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Abstract
Injecting artificial noise into gradient descent
(GD) is commonly employed to improve the per-
formance of machine learning models. Usually,
uncorrelated noise is used in such perturbed gra-
dient descent (PGD) methods. It is, however, not
known if this is optimal or whether other types of
noise could provide better generalization perfor-
mance. In this paper, we zoom in on the problem
of correlating the perturbations of consecutive
PGD steps. We consider a variety of objective
functions for which we find that GD with anticor-
related perturbations (“Anti-PGD”) generalizes
significantly better than GD and standard (uncor-
related) PGD. To support these experimental find-
ings, we also derive a theoretical analysis that
demonstrates that Anti-PGD moves to wider min-
ima, while GD and PGD remain stuck in subopti-
mal regions or even diverge. This new connection
between anticorrelated noise and generalization
opens the field to novel ways to exploit noise for
training machine learning models.

1. Introduction
It is widely believed that flat minima generalize better than
sharp minima in loss landscapes of overparametrized mod-
els such as deep neural networks (DNNs). This idea goes
back to Hochreiter & Schmidhuber (1995; 1997) who ob-
served that, in flat minima, it is sufficient to determine
weights with low precision and conjectured that this cor-
relates with a small generalization gap. Although it has
not been proved conclusively and the debate continues, this
hypothesis has been supported by increasing empirical ev-

*Equal contribution 1Department of Computer Science, ETH
Zurich, Switzerland 2INRIA – Ecole Normale Supérieure – PSL
Research University, Paris, France 3Department of Mathematics,
University of Oslo, Norway 4Department of Mathematics and
Computer Science, University of Basel, Switzerland. Correspon-
dence to: Antonio Orvieto <antonio.orvieto@inf.ethz.ch>, Hans
Kersting <hans.kersting@inria.fr>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Lets try a different visualisation..
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Figure 1. GD and Anti-PGD (GD with anticorrelated noise injec-
tion) on a quadratically parametrized model (details in §4) in 100
dimensions, with only 5 data points. The projection along two
relevant directions is plotted. The train loss is most stable to sam-
pling artifacts at flat minima. Indeed, the spurious minima on
the south-west and north-east (left plot) are sharp. Flat minima
often yield lower test losses. We prove in Thms. 2.1 & 3.1 that
Anti-PGD is biased towards convergence to flat minima.

idence (Keskar et al., 2016; Chaudhari et al., 2017; Jiang
et al., 2019).

On the other hand, much work has analyzed which opti-
mization algorithms yield good performance on test data.
For standard stochastic gradient descent (SGD), it is a com-
mon finding (both empirically and theoretically) that its
stochastic noise tends to guide the optimizer towards flat
minima; see Smith et al. (2020) and the references therein.
Going beyond SGD, several papers have proposed to perturb
(stochastic) gradient descent methods by injecting artificial
noise. So far, such perturbed gradient descent (PGD) meth-
ods have proved beneficial to quickly escape spurious local
minima (Zhou et al., 2019) and saddle points (Jin et al.,
2021). Based on the findings made in prior work, it seems
natural to ask about the role of noise injection on the gen-
eralization performance of a model. The exact question we
investigate is whether stochastic noise can be designed to
match (or even outperform) the favorable generalization
properties of vanilla SGD.

Contribution. We start from the observation that prior
PGD methods rely on independent (uncorrelated) pertur-
bations. We question whether this choice is optimal and
instead study whether (anti-)correlated perturbations are
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Figure 2. Effect of uncorrelated (PGD) and anticorrelated (Anti-PGD) noise injection on learning with gradient descent. Experiments are
conducted on three non-convex machine learning problems with increasing complexity (details in §4). These experiments are inspired by
recent literature on label noise (Blanc et al., 2020; HaoChen et al., 2021). Shown is the mean and standard deviation over several runs (5
for the first two problems, 3 for the last). Findings are robust to hyperparameter tuning (see Appendix D). All experiments suggest that
Anti-PGD allows convergence to a flat minimizer (lower Hessian trace), improving generalization. In the ResNet18 experiments, the
high dimensionality makes it hard to evaluate metrics under noise injection – since we converge to a neighborhood with big (dimension
dependent) radius. Hence, we evaluate the accuracy and the Hessian trace after stopping noise injection, to allow exact convergence to the
nearest minimizer. Note that, while SGD can temporarily be better than Anti-PGD for a small number of iterations, Anti-PGD ultimately
outperforms SGD in all experiments.For more details and further investigations, see §4.

more suitable in terms of generalization. We introduce a
new perturbed gradient descent method we name “Anti-
PGD” whose perturbations at two consecutive steps are
anticorrelated. We motivate this design by showing that
Anti-PGD drifts (on average) to flat parts of the loss land-
scape. We conduct an extensive set of experiments – ranging
from shallow neural networks to deep architectures with real
data (e.g. CIFAR 10) – and we demonstrate that Anti-PGD,
indeed, reliably finds minima that are both flatter and gen-
eralize better than the ones found by standard GD or PGD.
We explain this observation with two theorems. Firstly, we
show that Anti-PGD minimizes the trace of the Hessian – in
the sense of converging (in expectation) to a minimum of a
regularized loss to which the trace of the Hessian is added.
Secondly, we show in the simplest possible toy model (the
“widening valley”) that Anti-PGD converges to the flattest
minimum – while GD gets stuck in sharper minima and
standard (uncorrelated) PGD diverges. In summary, these
findings lead us to postulate that anticorrelated noise can be
employed to improve generalization.

1.1. Related Work

The following lines of work are closely connected to our
work. In particular, the connections with PAC-Bayes bounds

and label noise are particularly relevant and will be further
discussed later on.

Generalization measures and flat minima. Generaliza-
tion measures are quantities that monotonically capture the
generalization ability of a model. For example, Keskar et al.
(2016) and Chaudhari et al. (2017) conducted an extensive
set of experiments demonstrating that the spectrum of the
Hessian of the loss ∇2L(w∗) computed at a minimum w∗ is
related to the generalization performance – in the sense that
low eigenvalues of ∇2L(w∗) tend to indicate good general-
ization performance. To capture this phenomenon, several
flatness (a.k.a. sharpness) measures have been proposed as
generalization measures. Notably, Jiang et al. (2019) con-
ducted a large-scale comparison of many popular general-
ization measures and concluded that some flatness measures
are among the best performing measures.Recently, Petzka
et al. (2021) connected flatness to generalization via the
notion of ‘relative flatness’.

We note, however, that the superiority of flat minima is con-
tested: Dinh et al. (2017) demonstrated that sharp minima
can also generalize well and point out that flatness is not
invariant to reparametrization. Hence, the empirical find-
ing of correlation between flatness and good generalization
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should not necessarily be regarded as a causal relationship.

PAC-Bayes bounds. The generalization ability of a model
can in theory be captured by upper bounding the generaliza-
tion gap, as done by classical VC or Rademacher bounds,
as well as PAC-Bayes bounds such as Langford & Caruana
(2002), Neyshabur et al. (2017; 2018) and Tsuzuku et al.
(2020). However, characterizing the generalization ability
of deep learning models has proven to be a challenging task.
Most classical bounds are vacuous when computed on mod-
ern over-parametrized networks. Encouragingly, empirical
evidence – see, e.g., Dziugaite & Roy (2017) and follow-up
works – has shown that PAC-Bayes bounds can be optimized
to yield practically useful results. As discussed in Yang et al.
(2019), PAC-Bayes bounds can also be related to flatness,
and more precisely to the trace of the Hessian. The latter
quantity will be key in our analysis and we will explain this
connection in detail in §2.2.

The scale of noise in SGD. SGD tends to find minima
that generalize surprisingly well in overparametrized mod-
els. This phenomenon has been explained from different
perspectives in the literature. Focusing on the intrinsic noise
of SGD, Zhang et al. (2019) and Smith et al. (2020) empiri-
cally showed that SGD generalizes well by converging to flat
minima. Alternatively, Bradley & Gomez-Uribe (2021) char-
acterized the stationary distribution of SGD, demonstrating
a connection between increased levels of noise (i.e. smaller
batch size or larger learning rate) and convergence to flat
minima. Particularly related to our work is Wei & Schwab
(2019) who showed that, in some settings, SGD decreases
the trace of the Hessian in expectation.

The shape of noise in SGD. The distribution of the noise
of SGD is often a subject of debate in the literature. In
this regard, Simsekli et al. (2019) challenged the default
assumption that SGD noise is Gaussian. In some particular
settings, their work showed empirically that a heavy-tailed
distribution is observed. This type of noise was then shown
in Nguyen et al. (2019) to yield faster exit from sharp to flat
minima. While the universality of the finding of Simsekli
et al. (2019) is debated in the community (Panigrahi et al.,
2019; Xie et al., 2020), the tail index of SGD has a drastic
influence on its diffusion properties. For instance, heavy-
tail noise leads to faster escape from sharp minima; see,
e.g., Thm. 1 by Simsekli et al. (2019). Moreover, heavy-
tail noise is provably found in simple models (e.g., linear
regression on isotropic data), and in the regime of high-
learning rates (Gurbuzbalaban et al., 2021) as an effect
of multiplicative noise (Hodgkinson & Mahoney, 2021).
Recently, Wang et al. (2022) demonstrated that truncated
heavy-tailed noise can eliminate sharp minima in SGD.

