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 Abstract: Localization of buried polyethylene pipes is an important issue for network managers. 12 

This study focuses on an acoustic method, which consists of vibrating the pipe and observing the 13 

signal with a receiver placed on the ground surface. This method provides an estimate of the path 14 

of the pipe but gives no information on the depth. We developed a multi-sensor method based on 15 

the principle of vibrating the pipe, which allows estimating the depth while being non-invasive 16 

and non-destructive and without, a priori, information on the propagation medium. These sensors 17 

are positioned perpendicular to the pipe. We developed a new estimator to estimate the depth and 18 

the propagation velocity in the medium which is an important variable in our problem. This 19 

estimator is based on the MUSIC algorithm and is adapted to our choice of modeling. In this paper, 20 

two models of travel times in typical situations are presented. The first one represents the case 21 

where all sensors can be placed inside the trench (on the ground surface) in which the pipe is 22 

buried. The second one represents the case where sensors are placed inside and outside the trench. 23 

These travel time models aim to provide a fast result to allow the method to be used by field agents. 24 

They are compared with a full wavefield modeling by finite differences. 25 

Keywords: acoustic method; buried polyethylene pipe; MUSIC algorithm; propagation time 26 

modelling; signal processing; full wavefield 27 

 28 

1. Introduction 29 

Different methods exist for locating buried pipes [1] and, more generally, for 30 

investigating near-surface structures [2-7]. The choice of method to locate buried pipes 31 

depends on the context. The use of tracer wires is becoming increasingly widespread. 32 

This method consists of burying an electric wire with the pipe, which allows, by passing 33 

a current through the wire, the creation of an electromagnetic field and, therefore, the use 34 

of electromagnetic methods. Electromagnetic methods provide very good results for 35 

locating pipes when they are applicable. If there is no tracer wire, then two possible cases 36 

can be discerned. Either the pipe is metallic, or it is not. In the case of a metal pipe, an 37 

electric current can be injected into the pipe; electromagnetic methods, which work very 38 

well, can, therefore, be used. In the case of non-metallic pipes, two types of processes can 39 

be distinguished in a non-exhaustive way: i) Ground-Penetrating Radar (GPR) [8, 9] is a 40 

versatile tool for locating buried infrastructures; however, this type of tool often needs to 41 

be calibrated according to the type of soil to which it is applied. Moreover, it is difficult to 42 

differentiate a water pipe from a gas pipe or a buried electrical cable. ii) Acoustic 43 

methods are applicable in the case of non-conductive pipes [1, 10-12]. According to [1], 44 

we can refer to several types of acoustic methods: seismic wave methods [13], point 45 
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vibration measurements [14] and pipe excitation methods [15]. The first two categories 46 

can use a specific source placed on the ground surface for probing. These methods do not 47 

differentiate between the pipe of interest and other pipes present. What distinguishes the 48 

last category is its ability vibrate the pipe, and this vibration will then be diffused into the 49 

ground. 50 

This study focuses on the pipe excitation methods that have the advantage of 51 

discriminating the pipe of interest in a dense urban environment with noise. 52 

The principle of this is to inject an acoustic signal (called acoustic signature) into the 53 

pipe. A method that has been used for many years in the field uses a receiver (geophone) 54 

placed on the ground surface, which measures the vertical vibrations of the ground. 55 

Through successive measurements of the energy of the received signal, this method can 56 

estimate the passage of the pipe and follow its path. However, this method does not 57 

provide any information on the pipe depth. The GasTracker tool, based on this method, 58 

was developed by the company MADE-SA. In this study, a GasTracker is used to 59 

estimate, experimentally on the ground surface, the X and Y position (at ± 10 cm) of the 60 

pipe in order to position the sensor network in the area where the pipe is located. 61 

The objective of this study is to implement a multi-sensor method, based on the 62 

differences in travel times between sensors, to estimate the depth in addition to the 63 

passage of the pipe [10, 11]. 64 

The aim of this work is to estimate the depth with an accuracy below 10 cm with a 65 

non-destructive and non-invasive method and without any a priori information on the 66 

propagation medium (e.g., characteristics of the soil, which can change completely from 67 

one application area to another). 68 

Nevertheless, some information on how the pipe is buried are known. The pipe is 69 

buried between 0.4 m and 1.5 m. It is buried in a trench whose width can vary from 70 

approximately 30 cm to over 1 m. Therefore, two different media can be distinguished, 71 

the inside of the trench and the outside of the trench (vertical stratifications). Moreover, 72 

in this problem the depth is at the meter scale. 73 

An important aim of this study is to define a model of the travel time of the signal 74 

that provides the fastest result, in order to directly estimate the depth in the field. In the 75 

travel time modelings presented in this paper, we consider the first arrival time of the 76 

signals. Only P-waves and converted S-waves are considered. Geophones used are single 77 

component sensors. They measure the vertical component of the received vibrations. 78 

The travel time modelings that we propose are confronted using a simulation with 79 

much more complete propagation modeling, that of the complete wavefield with finite 80 

differences. This comparison aims to verify the coherence of the estimated quantities, in 81 

particular, the velocity. 82 

A cylindrical scattering of the vibration induced by the pipe is considered [16-19]. To 83 

ensure that all sensors observe the same section of the vibrating pipe, they are placed 84 

perpendicular to the pipe. This is why the problem is represented in a plane orthogonal 85 

to the passage of the pipe. This section can be approximated by a point source. 86 

The variables to be estimated in this problem are the position of this source, its 87 

lateral position SX and especially its depth Sz, but also the average velocity of 88 

propagation in the ground. An average velocity is assigned to each medium of 89 

propagation. 90 

In a first part, the sensors are assumed to be all positioned inside the trench. 91 

Therefore, a modelling of the travel times of the signal between the pipe and the receivers 92 

by considering a weakly heterogeneous medium and by assigning a mean propagation 93 

velocity is presented. In order to ensure an acceptable estimation accuracy, an estimator 94 

based on the MUSIC (Multiple Signal Classification) algorithm adapted to this modelling 95 

of travel times is developed. This estimator allows us to evaluate variables of interest 96 

(position of the source and the velocity). Measurements are carried out on a test area in 97 

order to work on real data. In the second part, the sensors are positioned inside and 98 

outside the trench. As an extension of the method developed in the first part, the 99 
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modelling is adapted to this case to fit a larger number of situations. The different 100 

compaction of the soil on either side of the trench is taken into account. This requires 101 

considering a velocity specific to each of these environments. This second modelling of 102 

travel times is validated within the framework of the problem, initially through 103 

numerical simulations, then through comparison with finite differences, and finally by 104 

comparison with real data. 105 

2. Modelling with a single propagation medium (M1) 106 

2.1. Propagation time modelling M1 107 

In this section, all sensors are considered located inside the trench. Since no 108 

information on the characteristics of the propagation medium is known, the first 109 

approach is to consider the propagation medium as weakly heterogeneous and to assign 110 

an average propagation velocity. The problem is represented in a plane orthogonal to the 111 

passage of the pipe (Figure 1). The pipe section has been represented using a point source 112 

