} (left) and {−2,−4} (right).

18 F. KWOK, S. RIFFO, AND J. SALOMON

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 it

er
at

io
ns

(a) γ = 1 (b) γ = 103

Figure 5: Assimilation for the Diamond strategy and Variable Window approach.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 210

(a) E(γ̃), for δT =
∆T

25
.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) E(δt), for γ̃ = 210.

Figure 6: Comparison between the efficiencies Eobs(kth) (Diamond strategy) and
Eobs(kvw) (Variable Window approach).

[4] D. Auroux. The back and forth nudging algorithm applied to a shallow water model, comparison
and hybridization with the 4D-VAR. Int. J. Numer. Methods Fluids, 61(8):911–929, 2009.

[5] R. Bass and I. Gura. High-order system design via state-space considerations. In Joint Auto-
matic Control Conference, volume 3, pages 311–319, New York, 1965.

[6] P. Courtier, J.-N. Thépaut, and A. Hollingsworth. A strategy for operational implementation
of 4d-var, using an incremental approach. Quarterly Journal of the Royal Meteorological
Society, 120(519):1367–1387, 1994.

[7] L. D’Amore and R. Cacciapuoti. DD-DA PinT-based model: A domain decomposition approach
in space and time, based on parareal, for solving the 4D-Var data assimilation model. ArXiv
e-prints, 2018.

[8] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015. Algorithms,
theory, and parallel implementation.

[9] M. J. Gander. Schwarz methods over the course of time. ETNA. Electronic Transactions on
Numerical Analysis [electronic only], 31:228–255, 2008.

[10] M. J. Gander. 50 years of time parallel time integration. In T. Carraro, M. Geiger, S. Körkel,
and R. Rannacher, editors, Multiple Shooting and Time Domain Decomposition Methods,
volume 9 of Contributions in Mathematical and Computational Sciences, pages 69–113.

TIME-PARALLELIZATION OF SEQUENTIAL OBSERVERS 19

Springer, 2015.
[11] M. J. Gander and E. Hairer. Nonlinear convergence analysis for the parareal algorithm. In

O. B. Widlund and D. E. Keyes, editors, Domain Decomposition Methods in Science and
Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering,
pages 45–56. Springer, 2008.

[12] M. J. Gander, F. Kwok, and J. Salomon. Paraopt: A parareal algorithm for optimality systems.
SIAM Journal on Scientific Computing, 42(5):A2773–A2802, 2020.

[13] M. J. Gander, F. Kwok, and H. Zhang. Multigrid interpretations of the parareal algorithm
leading to an overlapping variant and MGRIT. Computing and Visualization in Science,
19(3):59–74, 2018.

[14] M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration method.
SIAM Journal on Scientific Computing, 29:556–578, 2007.

[15] J. HOKE and R. ANTHES. INITIALIZATION OF NUMERICAL-MODELS BY A
DYNAMIC-INITIALIZATION TECHNIQUE. MONTHLY WEATHER REVIEW,
104(12):1551–1556, 1976.

[16] K. Ide, P. Courtier, M. Ghil, and A. C. Lorenc. Unified notation for data assimilation :
Operational, sequential and variational. Journal of the Meteorological Society of Japan.
Ser. II, 75(1B):181–189, 1997.

[17] R. E. Kalman. A new approach to linear filtering and prediction problems. Transaction of the
ASME—Journal of Basic Engineering, 82(1):35–45, 1960.

[18] J.-L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps ≪pararéel≫.
Comptes Rendus de l’Académie des Sciences - Série I - Mathématique, 332(7):661–668,
2001.

[19] A. LORENC, R. BELL, and B. MACPHERSON. THE METEOROLOGICAL-OFFICE
ANALYSIS CORRECTION DATA ASSIMILATION SCHEME. QUARTERLY JOUR-
NAL OF THE ROYAL METEOROLOGICAL SOCIETY, 117(497, A):59–89, JAN 1991.

[20] D. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications. John
Wiley & Sons, New York, 1979.

[21] W. LYNE, R. SWINBANK, and N. BIRCH. A DATA ASSIMILATION EXPERIMENT AND
THE GLOBAL CIRCULATION DURING THE FGGE SPECIAL OBSERVING PERI-
ODS. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY,
108(457):575–594, 1982.

[22] Y. Maday, J. Salomon, and G. Turinici. Monotonic parareal control for quantum systems.
SIAM Journal on Numerical Analysis, 45(6):2468–2482, 2007.