Perturbed Gradient Descent (PGD). PGD is a version of
(stochastic) gradient descent where artificial noise is added
to the parameters after every step. Multiple PGD methods
have been shown to help quickly escape spurious local min-

ima (Zhou et al., 2019) and saddle points (Jin et al., 2021).
These methods differ from our Anti-PGD in that they inject
uncorrelated perturbations.
Instead of perturbing the parameter, one can alternatively
add noise to the gradient which can improve learning for
very deep networks (Neelakantan et al., 2015; Deng et al.,
2021).

Label noise and implicit bias. Another way to add per-
turbations to SGD is to add noise to the labels of the data
used for training. Recent work has demonstrated that such
perturbations are indeed beneficial for generalization by im-
plicitly regularizing the loss (Blanc et al., 2020; HaoChen
et al., 2021; Damian et al., 2021). This alternative noise
injection perturbs the labels before computing the gradient –
instead of the parameter after a gradient-descent step, as in
PGD and our Anti-PGD. (Nonetheless these approaches are
closely connected, as we will further explain in §2.3.)
For the limit case of small SGD learning rate η → 0, Li et al.
(2022) introduced a general SDE framework to analyze the
implicit bias in relation to flatness.

2. Finding Flat Minima by Anti-PGD
After introducing our problem setting, we provide a detailed
description of Anti-PGD and explain how it is designed to
find flat minima.

Problem setting. Let {(x(i), y(i))}Mi=1 denote a data set
of M input-output pairs with x(i) ∈ Rdin and y(i) ∈ R. We
consider a machine learning model fw : Rdin → R, with
parameters w ∈ Rd, whose parameters are trained using
empirical risk minimization. Let L(i) : Rd → R be the loss
associated with the i-th data point (x(i), y(i)). We denote
by L(w) := 1

M

∑M
i=1 L

(i)(w) the (full-batch) training loss,
which we optimize to find the best parameters.

Anti-PGD. Gradient descent (GD) iteratively optimizes
the loss L(w) by computing a sequence of weights
{wn}Nn=0 where wn+1 = wn − η∇L(wn) with step size
(a.k.a. learning rate) η > 0. Perturbed gradient descent
(PGD) simply adds an i.i.d. perturbation to each step, i.e.

wn+1 = wn − η∇L(wn) + ξn+1, (1)

where {ξn}Nn=0 is a set of centered i.i.d. random variables
with variance σ2I . Similarly, we define anticorrelated per-
turbed gradient descent (Anti-PGD) as

wn+1 = wn − η∇L(wn) + (ξn+1 − ξn). (2)

In other words, Anti-PGD replaces the i.i.d. perturbations
{ξn}Nn=0 in PGD (1) with their increments {ξn+1−ξn}N−1

n=0 .
The name Anti-PGD comes from the fact that consecutive
perturbations are anticorrelated:

E
[
(ξn+1 − ξn)(ξn − ξn−1)

⊤]
2σ2

(iid)
= −cov (ξ0)

2σ2
= −1

2
I.
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2.1. Regularization in Anti-PGD

While Anti-PGD (2) is defined as a modification of PGD (1),
it can alternatively be viewed as a regularization (smoothing)
of the loss landscape L. To see this, note that, after a change
of variables zn := wn − ξn, the Anti-PGD step becomes

zn+1 = zn − η∇L(zn + ξn). (3)

The corresponding loss L(·+ ξn) can, in expectation, be re-
garded as a convolved (or smoothed) version of the original
L. To see in which direction the gradients of this loss (and
thus Anti-PGD) are biased, we perform a Taylor expansion
of ∂iL(·) around zn:

zin+1 = zin − η∂iL(zn)− η
∑
j

∂2
ijL(zn)ξ

j
n

− η

2

∑
j,k

∂3
ijkL(zn)ξ

j
nξ

k
n︸ ︷︷ ︸

= η
2 ∂i

∑
jk ∂2

jkL(zn)ξ
j
nξkn

+O(η∥ξn∥3), (4)

where the term under the brace is due to Clairaut’s theorem
(assuming that L has continuous fourth-order partial deriva-
tives). By exploiting that ξn has mean zero and covariance
σ2I , we can express the conditional expectation of each step
as

E [zn+1|zn] = zn − η∇L̃(zn) +O
(
ηE[∥ξn∥3]

)
, (5)

where the modified loss L̃ is given by

L̃(z) := L(z) +
σ2

2
Tr(∇2L(z)), (6)

where Tr(A) denotes the trace of a square matrix A. (In
Appendix A, we also compute the conditional variance of
Anti-PGD.) The conditional mean, Eq. (5), highlights the
motivation for Anti-PGD: When expressed in terms of the
variable zn, Anti-PGD in expectation (modulo the impact
of the third moment of the noise) takes steps in the direction
of a loss which is regularized by adding the trace of the
Hessian. The higher the noise variance σ2, the stronger is
the influence of the (trace of the) Hessian on Anti-PGD.
This is related to how stochastic gradient noise smoothes
the loss in standard SGD (Kleinberg et al., 2018), with the
difference that, here, we inject artificial noise that explicitly
regularizes the trace of the Hessian. A discussion on the
smoothing literature is postponed to §2.4.

In the next theorem, we analyze the case where the noise
ξn follows a symmetric Bernoulli distribution. We find that,
indeed, Anti-PGD (on average) minimizes the regularized
loss L̃ – in the sense that the regularized gradient converges.
Theorem 2.1 (Convergence of the regularized gradients).
Let L : Rd → R be lower bounded with continuous fourth-
order partial derivatives and β-Lipschitz continuous third-
order partial derivatives, for some constant β > 0. Con-
sider the iterates {zn}N−1

n=0 computed by Anti-PGD as in

(3) with η ≤ 1/β, where for each n the noise coordinate
ξni follows a symmetric centered Bernoulli distribution with
variance σ2 (i.e., σ and −σ have probability 1/2). Let
ϵ > 0. If we set η = O(ϵ/σ3) and N = Θ(ϵ−1), then it
holds true that

E

[
1

N

N−1∑
n=0

∥∇L̃(zn)∥2
]
≤ ϵ. (7)

For a proof, see Appendix B. Now that we have seen how
exactly anticorrelated perturbations lead to a reduction of
the trace of the Hessian appearing in (6), we connect this
finding to previous work relating to regularizing by the trace
of the Hessian.

2.2. Connection with PAC-Bayes Bounds

PAC-Bayes bounds can be interpreted as bounds on the
average loss over a posterior distribution Q. These bounds
connect to the curvature of the loss through the concept
of expected sharpness. The following theorem makes this
connection precise.
Theorem 2.2 ((Neyshabur et al., 2017; Tsuzuku et al.,
2020)). Let Q(w|w∗) be any distribution over the parame-
ters, centered at the solution w∗ found by a gradient-based
method. For any non-negative real number λ, with proba-
bility at least 1− δ one has

Ltrue(Q(w|w∗)) ≤ L(w∗) +
λ

2M
+

1

λ
ln

(
1

δ

)
+ L(Q(w|w∗))− L(w∗)︸ ︷︷ ︸

expected sharpness

+
1

λ
KL[Q(w|w∗)||P (w)],

where Ltrue is the generalization loss; L(Q) :=
Ew∼QL(w) and Ltrue(Q) := Ew∼QLtrue(w); P is a dis-
tribution over parameters; and KL denotes the Kullback-
Leibler divergence.

For a proof, see Tsuzuku et al. (2020). In the setting of
this theorem, by picking Q to be Gaussian with variance
s2, one obtains the following approximation of the expected
sharpness

L(Q(w|w∗), w∗)− L(w∗) ≈ s2

2
Tr(∇2L(w∗)). (8)

Thus, by minimizing the trace of the Hessian, Anti-PGD
is expected to also reduce the PAC-Bayes bound from
Thm. 2.2. In fact, the reasoning behind the bound in
Thm. 2.2 has motivated researchers to find an explicit link
between stochastic gradient noise and the trace of the Hes-
sian at the solution found by SGD. Empirically, these quan-
tities have a high correlation in many settings (Yao et al.,
2020; Smith et al., 2021): usually, the lower the trace (i.e.,
the flatter the minima), the higher is the test accuracy.Similar
bounds involving the trace of the Hessian are also discussed
by (Dziugaite & Roy, 2018; Wang et al., 2018).
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Figure 3. Left: Illustration of the widening valley loss L, Eq. (10). A valley of minima with loss L(u, v) = 0 for all (u, v) with v = 0;
the smaller ∥u∥, the flatter the minimum. GD gets stuck where it first touches this valley. PGD diverges to sharp regions (with high ∥u∥).
Anti-PGD converges to a flat minimum (with small ∥u∥). Right: Simulation of the considered algorithms on the widening valley. After
convergence of GD (black star), we start injecting uncorrelated and anticorrelated noise. We choose η = 0.01, and σ = 0.005 – yet the
findings generalize to all sets of stable parameters. The observed behavior is supported by Thm. 3.1. The plot looks similar for both
Gaussian and Bernoulli noise injection.

