N
N

N

HAL

open science

GELFAND-KIRILLOV DIMENSION AND MOD p
COHOMOLOGY FOR GL 2

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, Benjamin

Schraen

» To cite this version:

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, Benjamin Schraen. GELFAND-
KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL 2. 2022. hal-03883840

HAL Id: hal-03883840
https://hal.science/hal-03883840

Preprint submitted on 4 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03883840
https://hal.archives-ouvertes.fr

arXiv:2009.03127v5 [math.NT] 1 Sep 2022

GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL»

1.

1.1.
1.2.
1.3.
1.4.
1.5.

2

2.1.
2.2.
2.3.
2.4.

3

3.1.
3.2.
3.3.

4.

4.1.
4.2.
4.3.

5.1.
5.2.
5.3.

6.1.
6.2.
6.3.
6.4.

CHRISTOPHE BREUIL, FLORIAN HERZIG, YONGQUAN HU, STEFANO MORRA,
AND BENJAMIN SCHRAEN

ABSTRACT. Let p be a prime number, F' a totally real number field unramified at places above p
and D a quaternion algebra of center F' split at places above p and at no more than one infinite
place. Let v be a fixed place of F above p and 7 : Gal(F/F) — GLg(F,) an irreducible modular
continuous Galois representation which, at the place v, is semisimple and sufficiently generic (and
satisfies some weak genericity conditions at a few other finite places). We prove that many of
the admissible smooth representations of GLz(F,) over F, associated to 7 in the corresponding
Hecke-eigenspaces of the mod p cohomology have Gelfand—Kirillov dimension [F, : Qp], as well
as several related results.

CONTENTS

Introduction
Torsion in cohomology and Gelfand-Kirillov dimension
The main theorem and its consequences
The proof
Notation
Acknowledgements
Preliminaries
Group theoretic preliminaries
The inertial local Langlands correspondence and Serre weights
Tame inertial types
Combinatorics of types and Serre weights
Galois deformations: background and lemmas
Kisin modules with descent data and the monodromy condition
Lemmas on mod p Galois representations
A commutative algebra lemma
Galois deformation rings
Setup
Deformation rings I: single type
Deformation rings II: multiple types
Gelfand—Kirillov dimension and representations of the Iwahori
Review of Gelfand—Kirillov dimension
Recollection of results of Lazard
The case of the pro-p-Iwahori of GLy
On smooth representations of GLo
On some representations of the Iwahori
On some indecomposable representations of K
A result on maximal representations of K with prescribed socle
Multiplicity one result for the pro-p-Iwahori
1

BEEHEEEREEEEEERHEEREEEHEAHpuas



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2

[\

7. Construction of a lattice

7.1. Locally algebraic lattices

7.2. Preliminary computations
7.3. Construction of the lattice
7.4. Projectivity

8.  Global applications

8.1. Patching functors

8.2. Freeness for types

8.3. Freeness for projective covers
8.4. Gelfand—Kirillov dimensions
8.5. Flatness for the dual of completed cohomology
References

EERREBERRH

HHE



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2 3

1. INTRODUCTION

1.1. Torsion in cohomology and Gelfand—Kirillov dimension. Fix a prime number p, a
totally real number field F' which is unramified at places above p, and a quaternion algebra D of
center I’ which is split at places above p and at exactly one infinite place. For V a compact open
subgroup of (D @ A%)* denote by Xy the associated smooth projective Shimura curve over F.
Let v be a fixed place of F' above p and F a finite extension of I, (“sufficiently large”, as usual).
This paper is concerned with admissible smooth representations of GLa(F;,) over F of the form

def . — Fal
(1) m = lim Homg /) (7, H, (Xvvy, xp F,F)),
Vo

where V" is a fixed compact open subgroup of (D ®p A%"")*, the inductive limit running over
compact open subgroups V,, of (D®@pF,)* = GLy(F,) and 7 : Gal(F/F) — GLa(F) is a continuous
absolutely irreducible Galois representation such that 7 # 0. Understanding such representations
7w of GLa(F,) attached to Galois representations is important, as it is hoped that they realize
a mod p Langlands correspondence. For instance, when FF = Q (and Xy is the compactified
modular curve), under weak assumptions on F|Gal(@p /) the representation 7 of GL2(Q)) is well

understood (see [Eme]).

This is far from being the case when F, # Q,, despite a great amount of effort during the
past 20 years and we only have few guidelines from modularity lifting expectations. In particular,
the work of [GN22|, which follows the heuristic of [Emel4], §3.1.1], shows how relevant geometric
properties of the “big” Hecke algebra are consequences of the Gelfand—-Kirillov dimension of
(a measure of the growth of the dimension of invariant subspaces under principal congruence
subgroups). For F, = Q) this dimension is known by [Mor13], thanks to the explicit description
of the supersingular representations of GL2(Q,) [Bre03], but if F;, # Q, the (over-)abundance of
supersingular representations ([BP12], [Hul0]) makes it more difficult to obtain information, even
for the invariants under the first congruence subgroup ([LMS22], [HW18], [Lel9], which are based
on the patching construction of [EGS15]).

The aim of this work is to lift a corner of the veil surrounding the smooth representations m
coming from cohomology, by establishing their Gelfand—Kirillov dimension. Besides applications
to the flatness of completed homology over a big Hecke algebra (Theorem below) and on
the candidate of [CEG™16| for the p-adic Langlands correspondence (Theorem below), our
methods also lead us to an abelian subcategory of the category of smooth representations of
GL2(F,) that has desirable finiteness property, with further applications to a functor towards
Galois representations; cf. our subsequent work ([BHH™]).

We now describe in more detail our results.

1.2. The main theorem and its consequences. In order to state our main theorem, we first

give the precise definition of dimqr,, (r,)(7), the Gelfand—Kirillov dimension of 7 in the context of
smooth GLg(F,)-representations over mod p vector Spaces We let f e [Fy:Qpl, K et GL2(OpF,),
def

K, = 14+p"M3(Op,) C K for n > 1, Z; the center of K1, and we assume p > 2. For 7 a nonzero

1Stric‘cly speaking, this is not quite the Gelfand—Kirillov dimension of 7, see Remark in the text, but this
is the only dimension we will consider.
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admissible smooth representation of GLa(F,) over F with central character, we set (see §5.1))

3f —min{d > 0 : Extfy, /7,1 (7", F[K1/Z1]) # 0},

. def
dimgr, (r,) (7) =
where F[K1/Z] is the Iwasawa algebra of K1/Z; and 7" is the algebraic dual of 7, considered
as module over F[K;/Z1] (note that Z; acts trivially on 7 and that 3f = dim(GLa(Fy)/Z1)).
Another equivalent and maybe more intuitive definition of dimgy,,(fg,)(7) is the following: it is
the unique integer such that there exist a < b in R+ satisfying
Knp

dimﬁr ™
a

pn dimGLQ(Fv)(ﬂ') —

for all n > 1 (see Remark [5.1.1)). (As alluded above, the dimension dimgy,(f,)(7) measures the
growth of 7/ when n grows: for instance it is 0 if and only if dimp(7) is finite and nonzero.)

Theorem 1.1 (Corollary |8.4.6). Keep all the above assumptions on F, D, and assume that T is
generic and that F|GF(%) is absolutely irreducible. Let V¥ =[], Vi with Viy = GL2(Op,) if

neither D nor T ramifies at w, and V,, C 1+ pMa(Op,) if w|p (w # v).
Then for m as in we have dimgr, (r,)(7) = f.

We also prove the same statement for the analog of m when D is totally definite. Although
we did not check it carefully, the same method should also work in other global settings in which
the group is GLo(F),) at the place v, like for instance unitary groups which are forms of GLo.
Moreover, from exchanges with Koziol, we believe the same result applies when, in the global
setup, the unitary group is a nonsplit unramified unitary group at v. In a companion paper
(and the same global setup), Hu and Wang prove an analog of Theorem below and apply
our Theorem (1.6 to deduce dimgr,(p,)(7) = [Fy : Qp] when F’Gal(fv /F,) 18 not semisimple and
sufficiently generic ([HW22]).

By work of Gee-Newton (see [GN22]), Theorem |1.1{ can be applied to obtain “big R equals big
T” results and flatness for the completed homology of towers of Shimura curves, when considered
as a module over the “big Hecke algebra”. More precisely let ¢ be the Teichmiiller lift of the
product of det(7) and the mod p cyclotomic character, let

H (V)Y i ling B (Xyoy, xp F,W(E)/p")Y
n Vu

be the 1~ !-isotypic subspace of the completed cohomology “localized at 7" and let T(V”)g_l
be the “big Hecke algebra” acting on it and let R;p g be the universal deformation ring of 7
parametrizing deformations r of ¥ which are unramified outside of S and such that edet(r) =
(see for precise definitions). Assume moreover that p is inert in F' and that V,,, is sufficiently
small at a conveniently chosen place w; of F.

Theorem 1.2 (Corollary [8.5.1). There is an isomorphism R;{S = T(V”):f_l, the T(V”)g)—l—
module HomW(F)(ﬁl(V”)gil,W(F)) is faithfully flat, and T(V”)?71 is a complete intersection.

We also prove the analogous result in the case of definite quaternion algebras. Note that the
~ A -1
isomorphism R;p g — ']I'(V”):f is related to a theorem of Allen (JAII19, Thm. 6.3.6]) building

on previous results of Gouvéa—Mazur and Chenevier (but without the determinant condition);
however, flatness is new. This flatness was known in the case of modular curves using the full
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strength of the p-adic Langlands correspondence for GL2(Q)) and the local-global compatibility
result of [Emel.

As mentioned above, Theorem [I.1] also has important consequences for the existence of ad-
missible unitary Banach representations of GLy(F,) lifting the eigenspace of 7. From now on we
let

(2) < 1AIHOTHHW GL2(Op,) <® 0w, Homg,. (7, Hy (Xvwy, xp F F)))
e e

where, for w | p, w # v, o, is any Serre weight in the set W (7)) of [BDJI0, §3] and V,, C
1 4+ pM3(OpF,) is normal in GL2(Op,), and V,, is sufficiently small at a nice place w; where
nothing ramifies. (Note that, by dévissage, we can always replace m as in by ) The
representation 7 of GL2(F,) in (2) can be “patched” as in [CEGT16| or [DL21], §6] giving rise to

a “big” profinite R.-module MOO endowed with an R.o-linear continuous action of GLy(F,) such
that My, /me =X 7.

Theorem 1.3 (Corollary . Keep the assumptions of Theorem and let  : Ryo — O’ be
any homomorphism of local W (F)-algebras, where O is the ring of integers of a finite extension
E' of W(F)[1/p]. Then

Hom@" (Moo @pyy 0 O, E')

is a (nonzero) admissible unitary Banach representation of GLa(F,) over E' with a GLa(F,)-
invariant unit ball lifting m Q@r F', where F' is the residue field of O'.

Note that = : Ry, — O’ gives rise to a Galois representation p, : Gal(F,/F,) — GLa(E’)
and that Homcom(M QR O, E') is the natural candidate of [CEGT16] for the Banach space
representation of GLy(Fy) assomated to p; by the hypothetical p-adic Langlands correspondence.
So far it was not known that this representation is nonzero in this generality.

To deduce this from Theorem by Schikhof duality (see [ST02, §1]), it is enough to prove
that Mo ®pg. » O is flat over O'. But an argument due to Gee and Newton in [GN22, Cor. A.30]
(and usually called “Miracle Flatness”) shows that, when dimgp,,(g,)(7) = f, the Re-module M,
is indeed flat over Ro,, whence the result by base change.

We also prove several variants and generalizations of Theorem [1.1} For instance, Wlthout the
assumption V,, C 1+ pM2(OF, ) for w|p, we still have dimgr,, (5,)(7 ) < f, see Remark (8 We
can take Vi, = GL2(Op, ) for w outside any finite set S containing the ramification places of D
and 7 provided Ry, is formally smooth for all w € S prime to p (see loc. cit.). It is likely that
other variants of Theorem [I.1] can be proven, e.g. by fixing types at some places w prime to p
instead of assuming Ry, formally smooth. For instance, we have dimgr,(r,)(7p(T)) = f, where
7p(T) is the “local factor” mp ., (F) of [BD14, (3.3)] and [EGSIH, §6.5] (see Remark [8.4.5)).

The notion of genericity for 7 appearing in Theorem is mainly dictated by the current
technology for studying potentially crystalline deformation rings (cf. [LLHLM]). It is made explicit
as follows. For a finite place w of F, let I, be the inertia subgroup at w and wy, f' € {f,2f}
be Serre’s fundamental character of level f’. Then:

(i) for w1 p such that either D or 7 ramifies, the framed deformation ring Ry, of 7, &
| Gal(Fo/F) OVer the Witt vectors W () is formally smooth;



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2 6

(ii) for w|p, w # v, 7|1, is generic in the sense of [BP12) Def. 11.7];
(iii) 7|7, is semisimple of one of the following forms up to twist:

w(70+1)+"'+pf_1(7'f71+1) 0
(a f 0 ) 12<r; <p-—15,
oD 4p T rp—1+1) 0
(b) 2f of (same) B<ro<p—-14,12<r; <p—15fori > 0.
0 Wh
f

Note that implies p > 23 and that |(i)[ can be made explicit ([Shol6]).
1.3. The proof. We now sketch the proof of Theorem

1.3.1. Smooth representations. A key step in our method is to show that the representations
appearing in Theorem satisfy a “minimal multiplicity” condition, namely condition of
Proposition below. It is this condition that plays a key role in our subsequent work [BHH™].

We describe these results in more detail. We let k(= ;) be the residue field of F},, and for each
Serre weight o € W (7)), we define Dy, as the largest subrepresentation of the injective envelope
Injgr, k) o such that o only appears in the socle of Dy, and no other Serre weight of W (7)) is a

constituent of Dy ,. We set Dy(T,)) & Doew ) Do, as in [BP12] §13]. We also denote by my, /7,
the maximal ideal of F[K1/Z1]. In order to get the above upper bound on dimgr,,(x,)(7), we will
apply the following theorem to 7 in .

Theorem 1.4 (Theorem [6.4.7)). Let m be an admissible smooth representation of GLa(F,) over
F with a central character. Assume that

(i) we have an isomorphism w1 = T[mg, 17,1 = Do(T))®" of representations of GLa(k) for
somer > 1;
(ii) we have [W[mg(l/zl] o] = [w[mg, /z,] - o] for all o € W(T)).

Then dimGLz(FU)(ﬂ—) < f

(In fact we prove in Theorem a slightly stronger statement.) Condition |(i)/in Theorem (1.4
is already familiar, for instance it is satisfied with = 1 by the representation mp ,(7) mentioned
above (see [HWI18] and [LMS22|, which build upon [BP12] and [EGS15]). Thus it is rather
condition which is important. Though it is purely local, the proof of Theorem is not at
all trivial, and it took us a long time before finding a proof (or even convincing ourselves that
the statement was true!). The key idea is to look at the action on 7 of the lwahori subgroup I of
K instead of K itself. The proof of Theorem [I.4]is divided into two steps. The first step is the
following result, where I; C I is the pro-p-Iwahori subgroup and my, 7, is the maximal ideal of
the Iwasawa algebra F[I;/Z1].

Theorem 1.5 (Proposition [6.4.6). Let m be an admissible smooth representation of GLa(F)
over F with a central character and assume w satisfies and of Theorem 1.4 Then for all
continuous characters x : I — F* such that [t[my, /7] : x] # 0 we have:

3) (w3, 2,] - X1 = [xlmp, 7] X



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2 7

Note that socle(w|;) = w[my, ;7,] = 7/t since p > 2. The proof of Theorem [1.5is given in @ It
is a bit long and technical, but is rather standard (to apply Proposition to m as in Theorem

one actually needs Corollary [6.3.13| and Lemma see §6.4)).

The second step is the following key result which gives the sought-after upper bound on the
Gelfand—Kirillov dimension.

Theorem 1.6 (Corollary [5.3.5). Let m be an admissible smooth representation of GLa(F,) over
F with a central character and assume [W[m%/zl] 2 X] = [wlmp 2] x] for all x : I — F* such

that [m[my, /7] : x] #0. Then dimgr,r,)(7) < f.