S, the receivers Ri were placed on the ground surface perpendicular to the pipe. An 113 

average velocity V0 has been assigned to the propagation medium. The position of the 114 

source S (SX; SZ) and the velocity of the wave V0 were unknown. The only known 115 

parameters were the coordinates of the receivers Ri (RiX; RiZ = 0). 116 

 117 

Figure 1. Scheme of the Model M1: case of a single propagation medium. 118 

We defined θ�� as the vector of variables to be estimated in the case of Model M1. 119 

θ�� = �S� S� V
�� (1) 

Here, the symbol [.]T is the transposed operator, Sx the plumb of the pipe, Sz the pipe 120 

depth and V0 is the average propagation velocity in the medium. 121 

We note τ�(θ��) the wave travel time between the source S and the receiver Ri for Model 122 

M1. 123 

τ�(θ��) = ∣∣SR�∣∣V
  (2) 

We note τ��(θ��) the relative delay time between sensors R1 and Ri for Model M1. 124 

τ��(θ��) = ∣∣SR�∣∣ − ∣∣SR�∣∣V
  (3) 

Relative delay times are considered because, in this problem, the emission time of the 125 

source S is unknown, but the receivers are triggered synchronously. 126 

 127 

2.2. Validation of travel time estimate of M1 through comparison with a finite difference modelling 128 

of the full wavefield 129 

In this section, the P-wave first arrival travel time estimation proposed in this paper 130 

is validated through comparison with full wavefield modelling using finite differences. 131 
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The acoustic and isotropic version of the code developed by Operto and al. is used [19] 132 

from the original formulation proposed by Jean Virieux [20, 21]. 133 

A comparison of the travel time estimate of M1 through the finite difference 134 

modelling of the full P-wavefield is presented here, which is computationally fast and 135 

accurate in the presence of flat topography, as in the test site analyzed in this study. 136 

The following case study has been performed: 30 sensors were aligned and spaced 137 

0.01 m apart; sensor 1 (R1) was placed just above the source (SX = 0); the rest of the sensors 138 

were placed increasingly far away from the source; the depth of the source (SZ) was 1.5 m, 139 

and the average velocity of propagation (V0) was 500 m/s. 140 

To ensure simplicity in the simulation, the origin of the reference frame was 141 

translated, and the source was placed at the top and the sensors at the bottom, but they 142 

were symmetrical. In the simulation presented here, the source was placed at S (0.35; 0), 143 

and the sensors at Ri (0.35 + (i-1) 0.01; 1.5), but this corresponds well to the situation 144 

described above. In Figure 2, we observe the physical model used for the simulation. The 145 

source used was a Ricker function, also called the "mexican hat"; this function is a second 146 

derivative of a Gaussian function. 147 

 148 

 149 

 150 
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Figure 2. Physical velocity model in the case of the propagation of the full wavefield by 

finite differences with one propagation medium. S indicates the source at the surface. R1 is 

the first receiver. 

 

Figure 3. Comparison of travel time estimate of Model M1 (dashed blue line) with the full 

P-wavefield propagation model using finite differences. 
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The results of this simulation are presented in Figure 3. The vertical axis represents the 182 

spatial position of the sensors, and the horizontal axis shows the recorded times. The 183 

simulation of the received signals using finite differences is shown in black and, the 184 

travel time curve calculated using the Model M1 is shown in blue. At the scale of the 185 

problem, the Model M1 is in agreement with the more complex full wavefield model 186 

using finite differences. 187 

 188 

2.3. Cramer–Rao Bound from Model M1 189 

 The Cramer–Rao Bound (CRB) was calculated to obtain information on the 190 

estimation accuracy [27, 28]. The CRB represents the smallest possible standard 191 

deviations of all unbiased estimates of the model variables. First, the CRB was computed, 192 

and second, simulations using the CRB were performed. 193 

 194 

2.3.1. Calculation of the Cramer–Rao Bound from Model M1 195 

 The CRB was calculated according to the Fisher information matrix, which is 196 

denoted by F. 197 CRB(θ��) = F���θ�� τ��⁄ (θ��)� (4) 

where ./. represented the known operator. 198 

The Fisher information matrix is expressed 199 

F�θ�� τ��⁄ (θ��)� = � 1Var�τ��(θ��)� ∇ !"�τ��(θ��)�∇ !"� �τ��(θ��)�#
�$%  

(5) 

where N is the number of sensors, Var�τ��(θ��)� is the variance of the relative delay time 200 

between sensor 1 and i, and ∇ !"�. � is the gradient operator as a function of θ��. 201 

Let us focus on the calculation of the gradient of τ��(θ��). The expression of this gradient 202 

can be decomposed from Equation (3), 203 

∇ !"�τ��(θ��)� = ∇ !" '∣∣SR�∣∣V
 ( − ∇ !" '∣∣SR�∣∣V
 ( (6) 

By developing the calculation, the expression becomes 204 

∇ !"�τ��(θ��)� =
⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡
 
S� − R��V
∣∣SR�∣∣ − S�V
∣∣SR�∣∣
S� − R��V
∣∣SR�∣∣ − S�V
∣∣SR�∣∣

∣∣SR�∣∣ − ∣∣SR�∣∣V
%

 
⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎤
 

 

 

(7) 

Using this result in Equation (5), the Fisher information matrix can be calculated, and by 205 

calculating its inverse, the CRB is obtained, as shown in Equation (4). 206 

 207 

2.3.2. Numerical simulation using the Cramer–Rao Bound 208 

 The figures presented in this section are the results of the numerical simulations. 209 

These results are not exhaustive and are used to give an idea of the impact of the 210 

variables of the problem on the accuracy of the depth estimation. To obtain these curves, 211 

one variable was varied and the others were fixed. The impact on the possible accuracy of 212 

depth estimation was observed. 213 

Figure 4.a shows the evolution of the CRB with changes in depth as a function of the 214 

error on the relative delay times. The situation considered for this simulation is as 215 

follows: five sensors were used, the distance between sensors was 0.2 m, the plumb of the 216 
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pipe (SX) was placed at 0 m, and the average propagation velocity (V0) was 500 m/s. 217 

Curves for two different depths (SZ), 0.4 m and 1 m, were observed. An accuracy of the 218 

relative delay times in a microsecond range was needed to obtain an accuracy of 0.1 m in 219 

the depth. In the worst case, an accuracy of the order of 0.1 μs was needed. 220 

Figure 4.b represents the evolution of the CRB with changes in depth as a function of the 221 

error in the propagation velocity. The situation considered for this simulation is as 222 

follows: the distance between the sensors was 0.2 m, the plumb of the pipe (SX) was 0 m, 223 

and the pipe depth (SZ) was 0.4 m. The curves for different average propagation velocities 224 