2.3. Comparison with Label Noise

Instead of perturbing w as in PGD, label-noise meth-
ods perturb the label y(i) of the data. If we denote
fw(x) as the output of our model for input x, the
label-noise update in the full-batch setting with squared
loss is wn+1 = wn − η∇L̄(wn), with L̄(w) =
1
2

∑M
i=1

[
fw(x

(i))− y(i) + ξn+1

]2
, for a set of random per-

turbations {ξn}Nn=0. It is instructive to compare the label-
noise loss L̄ with the Anti-PGD loss L(·+ ξn) from Eq. (3).
The above formula gives the gradient as

∇L̄(w) = ∇L(w) +

M∑
i=1

∇fw(x
(i))ξn+1. (9)

Hence, while label noise was observed to yield an improve-
ment in terms of generalization (Blanc et al., 2020; HaoChen
et al., 2021; Damian et al., 2021), its effect (in general) is
highly dependent on the model and on the data. Instead, the
noise injection we propose is both data and model indepen-
dent, as can be seen from the regularization in Eq. (5).

2.4. Connection to Smoothing

Eq. (6) shows that Anti-PGD amounts to optimizing a regu-
larized loss, which we can also interpret as a smoothing of
the original objective function. Smoothing is of course not a
new concept in the field of optimization as it is often used to
regularize non-differentiable functions in order to compute
approximate derivatives (Nesterov & Spokoiny, 2017), or
to obtain faster rates of convergence (Lin et al., 2018).

In the context of deep learning, noise injection (or even
stochastic gradient noise) is often linked to smoothing
(Kleinberg et al., 2018; Stich & Harshvardhan, 2021; Bisla
et al., 2022). As we saw in Eq. (3), anticorrelated noise
injection is equivalent to smoothing after a change of vari-
ables – this property was crucial in deriving the trace regular-

izer. We are not aware of any similar explicit regularization
result in the smoothing literature (most work focuses on
the resulting landscape properties and convergence guar-
antees). Even though Anti-PGD is linked to smoothing, it
is much more convenient to analyze: ∇f(x + ξ) follows
a data-dependent distribution that is complex to character-
ize. Instead, in Anti-PGD, the smoothing effect comes from
adding — this is a linear operation — anticorrelated random
variables. This is very convenient and will be leveraged in
the proof for the next result, Thm. 3.1.

3. Convergence in Widening Valleys
We have seen above that Anti-PGD acts as a regularizer on
the trace of the Hessian. In this section, we will analyze the
dynamics of Anti-PGD in more detail on the “widening val-
ley” – the simplest possible loss landscape with a changing
trace of the Hessian. In the following subsections, we will
introduce this model (§3.1), demonstrate with experiments
that Anti-PGD successfully finds flat minima in this model
(§3.2), prove this behaviour theoretically (§3.3), and explain
how the widening valley relates to more realistic problems
like sparse regression (§3.4).

3.1. The Widening Valley Landscape

The widening valley is defined as the loss function

L(u, v) = 1
2v

2∥u∥2, (10)

where ∥ · ∥ is the Euclidean norm, v ∈ R, and u ∈ Rd; see
Fig. 3. The gradient and Hessian of L are given by

∇L(u, v) =

[
v2 · u
∥u∥2v

]
, ∇2L(u, v) =

[
v2Id 2vu
2vu⊤ ∥u∥

]
.

(11)
The trace of the Hessian is thus

Tr(∇2L(u, v)) = dv2 + ∥u∥2. (12)
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We consider L as a suitable problem to analyze the dynamics
of GD and Anti-PGD as it has a relatively simple structure
consisting of a valley of minima with monotonously chang-
ing flatness (as measured by the trace of the Hessian): All
(u, v) with v = 0 are minima, but we also require ∥u∥ to be
minimized as well to get a small trace of the Hessian.

The widening valley can also be seen as a simplified local
model of the landscape close to a minimizer. Indeed, Draxler
et al. (2018) showed that minimizers in neural networks are
often connected by a path where the loss is exactly zero: no
jumping is required for an optimizer to gradually increase
the solution flatness. While these valleys are not straight in
general and the flatness might not change monotonously, our
straight valley (10) with monotonously changing flatness
serves as a first simplified model. We will link it to a more
realistic regression problem in §3.4.

3.2. Empirical Demonstration

When optimizing the widening valley (10), GD will get
stuck in any of the global minima (u, v = 0), regardless
of their flatness. In particular, if the dimension d ≫ 1, the
path of GD will be biased towards making v small and not
optimizing u (since the direction along v is the most curved).
As a result, the final Hessian trace will be ∥u0∥2. Improving
this by injecting noise is challenging: when adding stochas-
tic perturbations, one has to balance perturbing v away from
zero – to get a gradient (11) to reduce ∥u∥ – while prevent-
ing ∥u∥ from growing too much.

We find empirically that Anti-PGD succeeds to do this and
moves to flat parts of the valley, while PGD does not; see
Fig. 3. This means that Anti-PGD converges to flat parts
of the valley, while PGD diverges to sharper regions; see
Fig. 4.

3.3. Theoretical Analysis

The following theorem proves what we empirically demon-
strated in the preceding section.

Theorem 3.1 (Widening Valley). Let L : Rd+1 → R be the
widening valley loss from Eq. (10). We start optimizing from
a point w0 = (u0, 0), where ∥u0∥2 = D ≫ 1 (e.g. the solu-
tion found by gradient descent), around which we consider
the domain Dα := {(u, v) ∈ Rd+1 : ∥u∥2 ∈ (αD,D/α)}
for some fixed α ∈ (0, 1). We want to compare the long-
term stochastic dynamics of PGD and Anti-PGD, as defined
in Eqs. (1) and (2), in terms of where they exit Dα. As a
noise model, we assume that the i.i.d. perturbations ξn are
distributed according to a symmetric centered Bernoulli dis-
tribution (i.e., σ and −σ have probability 1/2) whose vari-

ance σ2 is upper bounded by σ2 ∈
(
0,min

{
α3D
2 , D

8α

}]
.

As a step size, we set η = α
2D which, for both methods, leads

to stable dynamics inside of Dα. We find that (on average)
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Figure 4. Numerical illustration and verification of Thm. 3.1. Per-
formance of PGD (left) and Anti-PGD (right) on the widening
valley in Eq. (10). The setting and the notation is as described
in Thm. 3.1, and the simulation confirms the result: that is, Anti-
PGD effectively decreases ∥u∥2 below αD, where for this plot
we consider α = 0.25, η = α/D and d = 100. Instead, the high
problem dimensionality d ≥ 2/α2 = 32 induces an increase in
∥u∥2 for standard PGD, which gets bigger than D/α.

PGD and Anti-PGD exit through different sides of Dα:

1. In high dimensions, PGD diverges away from zero. If
d ≥ 2

α2 , then it holds for any admissible σ2 that

lim
n→∞

E
[
∥un∥2

]
≥ D/α, (13)

where un are the first d coordinates of wn computed
by PGD as in (1).

2. Independent of dimensions, Anti-PGD goes to zero.
For any d ∈ N, if we choose any admissible σ2 such
that σ2 ≤ αD

2d , then

lim
n→∞

E
[
∥un∥2

]
≤ αD, (14)

where un are the first d coordinates of wn, computed
by Anti-PGD as in (2).

As expected, this theorem implies that, as n → ∞, Anti-
PGD reduces the trace of Hessian while PGD increases it.
For a proof, see Appendix C.

Corollary 3.1 (The trace of the Hessian in the widening
valley). In the same setting as Thm. 3.1, let η = α

2D , σ2 ∈(
0,min

{
α3D
2 , D

8α ,
αD
2d

}]
and d ≥ 2

α2 . If α ≪ 1, then

lim
n→∞

E[Tr(∇2L(wanti
n )))] ≤ 16αD ≪ E[Tr(∇2L(w0)))]

lim
n→∞

E[Tr(∇2L(wun
n )))] ≥ D/α ≫ E[Tr(∇2L(w0)))],

where wun
n = (un, vn) and wanti

n = (un, vn) are the weights
computed by Anti-PGD and PGD respectively.
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Figure 5. Pictorial illustration of the network (linear activations,
one hidden unit) we study in §3.4. The associated loss function,
Eq. (18), has striking similarities to the widening valley, Eq. (10).