Let us sketch the proof of Theorem We view the algebraic dual 7 as a (finitely generated)
module over F[I;/Z;] and denote by gr, 7" the associated graded module over gr, F[I1/Z1]
for the my /7 -adic filtration. The graded ring gr,, F[/1/Z1] is not commutative, as the pro-
p group I1/Z; is not uniform (see [Clol7] and . But the assumption [77[1'11?1 /Zl] c x| =
[7[my,/z,] : x] implies that the action of gr, F[[1/Z1] on 7" factors through a commutative
quotient (gry, F[11/Z1])/1}, /7, where I /7 is an explicit 2-sided ideal of gr,, F[[I1/Z1] generated
by certain degree 2 elements (see Theorem . More precisely one has

(4) (gt FLI/Z0]) /11 7 Z Fles, fi; 0 < i < f —=1]/(eifi; 0< 5 < f = 1),

where the (commutative) polynomial algebra Fle;, fi; 0 < i < f — 1] is itself the quotient of
groF[11/Z1] by a regular sequence (hg,...,hs_1) of central elements. By a general lemma
(Lemma , dimgp,(r,) () is equal to the dimension of the support of gry, 7 in the poly-
nomial algebra

(gI‘mF[[Il/Zl]])/(ho, ey hf—l) = F[ei, fl'; 0 S 7 S f — 1],
which by (4]) is smaller or equal than dim(gry, F[/1/Z1] /I, /7,) = 2f — f = f. So we see that the
fact that gr, 7" (for an admissible smooth representation of GLg(F,) over F) is a module over
(grm F[11/Z1])/11, 2, , and not just over gry, F[I1/Z1], turns out to be an important condition.

1.3.2. Patching: the setup. We now apply Theorem [1.4] to 7 in (2]). For this, we need to prove
that 7 satisfies conditions |(i)| and of Theorem We first sketch the proof of (ii), which is
the harder and more important one. We fix an arbitrary Serre weight o in W (7). We need to
prove

(5) Hom (o, m) — Homg ((ProjK/Z1 U)/mﬁﬁ/zl,ﬂ),

where Projg,, o is the algebraic dual of the injective envelope Injg/ 7, oV of ¢V in the category
of smooth representations of K/Z; over F.

We do not know any other way to prove than to “patch” (the dual of) both sides using
the patching functors of [EGS15|. This strategy is not new: it is initially due to Emerton, Gee,
Savitt in [EGS15] (generalizing work of Diamond, of Fujiwara, and using of course the work of
Taylor, Wiles and of Kisin) and has been generalized by Le, Morra, Schraen, by Hu, Wang, and
by Le in [LMS22|, [HW1S]|, [Lel8] who proved (under various hypotheses) a result analogous to
but with mg, /7 instead of mi(l 71 Recall that a patching functor is an exact (covariant)
functor M., from the category of continuous representations of K on finite type W (F)-modules
to the category of finite type Roo-modules satisfying several “Cohen—Macaulay” properties, see
[EGSI5, §6]. Here R, is the relevant patched deformation ring, a power series ring over R!°°
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(using standard notation), see Note that one also has to be careful about determinants and
central characters, but we ignore this minor issue in the introduction.

Thus proving is equivalent to proving
(6) Moo ((Projg sz, 0) /M, s2,) Moo = Moo (0) /mec,
where my, is the maximal ideal of Ro,. The strategy in the above references to prove (a “multi-
plicity one” variant of) @ with m%l 17 replaced by mg, /7, is to use the isomorphism
(7) Moo (Projgr,1)0)/ (p) = Moo (Projgr, i 0) = Moo ((Projg 7, 0) /MK, /2, ),
where ﬁr\(J)jGLQ(k)a is the unique projective W (IF)[GLz(k)]-module lifting Projap, k)0 = Migr, )0
and to determine the support of M (ﬂajGLQ(k)a) in Reo.

1.3.3. Lattices in locally algebraic representations. We apply a similar strategy in our case, which
means we first have to lift (Projg,; o)/ m%ﬁ /7, to @ W (F)[K]-module. This is significantly more

complicated than to lift (Projg,z, o)/my, z,. It is easy to check that the K-representation
(Projg/z, o)/ m%ﬁ /7, is & nonsplit extension
2 . . 2 .
0 — (Mg, /2, /M, /7,) ©F Projgr,my 0 — (Projkz, 0)/my 17, — Projar,wy o — 0.

For convenience, let us fix an embedding oo : k = F,y < F and write all others as o¢ o @,
j€{0,...,f—1}, where ¢ is the Frobenius x + 2P on k. Then we have

f—1

M,z /Wi, 7, = @ (Sym?*(F?) @r det™)"7,
=0

where (j) means that GLo(k) acts via og o /. Moreover, for each j, we fix a (non-canonical)
GLa(k)-equivariant embedding

tj : Projar,p o < (Sym*(F?) @ det_l)(j) ®F Projgr, k) 0-
We set L_; & ﬁSjGL2(k)o and
def

Ry & (Sym*(W(F)?) @y det )Y @ Loy j€{0,...,f -1},

and we define a K-invariant lattice L; in the locally algebraic representation

J
Lafi/pl@ (€D Ray(1/p))
i'=0
as follows
Lj dZEf {(LB, (ﬂfjl)ogj/gj) S L_l D (EB;’:O RQJ’) . (a:j/ mod pRQJI) = (l‘ mod pL_l)
via ¢jr: L_1/pL_1 = R j//pRoj ¥V j € {0,...,5}}.
Equivalently, we have for j € {0,..., f — 1} that
def

(8) Lj = Lj-1 XProjay, 4 o B2
where R ; o {r € Ry : (xmodpRyj) € ;(L_1/pL_1)} (another K-invariant lattice in
R ;[1/p]). By explicit computations carried out in §|ﬂ we first prove that the lattice L;_; lifts
(PrOjK/Zl U)/m%{I/ZI.
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Theorem 1.7 (Corollary [7.3.4)). We have a K -equivariant isomorphism
Ly-1/pLy-1 = (Projg;z, 0)/mic, 7,

We then prove the following theorem.

Theorem 1.8 (Corollary|8.3.9)). Forj e {—1,...,f—1} the Roo-module M (Lj) is free of finite
rank over Roo/Annp (M (Lj)). Moreover this rank depends neither on j nor on the fized Serre
weight o in W (T))).

Denote by r > 1 the rank in Theorem|[1.8] Applying Theorem[I.§to both j = —1and j = f—1,
and using Theorem [1.7] when j = f — 1, we see that the two F-vector spaces in @ both have
dimension r. Since the natural map from left to right in @ is surjective by exactness of M., we
obtain that @ is an isomorphism, and hence that 7 satisfies condition of Theorem

We now sketch the proof of Theorem [I.8] which is by induction of j. We first prove the following
two statements for j € {0,...,f —1}:

(i) Mso(L—1) is free of rank 7 over Roo/Anng,  (Mso(L_1));
(i) Moo(Ry ;) is free of rank r over Reo/Anng, (Moo (R ;).

Statement is proven in (see Proposition by a refinement of the techniques in
[EGST5L §10] and [LMS22, §4] together with some commutative algebra. Statement is proven
in Theorem [8:3.4] using standard dévissage techniques and “elementary” properties of the functor
M (in particular [Lel9l Lemma 4.5] instead of [EGSI5, Lemma 10.1.13]) and some results of

By exactness of M, implies
MOO(LJ) = MOO(Lj—l) ><J\/L)c;(l:’rOJ'GL (k) ) MOO( /2])

We know that Mo (R ;) is free of rank r by [(ii){ above and we know that Me(L;-1) is free of
rank 7 over Ro/Anng, (Moo (Lj—1)) by our induction hypothesis (which holds for j = 0 by [(i)).
Hence, to deduce the same statement for M. (L;), it is enough (in fact equivalent using Lemma

8.3.8) to prove

(9) Amnp, (Moo (Projar, () o)) € Anng,, (Moo (Lj-1)) + Annp,, (Moo (Ry ;).

1.3.4. Deformation rings, and conclusion. Statement @ is the most subtle and the most technical
part of the paper and is ultimately proven in Theorem [8.3.9] though in a somewhat indirect way
as we explain now.

Recall that Rzv is the local W(F)—algebra parametrizing framed deformations of 7. We let

RS 0 , Tesp. }L( i for j € {0,...,f — 1}, be the reduced p-torsion free quotient of Ryv

parametrlzmg those deformations Wthh have inertial type 7 and parallel Hodge-Tate Welghts
(1,0), resp. Hodge-Tate weights (2,—1) in the embedding F, — W/(F)[1/p] induced by o¢ o
¢’ and (1,0) elsewhere. An explicit computation that builds on the recent advances of Le-Le
Hung-Levin-Morra [LLHLM18], [LLHL19] (see Proposition shows that these rings are all

domains. It follows (see Proposition[8.2.6) that Re/Annpg_ (Mso(L_1)) is a power series ring over

(1,0) (1 0) T)

RFX /Nrpr ", where pQ’O) is the prime ideal ker(Rx v —» }L and 7 runs over the tame inertial
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types such that o is a Jordan-Holder factor in the mod p semisimplification of o(7) (here o(7)

is the usual irreducible smooth representation of K associated by Henniart to 7 in the appendix
to [BMO02]). Likewise, Reo/Anng, (Mx(Ry ;)) is a power series ring over Rgv /Ny p(TZ’fl)j, where
pl i = ker(Rzy — f,QV’_l)j’T) and 7 runs over the same tame types (see Theorem [3.3.4)).

In the first version of our work, we tried to prove @ directly. For that one has to deal

(27_1)j .

with Annpg (M (R ;)) which is essentially (forgetting formal variables) N:p7 However,

computing elements in this intersection over the 2f types 7 turns out to be very hard because
the ideals pg’_l)j do not have simple generators (this is mainly due to the technical monodromy
condition which appears as we have Hodge—-Tate weights (2, —1)) and there was a gap in our
proof. To avoid this intersection, we use the following detour, which is inspired by the proof of

[HW22| Prop. 4.18].

Choose a tame inertial type 7y such that the set of irreducible constituents of o(79)/po (7o)
coincides with the set W (7)) (such a type exists) and define for j € {0,..., f — 1}

To; = (Sym*(W(F)?) @w det™1)V) Qw ) (1)’
TQ”]- et image of the composition R’Q’j — Roj — 1o j,

where (7)Y is the image of L_; in o(7y) (equivalently the unique K-invariant lattice in o (7g)
with cosocle ). Then the surjection Rj; — Tj ; induces a surjection

def /

where Yj is an explicit quotient of Projgy, k)0 such that M« (Yj) = M (T3 ;/pT5 ;) (Lemma
B.3.5). We first prove that My (L;) is free of rank r (over its schematic support) if and only if
M (Nj) is free of rank r (see Proposition and the last paragraph of the proof of Theorem
. To prove the latter, as for @D we have to prove for j € {0,...,f —1}

Annpg (Moo (Y;)) € Anng, (Moo (Lj—1)) + Anng,, (Moo (T3 ;)

or equivalently since Anng_ (Moo(Y;)) = (p) + Anng,, (Moo(T3;)) and since Ty ; is a lattice in
Ty,3(1/pl,

(10)  p€ Annp, (Mo(Lj—1)) + Anng. (Moo(Ts ;) = Anng., (Moo(Lj—1)) + pl 7.

Note that we have replaced the intersection ﬂTpg’_l)j by just p(727_1)j ! Tt is then possible to check

by an explicit computation, which can be done entirely “by hand”, see Proposition and
the proof of Theorem We have compiled in Tables 1 to 5 all the explicit computations of
deformation rings that we use in the proofs (everything was checked “by hand”).

To apply Theorem to 7 in , it remains to show that 7 satisfies condition |(i)| of Theorem
But using @ together with standard injectivity properties of localizations of Hecke modules
at non-Eisenstein maximal ideals and (a lot of) representation theory of K (see Corollary ,
we actually obtain the complete structure of W[mil /Zl] as a representation of K.

Theorem 1.9 (Theorem [8.4.2)). Let 7 as in (2)), we have

(11) w12 (@ D)

oceW (7))
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where r is the rank in Theorem and Dy is the largest subrepresentation of (Injg/z, U)[mﬁﬁ/Zl]

containing o with multiplicity 1 (= its socle) and no other Serre weights of W(T,)). Moreover,
each irreducible constituent of ﬁ[m%ﬁ/zl] has multiplicity .

Condition |(i)| of Theorem then immediately follows from the isomorphism in Theorem
by taking Ki-invariants on both sides. In particular we finally obtain:

Theorem 1.10 (Theorem [B.4.1)). Let m be as in [2)). Then dimgy,(p,)(7) = f.

1.4. Notation. We only give some very general notation here, more specific notation will be
given in each section. We fix an algebraic closure Q, of @Q,. All finite extensions of Q, will be
considered as subfields of Q,. We let v, denote the valuation of Q,, such that v,(p) = 1.

We let E be a finite extension of Q,, with ring of integers O, uniformizer w and residue field F,

and will always assume that F is sufficiently large. We let k be a finite extension of F,, of degree

fe [k : Fp]. We fix an embedding o¢ : £ — F and let o; & 590 @7, where ¢ : x — 2P is the

arithmetic Frobenius on k. Then the set J & Hom(k, F) is identified with {0, ..., f —1}.

We let & (resp. w) denote the p-adic (resp. mod p) cyclotomic character of the absolute Galois
group G'r, where F' is any finite extension of Q or Q,. We normalize Hodge-Tate weights so that
€ has Hodge—-Tate weight 1 at every embedding.

Given a profinite group G, we write F[G] for its completed group algebra with F-coefficients,
with augmentation ideal denoted by mg. We recall that Pontryagin duality M — M"Y induces an
exact anti-equivalence between the category of smooth G-representations over F, and the category
of pseudocompact F[G]-modules. Recall that given a pseudocompact F[G]-module M, we have

the radical radg M 2ot mgM. Dually, given a smooth G-representation M we write socg M for
its socle.

If G is a group and V a representation of G on a finite-dimensional F-vector space we denote
by V the semisimplification of a G-stable O-lattice in V. If V a representation of G on a finite-
dimensional vector space, we let JH(V') denote the set of Jordan—-Hélder factors of V. Also, if o is
an irreducible representation of G, we let [V : o] be the multiplicity of ¢ in the semisimplification
of V.
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2. PRELIMINARIES

Throughout this section K denotes the unramified extension of Q, of degree f with ring of
integers O and residue field k. Recall from that we have fixed an embedding oo : kK — T,
hence an embedding K — F which we still denote by the same symbol og. In particular we have
compatible identifications of J = Hom(k,F) with Homg, (K, E) and with {0,..., f —1}.

2.1. Group theoretic preliminaries. We consider the group scheme GL,, defined over Z, let
T C GL, be the diagonal maximal torus and Z its center. We write R for the set of roots of
(GL,,T), W for its Weyl group, with longest element w and let B C GL,, denote the Borel of
upper-triangular matrices. In particular, B determines the subsets R* of positive roots. We
identify the set of characters X*(7T') with Z" in the standard way. If n = 2, let « € R* correspond
to (1,—1) € Z? so that R* = {a}. If A is any ring, we write GLy /4 to denote the base change of
GL,, to A.

Let G, be the algebraic group Resp, /7, GLn 0, with T the diagonal maximal torus and
center Z. Let G be the base change G Xz, O, and similarly define T and Z.

There is a natural isomorphism G = [] 7 GLy, /o induced by the ring homomorphism O ®z,0 =
O7 defined by * ® 1 + (0j(z))jes. One has similar isomorphisms for T, Z, X*(T), R, R,
where R (resp. RY) denotes the set of roots (resp. coroots) of (G,T). If u € X*(T), then we
correspondingly write p = (115)jey. We have an automorphism 7 on X*(T'), coming from the
descent data of I' induced by 7'y and corresponding to the arithmetic Frobenius, characterized by

m(p)j = pj-1-

We identify X*(T) = @ 7X*(T) with (Z")7 as above. Moreover, if (ay,...,a,) € Z" we write
(a1,...,an) to denote the element of X*(I") whose corresponding tuple equals (a1, ..., a,) at each

embedding j € J. We let n; be (n —1,...,1,0) in the j-th coordinate and 0 otherwise. We let
def

Given A € X*(T) (vesp. A € X*(T)), we let V()) o denote the algebraic Weyl module of GL;, /0
(resp. G) with highest weight A as defined in [Jan03, I11.8.3]. If A is an O-algebra, we write V()
to denote the restriction of V(A),0(A) to GL,(Ok) via the map GL,(Ok) — GL,(A) induced

by the ring homomorphism o¢. If j € J and A € X*(T'), we write V()\)% to denote the algebraic

representation of G obtained, by inflation from the j-th projection G = [ 7 GLy 0 it GLy 0,
from the algebraic Weyl module V(X) o of GLy 0.

Let R C R (resp. RY"" C RY) be the subset of positive roots (resp. coroots) of G with respect
to the upper-triangular Borel in each embedding. If n = 2, let a; € R be (1,—1) in the j-th
coordinate and 0 otherwise, so that RT = {a;:j=0,..., f —1}.

Let X% (T') be the set of dominant weights, i.e. the set of weights A € X*(I') satisfying 0 <
(A, oY) for all @ € RT. We denote by X1(T) C X% (T) be the subset of p-restricted weights
A € X5 (T) satisfying 0 < (X, a¥) < p —1 for all simple roots « € R, Let Xyeg(T) C X3(T)
be the subset of weights A € X (T) satisfying 0 < (\,a") < p — 1 for all simple roots o € RT.
Finally, we let X°(T) C X% (T) be the subset of weights A € X*(T) satisfying (A, a") = 0 for all
simple roots a € R™.
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The lowest alcove is defined as
def

Co={DeX* (T)@R:0< (A+n,a")y<pVaeR"}.