(V0) were observed. A propagation velocity accuracy of the 10% range was required to 225 

obtain an error of less than 0.1 m in the depth. 226 

 227 

(a) (b) 

Figure 4. Depth error boundary as a function of the error of the other variables: (a) depth error as a 228 

function of the error in the relative delay times; (b) depth error as a function of the error in the 229 

propagation velocity. 230 

2.4. Adaptation of the MUSIC algorithm for Model M1 231 

 In the previous section, a relative delay time accuracy of the order of 10-6 s has been 232 

defined as a necessary condition. The choice to focus on the MUSIC algorithm (MUltiple 233 

SIgnal Classification) [29-35] for antenna processing, the so-called 'high resolution 234 

algorithm' became interesting. 235 

 236 

2.4.1. Presentation of the MUSIC algorithm adapted to our problem 237 

 The MUSIC algorithm is usually used to discern different sources and their 238 

direction of arrival through an antenna array [29]. It can be adapted in the near field to 239 

estimate the distance of sources in addition to their direction of arrival [30-35]. In this 240 

paper, the aim was to estimate the location of a single source S in the near field and also 241 

to estimate the propagation velocity V0 according to Model M1. 242 

 The algorithm can be divided into several steps as follow: 243 

 244 

1. Estimate the variance–covariance matrix of the system from the signals received by 245 

sensors. 246 

2. Decompose the variance–covariance matrix of the system into eigenvalues and 247 

eigenvectors. 248 

3. Definition of the noise subspace, denoted by Ub, with the eigenvectors 249 

corresponding to the smallest eigenvalues. 250 

4. Construction of a family of vectors, denoted by 'a', parametrized by the variables we 251 

want to estimate, S and V0 (Equation (1)). This family of vectors is constructed from 252 

the modelling of relative delay times (Equation (3)). 253 
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a(S, V
) = 11 e�3%456∣∣789∣∣�∣∣78"∣∣:6 . . . e�3%456∣∣78;∣∣�∣∣78"∣∣:6 <�
 (8) 

where f0 is the signal frequency, and N is the number of sensors. 254 

5. Knowing that the signal subspace and the noise subspace are orthogonal, the project 255 

of a (S,V0) on the noise subspace must be at the minimum for the values of S and V0 256 

corresponding best to the received signal. It is traditional to take the inverse of this 257 

projection and to look for the values of S and V0 that maximize this criterion, which 258 

is denoted by Cmusic. 259 

C�=7>?(S, V
) = 1a(S, V
)@UBUB@a(S, V
) (9) 

where [.]H is the conjugate transposed operator. 260 

 261 

2.4.2. Test of estimator using numerical simulation 262 

 In this part, the algorithm worked in the simulation of an ideal case is verified. The 263 

statistics of the estimator (mean and variance) using the Monte Carlo method are 264 

presented. All estimates made with 1,000 runs of the noise and noise is applied to the 265 

propagation times. For these simulations, a situation has been fixed in which all the 266 

variables are known. The signals received are simulated as a function of these variables, 267 

and then these ones were used to run the algorithm. 268 

The following situation is considered: a depth (SZ) of 0.7 m, a propagation velocity (V0) of 269 

500 m/s, and the plumb of the pipe (SX) at 0 m. Five sensors were placed at 0.2 m, the first 270 

one vertically above the pipe. 271 

In Table 1, the statistics of the results of the estimator, using the Monte Carlo 272 

method, are presented. 1,000 runs of noise were performed. The same situation as before 273 

was considered, and the theoretical propagation times between the source S and sensors 274 

were noised with a white Gaussian noise of standard deviation σnoise. The propagation 275 

times are in the millisecond range and the propagation time differences with sensor 1 276 

vary between 10-5 and 10-4 seconds. 277 

Table 1. Statistics of the MUSIC estimator adapted to Model M1 using the Monte Carlo method (for 278 

1,000 runs, 5 sensors spaced 0.2 apart). Noise is applied to the propagation times which are in the 279 

order of a millisecond. 280 

  Mean Standard deviation True Value 

Numerical Simulation 1 

with 5 sensors and σnoise = 1.10-7 

Depth SZ (m) 0.7056 0.0486 0.7 

Average velocity V0 (m) 494 17 500 

Plumb of the pipe SX (m) 0.0047 0.0065 0 

Numerical Simulation 2 

with 6 sensors and σnoise = 5.10-7 

Depth SZ (m) 0.6658 0.0317 0.7 

Average velocity V0 (m) 499 7 500 

Plumb of the pipe SX (m) 0.0172 0.0109 0 

Numerical Simulation 3 

with 7 sensors and σnoise = 1.10-6 

Depth SZ (m) 0.7386 0.0466 0.7 

Average velocity V0 (m) 501 9 500 

Plumb of the pipe SX (m) 0.0325 0.0315 0 

 281 

For this set of variables, which is representative, the observed accuracy is lower than the 282 

desired accuracy of 0.1 m. It is interesting to note that increasing the number of sensors 283 

reduces the accuracy required on the relative delay times. 284 

 285 

2.5. Experimental measurements 286 

Experimental measurements were performed on a semi-controlled test area in order 287 

to work on real data. 288 
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2.5.1. Experimental set-up 289 

 The measurement chain presented in this section is not innovative; this 290 

measurement chain was designed to be adapted to experimental needs. In particular, it 291 

was necessary to be able to control the emission and to change the type of signal emitted 292 

at any time. Moreover, in the reception chain, the filter should not be so fine that it could 293 

not adapt to different types of signals that could be emitted. 294 

The emission chain (Figure 5) was composed of a computer to control the emitted signal; 295 

an amplifier, which received the signal from the computer sound card; and finally, a 296 

loudspeaker. The loudspeaker was fixed at one end of the pipe and emitted the signal 297 

inside the pipe. 298 

 

 

(a) (b) 

Figure 5. Experimental set-up of the acoustic emission chain: (a) diagram of the main components; 299 

(b) photograph of the material with the battery to power the amplifier. 300 

Experiments were carried out in an anechoic room to characterize the loudspeaker 301 

(CNRS-LMA-Marseille, C. Pinhède). A white noise is sent in command to the 302 

loudspeaker and the emitted signal is measured with a microphone placed just in front of 303 

the loudspeaker output. This experimentation allows to obtain the transfer function of 304 

the loundspeaker. The modulus and phase of its transfer function are shown in Figure 6. 305 

 306 

  

(a) (b) 