3.4. Relation to Linear Networks with One Hidden Unit

In this section, we explain how widening valleys, similar
to our model (10), might appear in more realistic learn-
ing problems. To this end, consider sparse regression with
M input-output pairs {(xi, yi)}Mi=1, where xi ∈ Rm+d,
d,m > 1, and yi ∈ R for all i ∈ [M ]. To induce sparseness,
we consider the setting where only the first m features of
each xi, i.e., (xi

1, x
i
2, . . . , x

i
m) are relevant predictors, while

the other features (xi
m+1, x

i
m+2, . . . , x

i
m+d) are uncorre-

lated from the target. Further, we assume that the input has
isotropic standardised distribution. As predictor, we con-
sider a neural network with one hidden neuron and standard
square loss

L(u, v) =
1

2M

M∑
i=1

(
yi − v · u⊤xi

)2
. (15)

Such a loss is highly non-convex, due to the non-linear
interaction between v and u. By expanding the square, we
obtain

2L(u, v) = Ei[(y
i)2]− 2v · u⊤E[yixi] + v2Ei[(u

⊤xi)2].

We can drop the first term since it is irrelevant for optimiza-
tion. Further, the last term can be written as

v2Ei[(u
⊤xi)2] = v2Ei[Tr(u

⊤xi(xi)⊤u)]. (16)

Using the cyclic property of the trace and the assumption
Ei[x

i(xi)⊤] = I , we get

v2Ei[(u
⊤x)2] = v2 Tr(uu⊤) = v2∥u∥2. (17)

Therefore, we obtain L(u, v) = 1
2v

2∥u∥2 − 2v · u⊤E[yixi].
We now use the sparseness assumption: since the features
(xi

m+1, x
i
m+2, . . . , x

i
m+d) are uncorrelated from the target,

we have

L(u, v) =
1

2
v2∥u∥2 − 2v · u⊤

1:mE[yixi
1:m]. (18)

This loss (18) is very similar to the widening valley (10):
For good generalization, the weights relative to the spuri-
ous coordinates (um+1, um+2, . . . , um+d) have to be set to
zero. Unfortunately, the solution of gradient descent (with-
out further regularization), in general does not have this

property (see §3.2). This fact motivates us to look at the dy-
namics in the space (um+1, um+2, . . . , um+d, v), ignoring
the dynamics on the space (u1, u2, . . . , um). In the spuri-
ous subspace of the parameter space, the last term in the
last equation is a constant, and therefore the effective loss
becomes L(u, v) = 1

2v
2∥u∥2, where u ∈ Rd denotes the

vector (um+1, . . . , um+d).

4. Additional Experiments and Details
We demonstrated the validity of our theoretical findings
in Fig. 2 by showcasing the performance of Anti-PGD on
the three different problems (see the next three paragraphs).
Finally, in another experiment on CIFAR 10, we will show
that Anti-PGD can recover from a sharp minimum.

Quadratically-parametrized linear regression. For a
data matrix X ∈ Rn×d (d = 100, n = 40) and targets
y ∈ Rd, this loss is L(w) = 1

4n∥X(w ⊙ w) − y∥2, where
⊙ denotes the element-wise product. While the expressive
power of the underlying model is limited, it has a few inter-
esting features which make it a compelling case study (see
discussion by HaoChen et al. (2021)). First, note that the
nonlinear parametrization makes the loss non-convex: to
see this simply note that changing the sign in any weight
does not change the loss. Furthermore, inspecting the Hes-
sian (see §D.2) one can easily see that minima with different
curvature exist. On this problem, Anti-PGD (with Gaussian
perturbations) is able to find a flat minimum; a pictorial
illustration of the corresponding dynamics can be found
in Fig. 1. In §D.2 we show that this good performance is
robust to different choices of hyperparameters: we found no
setting where well-tuned PGD (with Gaussian perturbations)
outperforms Anti-PGD.

Matrix sensing. The corresponding loss function has
some similarities with quadratically-parametrized linear re-
gression, and was considered by Blanc et al. (2020) to study
label noise. All the findings of the above paragraph hold
true in this setting as well. Details on the experimental setup
and hyperparameter tuning can be found in §D.3.

CIFAR10 on ResNet 18. We consider training a
ResNet18-like architecture (He et al., 2016) with batch nor-
malization. Architecture details are provided in §D.4. The
performance on this network greatly depends on careful
hyperparameter tuning, algorithmic choices (e.g., adaptive
step sizes), schedulers, etc. Here, to keep things simple, we
train with a simple SGD optimizer (with momentum 0.9),
and select a learning rate of 0.05. To approximate full-batch
gradient descent we use a very large batch size of 7500 sam-
ples (i.e. until saturation of 5 GPUs). To isolate the effect of
noise injection, without mixing it with mini-batch noise, we
also run PGD and Anti-PGD (with Gaussian perturbations)
in this high batch regime (1/7 of the dataset). For SGD,
we instead select a batch size of 128, and keep the learning
rate at 0.05. For convergence of the test accuracy and the
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Figure 6. Anti-PGD, PGD and GD on CIFAR 10, using a ResNet18-like architecture (details and further plots in the Appendix). Mean
and one standard deviation are plotted. We train all algorithms with a step size of 0.05, which leads to fast convergence of both GD and
SGD (batch size 128) in 70 iteration. Compared to Fig. 1, we start the noise injection at epoch 75. Results are discussed in the main text.

Hessian trace, it is convenient to kill the noise injection
after 250 epochs – so that the optimizer converges to the
nearest minimum. Again, we see that (compared with PGD)
Anti-PGD find a flatter minimum that generalizes better.
Crucially, we show in Appendix §D.4 that – as in the prob-
lems above – no tuning of σ (noise injection level) can help
PGD to reach the generalization performance of Anti-PGD.
This is confirmed by the results in the next paragraph.

Recovering from a sharp minimum. In this experiment,
we keep the parameter settings as in the last paragraph, but
instead consider injecting noise only after 75 epochs – i.e.,
after convergence of full-batch gradient descent. As a re-
sult, Anti-PGD and PGD are trapped in the minimum found
by GD, until noise injection starts. The behavior we ob-
serve (Fig. 6) after noise injection resembles our widening
valley model in Fig. 3: noise injection makes the dynamics
suddenly unstable, and we observe several points during
training where the algorithm is (probably) switching be-
tween minima. Note that this behavior is very different from
the one observed in Fig. 2, where we start noise injection
from the very beginning – and then kill the noise injection
at the end. In contrast, we here do the reverse: we first
initialize at a bad minimum and then inject noise to recover.
We observe that Anti-PGD is able to recover from the bad
initialization much better than PGD. Interestingly, while
stopping noise injection at the end of training was needed
for good accuracy in Fig. 2, here no such step is needed for
Anti-PGD to get an accuracy close to SGD (i.e., we directly
recover from a bad minimum). We postulate that this differ-
ence comes from the different landscape properties when
(a) close to initialization or (b) close to a local minimizer.
For the last two experiments, we provide further plots (e.g.
test-train loss) in Appendix D.4. In summary, we found that
Anti-PGD reliably finds flat minima that generalize well – as
predicted by the theory in §2 and §3.

Anti-SGD. In the appendix, we show that a combination
of mini-batch noise and anti-correlated noise is able to fur-
ther improve on the performance (see Fig. 17).

5. Conclusion and Future Work
Motivated by recent findings on the correlation of the flat-
ness of minima with their generalization performance, we
demonstrated that anticorrelated noise injection can improve
the generalization of machine learning models – by biasing
the optimization toward flatter minima. To this end, we
replaced the i.i.d. perturbations in perturbed gradient de-
scent with anticorrelated ones. We proved that the resulting
method Anti-PGD regularizes the trace of the Hessian, a
common measure of flatness. In order to provide further
theoretical justification, we introduced the widening val-
ley model and proved that Anti-PGD converges to the flat
part of the valley – while GD and standard PGD remain
in sharper regions. In realistic experiments with real data
(e.g. CIFAR 10), we likewise observed that Anti-PGD con-
verges to flat minima that generalize well (compared with
GD and standard PGD).

These discoveries lead us to hypothesize that anticorre-
lated noise can improve the generalization performance of
a model – which opens up several directions to investigate.
First of all, the range from uncorrelated to anticorrelated
perturbations should be explored further, and combined with
different noise distributions. Since uncorrelated noise can
help to quickly exit saddle points (Jin et al., 2021), a com-
promise (or adaptive schedule) between uncorrelated and
anticorrelated might be beneficial.