Given N > 0 and u € C,, we say that p is N-deep in Cy if N < (u+n,a") <p—N foralla € R*.
(Thus the existence of an N-deep weight in C|, implies p > 2N + 2.)

In particular, when n = 2, via the identifications above
Xi(T)={ e (Z) :0< N1 —Xja<p—-1Vj=0,...,.f—1},
Xeeg(T) ={A € (2T :0< Nj1 = Njo<p—1Vj=0,...,f—1},
and Cy N X*(T') = Xyee(T).

Let W be the Weyl group of (G,T), with longest element wg. It acts on X*(T') and we have
a compatible identification of W with Hje 7 W. Given w € W, we write w; to denote its j-th
component via the identification above.

Let W, and W be the affine Weyl group and extended affine Weyl group, respectively, of G.
Concretely, W, = Ar x W and E = X*(T) x W, where Agp C X*(T) is the root lattice of G.
The image of A\ € X*(T) in W is denoted by 5. Note that W = (Z" x S, )f and we will also
write ¢, for the image of @ € Z™ in Z" x S,,. We have the p-dot action of W on X*(T), defined

as follows: if w = wt, eWand,ueX*( ) then @ - u—w(,u—i—n—i—py) n.

Let © be the stabilizer of the lowest alcove Cj in VT/ SO W/ =W, x Q. Concretely, when n = 2,
it is the subgroup of W generated by X°(T") and {1,vt_g 0)}‘7

Recall that the choice of Cj endows W, with a Bruhat order, which is denoted by <. This
induces a partial order < on E, namely w,w < W,w' in W, xQ = W if and only if w, <@/, in
W, and w = ' in Q. We denote Ev the group E, endowed with the Bruhat order induced by
the choice of the antidominant base alcove, i.e.

CY YN eX (DR —p< (A+n,0Y) <0Vaec R}

We have an anti-isomorphism

- =

%E
H

defined by ((st)*); = tu, ,_ Jsf 1; such that @ < @3 if and only if w5 < @] [LLHL19, Lemma
2.1.3]. Given A € X*(T) we let Adm (tx) denote the A-admissible set in the sense of [KR00]

relative to the Bruhat order defined above on W

Let R be a commutative ring. If (z1,...,2,) € R" we write Diag(z1,...,x,) for the diagonal
matrix of M, (R) whose i-th diagonal entry is z;. If u € Z" and « € R then we write z# for the
diagonal matrix Diag(z#1, ..., x#") € M, (R).

—~vV
Sometimes it will be convenient to consider W as subgroup of GL,,(F((v)))f by the injective
homomorphism sending st to (5;v7);, where 3; is the permutation matrix associated to s; € .S,,.

If w e S, we let sgn(w) € {£1} denotes its sign.
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2.2. The inertial local Langlands correspondence and Serre weights. An inertial type is a
representation 7 : Ix — GL2(Q,) with open kernel which can be extended to W (or equivalently
to G K)-

By a result of Henniart (see the appendix to [BM(E]), given an inertial type 7, there is an
irreducible smooth GL2(Of )-representation o(7) over Q,, associated to it. We normalize it as in

[BM02, §2.1.1] when 7 is non-scalar, and when 7 = x @ x is scalar we let o(7) Ly o det (via
local class field theory). (This is often referred as the inertial local Langlands correspondence;
the representation o(7) above is the same as the representation o(7) appearing in |[CEG™16,
Thm. 3.7] when, in the notation of loc. cit. G = GL2(K).) We remark that for any inertial type
T, the representation o(7) can be realized over E, up to enlarging F if necessary.

A Serre weight of G(xz,Fp is an isomorphism class of an (absolutely) irreducible representations
of Gy(Fp) = GLy(k) over F. If X € X1(T'), we write L(A)/p (or sometimes just L()\)) for the
irreducible algebraic representation of G X IF of highest weight A\, and F'(\) for the restriction of
L(X) p to the group G(F,). The map A — F(\) induces a bijection between X (T)/(p—m)X"(T)
and the set of Serre weights of G xz, F, (cf. [GHS18, Lemma 9.2.4]). A Serre weight o is regular
if 0 =2 F(A) with A € X,e(T), cf. [Her09, Def. 6.1].

If n =2and p: Gxg — GL2(F) is a tame Galois representation then we have a set W (p) of Serre
weights, defined by Buzzard-Diamond—Jarvis in [BD.J10]. We emphasize that W (p) depends only

on Pl

2.3. Tame inertial types. Fix a pair (s,u) € W x X*(T'), which we will use to define a tame
inertial type.

Writing s = (so, . . . ,57-1) € W we set s, dof 508f—18f—2 51 € Sy and let r denote the order of
sp. Let f/ <t e pl' 1. Let K’ /K be the unramified extension of K of degree r with residue
field k¥'. We fix an embedding of, : ¥ — F extending o, so we can identify J’ o Hom(k',TF)
with the set {0,..., f" — 1} via o7, & oh ol — j'. We define the tame fundamental character
wyr : Ix — F* as the composition I = I — O, — k' — F*, where the first map is the local

Artin map, normalized so that uniformizers correspond to geometric Frobenius elements, and the
last map is given by of. We also let @y : Iy — O denote the Teichmiiller lift of wy.

Define a( ) € (z)Hom(K.F) >~ X*(T)" by

/ def 1 —1 —1¢, ,
Aoy = 51 52 55 (kg +15),

where the indices on the right-hand side are considered modulo f. In particular, a’(s Wtkf =

—k

Sr

a’(s 1), , showing that a( ) only depends on j modulo f’. Also define

l '/ def
,u) - Za i ez

Definition 2.3.1. Given (s,u) € W x X*(T') define

a (@
(s, utm) @ &, Ik — GL,(0).

1<i<n
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Setting a(® = def Z = 0 a p] we can also write it as
0<k<r—1 i?c)( )pfk
(12) (s, +m) @ Wy
1<i<n

From we see that 7(s, u 4+ n) is a tame inertial type, i.e. can be extended to Gx. Given a
tame inertial type 7(s, u + 1), we write 7(s, u 4+ n) for its reduction mod w.

Remark 2.3.2. Due to our choice of labeling of the embeddings of k in F, namely o; = o9 o ¢/,
our definition of 7(s, p+n) is not compatible with [LLHLI9, Def. 2.2.1]. This choice is motivated
by the fact that we do not think that the definition in loc. cit. is compatible with [Her09] and
[GHS18|. However we checked that it does not affect our further references to [LLHL19].

Definition 2.3.3. Let 7 be a tame inertial type and N € Z>.

(i) We say that 7 is N-generic if there is an isomorphism 7 = 7(s, A + 1) for some s € W
and A € X*(T') which is N-deep in alcove C|.

(ii) A lowest alcove presentation of T is a pair (s,u) € W x Cy such that 7 = 7(s,u + 7)
(which by definition exists exactly when 7 is 0-generic).

We also recall the following definition.

Definition 2.3.4. Let p : Gg — GLo(F) be a Galois representation and let N € N. Let
7|1, denote the restriction to Ix of the semisimplification of p. We say that p is N-generic if
751 =7 (s, p) for some s € W and p —n € X*(T') which is N-deep in alcove C|.

Remark 2.3.5. Note that if a type 7 is N-generic and (s, ) is a lowest alcove presentation of T,
the weight A is not necessarily N-deep in C;. However by [LLHLI19, Prop. 2.2.15], we know that
Ais (N — 1)-deep in Cy. (Similar comments apply to genericity of p.)

Below we will need the “orientation” s, € (S,,)HomK* F) = W of a( 4> Which is defined by

poodef 1 1 -1
Sor,j S1 S " Sp1

T . . . / ok
where the indices on the right-hand side are considered modulo f. Hence s, i ¢ = s7si,

or,j only depends on j modulo f’. (We remark that if yp € X*(T) is 0-deep in Cy
then s;, ; is the unique element of W such that (s Or])_ (a E(]))) € X*(T') is dominant.)

showing that s/

2.4. Combinatorics of types and Serre weights. Let n = 2. We collect results on Serre
weights for mod p Galois representations and Jordan—Holder constituents of reductions of generic
Deligne—Lusztig representations, expressed in terms of the extension graph of [LMS22l §2]. We
caution the reader that we modify slightly the definition of the extension graph and translation
map appearing in loc. cit.

Let Ay & X*(T)/X°(T) denote the weight lattice of Resyp, SLo. We identify Ay with z7

in the usual way. For p € X*(T') we define

A% def{wEAW 0<(fi+w,a’)y<p—1Vaec R},

where i denotes the image of p in Ay. The set A}y, is called the extension graph associated to pu.
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We have an injective map
t s Ay = Xreg(D)/(p — )X (D)
whose image consists of the weights A\ € X,eg(Z') such that Az = pu|z modulo (p — 7)X*(Z). (In

other words, the map w + F(t,(w)) defines a bijection between Afj, and regular Serre weights
with central character pz.)

The map t, is constructed as follows. Given w’ € X*(T) there is a unique @' € QN1 W,
Setting

a*

() = @' (o) mod (p—m)X(T)
we thus obtain a map t,, : X*(T') — X*(T)/(p—m)X°(T), which further factors through X*(T') —
X*(T)/X°(T) = Aw, by the definition of @' and since - is the p-dot action. We write t,, for the
restriction of such a map to Af;,, and note that t, has image in X,es(Z)/(p—m)X°(L) by definition

of Ajj.

Remark 2.4.1. In the notation of [LMS22, §2.2] the set A};, above would be denoted by A",
and the map t, above by t, .

In terms of the identification Ay = Z7 the map t,, is described as follows: if u = (aj,b;); €
X*(T) and w = (2n; + 6;); € A}y, with n; € Z, §; € {0, 1}, then a representative of t,(w) is given
by

(13) (tu(w)); = {(“j + g+ 05, b5 — 1) if ;41 =0,

(bj—l—nj,aj+nj+5j—p+1) if5j+1:1.

We now recall and slightly improve on a few results about t, which will be important in
(for the combinatorics of tame inertial types and Serre weights) and in (for the structure of
certain GLa(Ok)-representations with [F-coefficients).

Given J C J we define n; & > jesni € X*(IL) and write 7; for the image of n; in Ay =
X*(T)/X°(T). Define ¥ C Aw to be the set {5, : J C J}.

Proposition 2.4.2. Suppose that p : Gxg — GL2(F) is a tame Galois representation such that
Pl = 7(s, 1) for some (s,p) € W x X*(T') with p —n lying 1-deep in alcove Cy. Then

(14) W(p) = {F(ty—(sw)) : weX}.

Proof. From the proof of [LMS22 Prop. 2.11] we see that the right-hand side of is Wony (D),
which is the set of weights defined in [GHS18|, Def. 7.1.3]. By |[GHS18|, Ex. 7.1.7] we have Wy (p) =
W (p). O

Proposition 2.4.3. Suppose 1 < r(sw™!, u — sw(v)) for some (s,p), (w,v) € W x X*(T)
such that u — sw='(v) —n is 1-deep in alcove Cyy. If v € 1+ AR, then

JH (o(r)) = {F(tyy(sw™ (w=7)) : weT}.

Proof. Recall that, in the notation of [DL21], LLHLI9], we have o(7) & Ry, -1 (1t — sw™(v)) by
[LLHLI19, Cor. 2.3.5] (the deepness assumption on pu — sw~!(v) — n ensures that 7 is 1-generic
in the terminology of loc. cit., hence regular, see [LLHLI9 Def. 2.2.9] and the comment after it;
thus [LLHLI9, Cor. 2.3.5] applies). Moreover, the deepness assumption on p — sw™!(v) —n reads
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1< {u—swt),a") <p—1fora € R and since (sw=(%),a") € {~1,0,1} we conclude that
0 < (i+sw H(X—-v),a") < pfor a € RT. This is exactly the condition that sw™! (S —v) C Af;"
and the statement is thus immediate from [DL21) Prop. 2.15] (keeping in mind that the translation
map in loc. cit. is an n-shift of ours). O

We recall the following “change of origin” formula for the map t,, obtained from [LMS22, Prop.
2.5]. For w € A}, let ' € X*(T) denote a lift of w and define w,, as the image of the unique
element @' € QN t_ -1 nW, (as above) in W. By definition, w, does not depend on the choice
of lift w’ of w and in fact only depends on the image of w in Ay /AR.

Lemma 2.4.4. Let w € Al and let A € X*(T) be such that t,(w) =X mod (p—m)X°(T). Then
th(w') = t,(wy (W) + w) for all W' € Ajy,. Equivalently t,(w') = t)(w, (W' — w)).

Remark 2.4.5. Recall from that Ag denotes the root lattice of G. (In particular, we have a
natural inclusion Ap < Ay, which identifies Ag with (27Z)7 via the isomorphism Ay = Z7.)
(i) Given J C J we let wo, s def ]_[Hlej ; where tv; € W is nontrivial exactly at the
embedding j. Recall moreover the element n; = 3_;c 77, € X *(T) associated to J. Then
Wy = wo,y if w=1n; mod Ag.
(ii) If v € AR, we have w, = 1 and Lemma implies that t,4,(w) = t,(w + v). (Note
that t,(v) = pu+v mod (p — 7)X°(T).)
(iii) From the definition, t,(w) € Cy if and only if 4+ w’ € C. In particular

tﬂ(Zaim)GQO — 0< ()Y +a; <p—2 Vi.
iv) Likewise, t,(w) is n-deep in Cj if and only if p + w’ is n-deep in C,.
m 0 ] 0

We use the terminology of [LMS22| Definition 2.8]: two elements w, w' of A}, are adjacent if
w—w' = +£n; mod XO(T) for some j € J. This gives Al the structure of a graph. We have the
following slight improvement of [LMS22, Prop. 2.9].

Lemma 2.4.6. Let w,w’ be elements of Afy,. Then

1 ifw, W' are adjacent,

dimp <ExtéLz(k)(F(tu(w)),F(tu(w’)))) = {

0 otherwise.

Proof. Let A & t,(w). By Lemma we have t,(w') = t)(W”) with W’ = w, (W —w). As "

and 0 are adjacent if and only if w and w’ are adjacent, we may assume that w = 0. By letting 7,
be 7; mod X°(T) we compute

tu(7:) = w1ty - (u+m) mod (p—m)X°(D),
tu(=T7;) = ty,_yv0i1 - (n—mi)  mod (p—m)X°(T).
These are precisely the Serre weights that extend with F'(u) by [BP12l Cor. 5.6]. (Note that by

assumption all Serre weights in this lemma are regular.) U

Remark 2.4.7. The “change of origin” map Ay, — Al sending o’ to wyl(w') + w (see
Lemma clearly preserves adjacency, i.e. is a graph automorphism. Under the identifica-
tion Ay = Z7 it is of the form (ag,...,ar_1) = (g0ao + no,...,ef—1af—1 + ns_1) for some
g; € {£1} and n; € Z.
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3. GALOIS DEFORMATIONS: BACKGROUND AND LEMMAS

3.1. Kisin modules with descent data and the monodromy condition. We keep the setup
of in particular K denotes the unramified extension of @, of degree f, with residue field k.
For this section we will recall and slightly extend some relevant background and notation from
[LLHLM18], [LLHLM20], and [LLHLI9J.

3.1.1. Kisin modules. From now on we fix a tame inertial type 7 together with a lowest alcove
presentation (s, u) for 7. (The lowest alcove presentation fixes an ordering of the characters in 7.
This will be important in defining many of the concepts below, see Remark ) Recall that
S; = 805f—15f—2 51 € S, and that r denotes the order of s,.

As in we let K’/K be the unramified extension of K of degree r with residue field £’. Fix
an ¢/-th root (—p)/¢ of —p, let E(u') = () + p = v + p denote the minimal polynomial of
(—=p)'/¢ over K, and let L/ oof K'((—p)Y/¢).

Let A & Gal(L'/K') C A ' Gal(L! /K). If R is a complete noetherian local O-algebra with
finite residue field define &/ g LW ®z, R)[v]. Given a (W (k') ®z, R)[u']-module 9 we

define MU L on Qw (r),0’ , B, and we thus have an R-linear isomorphism 9 = @j/ej/m(j/).
—J

. S def i1
(We warn the reader that, due to our choice of normalization 0';/ = 0f o ¢’ , we need to use the

minus sign in the definition 9" & My (k1),0' , R in order to be compatible with the convention
of [LLHL19] on Kisin modules, see Remark above.)