[23] J. Nievergelt. Parallel methods for integrating ordinary differential equations. Commun. ACM,
7(12):731–733, 1964.

[24] V. Rao and A. Sandu. A time-parallel approach to strong-constraint four-dimensional varia-
tional data assimilation. Journal of Computational Physics, 313:583–593, 2016.

[25] H. A. Schwarz. Über einen grenzübergang durch alternierendes verfahren. Vierteljahrsschrift
der Naturforschenden Gesellschaft in Zurich, 15:272–286, 1870.

[26] Y. Trémolet and F.-X. Le Dimet. Parallel algorithms for variational data assimilation and
coupling models. Parallel Computing, 22(5):657–674, 1996.

[27] F. Veersé, D. Auroux, and M. Fisher. Limited-memory BFGS diagonal preconditioners for a
data assimilation problem in meteorology. Optim. Engineer., 1.3:323–339, 2000.

[28] J. VERRON and W. HOLLAND. IMPACT OF SATELLITE ALTIMETER-DATA ON
DIGITAL-SIMULATION OF MID-LATITUDE GENERAL OCEAN-CIRCULATION.
ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCI-
ENCES, 7(1):31–46, FEB 1989.

Appendix A. Proof of Proposition 5.1. Let {tn}
N
n=0 be a regular partition

of the interval [0, T], with ∆T = T/N . Given ẑn−1 an approximation of ẑ(tn−1), we
recall that the Backward Euler method applied to (5.1) is given by

ẑn − ẑn−1

∆T
= f(ẑn, tn)

where f(s, t) = Ds+ V −1(Bv(t) + Ly(t)).

Since δt is assumed to be constant, we then define F by

F(tn, tn−1, ẑn−1) = (I − δtD)−
∆T/δt

[
δtV −1(Bv(tn−1) + Lz(tn−1)) + ẑn−1

]

20 F. KWOK, S. RIFFO, AND J. SALOMON

and then, a direct calculation yields

(A.1) F(tn, tn−1, w)−F(tn, tn−1, z) = (I − δtD)−
∆T/δt(w − z).

On the other hand, G is defined as a one-step solver, which allows us to replace δt by
∆T in the previous expressions to obtain

(A.2) G(tn, tn−1, y)− G(tn, tn−1, z) = (I −∆tD)−1(y − z).

Hence, Definitions (5.2) and (5.3) of β and η follow from combining (A.1) and (A.2).

To bound the local truncation error, we proceed as follows. Starting at the exact
solution zn−1 = ẑ(tn−1), we define zn = G(tn, tn−1, zn−1) and then

τ(tn, zn−1) =F(tn, tn−1, zn−1)− G(tn, tn−1, zn−1)

=ẑ(tn)− zn

since F is an exact solver. We use that zn = ẑ(tn−1) +∆Tf(zn, tn) and then expand
ẑ(tn−1) around tn to get

(A.3) τ(tn, zn−1) = ∆T
(
˙̂z(ẑ(tn), tn)− f(zn, tn)

)
−

(∆T)2

2
¨̂z(ẑ(ξ), ξ)

where ξ ∈ (tn−1, tn). Since ˙̂z = f(z, t), we can get rid of the derivatives of z. In
particular, the definition of f(s, t) shows that

˙̂z(ẑ(tn), tn)− f(zn, tn) =f(ẑ(tn), tn)− f(zn, tn) = Dτ(tn, zn−1),

¨̂z(ẑ(ξ), ξ) =
df

dt
(ẑ(ξ), ξ) =

∂f

∂s
(ẑ(ξ), ξ) · f(ẑ(ξ), ξ) +

∂f

∂t
(ẑ(ξ), ξ)

=Df(ẑ(ξ), ξ) + V −1(Bv̇(ξ) + Lẏ(ξ)).

Replacing these expressions in (A.3) and rearranging terms yields

τ(tn, zn−1) = −
(∆T)2

2
(I −∆TD)−1

[
Df(x̂(ξ), ξ) + V −1(Bv̇(ξ) + Lẏ(ξ))

]
.

Finally, assuming that ∆TK < 1, we take norms and use the definitions of K and M
to obtain α.

	Introduction
	The Luenberger observer
	Time-parallelization setting
	Framework
	The Diamond strategy

	Time Parallelization
	The Parareal algorithm
	Combination with Luenberger observer
	Variable window approach

	Numerical experiments
	Diagonalized system
	Evolution of k
	Observed efficiency
	Variable window approach

	References
	Appendix A. Proof of Proposition 5.1