Moreover, it seems worthwhile to explore the implications
of our findings for standard SGD. Unlike common noise
injection techniques, the noise of SGD is data-dependent
and its magnitude is determined by the ratio of step size
and batch size. One could, however, modify the selection of
the batches to (negatively) correlate the stochastic gradient
noise of subsequent steps. One could also add anticorrelated
noise on top of the existing noise in SGD, or inject it only
after the test loss of SGD (or another optimizer) plateaus.
Both theoretical and empirical results are likely to provide
novel insights about the importance of noise in optimization.
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A. Computation of Conditional Variance
We know from Eq. (5) that the conditional mean of an Anti-PGD step is

E [zn+1|zn] = zn − η∇L̃(zn) +O
(
ηE[∥ξn∥3]

)
, (19)

where the modified loss L̃ is given by

L̃(z) := L(z) +
σ2

2
Tr(∇2L(z)). (20)

This stands in contrast to a standard PGD step (Eq. (1)) whose conditional mean coincides with gradient descent (i.e. includes
no implicit bias):

E [wn+1|wn] = wn − η∇L(wn). (21)

In this section, we additionally compute the conditional variance of Anti-PGD and PGD. We start with PGD. There, we
obtain by a second-order Taylor expansion of ∂iL(·) around zn in Eq. (1) that

wi
n+1 = wi

n − η∂iL(wn)− η
∑
j=1

∂2
ijL(wn)−

η

2
∂i

∑
j,k

∂2
j,kL(wn) + ξin+1. (22)

Hence, the conditional variance for PGD is simply

var
[
w

(i)
n+1|wn

]
= var

[
ξin+1

]
= σ2. (23)

For Anti-PGD on the other hand, we compute

var
[
z
(i)
n+1|zn

]
Eq. (4)
= E

[[
η∂iL(zn) + η

∑
j

∂2
ijL(zn)ξ

j
n +

η

2

∑
j,k

∂3
ijkL(zn)ξ

j
nξ

k
n +O(η∥ξn∥3)

]2
|zn

]

= η2[∂iL(zn)]
2 + η2σ2

d∑
j=1

[∂2
ijL(zn)]

2 +
η2σ4

4

∑
j ̸=k

∂3
ijkL(zn) +

η2

4

d∑
j=1

∂ijjL(zn)E[(ξjn)4]

+
η2σ4

4

∑
j ̸=k

[∂ijjL(zn)] · [∂ikkL(zn)] + η2O(E[∥ξn∥6])

+ 2

[(
0 + 0 +

η2σ2

2

d∑
j=1

∂ijjL(zn) + η2∂iL(zn)O(E[∥ξn∥3])
)
+

(
0 + 0 + 0 + 0

)
+

(
0 + 0

)

+
η2σ2

2

 d∑
j=1

∂ijjL(zn)

O(E[∥ξn∥3])

]

By rearranging the summands, we obtain

var
[
z
(i)
n+1|zn

]
=

η2[∂iL(zn)]
2 + η2σ2

d∑
j=1

[∂2
ijL(zn)]

2 +
η2σ4

4

∑
j ̸=k

(
∂3
ijkL(zn) + [∂ijjL(zn)] · [∂ikkL(zn)]

)
+ η2σ2

d∑
j=1

∂ijjL(zn)

+

1

2
∂iL(zn) +

σ2

2

d∑
j=1

∂ijjL(zn)

O(E[η2∥ξn∥3]) +

1

4

d∑
j=1

∂ijjL(zn)

O(E[η2∥ξn∥4]) +O(η2E[∥ξn∥6]). (24)

The above expression is the asymptotic (second order) expansion of the conditional variance of Anti-PGD, as σ → 0. It
consists of two parts: Its first line contains summands which come from the first two moments of the distribution of ξ. Its
second line contains the summands from the third, fourth, and sixth moment of the distribution of ξ. The precise size of the
conditional variance will therefore depend on the first six moments of the noise distribution. Without assuming more on the
noise distribution, it is thus difficult to make further statements about the conditional variance. By eyeballing Eq. (24), it
however seems likely that this variance is larger than the one from PGD; cf. (23).
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B. Proof of Theorem 2.1
Theorem 2.1 (Convergence of the regularized gradients). Let L : Rd → R be lower bounded with continuous fourth-order
partial derivatives and β-Lipschitz continuous third-order partial derivatives, for some constant β > 0. Consider the
iterates {zn}N−1

n=0 computed by Anti-PGD as in (3) with η ≤ 1/β, where for each n the noise coordinate ξni follows a
symmetric centered Bernoulli distribution with variance σ2 (i.e., σ and −σ have probability 1/2). Let ϵ > 0. If we set
η = O(ϵ/σ3) and N = Θ(ϵ−1), then it holds true that

E

[
1

N

N−1∑
n=0

∥∇L̃(zn)∥2
]
≤ ϵ. (7)

Proof. First, we observe that Eq. (4) implies – in the considered case of Bernoulli perturbations ξn with (ξni )
2 = σ2

a.s. – that

zin+1 − zin = − ∂iηL(zn)− ∂iη
σ2

2

∑
j

∂2
jjL(zn)︸ ︷︷ ︸

=η∂iL̃(zn) (Regularized Gradient)

− η
∑
j

∂2
ijL(zn)ξ

j
n − η

2
∂i

∑
j ̸=k

∂2
jkL(zn)ξ

j
nξ

k
n︸ ︷︷ ︸

Mean-zero Perturbation

+ O(ησ3)︸ ︷︷ ︸
Expansion error (small)

.

(25)
Since we assumed that L has β-Lipschitz continuous third-order partial derivatives, Theorem 2.1.5 from Nesterov (2018)
implies that L̃ is β-smooth. Hence, we have

L̃(zn+1) ≤ L̃(zn) + ⟨∇L̃(zn), zn+1 − zn⟩+
β

2
∥zn+1 − zn∥2

(25)
= L̃(zn)− η⟨∇L̃(zn),∇L̃(zn) +B(zn)⊙ ξn +O(σ3)⟩+ βη2

2
∥∇L̃(zn) +B(zn)⊙ ξn +O(σ3)∥2,

for some tensor B which captures all summands from the mean-zero perturbation of Eq. (25). Taking the expectation, most
of the terms cancel out and we get

E[L̃(zn+1)] ≤ E[L̃(zn)]−
(
η − βη2

2

)
E[∥∇L̃(zn)∥2] +O(η2σ2) +O(ησ3). (26)

Using the assumption η ≤ 1
β , this implies

E[∥∇L̃(zn)∥2] ≤ 2βE[L̃(zn)]− 2βE[L̃(zn+1)] +O(η2σ2) +O(ησ3). (27)

From this it follows that

E

[
1

N

N−1∑
n=0

∥∇L̃(zn)∥2
]
≤ β[L̃(z0)− EL̃(zN )]

N
+O(η2σ2) +O(ησ3) (28)

= O(N−1) +O(η2σ2) +O(ησ3) (29)

Note that L̃(zN ) ≥ L̃∗ = minz L̃(z) > −∞. This is because L is lower bounded and also tr(∇2L) is lower bounded
since we assumed L has Lipschitz gradients. Finally, exploiting the assumed η = O(ϵ/σ3) and N = Θ(ϵ−1) concludes the
proof.

C. Proof of Theorem 3.1
To proof Theorem 3.1, we first need some preliminary preparation; in doing so, we will also provide some intuition for the
reader. The main proof follows afterwards, in §C.2.

Consider the problem of minimizing the cost function

L(u, v) =
1

2
v2∥u∥2, (30)
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where ∥ · ∥ is the Euclidean norm, v ∈ R, and u ∈ Rd. To minimize the loss, we use perturbed gradient descent (PGD), with
noise injection. Note that any point where v = 0 or ∥u∥2 = 0 minimizes the loss. By the considerations in the section above,
we want to find a solution (u, v) where ∥u∥ is small (i.e. a solution with low curvature). We show that, while standard
noise injection does not necessarily induce this bias on the dynamics, injection of anticorrelated noise does. This show that
anticorrelated noise effectively minimizes the trace of the Hessian:

Tr(∇2L(u, v)) = dv2 + ∥u∥2. (31)

Preliminary considerations. Let us start by writing down the update in discrete-time. Recall that the gradient is
(v2u, ∥u∥2v), hence:

uk+1 = (1− ηv2k) · uk + εuk (32)

vk+1 = (1− η∥uk∥2) · vk + εvk (33)

where εuk ∈ Rd and εvk ∈ R are the noise variables.

1. For stability (in the noiseless setting), we need η ≤ 2
max{v2

k,∥uk∥2} .

2. Starting from a big ∥u∥ and any v, under noiseless GD, since d ≫ 1, we converge to (u0, 0), with ∥u0∥ := D ≫ 1

The key to the proof of effectiveness of anticorrelated noise, compared to uncorrelated noise, relies on the following
observation:

Empirical Observation: for the widening valley L(u, v) = 1
2v

2∥u∥2, if we only perturb the v coordinate with any noise
then we get to a wide minimum.

Why? Intuition behind the proof. Well, of course this is the case! If one knows is advance which direction to move in
order to pick up a signal, then les jeux sont faits. The problem is that in order to perturb this direction — we need to perturb
all directions, and this leads to “getting lost” if the noise is not controlled (i.e. does not have an attraction force to the
origin). This also motivates why the effect gets more intense as the dimension d increases: there is a lot of bias added,
which drives us away from good minima.

Plan: To show the result, we follow the following procedure:

1. Starting from (u0, 0), we start injecting noise and want to reach (ũ, ṽ) such that ∥ũ∥2 = αD and 0 < α < 1. We want
to show here a difference in behavior under different noise correlation.