Recall from [LLHLM20, §3.1] that &/  is endowed with an action of A and by letting v et
(u')¢" we have
(&p,r)" = (W(k) ©z, R)[v].
Let h > 0 be an integer. We define the category of Kisin modules over R of E(u’)-height < h
and descent data of type 7 as in [LLHLM20| Def. 3.1.3] (with the caveat that we consider modules
of rank n as opposed to 3 in loc. cit.), and denote it by YO*7(R). Given an object (9, ¢op) (or,

for short, just M) of YIO":7(R) we have the notion of eigenbasis § = (8Y")) for 9, as defined in
[LLHLM20, Def. 3.1.6], [LLHLIO, Def. 3.2.8].

In particular, given a Kisin module 9 € Y(%":7(R) and an eigenbasis § of 99t we can consider
the matrix of the Frobenius morphism ¢gy. In the definition below we let ¢ be the R-linear
endomorphism of R[u] which sends v’ to (u')P.

Definition 3.1.1. We let C’é)];/)g € M,(R[«']) denote the matrix of ¢*(MU)) — MU+ with
respect to the bases ¢*(3U") and U+ ie. ﬁ(jurl)C’%)ﬁ = qbg;)(gp*(ﬂ(j/))). We denote by
A$)s € My (R[v]) the matrix

.y e . _ 7a, G'+1) ,
Af()‘;)jf’)ﬁ d:f Ad <(Sgr1j/+1) l(u/) (s,p) )(C{%ﬂt’%)

(see also [LLHLM, equation (5.4)], where ngajt/,)ﬁ in loc. cit. denotes the matrix of @*(9IMU'~D) —
omU").
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Remark 3.1.2. We caution that Ad(3(u/)*) denotes Ad(s) Ad((u)*) and not Ad((u')**), and
we remind the reader that $ is the permutation matrix representing s and that we have (u')* =
Diag((u/)*, ..., (u")Fn) for u € Z™.

Remark 3.1.3. We stress that the notion of eigenbasis and the definition of Ag{ )5 depends on the
choice of the lowest alcove presentation (s, u) for 7. Moreover, when p is 1-deep in alcove Cy, the

matrix Ag;)ﬁ only depends on j' modulo f and is upper-triangular modulo v (see the discussion
after [LLHLM| Rk. 5.1.7]).

A= (Nj1,.-.,Ajn)j € X*(T) is a dominant character such that \;; € {0,...,h} forall j,i, we
have a closed p-adic formal substack Y <7 of Y197 defined in [CLIS, Theorem 5.3], which is flat
over O and has reduced versal rings. It is characterized by the property that for any flat p-adically
complete noetherian local O-algebra R, a Kisin module M € Y[%".7(R) belongs to YSAT(R) if
and only if all i by i minors of AJ, are divisible by (v + p)2k=1 X1k for i € {1,2,...,n}
(cf. [LLHLM] the discussion after Warning 5.3.2, see also [LLHLM18|, Prop. 4.18]). This definition
does not depend on the choice of the eigenbasis for 1.

Definition 3.1.4. Let M € YIOM.7(F). Write Z(F) for the Iwahori subgroup of GL,,(F[v])
consisting of matrices which are upper triangular modulo v. We say that 9 has shape 1 € EV

with respect to 7 if for any choice of eigenbasis 3 the equality

I(F)A%BI(F) = Z(F)w,;Z(F)

holds in GL,,(F((v))) for all j = 0, ..., f — 1. This notion is independent of 3 by [LLHLMIS, Prop.
2.15, 2.16], but again depends on the choice of lowest alcove presentation of 7.

Fix M € Y[O’h]’T(F) we recall that an eigenbasis 3 is a gauge basis if A%)B has a particularly

simple form [LLHLI19, Def. 3.2.23]. A gauge basis always exists and is unique up to scaling by
{(t;); € T(F)" : t; =t} for j =k mod f} (this is [LLHLIY, Prop. 3.2.22] in the particular case
h =n —1, and the general case follows from [LLHLM| Prop. 5.1.8, Lemma 5.2.2]).

We now fix M € Y147 (F) together with a gauge basis B for it. Write @ = (wjty;); € Ev for
its shape with respect to 7.

The following result, generalizing [LLHLMI18, Thm. 4.1, Thm. 4.16], [LLHL19, Prop. 3.4.3], is
a particular case of [LLHLM, Prop. 5.2.7].

Proposition 3.1.5. Let R be a complete noetherian local O-algebra with residue field F, and let
7 be an (h + 1)-generic tame inertial type. Let M € YIORLT(R) together with an isomorphism
MpF =M.

Then there exists an eigenbasis B for M lifting B such that for all 1 < i,k < n and all
7=0,...,f —1 we have

(i) AZ(.? € vYi>k Rv + p),
(ii) degU(AZ(.i)) < Vjik — Qicw, (k) With equality if (i, k) = (w;(k), k),

where AU) & AE();),B' Furthermore, such a 5 is uniquely determined up to scaling by the group
{(t;); € (ker(T(R) — T(F)))’ :t; =t for j =k mod f}.
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Definition 3.1.6. Let R be a complete noetherian local O-algebra with residue field F, and let
m e yonr (R) together with an isomorphism M@ F = M. A gauge basis of M is an eigenbasis

B lifting B that satisfies conditions and of Proposition

3.1.2. Monodromy condition. Let R be a p-adically complete flat O-algebra that is topologically
of finite type. Define OR® as the inverse limit over n of R[u/, L]] [1/p], the transition maps being

the natural inclusions. The Frobenius ¢ : v — (v/)P on R[u'] extends naturally to (’)”g By
letting

i E() vP"

Adﬁfﬂw( ):H(H)eorlgcogg.
n=0 p n=0 p
we have the derivation Ny et )\% of O%g .
Let 9 € Y[0A7(R) and write 91" for the base change I ® R[] (’)Eg, which decomposes as
mris — @j,gﬁri&(j’)_
The following result builds on [Kis06, Cor. 1.3.15] and is stated in [LLHLM| Prop. 7.1.3].

Proposition 3.1.7. Let I € Y[.O’h]’T(R) for R a p-adically complete flat O-algebra that is topo-
logically of finite type. Then, IM"[1/A] is equipped with a unique derivation Nyyrig over Ny such
that

(15) Nmrigqswzrig - E(U,)¢mrigNmrig
and Ngypie mod u' = 0.
We have a decomposition of Ngyig into N, ( ) - orie (i) 9rie (i) and we write NV, (") to

omrig mng B
denote the matrix of the endomorphism N, U')  with respect to the basis 80", i.e. U’

Mrig
Ng(ftri)g(ﬁ(j’))'

mrlg 6

Definition 3.1.8. Let M € YOM7(R) with eigenbasis 8. The monodromy condition is the
condition that A"~ lNéjjtr?gﬁ vanishes to order h — 1 at v’ = (—p)l/e/ for all j/. We see as in
[LLHLMIS, Prop. 5.3] that the condition above is equivalent to Nyypis(98) C ™8, As in the

proof of Thm. 6.14 in [LLHLMIS], the monodromy condition only depends on j' modulo f.

As in [LLALMIS, Thm. 5.6], [LLALIY, Prop. 3.4.12], given M € Y047 (R) with eigenbasis 3,

the matrix Ng(ﬁr?g 5 can be expressed as

»/ - o —k: 1 —k 1
Né%r?gﬁ:Nf”ﬂLZ(Hso ol )) ( I[ & (B ) 1)>7
=1

k=i—1

where N l(j ) satisfies

A ((300) 7)) (0 IN) =

h
© A d g _ -/ s g _
=~ () (~eudL A — [Ding((stn) @D AG3] ) (04 ) (4G
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In what follows, define the leading term of the monodromy condition
i—1)\ def d . (j-1 j i—1 1)
(16)  Pn(AG ) = (—e'vdvAggw) [Diag((shr,;)” 1<a;§?;)>>,Aé;,ﬂ>]) (v+p)"(AG )~

def

(where [M,N] = M N — NM), which again only depends on j modulo f.

Proposition 3.1.9 ([LLHLMIS]). Let M € YOI7(R) with eigenbasis 5. The monodromy con-
dition s equivalent to the condition that

d N\t _ a’ () e
(17) (=) e pyrre [Ad ((Shrg) ™ @) e ) (NN, B)] =0
forallt=0,...,h—2,7 =0,...,f —1 and only depends on j' modulo f.

Assume that T is N-generic, where N > 2h —3 and (N —1)(p — 1) > h. Then the monodromy
condition has the form

()1 () o0~

forallj =0,....,f =1 and allt = 0,...,h — 2, where the O(pN~"=D=t) denote specific but
inexplicit elements of p™N ~(h=D=t My(R).

Proof. The proof is a slight generalization of the argument appearing in the proof of [LLHILI9,
Prop. 3.4.12] (which is the particular case where h =n —1 and N =2n — 1).

As in the proof of [LLHLIY, Prop. 3.4.12] the monodromy condition is equivalent to A"~ D(nr?g 3

vanishing to order h—1 at u’' = (—p)"/¢ for all j', which, as ' is invertible in (R[u/]/(E(«)))[1/p),
is equivalent to condition forallt=0,...,h —2 and all j'.

Defining ZZ-(j/), MU in analogy to ZZ-(j), MU in loc. cit. (replacing n — 1 and j in loc. cit. by

, (N—l)pi71
h and j’ respectively) we see as in [LLHL19, Prop. 3.4.12] that Zi(]) € U(hil) M,,(R]v]) for
pr
i>1and Z( ) ¢ € it M, (R[v]) (as T is N-generic), hence that
d \t y
il (4" g pN—(h=1)—t — —
(18) <dv) |U:_pM €p M, (R) fort=0,...,h —2.
(Note that
LAY 10 2
() lhe (N 00 2
t -/
is contained in Y°%_, Zp(d%) ‘v:_pZi(] ). Here we use that (N —1)(p—1) > h to deal with the

terms for ¢ > 2.) From the definition of Zi(j ) and MU we deduce from that the monodromy
condition is equivalent to

(o) o [P 4 205) =0

for all j/ and all ¢ (note that (p(\)/p)" does not vanish at u' = (—p)*/¢), which gives the second
part of the statement thanks to (18)). O
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3.2. Lemmas on mod p Galois representations. Given (s,u) € W x X*(T), consider the
reduction 7(s, ) : Ix — GL,(FF) of the tame inertial type 7(s, ). Typically, the length of 7(s, u)
as representation of I equals the number of orbits of s; = sfsy_1---s1 € S,,. The following
definition gives the precise condition for this to be true.

Definition 3.2.1. We say that (s,u) € W x X*(T) is good if
fa@-1 ) ) ¢ 1
§=0

where d(i) > 1 is minimal such that sy 's; " - -

modulo f).

. sjjdl(i)(i) =i (and where the indices are considered

Remark 3.2.2. Definition generalizes [Her09, Def. 6.19]. We see that 7(s, p) is the restric-
tion to Ik of an irreducible representation of G if and only if s, has order n and (s, ) is good.
Just note from Definition 2.3.7] that
n fd@) =1 jo.—1, -1
_ ~ Doy TP (sy s )i
T(s, 1) = wfd(Ji)O ! .
i=1
In this case, any extension of 7(s, i) to a Gi-representation is irreducible.

Lemma 3.2.3. If u —n € Cy, then (s, p) is good for any s € W.

Proof. Fix i € {1,...,n}. Let v & E;;épjsl_l-~sj_l(uj) € Z" and let ¢, & (s7*v);. By

T

assumption, 0 < (u;, af) < p for all i, which implies that 0 < [cx —c¢| < g for all k # £ (mod d(7)).

It suffices to show that ZZ(Q)_I q"cr 0 (mod q:S:l) for all d | d(i),1 < d < d(i). This follows
exactly as in the proof of [Her09, Lemma 6.24]. (Alternatively one can check that Definition

is equivalent to the definition given in [LLHL19, §2.2] and invoke [LLHLI9l Lemma 2.2.3].) O

Definition 3.2.4. ([LLHL19, Def. 3.1.1]) For @ € W' and D € T(F), let M(w, D) denote the
étale p-module which is free of rank n over k((v)) ®r, F and such that Mat (W) = Dji; with
respect to the standard basis.

Definition 3.2.5. For w € Ev and D € T(F), let V(w, D) be the unique tame representation of
G over F of dimension n such that

V(w7D)‘GKOO = V;((M(ﬂ)v D))a

where V7 denotes the contravariant functor of [Fon90] from étale p-modules to representations
of Gk, (see also [LLHL19, §3.1], where it is denoted by V*). Its existence and uniqueness is
guaranteed by [LLHLI9, Prop. 3.1.2] and the equivalence for tame representations in [LLHLI19,
§3.1].

Lemma 3.2.6. For A € (F*)/ we have

-1
V(,AD) = V (&, D) @ nr ( [T A),
§=0

where nr(a) denotes the unramified character of Gx sending an arithmetic Frobenius to o € F*.
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Proof. As M(w, AD) is the tensor product of M(w, D) and M(1, ) over k((v)) ®, F and Vi is
a tensor functor, it suffices to show that
f-1
V(LX) =nor(J] A)-

j=0
Note that M(1,\) is isomorphic to the rank one étale ¢-module with
() 1 ito<j< f—1,
= f-1 e s
[Li—g Ay ifj=f—-1
in the standard basis. By the proof of [GLS14, Lemma 6.3], V7, (M(1, X)) = nr(]_[;-c;& Mleg, O

Proposition 3.2.7. Suppose W € Ev, w* =t,s with (s',p') € W x X*(T) good. Then
{p:Gx = GLu(F) : plre =7(s", 1)} o ={V (@0, D) : DeL(F)}.

Proof. By [LLHL19, Prop. 3.1.2] we know that the right-hand side is contained in the left-hand
side. As in line 1 of the proof of [LLHLI19, Prop. 3.1.2] we may assume that (@0*); = 1 for all
0 <j < f—1. Then we can split M(w, D) into a direct sum of ¢p-modules according to the orbits
of (™) ¢—1 € Sy, so without loss of generality s, has only one orbit. (Note that the goodness of
(s, 1) is compatible with this decomposition.) As (s, ') is good and s; has only one orbit, we
deduce by Remark that V(w, D) is irreducible. By Lemma it follows that the left-hand
side is contained in the right-hand side. O

Recall that p: Gxg — GL,(FF) is cyclotomic free if p becomes upper triangular over an unram-
ified extension K'/K of degree prime to p such that H°(Gg, (pla,., )™ ®r w™') = 0 [LLHLMIS,
Def. 3.8].

Lemma 3.2.8. If py,py are finite-dimensional representations of Gk over F such that py ®F py
is cyclotomic free, then the natural map

HOIHGK (plv p2) — HOH]GKOO (ﬁl ’GKOO 7?2‘GKOO)

s an isomorphism.

Proof. This follows from (the proof of) [LLHLM, Lemma 7.2.10(3)]. O

Corollary 3.2.9. If p;,ps are finite-dimensional representations of G over F such that p; is
2-generic (defined analogously to [LLHLMIS| Def. 3.7]), then the natural injective map

ISOHIGK (ﬁla 52) — ISOIHGKOO (pl ’GKOO s P2 ’GKOO)

s a bijection.

Proof. We first claim that p%|q, = (plgg, )* for any finite-dimensional representation p of
G over I, ie. that p*|g,_ is already semisimple. This follows as in [LLHL19, §3.1]: p* is a
representation of G /I, where I3} is the wild inertia group and Gi_ /(Gk., NIE) = Gk /I,
as K /K is a totally ramified p-extension.

Assume Isomg,._ (p1|G x> P2lak. ) # 0. By the previous paragraph and again by the beginning
of [LLHLI9, §3.1] we thus have p5* = 05, hence (p) ®r p9)* = ad(p;)®. As ad(p;) is cyclotomic
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free by the analog of [LLHLMIS|, Prop. 3.9], we obtain pY ®r p, cyclotomic free, and we can then
conclude by Lemma [3.2.8 O

3.3. A commutative algebra lemma.

Lemma 3.3.1. Let A < Olz1,...,zy,], where O is a complete DVR with uniformizer w and

n>2 Iffe A% andd > 0, then $1x2+wdf is irreducible in A. Moreover the ideals (x1x2 +wdf)
and (1) are distinct, and the ideals (v122+wf) and (z1702+wg) are distinct if f # g mod ma.

Proof. By the O-automorphism of A sending x5 to 1 + x9 and fixing x; (¢ # 2), we may instead
consider z? + x129 + wg (g € AX). By the Weierstrass preparation theorem, if 22 + z129 + wiyg
is reducible then it has a factor of the form z; — b for some b € mpy,,... |- Evaluating at z1 = b
we see that b? + bry + wlg(b,x2,...,2,) =0, s0 w? | b(b+ x3). Hence w? | b or w? | (b+ x2). In
the first case, b = wc and wc? + cxg + g(wdc, x9,...,Tn) = 0, 80 g € my, contradiction. The

second case is similar, and the last part is straightforward. O



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2 26

4. GALOIS DEFORMATION RINGS

4.1. Setup. From now on we consider the situation where n = 2.

Throughout this section we fix a semisimple Galois representation p : Gx — GLa(F) such that
Pl = 7(s, ), where

(i) sj # 1 (hence, s; = to) precisely when j = 0 and p is irreducible;
(ii) g —n is N-deep in C, with N > 12.