Figure 6. Transfer function of the loudspeaker estimated by emitting a white noise: (a) modulus; (b) 307 

phase. 308 

The responses of the loudspeaker to the two types of signals used in this study are 309 

presented. 310 

The first signal of interest is a Ricker function. The time response of the loudspeaker 311 

to a Ricker function control signal is presented in Figure 7 and the frequency response in 312 

Figure 8. The properties of this type of signal are used in the calculation of the propagator 313 

in the simulation of the propagation of the complete wave field by finite differences. The 314 

real measurements with a Ricker function emission are to compare the trend of the delay 315 

times with the simulations. 316 

 317 
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(a) (b) 

Figure 7. Example of the loudspeaker response (Ricker function): (a) theoretical source signal (red 318 

line); (b) experimental source signal sent by the loudspeaker through the pipe (blue line) recorded 319 

during the controlled experiment. 320 

  

(a) (b) 

Figure 8. Fourier transform of the Ricker function: (a) theoretical Ricker spectrum (red line) 321 

showing the central frequency of the theoretical source around 500 Hz; (b) experimental Ricker 322 

spectrum (loudspeaker output; blue line) showing a central frequency around 500 Hz but distorted 323 

in relation to the command. 324 

The second signal of interest is a monochromatic signal at 500Hz, a burst signal. It is 325 

used to estimate the pipe depth. The time response of the loudspeaker to a burst control 326 

signal is presented in Figure 9 and the frequency response in Figure 10. 327 

The loudspeaker distorts the burst less than the Ricker function, because the Ricker 328 

function is richer in frequency. 329 

 330 

  

(a) (b) 

Figure 9. Example of the loudspeaker response (burst of 100 ms at 500 Hz): (a) theoretical source 331 

signal; (b) experimental source signal sent by the loudspeaker through the pipe. 332 
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(a) (b) 

Figure 10. Fourier transform of the burst of 100 ms at 500 Hz: (a) theoretical burst spectrum; (b) 333 

experimental burst spectrum (loudspeaker output). 334 

The acoustic reception chain is presented in Figure 11. The sensors are geophones 335 

that measure vibrations in their vertical axis. They are cylindrical with a diameter of 2.54 336 

cm. During the measurements, a fatty substance was added between the sensors and the 337 

ground in order to obtain a better coupling. Geophones receive the signals that are 338 

filtered and amplified by electronic cards. At the input of electronic cards, signals are 339 

filtered using a high-pass filter with a cut-off frequency of 100 Hz, and the output, using a 340 

low-pass filter with a cut-off frequency of 100 kHz. This wide analog filtering allows us to 341 

digitally refine the filtering. The amplification is adjustable between 0 dB and 112 dB, 342 

which allow the amplification to be adjusted in the field. At the output of the electronic 343 

cards, the signals are digitized by the acquisition card; it is an analog-to-digital converter. 344 

The digitized signals are recovered on a computer. 345 

 346 

 

 

(a) (b) 

Figure 11. Experimental set-up of the reception chain: (a) scheme of the main components; (b) 347 

photograph of the material. 348 

Figure 12 shows an example of measurements taken on the semi-controlled test area. 349 

The trench and the sensors positioned perpendicular to the pipe passage can be observed. 350 

Sensors are spaced 5 cm apart. 351 
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 352 

 353 

Figure 12. Example of positioning of the experimental device for signal acquisition (reception 354 

chain). The black arrow indicates the acquisition design composed of a line of five sensors and the 355 

support (graduated ruler) where the sensors are moved during the experiment. The green arrow 356 

indicates the trench where a pipe is buried. The box contains the electronic cards presented in 357 

Figure 11 and, on the left of the box, the acquisition card connected to the computer to digitalize the 358 

signals received from the buried pipe is shown. 359 

2.5.2. Experimental results 360 

 Experimental measurements were performed on a semi-controlled test area. In this 361 

test area, the position of the pipe was known, and it was a polyethylene pipe, but the 362 

characteristics of the propagation medium were unknown. The propagation velocity is 363 

unknown. 364 

To take the measurements, a line of five sensors was positioned perpendicular to the pipe 365 

route. To focus on the depth, it was assumed that the plumb of the pipe (SX) was known, 366 

and sensor 1 was placed just above the pipe. Sensors were spaced 0.2 m apart. The signal 367 

emitted in the pipe was a monochromatic signal at 500 Hz. 368 

On Figure 13, an example of signals measured by sensors is presented. The signal emitted 369 

by the loudspeaker is a burst of 100 ms at 500 Hz repeated every second. Figure 13.a 370 

shows the signals received by the sensors before digital filtering and Figure 13.b shows 371 

the same signals digitally filtered between 480 Hz and 520 Hz. Sensor 1 is the closest to 372 

the pipe and sensor 5 the farthest. The sensors farthest from the pipe receive the most 373 

attenuated signals. 374 

 375 

(a) (b) 

Figure 13. Example of signals measured by sensors (burst emission of 100 ms at 500 Hz): (a) signals 376 

received by sensors before digital filtering; (b) signals digitally filtered between 482 Hz and 520 Hz. 377 

TRENCH 

SENSORS 
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Results on real signals are presented, for which depth estimation with the desired 378 

accuracy of 0.1 m (Table 2 and Table 3) is reached. For a depth of 0.42 m, an accuracy of 379 

0.03 m (Table 2) is obtained. For a depth of 0.7 m, an accuracy of 0.05 (Table 3) is obtained. 380 

Table 2. First example of estimation obtained with the MUSIC algorithm adapted to the problem 381 

and to Model M1 (5 sensors spaced 0.2 m apart). 382 

 Estimate value Reference value 

Depth (SZ) (m) 0.39 0.42 

Average velocity (V0) (m/s) 360 unknown 

Table 3. Second example of estimation obtained with the MUSIC algorithm adapted to the problem 383 

and to Model M1 (5 sensors spaced 0.2 m apart). 384 

 Estimate value Reference value 

Depth (SZ) (m) 0.75 0.70 

Average velocity (V0) (m/s) 540 unknown 

 385 

Figure 14.a shows measured signals (filtered between 480 Hz and 520 Hz) on the test area 386 

that match with Model M1 (a zoom of Figure 13.b). With Model M1, the more receivers 387 

are far from the source S, the more they should receive in a delayed way the information 388 

of the sound wave propagating in the pipe. It is on real signals of this type that the 389 

results, presented in Tables 2 and 3, are obtained. 390 

Figure 14.b shows measured signals on the test area that not match with Model M1. A 391 

phenomenon can be discerned several times, sensors farthest from the source S receive 392 

the signal before the closest sensors. This phenomenon shows the role played by the 393 

vertical discontinuities (the trench), not included in Model M1. 394 

It is needed to evolve the model to cover a greater number of situations. This is why an 395 

evolution of this model is presented in part 3. Model M1 is sufficient when the transition 396 

is smooth or the medium weakly heterogeneous. 397 

 398 

  