2. We proceed by contradiction: starting from (ũ, ṽ), we assume that ∥uk∥2 ≥ αD for all k ≥ 0 (α ∈ (0, 1)). Under
injection of anticorrelated noise, we show that this leads to a contradiction — i.e. that the dynamics substantially
decreases the trace of the Hessian: ∥u∞∥2 < αD (worst-case upper bound). Crucially, we also show that the hypothesis
does not lead to any contradiction under standard noise injection — i.e. without anticorrelation we do not significantly
decrease the trace of the Hessian. More specifically, we show that limn→∞ E

[
∥un∥2

]
≥ D/α under uncorrelated

noise injection (worst-case lower bound).

3. To simplify the computations, assume that coordinate-wise the noise is a result of a Bernoulli(1/2) perturbation
(ξk)i ∈ {−σ, σ}. The injected noise is then either εk = ξk or εk = ξk − ξk−1, for PGD and Anti-PGD respectively.

C.1. Some Useful Lemmata

This section is pretty technical, hence the reader can skip the proof on a first read. The meaning behind the bounds we derive
and a numerical verification can be found in Figure 7.

We start by recalling the variation of constants formula, which we will heavily use along the proof. We also extend this to
the anticorrelated setting.



Anticorrelated Noise Injection for Improved Generalization

Lemma C.1 (Variations of constants formula). Let w ∈ Rd evolve with time-varying linear dynamics wk+1 = Akwk + εk,
where Ak ∈ Rd×d and εk ∈ Rd for all k. Then, with the convention that

∏k
j=k+1 Aj = 1,

wk+1 =

 k∏
j=0

Aj

w0 +

k∑
i=0

 k∏
j=i+1

Aj

 εi. (34)

Proof. For k = 1 we get w1 = A0w0 + ε0. The induction step yields

wk+1 = Ak

k−1∏
j=0

Aj

w0 +

k−1∑
i=0

 k−1∏
j=i+1

Aj

 εi

+ εk. (35)

=

 k∏
j=0

Aj

w0 +

k−1∑
i=0

Ak

 k−1∏
j=i+1

Aj

 εi + εk. (36)

=

 k∏
j=0

Aj

w0 +

k−1∑
i=0

 k∏
j=i+1

Aj

 εi +

 k∏
j=k+1

Aj

 εk. (37)

=

 k∏
j=0

Aj

w0 +

k∑
i=0

 k∏
j=i+1

Aj

 εi. (38)

This completes the proof of the variations of constants formula.

We extend this formula to the anticorrelated case, where εk has some additional structure.

Corollary C.2 (Anticorrelated variations of constants formula). Under the same setting of Lemma C.1, if there exist a family
of vectors {ξk} such that ε0 = ξ0 and εk = ξk − ξk−1, then

wk+1 =

 k∏
j=0

Aj

w0 + ξk +

k−1∑
i=0

(Ai+1 − I)

 k∏
j=i+2

Aj

 ξi. (39)

Proof. We have, by direct computation:

wk+1 =

 k∏
j=0

Aj

w0 +

 k∏
j=1

Aj

 ξ0 +

k∑
i=1

 k∏
j=i+1

Aj

 ξi −
k∑

i=1

 k∏
j=i+1

Aj

 ξi−1 (40)

=

 k∏
j=0

Aj

w0 +

 k∏
j=1

Aj

 ξ0 +

k−1∑
i=1

 k∏
j=i+1

Aj

 ξi + ξk −
k−1∑
i=0

 k∏
j=i+2

Aj

 ξi (41)

=

 k∏
j=0

Aj

w0 + ξk +

k−1∑
i=0

 k∏
j=i+1

Aj

 ξi −
k−1∑
i=0

 k∏
j=i+2

Aj

 ξi (42)

=

 k∏
j=0

Aj

w0 + ξk +

k−1∑
i=0

 k∏
j=i+1

Aj

−

 k∏
j=i+2

Aj

 ξi. (43)

Remark C.3. If Ai = I for all i, then the last summand is zero. This showcases the effect of anticorrelation: noise
cancellation under noise accumulation.
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C.1.1. EXPECTATION QUANTITIES UNDER DETERMINISTIC ρk

Using the variation of constants formula, we can write the dynamics of the second moment of stochastic linear time-varying
dynamical systems, with either standard or anticorrelated noise.

Proposition C.4 (An Itô-like formula). Let w ∈ Rd evolve with time-varying linear dynamics wk+1 = Akwk + εk, where
Ak ∈ Rd×d and εk ∈ Rd for all k. Let {ξk} be a family of uncorrelated zero-mean d-dimensional random variables with
variance E[∥ξk∥2] = dσ2 (dependency on the dimension because additivity of squared norm). Consider ε0 = ξ0 and
εk = ξk − ξk−1 for all k ≥ 1. Further, assume that Ak = ρkI for all k (i.e. Ak is a multiple of the identity), with ρk ∈ R a
deterministic quantity. Then, with the convention that

∏k
j=k+1 Aj = 1, we have

E[∥wk+1∥2] =

 k∏
j=0

ρ2j

 ∥w0∥2 +

1 +

k−1∑
i=0

(1− ρi+1)
2

k∏
j=i+2

ρ2j

 dσ2. (44)

Instead, if εk = ξk for all k (standard noise injection) we have

E[∥wk+1∥2] =

 k∏
j=0

ρ2j

 ∥w0∥2 +
k∑

i=0

 k∏
j=i+1

ρ2j

 dσ2. (45)

Proof. Using independence of the {ξk} family, we obtain for the anticorrelated case:

E[w⊤
k+1wk+1] =

 k∏
j=0

ρj

2

∥w0∥2 + E[∥ξk∥2] +
k−1∑
i=0

(ρi+1 − 1)2

 k∏
j=i+2

ρj

2

E[∥ξi∥2] (46)

=

 k∏
j=0

ρj

2

∥w0∥2 + σ2 +

k−1∑
i=0

(ρi+1 − 1)2

 k∏
j=i+2

ρ2j

σ2, (47)

where we used the fact that the ξk are not correlated. The case εk = ξk is similar and therefore left to the reader.

Corollary C.5. In the setting of Proposition C.4, assume ρj = ρ ∈ (0, 1) is constant for all j. If ε0 = ξ0 and εk = ξk−ξk−1

for all k ≥ 1 then

E[∥wk+1∥2] = ρ2(k+1)∥w0∥2 +
(
1 +

(1− ρ)2(1− ρ2(k+1))

1− ρ2

)
dσ2 ∞−→ 2

1 + ρ
dσ2. (48)

Instead, if εk = ξk for all k (standard noise injection) we have

E[∥wk+1∥2] = ρ2(k+1)∥w0∥2 +
1− ρ2(k+1)

1− ρ2
dσ2 ∞−→ 1

1− ρ2
dσ2. (49)

Proof. Simple application of the formula for geometric series. Numerical verification in Figure 7.

Remark C.6. Note that the corollary has a clear interpretation: if ρ is between zero and one, we experience striking difference
between uncorrelated and anticorrelated noise. If ρ increases, the total accumulated anticorrelated noise decreases.1 This
trend is reversed for normal noise injection: as ρ → 1 the total accumulated variance explodes. Numerical verification can
be found in Figure 7.

1 2
1+ρ

is a decreasing function or ρ, while 1/(1− ρ2) is increasing.
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Figure 7. Numerical verification of our final result that we will use in the proof, i.e. Corollary C.5 (first and second panel) and
Proposition C.7 (last panel). The dashed lines indicate our predicted value (in expectation) by the theory. In the right-most plot, we sample
ρk at each iteration uniformly on an interval.

C.1.2. DEALING WITH POTENTIAL STOCHASTICITY IN THE ρk

For the proof in the next subsection, we need to deal with stochastic ρk, which are only specified up to an interval.
Proposition C.7 (Limit bound on second moment for anticorrelated noise). Let w ∈ Rd evolve with time-varying linear
dynamics wk+1 = Akwk + εk, where Ak ∈ Rd×d and εk ∈ Rd for all k. Let {ξk} be a family of uncorrelated zero-mean
d-dimensional random variables with variance E[∥ξk∥2] = dσ2 (dependency on the dimension because additivity of squared
norm). Consider ε0 = ξ0 and εk = ξk − ξk−1 for all k ≥ 1. Further, assume that Ak = ρkI for all k (i.e. Ak is a multiple
of the identity) and that ρk ∈ [0, 1] for all k. Assume that the probability of ρk < 1 is non-zero, i.e. that ρk ̸= 1 with
non-vanishing probability. Then, we have

lim
k→∞

E[∥wk+1∥2] ≤ 2dσ2. (50)

Proof. The proof is based on an induction argument, starting from the equation in Proposition C.4:

E[∥wk+1∥2] =

 k∏
j=0

ρ2j

 ∥w0∥2 +

1 +

k−1∑
i=0

(1− ρi+1)
2

k∏
j=i+2

ρ2j

 dσ2. (51)

First, note that by assumption on ρk the first term vanishes as k → ∞. We just have to deal with the second term. Specifically,
we want to show that for whatever sequence ρk ∈ (0, 1) we have

νk =

k−1∑
i=0

(1− ρi+1)
2

 k∏
j=i+2

ρ2j

 ≤ 1, ∀k ≥ 0. (52)

A fundamental observation, is that the term can be written in a recursive form. Indeed,

νk =

k−1∑
i=0

(1− ρi+1)
2

 k∏
j=i+2

ρ2j

 (53)

=

k−2∑
i=0

(1− ρi+1)
2

 k∏
j=i+2

ρ2j

+ (1− ρk)
2 (54)

= ρk

k−2∑
i=0

(1− ρi+1)
2

 k−1∏
j=i+2

ρ2j

+ (1− ρk)
2 (55)

= ρ2kνk−1 + (1− ρk)
2, (56)

where the second equality follows from the fact that, as previously noted, our notation implies
∏k

j=k+1 ρ
2
k = 1, for all k.