(This specific form of the lowest alcove presentation for 5 depends on the choice of the embedding
o0; however, we see from Remark that when p is 13-generic the conditions |(1)H(ii)| above
can always be arranged by an appropriate choice of s.) Up to a twist by a power of w; we can
furthermore assume that p; = (r; +2,1); € 72 with N < rj +1 < p— N for all j, and hence

F-1 :
L (1)
) o (rit1)p & 1) 2w if p is reducible,

0 I g _ . -1 . .
Pl I (g +1)p? Iy )prtd
Wy D

Y ®w if p is irreducible.

In this section we will study various framed Galois deformation rings of p, for which 3/ tame
inertial types play a role, and we now introduce them. Given

w E Admv(t(;l)) = {t(2,1)7 mt(zl), t(l,z)}f
arbitrary, write w* = t,w for (w,v) € W x X*(T). Define the type
@ f T(sw™t, p— sw (V)

(or just 7 when there is no ambiguity on @), which we always consider together with its lowest

alcove presentation (s(7), (7)) & (sw™t, p—sw=t(v) —n).

Concretely, s(1); = w; except when j = 0 and p is irreducible, in which case we have

(7)o = wwy !, and

/J,(T) = {(Tj,()) if (tl/jwj,sj) € {(t(2,1)7 1)’ (t(2,1)mam)a (t(l,Q)’m)}a

PO+ L -1 i (b, 85) € {(tra), W), (fan, 1), (ta2), 1)}
Then
(0) (0)
L &7 eu if 7124 s(7); = 1,
(19) To = Q0 0 O 0
wQ} 2 EBwQJ% 1 otherwise,

where a(®) = (ago),aéo)) € 72 is defined to be a(® & Zf;&p]( i, w;) (1(1); + nj)-
Lemma 4.1.1. Up to isomorphism there evists a wunique (semisimple) Kisin module 9

in Y <G (F) of shape @ such that T (90) = Plok., -

Proof. Define a Kisin module 9 of type 75 by AU) = Djw; (keeping the notation of Defini-
tion [3.1.1) for some D = (Dj;) € T(F). By definition it has shape @w. As @ € Adm"(t(1)) C
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FiGUure 1. Extension graph
T=tw(X)+1

-1 0 1 2

x-1 Y41

Adm" (t30)) we know that M € Y <307 (F) ([LLHL19, §3.2]). By [LLHLM20, Prop. 3.2.1] the
associated étale p-module is given by

Mat(np(j)) = (Dﬂ)(sw_l)*t(u_sw—l(V))*)j = (Ds™tux);

in some suitable basis. As u —n € C, we know by Lemma that (s,p) is good, hence by
Proposition we can choose D € T(F) such that T7,(9M) = plg,_. The uniqueness of M
follows as in [LLHLMIS, Thm. 3.2], [LLHLIY, Prop. 3.2.18] (this uses that 3 < (u(7); +1;, ) <
p —4 for all 7). O

Lemma 4.1.2. There is a unique bijection 6 : W(p) — {t21), t(l’g)}f such that for o € W(p)
and w € Adm" (t( 1)) we have

o € JH (0(ra) @F (Ni/z, o det)) & (i) # 0(0); V).

Proof. Recall that p|r, = 7(s,u), where pu — n is N-deep in alcove Cy and that, for @
Adm"(t(g1)), we write @* = t,w for (w,v) € W x X*(T) and 75 = 7(sw™ ', u — sw™(v)).
We note that o (74) @r (Nj/r, 0 det) = o(r(sw™!, p—sw™(v) + (1,1))), and as @ € Adm" (¢(,1))
we see that v — (1,1) € n+ Ag.

Recall from that the map w + F(t,_,(w)) induces a bijection between A}, " C Ay and
the set of regular Serre weight with central character (1 —n)|z. By Proposition this map

induces a bijection between s¥ C Afj, " and the set W (p), and by Proposition this map
induces a bijection between sw!(X — ) C A}y and the set JH (0’(7’@) ®F Ni/F, © det). (Note
that Propositions apply as soon as pu — 7 is 2-deep in alcove C), and we have N > 2.)

We conclude that the statement of the proposition is equivalent to: there is a unique bijection
0% : % — {t1), t(1’2)}f such that for w € ¥ and @ € Adm" (¢(5,1)) we have

(20) wew (R =v) & (@) # 07(w); ¥j) -
Thus 6% (w) ; only depends on wj, so we may assume that f = 1. In that case,
w € Adm" (to1)) = {t2,1), Wl2,1), t1,2)}
and note that correspondingly
(w, ) € {(1,7), (0, 7), (1, =) }-

As o = —1 on Ay, we see from Figure |1| and that 6>(0) = t( 9y and 0*(7]) = t(3,1 is the
desired unique bijection. O
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4.2. Deformation rings I: single type. We now compute some Galois deformation rings of p
for a single type 7 and Hodge—Tate weights < (3,0), meaning Hodge-Tate weights (3,0) or (2, 1).

We suppose that p is as in Fix now @ € Adm" (t(51)) and 9 € Y =(3.0).72 (F) semisimple of
shape w such that T7,(9M) = | ko, - By the proof of Lemma M is such that the associated
)

matrix A7) is D;w; for some D; € T(F) and some choice of an eigenbasis for 901.

We use the notation

*(5)

€11 0 e

, ifwy 15 =t21),

() d;g) J ( )
()

d 0 ip

(21) Dpaj=q| 2 —g| if@r1-=wioy,

a9 o
1 0] if W15 = t(172)‘
0 €95

(See Tables where the superscript (j) is omitted for readability.)

Let R§(3’0)’T’D denote the maximal reduced, O-flat quotient of RﬁD that parametrizes lifts of p

of Hodge—Tate weights < (3,0) in each embedding and tame inertial type 75. For each dom-

inant character A € X*(T) let R%’Ti’ denote the maximal reduced, O-flat quotient of R% that

parametrizes lifts of p of Hodge-Tate weights A; in the j-th embedding o; for all j and tame
inertial type 7.

Proposition 4.2.1. We have an isomorphism

RO Xag] 2 () S 1) Vi
J

where R & ®O,0§j§f—1R(j) and the rings RY) and the ideals IV of R are found in Tables f

The irreducible components of Spec Rﬁg(s,o),m

{(3,0),(2,1)}.

More precisely, via the isomorphism, for any choice of X = (A\;) € {(3,0), (2, 1)} the kernel
of the natural surjection Rﬁg(&o),m [Xi,..., Xop] = R%’m [X1,...,Xop] is generated by the prime
ideal Zf;é pWAr-1-i of R, where the ideals p9) -1-i of R are found in Tables ﬁ

are given by the Spec R%’m, where A = (\;) €

Remark 4.2.2. To obtain Proposition we cannot use directly the results of [LLHLM],
namely Theorem 7.3.2(2) there. In fact, on the one hand we need the precise equations for the
ideals () to perform the computations in Proposition m (where we check that p is contained
in suitably chosen ideals in multi Hodge-type deformation rings). On the other hand we need to
perform Elkik’s approximation theorem (used in the proof of [LLHLM| Theorem 7.3.2(2)]) in an
effective way to have “explicit” generators of the minimal primes of the multi-type deformation
rings. As a byproduct, we have less stringent conditions on the tame inertial types appearing
in Proposition above, in that the genericity of 74 is the explicit requirement that p(7) is
11-deep in Cy, rather than a condition on an inexplicit polynomial P, € Z[X1, X2] such that
P (u(7);) #0 (mod p) for all j € J (cf. the genericity condition of [LLHLM), §1.2.1]).
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Proof. We let 7 et T for short.

As AY) = Dj;, the standard basis /3 is a gauge basis of 90 in the sense of [LLHLI9, Def. 3.2.23].
(There, M € Y7 (F) but n plays no role.) For R’ a complete noetherian local 0-algebra with

residue field IF define D%(%’O)’T(R’) to be the groupoid of triples (M, 3, ), where M € Y=E0.7(R),
B is a gauge basis of 9 (Definition D and 7: MRpF = M sending 3 to B. From the definition
of a gauge basis, for any lift (9, 3,7) € D%(%O)’T (R) the corresponding matrices AU) are given in
row 1 of Tables where the entries c%), C%) ... are in R, subject to AY~179) reducing to our
fixed 27" modulo mp.

By the analog of [LLHLMIS| Prop. 4.18] the finite height conditions are given by
det AV=179) ¢ R*(v + p)3 V3,

giving rise to the generators of the ideal I(7):=(3:9) in row 4 of Tables As in [LLHLMIS8 Thm.

4.17], %(%O)J is represented by the maximal reduced p-flat quotient of @aoéjgf_lR(j)/I(j)’§(3’0),
which we also denote by R%(%O)’T.

By Proposition (applied with h = 3 and noting that 7 is (N — 1)-generic) the monodromy
conditions are given by
d t
(@)

forall0 <t <1,0<j < f—1. (Recall that the O(pV—3~*) denote specific but inexplicit elements
of pN 3=t My(R).) Note that

[Pu(ATTD)] 1 0N =0

v=—p

Py(AV=1790)y = [—e’vddA(f_l_j) + AW=1-9) (b(j) 08)> (v + p)3(AU—1=9))~1
v

0
o & q-1m3) _ gtr-1-5) (090 3(AU—1-4))-1
=—e U%A —A 0 0 (v+p)°(A )
modulo (v + p)? Ma(R[e]), where (60, ¢®) % (s, J7Ual=9) ) and ot 8= ¢
Z(p)- (Note that the “other” term (b(oj) C?j))A(fflfj) (v4p)?(AV=1=9))~1 from the Lie bracket in

equation is in (v + p)> Ma(R[v]).) We emphasize that the constants al?), b0) and ¢\9) depend
on the whole f-tuple w € Adm" (t2,1).

Combining this, the monodromy condition is

d \! d . A G 0
- L AUf=1=g) _ p(f-1=5) [ @
(d’l)) v=—p { lvdv 0 0

forall0 <t <1,0<j < f—1. The entries of the left-hand side give rise to the eight generators
Ii

in row 5 of Tables where we denote a(?) by agj ), agj ), aéj ) respectively.

(v + p)S(A(f_l_j))_l} +0(P" ) =0

By [LLHLI, §3.2] we have

(09, D) = (5 5) ™ (ot f-g) = 8(7)5 () +1); = (ws™ () —v);  (mod p),
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recalling that (s(7), (7)) = (sw™!, p—sw = (v)—n). Hence al¥) = —((ws‘l(u)—y)j,a}/) (mod p).
As pj = (r; +2,1), this gives us the explicit formulas for a/) (mod p) listed below Tables

Let RJE )™V be the maximal reduced and O-flat quotient of R/ Zj(l(j)’g(?”o) +10):Y). Asin
[ILLHLM18, §5], using that ad(p) is cyclotomic free we get
(22) REPOTXy,. . Xof] = R <Z°> Vi, ..., V4]

(See in particular Thm. 5.12, Cor. 5.13, and Diagram (5.9) in [LLHLMIS]|, noting that for us
n = 2, so the addition of the gauge basis requires 2f instead of 3f variables and the framing
of the Galois deformation requires 22 = 4 instead of 32> = 9 variables. Note also that Ts should
be Ty in [LLHLMIS, Cor. 5.13], cf. the errata in [LLHLM20, §6]. Finally note that we allow
deformations with any Hodge—Tate weights < (3,0), so we do not have a restriction on the shape
as in [LLHLMIS, Cor. 5.13].)

We now compute “explicit” generators of

Lo % Ker (R Rﬁ(%O)TV)

and show that Ioc =2, 1 (@), where the ideals IU) of R are given in row 6 of Tables (Note
that the O(p™~®) tails in Tables involve variables of all embeddings. In particular, the tails
depend on @ and not just on wy_q1_; and I () is not an ideal of RY) in general!)

We first define a dense polynomial sub-O-algebra Rl(i)ly of RU) for each 0 < j < f—1 by

) def C12 d21 Lo~ _
Ry = Olenn, din, o7y, — 5 21, - &5y ) €22, T3] i Df_1-j = t2,),
€11
() def di1 D2 =
Ry = Olein, =, c12, 213, €21, 251, €22, ] ifdp = wl(2,1),
dr, dy
() def g, B2 o if dy_1_j =
Ry = Olein, a1y, ¢z, - a0 ) €22, a2, T3] i dy1-j =ta2):
11 €32

Note in fact that the subspace topology on Rl(Djo)ly is the m-adic topology, where m is the maximal

ideal generated by all the polynomial variables above as well as w. (Note that the polynomial
variables above are power series generators of RU ).) Let Rpoly aef Ro J 1(3 o)ly and o1y gef > j II()JO)ly,
where [;()Z))ly is the ideal of ngjgly generated by the elements in row 6 of Tables [1H3| without their
O(pN—=2) tails.

We now show that Ijoy € (oo, pN=9).

In the following, we will focus on Table [2| (the other cases being similar). Let us label the
elements on the rlght side of row 4 by (H;) (1 <1i < 3), of row 5 by (M;) (1 <i<8), and of row
6 without their O(p™~8) tails by (G;) (1 <4 <5). Then, omitting superscripts (j) for simplicity,

(23)

1 1
— | =(Mz7) + ];(MS) = diyeo1 + (a2 — 2)(c1adyy + dfycar) + (dirdaz + pdiadsy) + O(p" )

= —ciady; + (az — 1)(crads; + dipea) + (duidos + pdiadsy) + O(p™ %),
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N —5)

(Note that the left hand side of equation (23) is in the p-saturation of the ideal I( 7),=(3, 0) + 10V
so is in particular an element of I,.) From (M3) and (G2) we get (G3) € (Ino,p™¥ 7), as ag # —1
(mod p).

so replacing ciadb, + diyc21 by di1das +p%d§1 using (H7) we see that (G1), (G2) € (Ino,p
(23 =

From l[—(Mg,) + 1( 6)] and (G1) we get (G4) € (Ino,pV7°), as az # 2 (mod p). Replacing
12, €21, €11 in (Mg) by using the elements (G1), (G2), (G3) and as ag # 0, —1 (mod p) we get

(a2 —2)(az +1)
az(ag — 1)

(d11d22 +pdT2d§1) (d11d22 +p T2d§1> + O(prE)) € I,
hence (G5) € (Ino, pV 7).
For any 0 < j < f — 1 we can then consider the commutative diagram of O-algebras

B o)
R/(Ioova 5) <~ Rpoly/‘[pz))ly

| |

R/I o
4)

where ¢ is induced by the inclusion R y R. Let HY) be the ideal of the polynomial ring

Réo)ly defined in [EIk73| §0.2] for the ﬁnltely presented algebra O — Rgoly /I poly

Lemma 4.2.3. We have p* € HY) + Ip(,jo)ly

Proof. We give detail for the case wy_1_; = ti(y ), the others being simpler. To ease notation,
we set ¢ & du g L Z% and o & (@222t o 4pag (Gs) = (zy + p)(xy + ap). It follows

di‘2 ’ ag(ag—l)

directly from the definitions that H) contains the 5 x 5 minors of the Jacobian matrix of I (f))l
((G1),...,(G5)) (ie. the ideal M,y with a = (1,. q = 5) in the notation of [EIk73, §0.2]), in
partlcular by direct inspection, contains the element (G5) = 2xy® + p(a+ 1)y. Thus, the ideal

H) 4+ IF()]O)ly contains

(2(a + Day +pla —1)?)(Gs) - ((a + Doy + pla® + 1>)xQ<G5> =p’ala - 1)

Ox
Asa—-1= and az — 1 = £(r; + 1) (mod p), we conclude that a(a — 1)*> € O and

az(az 1)
hence p* € HW + 1(>)1 The cases where wy_1_; € {t(12),t(2,1)} are similar, giving actually
p?e HU) + (f))ly ]

def

We now apply Elkik’s lemma analogously to [LLHLM, Lemma 3.3.7]. Let A = R/I,, which

= O[Xy,...,Xk] (relabeling the gener-
def

is p-torsion free and p-adically complete. Write R;J)ly

ators above). Let Hg) denote the Elkik ideal for the finitely presented algebra A — B
AlXy,. .., Xk']/ll:(){))ly obtained by pushout, so that H( 7 contains the image of HU). The diagram
above gives rise to a = (a1, ...,a;) € A* such that II()o)ly( ) € pVPA. By Lemma [4.2.3 we get

p® € Hgp(a) + (Jo)ly(a) - HB( )+pN %A, so p* € Hp(a). As N —5 > 2 x 3 we may apply

[EIk73, Lemme 1] (with I = (0), k =0, n = N — 5 and h = 3 in the notation of the reference) to
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find @ € A* that lifts a modulo p¥ =8, In other words, we deduce the existence of an O-algebra,
poly/ poly — R/I, such that () agrees with ¢() (i.e. the natural map)
modulo pV 8. By taking a tensor product of the d)(]) for 0 < j < f—1 we get an O-algebra
homomorphlsm ¢ Ryoly / Iyoly — R/I such that gb agrees with the natural map modulo pV 8.
Since N > 8, ¢ is continuous and hence induces ¢ : R/I,0y — R/I that agrees with the natural
map modulo p?V 8. As N > 10, the map qﬁ : R/Ioly — R/l has to be surjective.

homomorphism gg 7)

By Lemma [3.3.1, RU )/ I;()i)ly is reduced, O-flat, with two irreducible components that are geo-
metrically integral and of relative dimension 3 over O. By [Call8, Lemma 2.6] and [BLGHT11,
Lemma 3.3], R/I,o1y = @OJRU ) / Iéi)ly is reduced, O-flat with 27 irreducible components, each of
relative dimension 3 f over O. Hence the surjection

(24) 61 R/Ipoy — R/l = R=| (3 0):mv
is an isomorphism, provided that Rﬁ(ﬁ )T’v, or equivalently R§(3’0)’T by , has at least 27

irreducible components. To see this, it suffices to show that for any choice of A € {(3,0),(2,1)}/,
p admits a potentially crystalline lift p of type 7 with HT;(p) = A; for all j. This in turn follows
from [GHLS17, Thm. D], provided

(25) JH(o (1) @5 @ Ve(A; — (1,0)9) N W (p) # 0.
E.j

The left-hand side contains JH(o (1) ®r Qg ; Ve((1,1))))NW (p) as L(a,b) ®r L(2,0) = L(a+
2,0)® La+1,0+1)® L(a,b+2) if 2 <a—b<p—3. (Note that the highest weights of the
elements of JH(o (7)) are 7-deep, as follows from Proposition and Remark ) Hence
follows from Lemma

As (24)) is an isomorphism and induces the natural map modulo p
(Ipoly7p _8) = (IompN_S)'

Lemma 4.2.4. There exists an automorphism of local O-algebras 1 : R —+ R such that

]

o
R/Ipoly ~ R/Ioo

N-8 we conclude that

commutes and such that v induces the identity modulo p™¥=8.