(a) (b) 

Figure 14. Example of real received signals digitally filtered between 480 Hz and 520 Hz: (a) 399 

corresponding to the Model M1; (b) not corresponding to the Model M1. 400 
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3. Modelling with two propagation media (M2) 401 

 In this part, an evolution of the model is presented. Now sensors are placed inside 402 

and outside the trench. A vertically stratified change in medium is considered, which 403 

represents the trench in which the pipe is buried. First, the modelling of the propagation 404 

times is presented, and then the calculation of the intermediate variables is presented 405 

more in detail. 406 

 407 

3.1. Propagation time modelling M2 408 

  409 

3.1.1. Presentation of the propagation time Model M2 410 

 In the problem modelling, a change of medium was added to take into account the 411 

trench (Figure 15). The pipe section was still represented using a point source S and the 412 

sensors Ri were arranged on the ground surface in the same way as before. An average 413 

velocity V0 was assigned to the propagation medium inside the trench and an average 414 

velocity V1 outside the trench. For the sensors outside the trench, new intermediate 415 

variables Pi appeared, which represented the interface points between the two media. For 416 

each Ri outside the trench, there was a corresponding Pi. 417 

 418 

 419 

Figure 15. Scheme of the problem modelling in the case of two propagation media: Model M2. 420 

We defined θ�% as the vector of variables to be estimated in the case of Model M2. 421 

θ�% = �S� S� V
 V��� (10) 

We noted τ�(θ�%) the wave travel time between the source S and the receiver Ri for 422 

Model M2. Two cases can be discerned: 423 

• If Ri is inside the trench, it is returned to the single propagation medium case of 424 

Model M1 (Equation (2)) 425 

• If Ri is outside the trench, then 426 

τ�(θ�%) = ∣∣S P�∣∣V
 + ∣∣P� R�∣∣V�  (11) 

In the following, only the case of Ri outside the trench is considered because the case 427 

Ri inside the trench was already covered in part 2. 428 

Relative delay times are also considered because the emission time of the source S is 429 

unknown. We note τ��(θ�%) the relative delay time between the sensors R1 and Ri for 430 

Model M2. 431 

τ��(θ�%) = ∣∣S P�∣∣ − ∣∣S R�∣∣V
 + ∣∣P� R�∣∣V�  (12) 
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The modelling proposed in this paper depended on the interface point Pi, which was 432 

unknown. We had to express Pi as a function of θ�%. 433 

 434 

3.1.2. Analytical expression of the interface point Pi. 435 

 The variable τ��(θ�%) (Equation (12)) depended on the interface point Pi (PiX; PiZ). It 436 

was assumed that the X coordinate PiX was known a priori (i.e., we knew the position of 437 

the medium change). However, we had no a priori information on the Z coordinate PiZ. 438 

We focused on the analytical expression of PiZ. 439 

The Snell–Descartes law was considered at the interface between the two media. We can 440 

then write 441 S� − P��∣∣S P�∣∣ = P��∣∣P� R�∣∣ V
V� (13) 

After squaring and developing, the following fourth order equation was obtained: 442 P��E  �V�% − V
%�+P��F  �−2R��V�% − 2S�V�% + 2S�V
%�+P��%  �S�%V�% + R��% V�% + V�%(R�� − P��)% + 4R��S�V�% − S�%V
% − V
%(P�� − S�)%�+P�� �−2R��S�%V�% − 2S�R��% V�% − 2S�V�%(R�� − P��)%�+�R��% S�%V�% + S�%V�%(R�� − P��)%� = 0
 

(14) 

We propose 443 

P��E  m� + P��F  m% + P��%  mF + P�� mE + mK = 0 (15) 

After solving Equation (15), we obtained 444 

P�� = √A − NA − 2(g + A + u√A)
2 − m%4m� 

(16) 

with 445 

A =
⎝
⎛−K + NK% + 4JF272 ⎠

⎞
� F⁄

− J
3

⎝
⎛−K + NK% + 4JF272 ⎠

⎞
� F⁄ − 2g3   , 

(17) 

J = − g%3 − 4w  , (18) 

K = 8wg3 − 2gF27 − u%  , (19) 

g = mFm� − 3m%%8m�%  , (20) 

u = mEm� − m%mF2m�% + m%F8m�F  , (21) 

w = mKm� − m%mE4m�% + m%%mF16m�F − 3m%E256m�E 
(22) 
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m� to mK depended on θ�% (Equation (10)), the position of sensors Ri (known) and the 446 

position of the medium change PiX (known). The expression of the interface point depth 447 

PiZ depended on m�, so we expressed PiZ as a function of variables of interest θ�%. 448 

The theoretical delay times with the Model M2 from θ�% can be estimated following this 449 

approach. 450 

 451 

3.2. Validation of travel time estimate of M2 through comparison with a finite difference modelling 452 

of the full wavefield 453 

 Here, the travel times of the Model M2 are compared with the full P-wavefield 454 

propagation modelling using finite differences, in the same way as in Section 2.2. The 455 

simulations were performed for the same case study in order to compare the results. 456 

The following set-up was considered: sensor 1 is the origin of the reference frame; the 457 

point source S is at a depth of SZ = 0.7 m; sensor 1 is in line with the source SX = 0 m; 458 

sensors are spatially distributed every 0. 05 m and move away from the source; the 459 

position of the change in medium is at PX = 0.1 m; the average propagation velocity inside 460 

the trench is V0 = 300 m/s and outside the trench is V1 = 600 m/s. These values were 461 

proposed for the propagation velocities because they were close to those that would be 462 

estimated for the real data in the test site. 463 

To ensure simplicity in the simulation, the origin of the reference frame was translated 464 

and the source was placed at the top and the sensors at the bottom, but they were 465 

symmetrical. In the simulation presented here, the source was placed at S (0.75; 0) and the 466 

sensors at Ri (0.75 + (i-1)0.05; 0.7), but this corresponds well to the situation described 467 

above. In Figure 16, the physical model used for simulation, and the wavefront 468 

propagation in the case of the full wavefield propagation modelling using finite 469 

differences are observed. Each panel is taken at a different time and the evolution of the 470 

wavefront over time is observed. In this simulation, the source used was a Ricker 471 

function (Figure 7.a, Figure 8.a). 472 

 473 

 474 

Figure 16. Physical velocity model and wavefront in the case of the full P-wavefield propagation 475 

modelling using the finite differences method. 476 

The results of this simulation are presented in Figure 17. The abscissa represents the 477 

spatial position of the sensors, and the ordinate indicates the recorded time. The 478 

seismograms represent the simulation of the received signals using finite differences, and 479 

the travel time curve calculated from Model M2 is shown in blue. At the scale of the 480 

problem, Model M2 was in agreement with the more complex full wavefield model using 481 

finite differences. This allowed us to obtain a first validation of the travel time estimate of 482 