Let us now proceed again by induction to show that vk ∈ (0, 1) for all k ≥ 0. Note that trivially v0 = 0. Let’s proceed with
the inductive step:

νk = ρ2kνk−1 + (1− ρk)
2 = (νk−1 + 1)ρ2k − 2ρk + 1. (57)
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This quantity is less then one if and only if
(νk−1 + 1)ρ2k ≤ 2ρk. (58)

Note that this is satisfied since νk−1 + 1 ≤ 2, and ρ2k ≤ ρk since ρk ∈ (0, 1). The result follows.

A numerical verification of this result can be found in Figure 7.

C.2. Proof of the Main Result

Using the results from the last subsection, we are now ready to show the main theorem for optimization of the widening
valley under noise injection.
Theorem 3.1 (Widening Valley). Let L : Rd+1 → R be the widening valley loss from Eq. (10). We start optimizing from
a point w0 = (u0, 0), where ∥u0∥2 = D ≫ 1 (e.g. the solution found by gradient descent), around which we consider
the domain Dα := {(u, v) ∈ Rd+1 : ∥u∥2 ∈ (αD,D/α)} for some fixed α ∈ (0, 1). We want to compare the long-term
stochastic dynamics of PGD and Anti-PGD, as defined in Eqs. (1) and (2), in terms of where they exit Dα. As a noise model,
we assume that the i.i.d. perturbations ξn are distributed according to a symmetric centered Bernoulli distribution (i.e., σ
and −σ have probability 1/2) whose variance σ2 is upper bounded by σ2 ∈

(
0,min

{
α3D
2 , D

8α

}]
. As a step size, we set

η = α
2D which, for both methods, leads to stable dynamics inside of Dα. We find that (on average) PGD and Anti-PGD exit

through different sides of Dα:

1. In high dimensions, PGD diverges away from zero. If d ≥ 2
α2 , then it holds for any admissible σ2 that

lim
n→∞

E
[
∥un∥2

]
≥ D/α, (13)

where un are the first d coordinates of wn computed by PGD as in (1).

2. Independent of dimensions, Anti-PGD goes to zero. For any d ∈ N, if we choose any admissible σ2 such that
σ2 ≤ αD

2d , then
lim
n→∞

E
[
∥un∥2

]
≤ αD, (14)

where un are the first d coordinates of wn, computed by Anti-PGD as in (2).
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Figure 8. The sketch on the left illustrates the intuition behind the result in 3.1.

Proof. As above, we denote the perturbations by εk; i.e., εk = ξk for PGD and εk = ξk+1 − ξk for Anti-PGD. Let us start
by inspecting the equation

uk+1 = (1− ηv2k) · uk + εuk , (59)

where εuk ∈ Rd is the projection of the noise εk to the first d coordinates. It is clear that the optimal strategy of making ∥w∥
small is to increase |v|, so to sample nearby points and pick up the gradient. The greater v is in norm, the better. We can
increase the norm of v by heavy noise injection (second equation). However, too much noise also increases εuk , which acts
adversarially to the decrease of ∥w∥ (error accumulation increases the Euclidean norm in expectation).
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Choice of stepsize and operating region. We start by motivating the choice of stepsize η = α
2D . Starting from the point

(u0, 0) with ∥u0∥2 = D > 0, we consider the operating landscape region αD < ∥uk∥2 < D/α, with α ∈ (0, 1). We
want to show that while standard noise injection makes the process exit the region from the right (D/α side, see Figure 8),
anticorrelated noise injection makes the process exit the region from the left (αD side). In this region, named Dα, the
maximal allowed learning rate is η ≤ 2

maxDα{v2,∥u∥2} . Since v stays small (we are going to check this later in great
detail), we select the stepsize η ≤ 1

2maxDα ∥u∥2 = α
2D — which guarantees stability in expectaction, i.e. without noise

injection (even allowing for some slack).

Lower bound for uncorrelated noise (εk = ξk). For this case, we have to show that standard noise injection cannot
possibly work for reaching αD, therefore we have to put ourselves in the best case scenario for PGD: that is, we have to
provide an uniform upper bound for vk under the second equation (i.e. the equation for v) and show that this is not enough
for a substantial decrease in ∥u∥. In the next paragraph (anticorrelated noise), we instead have to put ourselves in the worst
case scenario — i.e. a lower bound for |v|— and show that this is still enough for anticorrelated noise to yield a substantial
decrease in ∥u∥.

To start, let us then look at the second equation:

vk+1 = (1− η∥uk∥2) · vk + εvk, (60)

where εvk is the (d+1)-th component of εk. Since we start from v0 = 0, the equation is completely dominated by noise, and
is strongly mean reverting (i.e. v is effectively bounded). Indeed, since η = α

2D and ∥uk∥2 ∈ (αD,D/α) by assumption,
we have

|vk+1| ≤ max

{
1− α2

2
,
1

2

}
· |vk|+ σ =

(
1− α2

2

)
|vk|+ σ. (61)

where we used the fact that |εvk| = σ and that α2 ∈ (0, 1). By induction, the last inequality yields that, starting from v0 = 0,
we have

|vk| ≤ vmax :=
2σ

α2
, ∀k ≥ 0. (62)

Hence, we found the “best case scenario” for the w equation: |vk| = 2σ
α2 , for all k. This gives w the best decrease rate

possible.2 However, we need to check this value vmax is such that the equation for w is indeed stable (we promised this to the
reader in the last paragraph). We recall that this equation is wk+1 = (1− ηv2k) ·wk + εuk . Let us require (1− ηv2k) ∈ (0, 1),
for this we need 1/v2max > η = α

2D . Therefore, we need

1

v2max

=
α4

4σ2
≥ η =

α

2D
=⇒ σ2 ≤ α3D/2. (63)

This is guaranteed by assumption. To proceed, we substitute vmax into the first equation to get

uk+1 = (1− η
4σ2

α4
) · uk + εuk =

α3D − 2σ2

α3D
uk + εuk . (64)

Let us call ρ :=
(

α3D−2σ2

α3D

)
∈ (0, 1) the (best case) shrinking factor. Since εui is zero-mean, computing the expected value

of ∥uk∥2 leads to the following limit by Corollary C.5:

lim
k→∞

E[∥uk∥2] =
dσ2

1− ρ2
=

dD2α6

2Dα3 − 2σ2
. (65)

where we assumed σ2 strictly positive. Note that this limit is a monotonically increasing function of σ2 ∈ (0, Dα3/2).
Hence, we get

lim
k→∞

E[∥uk∥2] ∈
(
dDα3

2
, dDα3

)
(66)

2Note that noise injection in u is independent of v, therefore to minimize ∥u∥ we need the shrinking factor to be as large as possible.
We note that using this bound is precise: with probability one we are in the best scenario (we are finding a lower bound).
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Remark C.8 (Phase transition). Note that, for σ exactly 0, the limit is instead ∥u0∥2 = D. Instead, for any small noise the
process will grow up until at least dDα2/2. This might seem weird at first — but recall that there is an interaction between
noise scale and our best-case scenario bound for v: they both depend on σ. This causes a cancellation effect and a transition
in behavior at σ = 0.

Last, we need to show that this lower bound on limk→∞ E[∥uk∥2] coincides with (or is bigger than) the right boundary of
the operating region in Figure 8. To do this we set:

dDα3

2
≥ D

α
=⇒ d ≥ 2

α4
. (67)

This concludes the proof of Eq. (13).

Upper bound for anticorrelated noise (εk = ξk − ξk−1). We consider anticorrelated noise injection (ξk)i ∈ {−σ, σ},
and εk = (εuk , ε

v
k) = ξk − ξk−1. Again, let us first look at the second equation:

vk+1 = (1− η∥uk∥2) · vk + εvk. (68)

Since by hypothesis η = α
2D and αD ≤ ∥uk∥2 ≤ D/α, we have (1− η∥uk∥2) ∈

(
1− α2

2 , 1
2

)
. Clearly, we have that, for

any k ≥ 1 v2k, is non-zero with a non-vanishing probability. For (noiseless) stability, we also need an upper bound on |vk|.
An easy (yet absolutely not tight) upper bound is the following:

|vk+1| ≤
1

2
|vk|+ 2σεvk. (69)

where we simply used the absolute value subadditivity and the fact that |εvk| ≤ |ξk|+ |ξk−1| = 2σ. Note that the equation
directly yields by induction |vk| ≤ 4σ for all k ≥ 0.