Proof. Let us write R = O[ X1, ..., X;]. As 5 induces the identity modulo pV 8 we see that for
each z € R there exists e(z) € R such that ¢(z + I,oy) = = + p" 8e(z) + Io. Define ¢ by
demanding that ¥(X;) = X; + pV 8¢(X;) for all 1 <4 < k. As N > 10 it follows that ¢ is an
automorphism of local O-algebras, and the lemma follows. O

In particular, v identifies Ipoy With Io. Thus I, = Zj I0) where IU) is the ideal of R given
by the explicit generators in Tables (by applying 1 to the generators of Ipqy). Moreover
it follows that the ideals p* & > pWAr—1-5 for A € {(2,1), (3,0)}, where the p)As-1-i are
defined in Tables are the distinct minimal primes containing .
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By the above argument that is an isomorphism, we know that the irreducible compo-
nents of Spec R SGOTa a6 in bijection with the set {(3,0),(2,1)}f, explicitly given by sending
a component C to the labeled Hodge—Tate weights of the framed deformation corresponding to
any closed point of the generic fiber of C. So the components are indeed given by the Spec RA o

where A = (A;) € {(3,0),(2,1)}/.

It remains to establish the final claim identifying irreducible components. For any A = ();) €
{(3,0),(2,1)}/ consider the kernel of the composition

. ;E S(S,O) <A 3T v
qb,\.R—»RﬁB Rﬁﬁ .
By above we know that ker(¢y) is of the form ()y,cy p* for some subset X of {(3,0),(2,1)}/ of

cardinality 2¥, where k 2ef #{j : Aj = (3,0)}. For the identification of components it suffices, by
induction on A, to show that A; = (2, 1) implies that \; = (2, 1) for all X' € X. If this is false, then
there exists 0 < j < f—1and A" € X such that Ap_1_; = (2,1) and X;_;_; = (3,0). By the same
argument as above for row 4 of Tables |143} from A;_;_; = (2,1) we deduce that c(]) € ker(ox)
for all 1 <4,k <2 and moreover dgjl)d(]) + pdlg )d2§ J) ¢ ker(¢y) in case of Table usmg row 4).
From the additional assumption that N/ F1-j (3 0) it is now easy to see that p € p, whlch is

a contradiction. (In the notation of Remark |4 we have p € qU)21 4 p0).G0) C pN'| where
q-21 denotes the ideal defined there.) 0

Remark 4.2.5. Suppose that A € {(3,0),(2,1)}/ is such that A\f_;_; = (2,1) and let p* = dof

2 p DAs-1-i'. As observed at the end of the proof of Proposition 4.2.1, we see that c(i) € ph.
Usmg row 4 of Tables [IH3] we can even say that

A

(c11, €12, €21, €22, d11) C P if wy—1-j =*%@2,1),

dy1da2 e -
(611701276217022, drdr +P) C p? if wy_1-j = wi@y),
12021
(c11, €12, €21, €22, d22) C p* if wy 15 =132,

where we omit the superscripts (j) for readability. Moreover, the sum of the ideals on the left
equals p* if A f—1—j = (2,1) for all j (by dimension reasons or since the monodromy condition is
vacuous in this case).

Corollary 4.2.6. For each A = (\;) € {(3,0),(2,1)}/ and w € Adm(t(2,1)) the special fibre of

Spec R%’m is reduced and all its irreducible components are formally smooth over F.

Proof. Referring back to the proof of Proposition as well as Lemma [£.2.4] we have an iso-
<(3,0),7,V ~
morphism Rff = R/Iy0ly and

76
Afw ~ [ n ()X
(26) [[Xla“-aXQf]]: <®(9,0<j<f 1 /ppjolyf " ]> [Yi,...,Ya4],
where pl()o)l;\ 77177 is the ideal of R( 9) generated by the elements of rows 7 and 8 in Tables

without their O(p™N~8) tails.
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From Proposition we get by right exactness of completed tensor products that

—

A Tw ~ i A
e) @)X X 2 (@ sy B @) ) s Vil
By Tables we see that R( )/( ,p(O)Af YUY 2 FZy,. .., Z3wm) /[ (Z1 2, - . ., Zom—1Zom) for
some m < 1. It follows from and Lemma m 2| that
R%’Tw/w = F[Us, ..., Uprarm]/(UrUz, . . ., Uz —1Uzm)

for some m < f. O

4.3. Deformation rings II: multiple types. Inspired by the techniques of [Lel9, §3.2] we now
compute some multi-type deformation rings.

We suppose that p is as in For o € W(p) let R§(370)7o’ denote the maximal reduced, O-flat
quotient of Rg that parametrizes lifts of p of Hodge—Tate weights < (3,0) in each embedding and

tame inertial type 7 for some 7 such that o € JH ( (7) ®F Nisr, © det) Letting W, = 0(o) via
the bijection 6 of Lemma 2| and

X(0) = (@ € Adm" (t(g)) : @5 # (F); ¥},

we see that Spec R> is the flat closure of Uye x(») Spec Rﬁg(&o),m [1/p] inside Spec R%. Also,
define a bijection i : Admv(t@,l)) — {1,2,3} by letting i(w) be the f-tuple given by

<(3,0),0

1 lf ’LDJ - t(2,1)
i(@); €82 if @) = wigy
3 lf ’lI)] - t(Lz)
forall 0 <5< f—1.

Proposition 4.3.1. We have an isomorphism

Rﬁ [[Xla"wXQf]]g (S/ ﬂ Z )[[Ylv"'7Y4I|7
weX (o) J

where § &< @Ovogjgf_ls(ﬁ and the ring SY) and the ideals Ig) of S are as in Table |4 if
(W) f-1-5 = t(1,2), whereas SU) and the ideals Ig) of S are as in Table@ if (Wo)f-1-5 = t2,1)-
The irreducible components of Spec Rﬁg(:s,o),a are given by the Spec R%’m, where A = (\;) €
{(3,0), (2, )} and @ € X (o).

More precisely, via the isomorphism, for any choice of A = (\;) € {(3,0), (2, )}/ and @ € X (o)
the kernel of the natural surjection R§(3’0)’0 [X1,..., Xof] — Ri’m [X1,...,Xof] is generated by
the prime ideal Zf 5pg) A1 of S, where the ideals p(]) A1 of S are found in Tables .

Proof. Recall that p|r, = 7(s,p). The proof of Lemma shows that the étale @-module
associated to plg,_ is given by Mat(p()) = (Ds*t,+); in some ba51s for some D = (D;) € T(F).

Define 55?, (5( ) ¢ 0% to be the Teichmiiller lifts of the diagonal entries of Dy_1_;. Also let

def
M; = Hj— (171) - (T] + 170)
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Let G %f S/ ﬂwEX Z I U)  Consider the étale ¢p-module M over O, 5 given by

. ) S, V"I
(v +p)d§2) + 052) (v+p ( + 1,2(3)) (Jl) 4 b3 J

(2

Mat(p{1) = <@+pﬂﬁg+xé5+cg =z %«v+mf” i) 1
)

in a suitable basis, where bé{) L0 if (W) f-1-j = t(1,2) and b%) o if (Wg)f-1-5 = t(2,1). Write

S[Y] & S[v4,...,Y4] for short and define the ¢-module Mgy = L MB 5S[Y] over O, 3T

(Recall that Og denotes the p-adic completion of W (k)[v][1/v] and O, 3] & Oe®z,S[Y].)

Let Mg LM ®@gF. As every variable in SU) gets sent to zero in F and pi = (r;+2,1), we see

that Vi (Mr) = plg,_ - Fix an F-basis yp of Vi (Mr) = plg,__. If p is reducible, we demand
moreover that vp 1, yr 2 each span G -stable lines.

Fix an S-basis v of Vi (M) that lifts yg. Then the Gk_ -representation V*K(Mg[[yﬂ) together

. . Yi Y2 . . . . pO =
with basis (1 + <Y3 Y4) )(y ® 1) gives rise to a homomorphism )y : RﬂGKoo — S[Y].

For notational convenience, rename the variables (X7i,...,Xy) as X' & (X0s---,X%_1) and
(Xf41,...,Xop)as X" o (X0, XF_1). Extend ¢ to a homomorphism ¢ : R [[X’ X" —
S[Y] as follows:

)= xigj) it 0 <j < f—1orpisirreducible;
Y1 if j = f — 1 and p is reducible;
X7) = x;gj) fo<j<f—-1;
Yi  ifj=f—1.
On the other hand we have surjections

O <(3,0),0
RY - R5 — Rﬁ

Plok.,

(For the first, see [LLHLM1S, Prop. 3.12] and use that ad(p) is cyclotomic free.)
Claim 1. The map 1) : R%G [X', X"] — S[Y] is surjective.
Koo

We will check it is injective on reduced tangent vectors, i.e. on F[g]/(e?)-points. Pick any
continuous homomorphism ¢ : S[Y] — Fe]/(?), let ty : S[Y] — F — Fle]/(c?) be the zero
vector, and suppose that t o 1) = g o ). Abusing notation, we will write t(bgi)) = 5b(] ) for some
b( ) € F on the right, and similarly t(c Ek)) = ec%), t(dfi)) = ed%), t(z 1,§])) = sx%), t(Y;) = ey;.
From the definition of 9 (and t oy =ty 0 1)) we deduce :c%) = xgjl) =0for0<j<f—1,494=0,
and
(28) x% Vo if p is irreducible,

y1=0 if p is reducible.

Also, there is an isomorphism

(29) Xt Mgy &y, Flel/ (€%) ™ Mgy @spy.Flel/ (€9)
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such that Vi (\) sends the basis (1+ ¢ (gl 2’1))(7 ®1) to y® 1. In particular Vi (A mod ) is
3
the identity of M.

Hence the isomorphism A is realized by change of basis matrices of the form
14 EMfflfj S GLQ(O&]FM/(g)),
for some My_1_; € Ma(Og r) = Ma(F((v))). In other words,

(J)
21

(30) ) , ,
:@%m@¢@¢+@w>u e
e(dgy + czpvt) 631 +e(ag) + vt +bv?)) 7

where we have divided by v, and j is considered in Z/ f7Z, as usual.

Let k; € Z be minimal such that v M; € Ma(F[v]). Consider

(5D -
1—ep(Mj) =v sy |12 50 (1 —eM;_q)
A el + o e e ) )
' () <y>_1 () G) | o)y=1 4 pli) =2y | %5 V7
(dsy + cs5v™ ) o3y +e(zg) +csfvt + bgy )

Then multiplying the right-hand side by v"i 1. vki-1 . 2 makes it v-integral, hence pk; < kj_1+
rj +3 < kj_1 +p — 1 by genericity. This implies pmax; k; < max; k; +p — 1, so max; k; < 1,

meaning M; € My(F[v]) for all j.

From we get by multiplying on the right by v H sj:

Y (w4 ,
Mj— 59 50 ) WMyt =

B <m§2)+cgé)v—1+b(7) -2 dgjl) —1+C(Ji)v—2 )

U e i

(31)

Recall that we assumed s; = 1 for all 0 < j < f —1, and hence sg = 1 if and only if  is reducible
(due to our genericity assumption).

As the (1,1) and (2,2)-entries of the left-hand side of (31 are v-integral, we deduce that
c%) = bgg) = ngl) = bgl) = 0. From the (2, 1)-entry of When sj = 1 (resp. the (1,2)-entry of
when s; # 1) and from 2<rj+1<pwe deduce that v | (M;)2; for all j. This implies
that the left-hand side of (| is v-integral and its (2,1)-entry is d1v181b1e by v. In particular,

dgjl) = ngl) = déz) ngz) =0 for all j.
If s; =1 (e.g. if j # 0) we have by and the previous paragraph

(32) {52; = 5§Q;<<Mj1>n — (M;)11) -0,
x5y = 05y (Mj—1)22 — (Mj)22) lu=0-
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In particular, as xg) = xg]l) =0for 0 <j < f—1, we conclude that

(33) (M;)11|v=0, (M;j)22|ly=0 are independent of j.
If s; # 1 then we have by and the previous paragraph
(34) {375]2) = 61 (Mj-1)11 — (M;)52) lu=o,

28] = 05 (Mj-1)25 — (M;)11) ] o=0.

If 5 is reducible (i.e. sp = 1) we deduce by and i that x = xgjl) = 0 for all j.
Otherwise (i.e. s # 1), we deduce from 1.’ 1 , and 1 ) that m12 = :1:21) = 0 for all j. As
a result, the right-hand side of (31) vanishes and we conclude that (My_1—;); € Endymod(Mp).

Denote this endomorphism by £. From |Ii we have (14+eV5(£))(1+¢ (zl ?;2) YR =y®1,
3

so so Vi (&) = — (‘Z; zi) with respect to the basis yp. On the other hand, Endy med(Mr) =

Endg,  (plr.) = Endg, (p) by Lemma

If 5 is (absolutely) irreducible, then End,.med(Mr) = F. As y4 = 0 we conclude from the
formula for V7, (€) that y; = 0 for all 1.

If p is reducible, then Endg, meq(Mr) = F x F. By our condition that vr 1, yr2 each span
Gk -stable lines, we conclude that yo = y3 = 0. Using we also have y; = y4 = 0.
We have shown that ¢ = tg, completing the proof of Claim 1.

<(3,0),0

Claim 2. The map 1 : R — S[Y] factors through the surjection RY
Plag, Play P

By O-flatness it is enough to check that any closed point x of Spec S[Y][1/p] is sent to the closed
<(3.0), 7[1/p] of Spec Rl [1/p]. Let p, be the maximal ideal of S[Y][1/p]

corresponding to x. Its residue field k() is a  finite extension of E.

subscheme Spec R—

By definition,

N Ti=o

weX (o) J
in S, hence there exists some @ € X () such that >, Ig) C pa.

Thus the p-module Mgm @g[m]/i(:c) is one of the ¢-modules described in Tables for the
type 7, at least after replacing O by Oy (). (To see this, note that we can identify the p-module
described in Tables[T[H3] with the ones in Tables via the changes of variables in Figure where
we omit the superscrlpts (4) for readability. Keep in mind that the constants a; and the O(p" %)
tails in Tables |IH3| depend on @ and not just on w_1_;. Moreover, recall that the O(p"=9) tails
in Tables |1 I—I involve variables of all embeddings, so the change of variables of 1) really depends
on w and not just on wr_1_;.