Model M2 through numerical simulation. 483 

 484 
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 485 

 486 
 487 

Figure 17. Seismograms obtained by full wavefield propagation using the finite differences method 488 

in the physical velocity model presented in Figure 16. The horizontal axis indicates the position of 489 

the sensors. The red arrow indicates the sensors located at the plumb of the source. The theoretical 490 

travel times calculated in the same model (M2) by the method proposed in section 3.1 are plotted 491 

with blue dashed line to assess the good agreement. The transmitted signal is considered as the 492 

same emitted Ricker function (Figure 7.a). 493 

The same simulation is also carried out but using as source signal the signal actually 494 

transmitted by the loudspeaker (Figure 7.b and Figure 8.b). On Figure 18, a small shift 495 

between the travel times calculated with Model M2 and the simulations of the signals 496 

received using finite differences can be observed, but the trend of the curve remains 497 

correct. 498 

 499 

 500 

Figure 18. Seismograms obtained by full wavefield propagation using the finite differences method 501 

in the physical velocity model presented in Figure 16. The horizontal axis indicates the position of 502 

the sensors. The red arrow indicates the sensors located at the plumb of the source. The theoretical 503 

travel times calculated in the same model (M2) by the method proposed in section 3.1 are plotted 504 

with blue dashed line to assess the good agreement. We consider that the emitted signal was 505 

transformed by the loudspeaker (Figure 7.b). 506 

3.3. Cramer–Rao Bound from Model M2 507 

 In this section, as in Section 2.3, the Cramer–Rao Bound (CRB) was calculated to 508 

obtain information on the estimation accuracy. 509 

3.3.1. Calculation of the Cramer–Rao Bound from Model M2 510 

 The CRB was calculated according to the Fisher information matrix, which is 511 

denoted by F. 512 

Plumb of the source 

Travel times calculated from model M2 

Simulation of the signals received by sensors with the finite difference modelling 

Plumb of the source 

Simulation of the signals received by sensors with the finite difference modelling 

Travel times calculated from model M2 
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CRB(θ�%) = F���θ�% τ��⁄ (θ�%)� (23) 

where ./. is the known operator. 513 

The Fisher information matrix is expressed 514 

F�]�% ^��⁄ (]�%)� = � 1Var�^��(]�%)� _`!9�^��(]�%)�_̀ !9� �^��(]�%)�#
�$%  

(24) 

where N is the number of sensors, Var�τ��(θ�%)� is the variance of the relative delay time 515 

between sensor 1 and i, and ∇ !9�. � is the gradient operator as a function of θ�%. 516 

The gradient of τ��(θ�%) is calculated from Equation (12), 517 

∇ !9�τ��(θ�%)� = ∇ !9 '∣∣S P�∣∣V
 ( − ∇ !9 '∣∣S R�∣∣V
 ( + ∇ !9 '∣∣P� R�∣∣V� ( (25) 

The calculation of the gradient can be decomposed as follows 518 

∇ !9 '∣∣SP�∣∣V
 ( = a(S� − P��) − (S� − P��) ∂∂S� P��V
∣∣SP�∣∣
(S� − P��) c1 − ∂∂S� P��dV
∣∣SP�∣∣

−V
(S� − P��) ∂∂V
 P�� − ∣∣SP�∣∣%
V
%∣∣SP�∣∣

−(S� − P��) ∂∂V� P��V
∣∣SP�∣∣ e�
 

(26) 

∇ !9 '∣∣SR�∣∣V
 ( = fS� − R��V
∣∣S R�∣∣ S� − R��V
∣∣S R�∣∣ −∣∣S R�∣∣V
% 0g�
 

(27) 

∇ !9 '∣∣P� R�∣∣V� ( = h(P�� − R��) ∂∂S� P��V�∣∣P� R�∣∣
(P�� − R��) ∂∂S� P��V�∣∣P� R�∣∣

(P�� − R��) ∂∂V
 P��V�∣∣P� R�∣∣
V�(P�� − R��) ∂∂V� P�� − ∣∣P� R�∣∣%

V�%∣∣P� R�∣∣ i�
 

(28) 

All these expressions depended on the gradient of PiZ. The gradient of PiZ, ∇ !9P�� , 519 

needed to be calculated to be able to calculate the CRB. This gradient calculation is 520 

presented in Appendix A to avoid overloading the text. 521 

3.3.2. Numerical simulation using the Cramer–Rao Bound from Model M2 522 

 The figures presented in this section are the result of numerical simulations. These 523 

results are not exhaustive and are used to give an idea of the impact of the variables of 524 

the problem on the accuracy of the depth estimation. 525 

 

(a) (b) 

Figure 19. Depth error as a function of the error in the relative delay times: (a) for several numbers 526 

of sensors; (b) for several depths. 527 

Figure 19 shows the evolution of the CRB on the depth as a function of the error on the 528 

relative delay times. For these simulations, the following situation is considered: the 529 

distance between sensors is 0.2 m; the plumb of the pipe (SX) is at 0 m; the average 530 

propagation velocity inside the trench (V0) is 300 m/s; the average propagation velocity 531 

outside the trench (V1) is 600 m/s; and the position of the change in medium (PX) is at 0.15 532 

m. 533 



Sensors 2022, 22, x FOR PEER REVIEW 18 of 24 
 

 

For Figure 19.a, a depth of 0.7 m is considered, and the curves for different numbers of 534 

sensors are observed. The accuracy constraint on the relative delay times is relaxed by 535 

increasing the number of sensors. 536 

For Figure 19.b, seven sensors are considered, and the curves for different depths are 537 

observed. The estimation of relative delay times should be more accurate as the depth 538 

increases. For example, here, with seven sensors, to obtain a precision of 0.1 m for the 539 

depth, the precision of the relative delay times is needed to be in a 0.1 μs range. 540 

 541 

3.4. Validation of the travel time Model M2 on real data 542 

 543 

To compare travel time modelling with real data, an experiment was performed on the 544 

semi-controlled test area in a case similar to the simulation in Section 3.2. The same signal 545 

as in the simulation, a Ricker, was emitted. Sensors were placed every 0.05 m 546 

perpendicular to the pipe passage (as in Figure 15). Since we did not have a large enough 547 

number of sensors, several successive measurements were performed by leaving one 548 

sensor fixed and moving the others to mesh the space and act as if there was a large 549 

number of sensors. The time bases were recalculated with respect to the fixed sensor of 550 

each measurement to act as if only one measurement had been realized with many 551 

sensors. This added an error in the travel times, but here, we were only interested in the 552 

trend of the evolution of the relative delay times in order to validate Model M2. 553 