Let us now deal with the equation for w.
uk+1 = (1− ηv2k) · uk + εuk (70)

For this equation, we would want all the coefficients ρk := 1− ηv2k to be between 0 and 1 — i.e. we need to check that v is
indeed not too big. Since |vk| ≤ 4σ for all k ≥ 0, we have the requirement 1− α

2D16σ2 > 0, which implies σ2 ≤ D
8α —

that satisfies our hypothesis.

So, to sum it up, we are in operating regime of Proposition C.7: anticorrelated noise, ρk < 1 with non-vanishing probability
and ρk always between 0 and 1. Hence, we get that

lim
k→∞

E[∥uk∥2] ≤ 2σ2d. (71)

Hence, for σ2 small enough, the value αD is reached. This directly implies the missing Eq. (14). The proof is thereby
complete.

C.3. Proof of Corollary 3.1

Corollary C.9 (The trace of the Hessian in the widening valley). In the same setting as Thm. 3.1, let η = α
2D , σ2 ∈(

0,min
{

α3D
2 , D

8α ,
αD
2d

}]
and d ≥ 2

α2 . If α ≪ 1, then

lim
n→∞

E[Tr(∇2L(wanti
n )))] ≤ 16αD ≪ E[Tr(∇2L(w0)))]

lim
n→∞

E[Tr(∇2L(wun
n )))] ≥ D/α ≫ E[Tr(∇2L(w0)))],

where wun
n = (un, vn) and wanti

n = (un, vn) are the weights computed by Anti-PGD and PGD respectively.

Proof. Recall from Eq. (12) that Tr(∇2L(u, v)) = dv2 + ∥u∥2.

For the first two inequalities in the corollary, recall from Eq. (69) of the proof of Theorem 3.1 that |vn| ≤ 4σ for all n,
almost surely. The first two inequalities in the Corollary follow now by Eq. (14).

For the last two inequalities in the Corollary, we lower bound the trace by ∥u∥2 and make use of Eq. (13).
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D. Additional Experimental Evidence
D.1. Details for Figure 2

• Squared regression: Problem definition, loss function, gradient and Hessian provided in §D.2. We run GD, PGD and
anti-PGD with full batch (40 datapoints in 100 dimensions), while for SGD we select a batch size of 1. All algorithms
except SGD run with a constant learning rate of η = 0.1. For SGD, to improve generalization at such a small batch
size, we instead select a slightly smaller learning rate η = 0.01. Perturbations in PGD and anti-PGD have parameter
σ = 0.05. Findings are robust to changing these hyperparameters, as shown in § D.2. All plots also show one standard
deviation for all measures.

• Matrix sensing: Problem definition, loss function, gradient and Hessian provided in §D.3. We run GD, PGD and
anti-PGD with full batch (100 datapoints in 400 dimensions), while for SGD we select a batch size of 10. All algorithms
run with a constant learning rate of η = 0.001. Perturbations in PGD and anti-PGD have parameter σ = 0.1. Findings
are robust to changing these hyperparameters, as shown in § D.3. For better visualization, here all plots also show two
standard deviation for all measures.

• ResNet on CIFAR10. Details in §4. Further supporting experiments in §D.4.

D.2. Quadratically Parametrized Model

Problem Definition. Consider the standard linear regression setting in d dimensions with M datapoints. The design
matrix is X ∈ RM×d. We assume there exist sparse (we also study the effect of sparseness) vector w ∈ Rd such that targets
y are perfectly predicted as y = Xw⊙2, where w⊙2 ∈ Rd is the element-wise product of w. This parametrization, also
studied in (HaoChen et al., 2021; Blanc et al., 2020) in the context of label noise, makes the landscape highly non-linear,
with minimizers that achieve different generalization properties.

For this loss we have

L(w) =
1

4n
∥Xw⊙2 − y∥2, ∇L(w) =

1

n
· [XT (Xw⊙2 − y)]⊙ w. (72)

∇2L(w) =
2

n
· diag(w) ·XTX · diag(w) +

1

n
· diag(XT (Xw⊙2 − y)) (73)

Precise setting. As in (HaoChen et al., 2021), we consider the case d = 100 and M = 40, and generate Xtrain at random.
We consider w∗ = (1, 1, . . . , 1, 0, 0, . . . , 0) — where only 10 elements are non-zero, and generate y = Xtrain(w

∗ ⊙ w∗).
For testing, we use instead 100 datapoints. We test three different learning rates in Figure 9, 10, 11, and for each 3 values of
noise injection variance. For SGD, since we choose a very small (i.e. unit) batch size, the learning rate is scaled down by a
factor of 10, to provide stability.

Findings. We found that anti-PGD always provides the best test accuracy, and minimizes the trace of the Hessian as
well. This finding is quite robust in terms of hyperparameter tuning. Further, we found that the performance is always
drastically different from the one of PGD. An explanation of this phenomenon is provided in Theorem 3.1, in the main
paper. Mini-batch SGD improves the final test loss if the stepsize is small enough. Larger stepsizes are unstable for SGD.

D.3. Matrix Sensing

Problem Definition. This setting is inspired by the experiment of (Blanc et al., 2020) on label noise. Let X∗ be an
unknown rank-r symmetric positive semidefinite (PSD) matrix in Rn×n that we aim to recover. Assume this has unit 2-norm.
Let A1, . . . , AM ∈ Rn×n be M given (wlog) symmetric measurement matrices. We assume that the label vector y ∈ RM is
generated by linear measurements yi = ⟨A⊤

i , X
∗⟩ = tr(AT

i X
∗). We want to minimize the loss

L(U) =
1

M

M∑
i=1

Li(U), Li(U) =
1

2
(yi − ⟨Ai, UU⊤⟩)2, (74)

where U ∈ Rn×n in general achieves a good test accuracy if has small rank.
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Figure 9. Performance of anti-PGD on quadratically parametrized linear regression, for low learning rate and different values of
noise injection standard deviation. Plotted is also the error bar relative to 1 standard deviation (10 runs).
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Figure 10. Performance of anti-PGD on quadratically parametrized linear regression, for moderate learning rate and different values
of noise injection standard deviation. Plotted is also the error bar relative to 1 standard deviation (10 runs).
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Figure 11. Performance of anti-PGD on quadratically parametrized linear regression, for high learning rate and different values of
noise injection standard deviation. Plotted is also the error bar relative to 1 standard deviation (10 runs).

Precise setting. Our setting is similar to (Blanc et al., 2020). We consider the case n = 20, and generate a random
X∗ = V ∗(V ∗)⊤, of rank 5, by picking V ∈ Rn×5 with standard Gaussian entries. Also all the Ai ∈ Rn×n are sampled at
random with standard Gaussian distributed independent entries. We consider learning from 100 training examples (corrupted
by a small Gaussian noise). At test time, we evaluate the solution against 100 newly sampled measurements. We test three
different learning rates in Figure 12, 13, 14, and for each 3 values of noise injection variance.

Findings. We found that anti-PGD always provides the best test accuracy, and minimizes the trace of the Hessian as
well. This finding is quite robust in terms of hyperparameter tuning. Further, we found that the performance is always
drastically different from the one of PGD. An explanation of this phenomenon is provided in Theorem 3.1, in the main
paper. Mini-batch SGD improves the final test loss if the stepsize is small enough, but gets unstable for big stepsizes.
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Figure 12. Performance of anti-PGD on matrix sensing, for low learning rate and different values of noise injection standard deviation.
Plotted is also the error bar relative to 2 standard deviation (5 runs).
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Figure 13. Performance of anti-PGD on matrix sensing, for moderate learning rate and different values of noise injection standard
deviation. Plotted is also the error bar relative to 2 standard deviation (5 runs).
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Figure 14. Performance of anti-PGD on matrix sensing, for high learning rate and different values of noise injection standard deviation.
Plotted is also the error bar relative to 2 standard deviation (5 runs). SGD with batch size 10 is unstable at this learning rate.

D.4. CIFAR 10 ResNet 18

We use the implementation of ResNet18 provided by https://github.com/kuangliu/pytorch-cifar). De-
tails about the corresponding experiments can be found in §4.
Takeaway: even after heavy tuning, AntiPGD performs better than standard noise injection.

D.5. Performance of Anti-SGD

We test the performance of anticorrelated noise when injected on top of mini-batch SGD. We consider the two non-toy
settings of Fig. 2 and report results in Fig. 17. For matrix sensing, injecting anticorrelated noise to SGD gives a substantial
improvement, with a slight edge over Anti-PGD. For the ResNet18 experiment, we compared batch-sizes of 128 or 1024:

https://github.com/kuangliu/pytorch-cifar
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Figure 15. Additional plot for the experiment in Figure 6.
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Figure 16. Additional plot for the experiment in Figure 2.

noise injection works best at moderate batch sizes. We hypothesize this is due to the high stochastic nature of SGD at low
batch-sizes, which dominates over injected noise. Plots for the Hessian follow the same trend (highest test, lowest trace).
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Figure 17. Performance of Anti-SGD in the same settings as Figure 2