In particular, by the proof of Proposition we know that V}((Mg[m] @gﬂyﬂﬁ(x)) is the
restriction to Gi_, of a potentially crystalline representation p, of Gx over k(z), of inertial
types 7 and Hodge-Tate weights < (3,0). Together with the basis v ®, 1, pz|,_ is a framed
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F1GURE 2. Change of variables between the tables
Table 1 6>{1 d11 C11 d21 C12 C21 ;2 C29
Table 4| | dis | c12 — pdiy | bio — pcio | doo | di1 | coo | d3y | co1

Table (3 ’1K1 C11 dlg C12 | C21 632 d22 C29
Table To | c12 | di1 | ci1 | doo | d3y | co1 — pd5y | ba1 — pear

@1

deformation of p|g, . By Corollary Pz is a framed deformation of 7, completing the proof
of Claim 2.

Claim 8. The ring S is reduced, O-flat, and has 4/ irreducible components, each of relative
dimension 3f over O.

For short, let Iy < > Ig) for any @ € X (o). Recall that #X (o) =2/. As S = S/ Ngex o) 1w
and each S/Iz is, by construction, identified with the ring R/3; 1 (@) of Proposition (for
type 7g), we deduce that S is reduced and O-flat and that, in order to establish the claim about
irreducible components, it suffices to show that the ideals Iy are pairwise relatively prime in S[1/p).
Pick w # @' in X (o) and choose j such that @y_i—; # @}y_;_;. Assume (W,)f-1-j = t(1,2), S0

we are in the setting of Table 4| at embedding j. Hence by Table || the ideal Ig ) +1 g,) contains
an element of the form

di1d di1d
<012 —pdTQ + (a1 — 2) ;* 22) — <C12 — angQ(dilsz —l—p)) -+ O(pNiB)
21 1221
dy1dao

*
d21

= plag — 1)djy + (a1 + a2 — 2) +O0("").

As ag # 1 (mod p), a; + az = 2 (mod p) (see the explicit formulas below Tables |[1H2), and
N > 10 we deduce that p € Ig ) + Ig,), which in turn is contained in Iz + Iz. The case where
(W) f-1-5 = t(2,1) is analogous, checking that p € Il(g) + Ig/ by using the two elements of the
form co1 + ... from Table 5l This establishes Claim 3.

Conclusion of the proof. By Claims 1 and 2 we have a surjective morphism Rpg(?”o)"7 [X', X"] —
S[Y]. By [KisO8, Thm. (3.3.8)] the ring Rﬁg(g,a),g is reduced, O-flat, and each irreducible com-

ponent is of relative dimension f + 4 over O. By Proposition it has precisely 4/ irreducible
components. By Claim 3 we deduce that Rﬁg(:&,o),a [X', X"] = S[Y].

~—

The identification of irreducible components follows from Proposition as for any w € X (o
the isomorphism Rﬁg(:&,o)p [X', X"] = S[Y] factors through the isomorphism Rﬁg(&o)’m [X’, X"]
S/I4[Y] of Proposition (keeping in mind the change of variables discussed in the proof of
Claim 2). O

I
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Lemma 4.3.2. If (W,)f-1-j = t(1,2) let

),(2,1 dcf
qgj) (2,1) (b12 — pci12,C11, C12 —pd12,02170227d11)

dy1d
qg 7):(2,1) de (17127 €11, €12, C21, €22, il 32 —i—p)
diad3y

and Zf (’Lf)g)f_l_j = t(271) let

qgj)’@’l) o (5217011,01276217022, Z’l‘lfl? ),
12421
q;(gj)’(2’1) o (ba1 — pear, c11, €12, €21 — pdsy, 22, d22),
where we omit the superscripts () for readability and we consider these as ideals of SU). Let
w e X(o). Thenq(()(il1 B Zf 0p~ DA whenever A\y_1_j = (2,1) andzf ())5 Y p
Zf ! u% 21) (as ideals of S).

Proof. This follows from Remark (and the identifications in the proof of Proposition 4.3.1)).
O

Recall that p: Gg — GLo(F) is such that p|r, = 7(s, p), where p — 1 is N-deep with N > 12
(see item in §4.1).
Proposition 4.3.3. Keep the hypotheses of Proposition[{.3.1] and the definitions of Lemmal[{.3.2
Then for anyO <j < f—1and any w € X (o) such thatz( )f—1—j = 2 we have p € q(])(21 N

gD 4 DGO gy and p € gD n gl >+pm GO i (@)1 = to).

Proof. Suppose that (0,)f_1-j = t(1,2). We will systematically omit superscripts (j) and write
pg&o) instead of p(] )30 gor readability. From Table |4 note that the following elements are in

ps*:

di1d
co1 + (a2 — 1)d3, <ili2 +p> +0(pN®),
diad3y
e B o (i
12%21 az(az — 1) 12021

_ 2p N-8
+p> (@ —1) +O0(" ).

By eliminating dilg?? + p using the last element we get

2 _
ca1 + £d§1 +O(pN %) e pi?.

21 qu’l) we deduce that

(2,1)

Noting that co1 is in q3

(

21) _ 2p ., -
P30)+q qg )9672‘1214‘0(19]\[ %)

2 -~
—P<d21+0(pN 9))-
as

As N > 10, the factor in parentheses is a unit in S, so we obtain p € pg 0) + q(2 1) q§2’1).
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The case (Wy)f—1-; = t(2,1) is completely analogous, using from Table [5| that

2 N -~
c12 — P djy +O0(p" %) € pgs,o)’
ag — 1
c12 € qg’l) N qz(f’l)-

1
(Alternatively, we mention that the element <S 0) normalizing the Iwahori interchanges shapes

t(2,1) and (1 9) and preserves tof(3 1). It can then be seen that Tables 1 and 3, and likewise Tables
4 and 5, are interchanged under the transformation sending c;i, dik, ... to c3_; 3, d3—;3—k, - .-
and a; to 1 —ag—;. In this way we can reduce the second case of this proposition to the first.) O
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. ox 2
TABLE 1. Shape Wy 1 ; =t(91), i.e. ZU=1=0) (61111 0 >

%
0 590

41

AU-1-9) ((U +p)%efy + (v+p)du +en €12 )
’U((U + p)dgl + 621) (U + p)dSQ + co2
¢p-module at the (i((v +p)?efy + (v +p)du + i) c12 ) g1 (UWH 0>
(f =1 — j)-th embedding (v 4+ p)da + c21 (v+p)ds5y + ca2) 7 0 1

R

Ofei1, dir, @31, c12, €21, dat, €22, T35

1(),<(3,0)

C11€22 + pc12c21,
*
d11¢c22 — 12021 + €11d59 + De12do1,
* *
el1c22 + di1dyy — ci1ada

7))V

(a1 — 1)dy1caz + arcridsy + p(duidsy + 2€f1c2) + O(p ™4,
coo(arerr + pdir) + O(p™ 2),

c12((ay — 1)dyy + 2pel;) + O(pN =),

ci2(arcir + pdin) + O(PN%)’),

(a1 — D)earcas — p((a1 — 3)darcaa + (a1 + L)eadsy) + O(p™N 1),
p((a1 — 1)earean + pldarcas — condiy)) + OV 3),

(a1 — V)eracan + cridyy — p((ar — 3)ciadar + diidyy) + O ™4,
p((a1 — L)erzean + cridsy + peiadar) + O(pN )

70

d
di1 + (a1 — 2)012 21y O(pN~8),

*

22

d
ea2 — (a1 — 1) 220 L O(pN 8,
€1
a1 — 1)(a1 — 2) ¢12(doq)?
021+( 1— (a1 —2) 12*( 2*1) L oYY,
ai €11022
01;:121 ((a1 —1)2(a; — 2) 012(;31 —p) O,
22 a1 €11%92

(c12+ 06" (a1 = 1ar =2 BE — 29+ 06 ))

C11 —

p(j),(Q,l)

1) + (12 + O ))

p(j)7(370)

. d
10) + ((a1 —1)(a1 — 2);26;1 —2p+ o(pN8))
1122

Here, a1 € Z(p) and a1 = —(sj_l(p,j) —-(2,1), oz;-/> = —sgn(s;)(r; + 1) + 1 (mod p). For readability we write

ai, ¢ik, etc. instead of a

()
1

; d — def —
¢ ete. Also, note that i = el; — [ef;] and z3, = d3y — [d3,].

’ Vik

Note that both a; and the O(prS) tails depend on the whole f-tuple @ and not just on wy_1_;. Also, the
O(pN_S) tails involve variables of all embedding and 16V @) p<j)’(2’1) and p(j)’(s’o) are not ideals of R
in general. A similar comment applies to Tables below.
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(-1 _ [ 0 diyw
TABLE 2. Shape wy_1_j =Wt ), i.e. A <d§1v 102 )

42

Af=1=4)

( (v+p)di1 + cin (v+p)dis + 612)
v((v+p)d3 +ca1) (v+p)daa + e

p-module at the
(f —1—j)-th embedding

((v +p)diy + c12 %((v +p)di + Cn)) 1 (vm‘+1 O)
(v+p)dae+c2  (v+p)ds +cn J 0 1

RU) Olei1, di1, €12, 79, c21, T3, €22, do2]
di1daz — (cr2ds; + digca1) + pdiadsy,
106),=(3,0) c12¢21 — di1c22 — ci1daz — p(ciads; + diaca1),
C11C22 + pciacal
(az — 1)dy1can + ageridag + pldiidag — 2digcar + pdiadiy) + O™ ),
asericn + p(direas + pdipcar) + O(p™ —3),
(ag + 1)endiy + (ag — 1)diyein + O(p™N 1),
azericrz + p(direr — cnndiy) + 0PN 73),
10V (CLQ - 1)621622 - p((CLZ - 3)d§1022 + (a2 + 1)C2ld22) + O(pN_4)7
p((ag — 1)carcan + p(ds oo — co1daz)) + o(pN~?),
(a2 — 1)cracar + cridaa — p((az — 3)ciady; + (ag — 1)diqen
+ di1das + pdjydy,) + O(p™ 1),
p((az — 1)erzean + ciidos + perady;) + O(p™ —?)
di1d
cor (a2 = iy (92 ) + 06",
12021
. (dud )
C12 — a2d12<dildi2 +p> + O(pN 8)7
12021
. — 1) di1das
(&) poala2=l), ( +>+0 N8y,
“u as +1 diad3y P v
as(as — 1) <d11d22 > N-8)
€22 42 Tty +p ) +0@(P"°),
dy1da2 ) ( az(az — 1)  diida N_8 )
+p+0 +p+0
<d1<2d* ( ) (az —2)(az + 1) diyds, b v )
NOXERY 19 + ( s |yt o 8))
diydsy
p(0).30) 16) 4 < as(az — 1) dyidas tpat O(pN8)>

(CLQ — 2)(@2 + 1) d’{2d§1

Here, a2 € Z) and a2 = 7<ms;1(pj) —(2,1), o)) =sgn(s;)(r; +1) +1 (mod p). For

- . . * f o« 5
readability we write az, ci, ete. instead of a’, ¢%), etc. Also, note that z7, def g, — [df,] and

def
o = db — [ * 1.
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*
0 e3v

~ . —(f—1—j dF v 0
TABLE 3. Shape wy_1_j =1(1 ), i.e. A(f ) _ ( 11 2>.

43

A-1-3)

((U +p)di; +ecn (v+p)di2 + c12 >
ve21 (v +p)2esy + (v + p)daz + ca2

p-module at the
(f =1 — j)-th embedding

(

(v+p)diy +cn %((v + p)di2 + c12) 1 (Urjﬂ
veal L((v+p)Pesy + (v + p)daz + c22) | 7 0

0
1

)

RY)

Olcir, x5y, 12, di2, €21, c22, d2g, T3]

1().<(3.0)

€11€22 + pc12c21,
sk
c11da2 — c12¢21 + djjca2 + pdiacal,
* *
c11€99 + diydoe — digea

71UV

agcidaz + (ag — 1)dj coo — p(di das + 2c11€35) + O(p 1),
c11((as — 1)caz — pdaa) + O™ ~3),

co1(agdaz — 2pesy) + O(pN 1),

co1((az — 1)eaa — pdag) + O(p™72),

azericiz — p((az + 2)enndiz + (a3 — 2)diye12) + O(p™ %),
plasciiciz — penndiz — dipci2)) + O(pN=3),

azciacar — dijcas — p((as + 2)dizcay — diydas) + O(p™ %),
p(ascizcar — dijcan — pdiacar) + O(p™ )

709

di2c21
*

11

do — (a3 + 1) +0(pN8),

d12c1 _
c11 +az——— 4+ 0(p™V78),

€39
as(az + 1) (d12)3c _
ey - WD Doy o)

az —1 dij es,

dy2c1 <(a3)2(a3 + 1) di2ean
c22 —

* * *
11 az—1 11622

- p) +0(" %),

disc _
(car + 06" %)) (ms(as + 1) 22 — 2+ 00"
11622

p@-2)

19 4+ (021 + O(pN_S))

p(]) ,(3,0)

| d
o (a3(a3 Loy O(pN_S))
11622

Here, a3 € Z() and a3 = —<sj_1(uj) —(1,2), ) = —sgn(s;)(r; +1) — 1 (mod p). For

0) @)

. . def
readability we write as, cik, etc. instead of ag’’, ¢;;/, etc. Also, note that x7; = di, — [d%,] and

def —
T30 = €3y — [€5,).
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TABLE 4. Multi-type deformations: shapes wy_1_; =) and

Wp_1—j = wt(g 1)

Multi-type ¢-module at
the (f — 1 — j)-th embedding

(U er)dfg +c12 + 17172
(v+ p)daz + c2

?1;((“ +p)di1 + Cn)) g1 (U
J

7‘]'+1 0
(v +p)ds; + e 0 1)

S@)

Oleci1,di1, bia, c12, 279, €21, 51, C22, d22]

ci1 + pdit,

d
c12 — pdis + (a1 —2)——=

di1d
ca1 — 1) L 0N,

*

12

(a1 —1)(a1 —2) du*(dz*z)z + OV,
a diads,

dqi1d a1 — 1)2%(ay — 2) dy1d
bia — pers — 11* 22(( 1 ) (a1 ) ild?
21 ai 12021

_ (CLI

co9 +

~p) + OGN ),

(du + O(pN_S)) <(a1 —1)(a1 — 2)3;3; —2p+ O(pN_S))

b1,

co1 + (a9

di1d
1>d§1( 11022 +p) + oY),

12d;1
. /dud B
C12 — a2d12< ild22 +p> + O(pN 8)7
12721

az(ag — 1)d11 (d11d22 —f—p) + O
az + 1 &yl

-1 di1d
as(as )d22( 11d22 +p) L0

i >>(<

c11 +

C22 —

<d11d22
diad3y

1 di1d
as(ag — 1) 11d22 +p+0(pN_g))
12021

tp+ 0 @+ 1)

(9):(2,1)

Py (W) -

1—5=1

Ig) + (d11 + O(pN_S))

pI B0 i@y =1

d11da2
diads,

19 + ((m —1)(a1 —2) — 2+ O(pN—8>)

(9):(2,1)

i dird
P (W) 1y =2 17+ ( 11d22 +p+ 0" ))
12
(),(3,0) o 10 4 ( as(az — 1) diidao 4ot O(pNS )
b 7 o =2 1) gy, TP

For readability we write a;, c;k, etc. instead of a;

23 def a5,

. £ J—
) C£]~>7 etc. Also, note that x7, d:e di, — [df,] and

[d21] where d12, d21 € FX. Note that the constants aj, az and the O(pN 8) tails coming from

Tables (by the change of variables in Flgure. depend on the whole f-tuple @ € X (o).

44
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TABLE 5. Multi-type deformations: shapes wy_1_; = wt(y;) and
'[Df_l_] = t(172).

Multi—type‘ p-module at. (v + p)diy + c12 %((U +p)diy + 011) 1 (UTj+1 0>
the (f — 1 — j)-th embedding (v + p)das + oo (v + p)ds; + co1 + 13271 j 0 1
S0) Oleir, din, 12, 279, bat, €21, 31, €22, d22]]
6215
di1d _
car + (a2 = Dy (92 +9) + OGN ),
12021
di1d _
C12 — a2d12< il 22 +p) + O(pN 8),
G) “12%
I y i(lb)f_l_j =2 CLQ(CLQ — 1) (d11d22 )
w + +p)+O0(p
RN | diydy, 7
ag(ag — 1) (d11d22 )
c22 — d +p)+0
. az —2 diadyy P
d11d22 N_g ) ( az(az — 1)  diida N_8§ )
. TP+ O +p+O(p
( 12d3, ( ) (a2 — 2)(ag + 1) diyd%; ( )
co9 + pdag,
di1d
o1 — pdy; — (a3 + 1) =22 + O(pN %),
12
di1d _
c12 +as .- +0(p"N?),
21
i i(W0)f-1-j =3 ag(as + 1) (d11)%d2 N_8
w —_ O
ci1 w1 dipds, +0(" ),
di1das ( (a3)?(ag + 1) di1dae N_g§
ba1 — pea1 — —; ( —— —p>+0(p )s
12 az—1 diadsy
di1d
(d22-+ 06" ) (astos + 122 — 25+ OGN )
12021
@21) .- (), (duda2 N-8
Po (@)1 =2 Lit + g g P H007)
12021
(4).(3.0) ) ag(az —1)  dyidar N_s )
P By (0~ 2 + 1) digdy P HOP)
o i) =3 15+ (do2 + OGN )
(7).3.0) _ () dirdao N-8
P (W) po1-j =3 I’ + | aslas +1) = =20+ O™ )
1221

i def —
For readability we write a;, c;k, etc. instead of a“) C£]~>7 etc. Also, note that z7, = dj, — [d},] and

def
x5, = ds, [d21] where d12, d21 € F*. Note that the constants az, as and the O(p”™ ~%) tails coming from

Tables (by the change of variables in Flgure. depend on the whole f-tuple @ € X (o).
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5. GELFAND—KIRILLOV DIMENSION AND REPRESENTATIONS OF THE IWAHORI

We introduce an analog of the Gelfand—Kirillov dimension for smooth modulo p representations
of p-adic analytic groups and prove Corollary which gives an upper bound for this dimension
in the case of representations of the Iwahori subgroup of GLg(L), L unramified, satisfying a
“multiplicity one” assumption in the first three layers of their socle filtration.