Sensor 1 was taken as a reference, which was the closest to the source S, to calculate the 554 

relative delay times. Figure 20 shows the evolution of the relative delay times between 555 

sensors 1 and i in black. These relative delay times were estimated using cross-correlation 556 

between the signal received by sensor 1 and that of sensor i. 557 

 558 

 559 

Figure 20. Comparison of the relative delay times between the real data and Model M2. 560 

The propagation velocities were unknown, a priori, for the semi-controlled test area. The 561 

velocities V0 and V1 of Model M2 can be estimated, a posteriori, by knowing the position 562 

of the source S in the test area. After determining all the variables in the test zone a 563 

posteriori, the relative delay times of Model M2 (blue curve of Figure 20) were calculated. 564 

At the beginning, the relative delay times increased until the break that marked the 565 

change in environment. Then, they started to increase again. In the simulation (blue 566 

curve), the position of the change in medium was fixed at 0.1 m. On the real data (black 567 

curve), the change in medium, highlighted by the break of the curve, was instead 568 

between 0.15 and 0.2 m. The Model M2 is representative of reality. It is logical and is in 569 

agreement with the observation of real data. 570 

 571 

3.5. Depth estimation from Model M2 572 

3.5.1. Numerical simulation with MUSIC algorithm adapted to the Model M2 573 
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In this section, numerical simulations are performed to qualify the MUSIC estimator 574 

adapted to the Model M2 (as in Section 2.4.2). The statistics of the estimator using the 575 

Monte Carlo method (1,000 runs of noise) are presented. Consider the following situation 576 

1: a depth (SZ) of 0.7 m, a propagation velocity (V0) of 300 m/s, a propagation velocity (V1) 577 

of 600 m/s, the plumb of the pipe (SX) at 0 m, and the position of the change in medium 578 

(PX) at 0.15 m. Seven sensors were spaced 0.2 m apart, the first one directly at the plumb 579 

of the pipe. 580 

In Table 4, the statistics of the results of the estimator using the Monte Carlo method 581 

are presented. 1,000 runs of noise were performed. The theoretical propagation times 582 

between the source S and sensors were noised with a white Gaussian noise of standard 583 

deviation σnoise. The propagation times are in the millisecond range and the propagation 584 

time differences with sensor 1 vary between 10-5 and 10-3 seconds. In this situation, an 585 

accuracy in a microsecond range is required on the delay times to get an accuracy of less 586 

than 0.1 m on the depth. These results confirm those presented in Section 3.3.2. 587 

Table 4. Statistics of the MUSIC estimator adapted to Model M2 using the Monte Carlo method in 588 

situation 1 (7 sensors spaced 0.2 m apart). Noise is applied to the propagation times which are in 589 

the order of a millisecond 590 

  Mean Standard deviation True Value 

Numerical Simulation 1 

with σnoise = 5.10-6 

Depth SZ (m) 0.7294 0.0849 0.7 

Average velocity V0 (m) 293 19 300 

Average velocity V1 (m) 592 41 600 

Numerical Simulation 2 

with σnoise = 5.10-5 

Depth SZ (m) 0.6666 0.2246 0.7 

Average velocity V0 (m) 261 58 300 

Average velocity V1 (m) 638 128 600 

 591 

Now, the case with seventeen sensors spaced 0.05 m apart is presented. Consider the 592 

following situation 2: a depth (SZ) of 0.7 m, a propagation velocity (V0) of 300 m/s, a 593 

propagation velocity (V1) of 600 m/s, the plumb of the pipe (SX) at 0 m, and the position of 594 

the change in medium (PX) at 0.15 m. Seventeen sensors were spaced 0.05 m apart, the 595 

first one directly at the plumb of the pipe. 596 

Table 5. Statistics of the MUSIC estimator adapted to Model M2 using the Monte Carlo method in 597 

situation 2 (17 sensors spaced 0.05 m apart). Noise is applied to the propagation times which are in 598 

the order of a millisecond 599 

  Mean Standard deviation True Value 

Numerical Simulation 1 

with σnoise = 5.10-6 

Depth SZ (m) 0.6604 0.0704 0.7 

Average velocity V0 (m) 293 18 300 

Average velocity V1 (m) 611 79 600 

The results in Table 5 show that an error of the order of microseconds on delay times 600 

allows an accuracy of 0.1 m on the depth. 601 

 602 

3.5.2. Estimation on real data 603 

At least seven sensors are required (section 3.3.2.) to use the MUSIC algorithm 604 

adapted to the Model M2. As mentioned in section 3.4, we only had five sensors. The 605 

sensors were moved to perform successive measurements. The different measurements 606 

are then not synchronized. Therefore, our estimator, based on MUSIC, cannot be used on 607 

these measurements. 608 

However, results evaluated from the delay times between the sensors are presented 609 

in Figure 20 (black curve). These delay times obtained after retiming, introducing 610 

additional errors. 611 
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The criterion presented here is the inverse of the squared error between the 612 

estimated delay times and the delay times calculated by the Model M2. 613 

The values of the criterion are obtained by varying the variables to be estimated: the 614 

depth (SZ), the velocity inside the trench (V0) and the velocity outside the trench (V1). The 615 

lateral position of the pipe (SX) and the position of the medium change (PX) are 616 

considered known. Indeed, SX estimated with the GasTracker tool and PX from the 617 

temporal break observed in Figure 20. 618 

The Figure 21 is a display of the obtained criterion. The estimation results are 619 

presented in Table 6. The error on the depth is less than 0.1 m. In addition, the velocity 620 

estimates are really small, which could be due to the large error on the delay times. The 621 

parameters SX and PX are fixed by an a priori estimate. It would be interesting to also vary 622 

these parameters around their estimated position. 623 

Table 6. Estimation obtained with least squares from the Model M2. 624 

 Estimate value Reference value 

Depth (SZ) (m) 0.64 0.70 

Average velocity inside the 

trench (V0) (m/s) 

140 unknown 

Average velocity outside the 

trench (V1) (m/s) 

250 unknown 

 625 

 626 

Figure 21. The inverse of the squared error between the estimated delay times and the delay times 627 

calculated by the Model M2. For this display the velocity outside the trench V1 is fixed at the 628 

estimated value. 629 

These results obtained with least squares are encouraging but we would like to have 630 

a more discriminating criterion. The next step of our work will be to test the MUSIC 631 

algorithm on real synchronous data in order to have a criterion with a better resolution 632 

power. 633 

4. Conclusion and future perspectives 634 

 We developed a method using several sensors positioned perpendicular to the 635 

passage of the pipe. This allows us to model the problem in a plane orthogonal to the 636 

passage of the pipe. The vibrating section of the pipe is represented by a point source. 637 
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In a first part, an initial model of the problem was defined by considering a single 638 

propagation medium (M1), i.e all sensors are located at the ground surface inside the 639 

trench. This Model M1 was validated, on the scale of the problem, by comparing it to a 640 

more complete modelling (full wavefield modelling by finite differences). The Cramer–641 

Rao bound was calculated to obtain theoretical information on the accuracy reached by 642 

the variables, in particular on the relative delay times. The error on the positioning of the 643 

sensors (e.g. line of sensors not perpendicular to the pipe) induces an error on the travel 644 

times. This is why, in these simulations and theoretical studies, the error on the depth 645 

estimation was quantified as a function of the error on the delay times. The MUSIC 646 

algorithm was adapted to Model M1, and then the algorithm was tested on real data. This 647 

allowed us to question the model and thus to advance it. The results obtained from the 648 

M1 model show that the depth estimates reach the desired accuracy of 0.1m. 649 

 In the second part, a second model of the problem was defined by considering two 650 

vertically stratified propagation media (M2), i.e sensors are located at the ground surface 651 

inside and outside the trench, according to the information obtained from experiments 652 

onto a test area. This model was validated in two steps, first through numerical 653 

simulation by comparing it to a more complete model, then by comparing it to real data. 654 

The Cramer–Rao bound was also calculated to obtain theoretical information on the 655 

accuracy reached by the variables. The MUSIC algorithm was adapted to this Model M2 656 

and was tested in simulation. 657 

The Model M2 aims to cover the case of a marked change of medium (inside/outside 658 

the trench). The results obtained with the Cramér-Rao bound show that 7 or 8 sensors 659 

would be needed to obtain a satisfactory depth estimate. Not having real synchronous 660 

measurements realized with 8 sensors, a least squares criterion between the delay times 661 

estimated from the real signals and those given by the Model M2 was established. The 662 

results obtained on real data reach the desired accuracy. 663 

In our future work, with more sensors, we will test the estimator based on MUSIC 664 

algorithm adapted to Model M2 on real data. Depending on the feedback from these 665 

experiments, we will be able to continue to evolve the model by potentially considering 666 

other propagation media, such as the layer of sand surrounding the pipe or the layer of 667 

tar covering the ground. This aims to produce a model closer to real situations that 668 

provides the fastest possible result to be able to apply the method in the field in real time. 669 
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Appendix A 690 

Calculation of the gradient of PiZ 691 

In this section, the gradient of PiZ is expressed with respect to θ�%. The notations from 692 

Section 3.1.2 are used in the calculation of PiZ. 693 

From Equation (16), 694 

∇ !9P�� = 12
⎝
⎜⎜
⎛ 12√A  ∇ !9(A) − ∇ !9(A) − 2 f∇ !9(g) + ∇ !9(A) + ∇ !9 ' u√A(g

2kA − 2 'g + A + u√A( ⎠
⎟⎟
⎞ − m�∇ !9(m%) − m%∇ !9(m�)4 m�%  

 

(A. 1) 

The gradients of all intermediate variables are calculated (A, J, K, g, u, w, m1, m2, m3, m4, 695 

m5) to express ∇ !9P��. The variable A (Equation (17)) is decomposed into three terms to 696 

ensure that the calculation was still readable. 697 

A = A� + A% + AF (A. 2) 

with 698 

A� =
⎝
⎛−K + NK% + 4JF272 ⎠

⎞
� F⁄

, A% = − J
3

⎝
⎛−K + NK% + 4JF272 ⎠

⎞
� F⁄   , AF = − 2g3  

 

(A. 3) 

The gradient of each term is calculated. 699 

∇ !9(A�) =
−∇ !9(K) + 2K∇ !9(K) + 12J%27 ∇ !9(J)

2NK% + 4JF27
6

⎝
⎛−K + NK% + 4JF272 ⎠

⎞
% F⁄  

 

 

(A. 4) 

∇ !9(A%) = − 13
∇ !9(J)

⎝
⎛−K + NK% + 4JF272 ⎠

⎞
� F⁄

− J∇ !9(A�)

⎝
⎛−K + NK% + 4JF272 ⎠

⎞
% F⁄  

 

 

(A. 5) 

∇ !9(AF) = − 23 ∇ !9(g) (A. 6) 

Once the gradient of A was calculated, the gradients of J and K can be calculated 700 

(Equation (18) and (19)). 701 

∇ !9(J) = − 2g3 ∇ !9(g) − 4∇ !9(w) (A. 7) 

∇ !9(K) = 83 mg ∇ !9(w) + w ∇ !9(g)n − 2g%9 ∇ !9(g) − 2u∇ !9(u) 
(A. 8) 
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The calculation of the gradients of g, u and w can be realized (Equation (20), (21) and 702 

(22)). 703 

∇ !9(g) = m�∇ !9(mF) − mF∇ !9(m�)m�% − 34 m%m�∇ !9(m%) − m%%∇ !9(m�)m�F  
(A. 9) 

∇ !9(u) = m�∇ !9(mE) − mE∇ !9(m�)m�% − 12 mm%∇ !9(mF) + mF∇ !9(m%)nm� − 2mFm%∇ !9(m�)m�F + 38 m�m%% ∇ !9(m%) − m%F ∇ !9(m�)m�E  (A. 10) 

∇ !9(w) =  ⎩⎨
⎧ s" ∇t!9(su)�su ∇t!9(s")s"9 − �E 1s9 ∇t!9(sv)wsv ∇t!9(s9)<s"�%s9sv ∇t!9(s")s"x+ ��y 1s99 ∇t!9(sx)w%sxs9 ∇t!9(s9)<s"�Fsxs99 ∇t!9(s")s"v − FyE s"s9x ∇t!9(s9)�s9v ∇t!9(s")s"u

  

(A. 11) 

Then, the gradients from m1 to m5, on which all other gradients depended, were 704 

calculated. 705 ∇ !9(m�) = �0 0 −2V
 2V��� (A. 12) 

∇ !9(m%) = �0 2�V
% − V�%� 4S�V
 −4V��R�� + S���� (A. 13) 

∇ !9(mF) = �2V
%(P�� − S�) 2S�V�% + 4R��V�% − 2S�V
% −2V
�S�% + (P�� − S�)%� 2V��S�% + R��% + (R�� − P��)% + 4R��S���� (A. 14) 

∇ !9(mE) = �0 −2V�%�2R��S� + R��% + (R�� − P��)%� 0 −4V�S��R��S� + R��% + (R�� − P��)%��� (A. 15) 

_̀ !9(mK) = �0 2S�V�%�R��% + (R�� − P��)%� 0 2S�%V��R��% + (R�� − P��)%��� (A. 16) 

The gradients of m1 to m5 were calculated and expressed according to the gradients of PiZ. 706 
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