Let F be a finite field of characteristic p. If H is a compact p-adic analytic group, we define
def def

Zp[[H]] - 1£1 ZP[H/H/]7 IFIIH]] = F®Zp Zp[[H]]v
H'CH
for H' varying among open normal subgroups of H. If H is moreover a pro-p-group, F[H] is a

complete noetherian local ring whose maximal ideal is denoted by mgy. We let gr,, F[H] be the
graded ring of F[H] for the mpy-adic filtration

gr, FIH] & @ m /myL.
n>0

5.1. Review of Gelfand—Kirillov dimension. We recall the notion of Gelfand—Kirillov dimen-
sion of an admissible smooth F-representation of a p-adic analytic group. General references for
this part are [Ven02] and [ABO6]. We recall here some useful definitions and results for the reader.

Let H be a compact p-adic analytic group and let M be a finitely generated F[H]-module. Its
grade j (M) is the smallest integer d such that EXt%[[Hﬂ(M, F[H]) # 0 (with the convention that
the smallest element of the empty set is +00). Moreover, if M # 0, we have

0<ju(M) < dim(H),

where dim(H) is the dimension of H as a Qp-analytic variety. This is a consequence of the
following two facts:

(i) if H' C H is an open subgroup of H, the F[H']-module M is finitely generated and we
have jg (M) = jg/ (M), as follows from [Ven02, Prop. 2.7];

(ii) if H is p-torsion free, F[H] is of finite injective dimension equal to cd,(H) [Ven02,
Thm. 3.30(ii)] and cd,(H) = dim(H) [Ser65), Cor. 1].

We also define a dimension function by dimg (M) & dim(H) — jg(M).

When H is a uniform pro-p-group, the graded F-algebra gr,, F[H] is commutative isomorphic
to the polynomial algebra in dim(H) variables over F (see the paragraph after Remark 3.31 in
[Ven02]). If M is a finitely generated F[H]-module, its graded module gr,, M for the mpy-adic
filtration is a finitely generated gr,, F[H]-module and dimg (M) is equal to the dimension of the
support of gr,, M in Spec(gr,, F[H]) (see [Ven02, Thm. 3.21.(ii)]).

Let G be a p-adic analytic group and 7 an admissible smooth F-representation of G. For each

compact open subgroup H of G, the dual 7V & Homp (7, F) of 7 is a finitely generated F[H]-

module. Its grade does not depend on the choice of H and is denoted jg (7). The dimension, or

Gelfand—Kirillov dimension, of 7 is then dimg(7) < dim(G) — jo(7V) = dimpg (7V).

Remark 5.1.1. Let H be some open uniform subgroup of G. Then dimg(7) is the Gelfand—
Kirillov dimension of the graded module of 7" for the my-adic topology (see [AB06, §5.4]) but
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it does not coincide in general with the Gelfand-Kirillov dimension of 7V as an F[H]-module
[loc. cit., §5.6]. However we have the following description of dimg(7) (see [EP20), Prop. 2.18]).
For n > 1, let HP" be the subgroup of p"-th powers of elements of H. There exist real numbers

a>b> m such that

(35) bpndimG(W) + O(pn(dimg(w)—l)) < dimp (WH””> < apndimc(ﬂ') + O(pn(dimc(ﬂ)—l))'

For this reason, the integer 0 < dimg(7) < dim(G) (or —oo if 7 = 0) is also called the Gelfand-
Kirillov dimension of .

Lemma 5.1.2. Let G be a p-adic analytic group and N a closed normal subgroup of G. Let w
be an admissible smooth F-representation of G such that N acts trivially on m. Then we have

dimg () = dimg /N (7).

Proof. By replacing G by an open subgroup and N by the intersection we may assume that G
is uniform [DASMS99 Cor. 8.34]. Then by Exercise 14 in [DASMS99| §4] there exists an open
uniform pro-p-group H C G such that H N N is uniform. The result is then a direct consequence
of the characterization given by . O

Lemma 5.1.3. Let G be an analytic pro-p-group without p-torsion. Assume that the graded ring
gro F[G] is Auslander-reqular (see for example [LvO96), §II1.2.1, Def. 7] for the precise defini-
tion). Let I be a two-sided ideal of gry, F[G] generated by a sequence of r central elements which
is gry F[G]-regular (where gry, F[G] is considered as a module over its center) and such that
gr, F[G] /I is isomorphic to a polynomial ring in dim(G) —r variables. Let M be a finitely gener-
ated F[G]-module such that gry, M is annihilated by I. Then dimg(M) is equal to the dimension
of the support of gry, M in Spec(gry, F[G]/I).

Proof. For a ring A and a left A-module IV, we recall the notation

ja(N) € min{n € N : Ext’y(N, A) # 0}

(with the usual convention that the minimum of the empty set is +00). Let A o gr., FIG].

It follows from [LvO96, §III.2.5, Thm. 2] that jo(M) = ja(gr, M) if M is a finitely generated
F[G]-module. (Note that F[G] is a left and right Zariski ring by [LvO96, I1.2.2, Prop. 1].)

As A/I is a polynomial ring in dim(G) — r variables, it follows from [LvO96), §I11.4.1, Thm. 7|
that j/r(gry, M) is equal to dim(G) — r — dimg, (Suppspec( a/n) (8t M )), where dimg, denotes
the Krull dimension.

Since gr,, M is annihilated by I, there is a spectral sequence

Ey? = Ext!) (gt M, Ext’ (A/I, A)) = Ext}"(gr,, M, A).
Let (hq,. e h;) be an A-regular generating sequence of central elements in I. For all i € Z, we
have Exty(4,A) 2 Aif i = 0 and 0 if ¢ # 0. By induction on r, we can use the long exact
sequence of cohomology to prove that Ext(A/I, A) = A/I if i = r and 0 if 4 # r. This implies

that the spectral sequence degenerates and that Ext”, J1(gre M, A/T) = Ext! " (gry, M, A) for all
p € Z. We deduce that j,,7(gry, M) = ja(gry, M) — r. Consequently we have

jA(grm M) = dlm(G) — dimgy ( SUPpSpec(A/I) (grm M))
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and we deduce

dimg (M) = dim(G) — jo(M) = dim(G) — ja(gry, M) = dimi, (Suppspec(a/n) (86n M) ). O

5.2. Recollection of results of Lazard. Let G be a group with unit element eq. A p-valuation
[Laz65l I11.2.1.2] on G is a map

w: G — RygU{+o0}
such that, for all z,y € G,

e o o o
€

e e e e e
8

°
(S

A p-valuation w on G is saturated [Laz65, 111.2.1.5] if, for all z € G,

w(w)>L1 — Jyed, y¥ =ux.
p_

Now we assume that there exists, and we fix it, a saturated p-valuation w on G. For v € R+,
we define
def def def
G, ={reG:wx)>v}, G+={reG:wlx)>v}, g,G=G/G, .
The sets G, and G+ are normal subgroups of G. They form a fundamental system of neigh-

borhoods of eq for a structure of topological group on G. The direct sum gr G def @D, gr, G is a
graded Lie algebra [Laz65, I11.1.1.7]. If x € G \ {eg}, we define gr(z) as being the image of x in
8,(z) G € grG. We assume that the topological group G is compact so that w(Q@) is discrete in
R>o U {400} [Laz65, Prop. I11.2.2.6].

Let Z,[G] o lim Zp|G/G,] be the completed group algebra of G. Note that when G is a

compact p-adic analytic group, the topology induced by a p-valuation is the profinite topology of
G [Laz65| I11.3.1.4].

The map gr(z) — gr(z?) from gr, to gr,,, induces an endomorphism of degree 1 of the graded
Lie algebra gr G. Let Fp[e] be the graded polynomial algebra in € with ¢ in degree 1. Then there
is a unique structure of graded F[e]-Lie algebra on gr G such that € acts via gr(z) — gr(z?). The
graded Fp[e]-module gr G is then a graded-free Fy[e]-module [Laz65l I111.2.1.3]. If G is a compact
p-adic analytic group, this Fy[e]-module has finite rank d = dim(G) [Laz65, Prop. 111.3.1.3].

From now on we assume that G is a compact p-adic analytic group (and still that it has a
saturated p-valuation). We fix a family (x;)i1<i<q of elements of G such that (gr(x;))i<i<q is a
basis of the Fp[e]-module gr G (so that x; # 1 for all ). We call the family (z;)1<i<q an ordered
basis of G.

Let o = (a)1<i<q € N%. We define 2 & [T (z; — 1) € Z,[G] and 7(a) & S aiw(x).
Following Lazard, we define a valuation w : Zy[G] = Rso U {+00} as the (pointwise) infimum
of the set of all Zy-algebra valuations w such that, for all # € G, w(z — 1) > w(z). Actually
Lazard takes the (pointwise) infimum of all filtrations [Laz65), 111.2.3.1.2] but in our case this last
infimum is a valuation, so that our definition is equivalent [Laz65, Thm. I11.2.3.3, Cor. 111.2.3.4].
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Moreover by loc. cit., the Zy-algebra Z,[G] is isomorphic to the completion of Z,[G] for w. We
have the following description of Z,[G] and w [Laz65, 111.2.3.8.8, 111.2.3.9]:

Z,[G] = { > Xaz¥ i € Zp};

a€eNd

w ( > /\aza) = inf{v,(Aa) + 7(a) }.

a€eNd

The valuation w extends immediately to Q,[G] and we define D¢ as the completion of Q,[G]

for the valuation w (or equivalently for the multiplicative norm ||| = p~*()) which extends
canonically to Dg. This is the Qp-algebra named Sat Z,[G| in [Laz65l, IV.1.2.7]. We deduce from
the previous description that:

Dg = { Z Aaz® 1 Ag € Qp, vp(Aa) + T() = +00 as T(a) — +oo}

aeNd
and that the closure of Z,[G] in D¢ is isomorphic to the completed group algebra Z,[G].

Let U, (gr G) be the enveloping algebra of the Fy[e]-Lie algebra grG. As grG is graded,
the Fplel-algebra Up,)(grG) is canonically a graded Fp[e]-algebra. Namely the tensor algebra
Tr,[s)(er G) of the Fy[e]-module gr G inherits a grading from gr G (see [Laz65| 1.3.3.2]) and, for
x,y € grG two homogeneous elements, the element z ® y — y ® x — [z, y] is homogeneous in
Tr, ¢ (gr G). Consequently Uy, )(gr G) is a quotient of a graded algebra by an homogeneous ideal
and is a graded algebra (see [Laz65, IV.2.1.4]).

Let gr Z,[G] be the graded algebra of Z,[G] with respect to the valuation w which is naturally
a graded F)[e|-algebra [Laz65) 1.2.3.2, 1.2.3.11]. By definition of w, there is a morphism of graded
[F, [e]-Lie algebras gr G — grZ,[G] given by gr(g) — gr([g] — 1) for g € G [Laz65, 111.2.3.2]. In
particular, we have gr(g”) — egr([g] — 1) for g € G. By the universal property of the enveloping
algebra, it extends to a morphism of graded algebras U, (gr G) — grZy[G]. It follows from
[Laz65, Thm. II1.2.3.3] that this morphism is an isomorphism. As Z,[G] is the completion of
Zp|G] for the valuation w, we can identify grZ,[G] and gr Z,[G].

We have F,[G] = Z[G] @z, Fp.

Let w be the quotient filtration (in the sense of [Laz65, 1.2.1.7]) on F,[G]. It is defined by
w(x) & sup{w(Z) € RU{+o0} : & € Z,[G], £ =2 mod p}. We have

w ( > )\azo‘> = inf{7 () : Ay # 0}.

a€Nd

If x € Zp[|G], we have w(pz) = w(z) + 1 so that gr(px) = egr(z) and finally gr(pZ,[G]) =
e gr(Zy[G]) inside gr(Zy[G]). This implies that the short exact sequence of filtered modules is
strict [Laz65, 1.2.3.8.2]

0— (pr[[G]],w\pr[[G]]) — (Z,[G],w) — (F,[G],w) — 0.
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Combined with the isomorphism Uy, j(gr G) = gr Z,[G], this implies the existence of an isomor-
phism of graded algebras

UIFP €] (gr G) ®Fp[a] Fp =gr ]Fp [[G]]
Let gr G be the graded Lie algebra gr G ®p, ;) Fp. We deduce an isomorphism of graded algebras

(36) Ur,(grG) = grIF,[G].
We now give a convenient way to compute gr G. Actually we rather compute gr G and deduce
gr G after quotienting by e.

Let £ be a Z,-Lie algebra. A p-valuation on L is a map w : L — Rs9U {400} such that for all
A€ Zpyand x,y € L:

°
8
=,

If (£,w) is a p-valued Lie algebra, the set gr £ has a canonical structure of graded Lie algebra.
Moreover the map gr(z) — gr(pz) extends to a degree 1 morphism gr £ — gr £ and to a structure
of graded I, [¢]-Lie algebra on gr L.

If x € G, the series
(-1
n

def
logp,, (z) = Y

n>0

(z—1)"

converges in Dg. The associative algebra Dg with its valuation w is a p-valued Lie algebra for the

commutator bracket. The subset Lo & {logp .(7) 1 € G} of D¢ is then a p-valued sub-Z,-Lie
algebra of Dg. Moreover there is canonical isomorphism of graded Fp[e]-Lie algebras gr L& = gr G
(this is a consequence of [Laz65, Thm. IV.3.2.5 and IV.1.3.5]).

5.3. The case of the pro-p-Iwahori of GLs;. We compute the graded ring of the completed
group algebra of the pro-p-Iwahori subgroup I; of GLy(L) for unramified L and introduce an
interesting ideal which allows us to control the Gelfand—Kirillov dimension of representations of
I.

Let L be an unramified extension of Q, of degree f with ring of integers Oy, and residue field
k. We are interested in the particular case of the group I1/Z; which is the quotient of the (upper)

pro-p-Iwahori subgroup of GLy(Op) by its center. This group is isomorphic to the subgroup

e I N SLy(Op) of I since p > 2. The following results can also be deduced from [Clo17].

However we prefer to follow [Laz65] in order to emphasize that the graded ring naturally has the
structure of an enveloping algebra (see )

We follow [Laz65), 111.3.2.7] to define a saturated p-valuation on G. We assume that p > 3. Let
L' = L(,/p) and v : Ma(L') — R>0 U {+00} be the valuation defined by

v((miz)) = min{vy(mi;)}.

Let D be the diagonal matrix ((1) \%) in Ms(Op/). We define, for x € G:

w(z) LD 2D — I).
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It follows from [Laz65, 111.3.2.7] that w is a saturated p-valuation on G (here we are using that
p > 3). Explicitly, for a,b,c,d € O, such that (1 + pa)(1 + pd) — pbc = 1:

w((l -;Cpa X —fpd)) = min{1 + v,(a), % + vp(b), % +vp(c), 1 + vp(d)}.

Let gz, be the sub-Z,-Lie algebra of sly 7, defined by

def [ (pa b\ 3
9z, = {<pc —pa) : (a,b,¢) € Zp}.

Lemma 5.3.1. We have an isomorphism of p-valued Lie algebras Lo = O ®gz, 9z, with valuation,
fora,b,ce Op,

(37) w((Be 0 ) = min{1 4 uyla). 5 + 0) 5 + o))

pc —pa 2

Proof. Let G’ be the subgroup of GLg (L) defined by
1
G = {ac e My(L) :v(x — L) > 2}.

As p—1> 2, it follows from [Bou72| I1.8.4, Prop. 4] that logy,(./)(G’) is the sub-Lie algebra of
My(L') defined by
1
log, (1) (G') = {x € My(L') : v(z) > 2}.
For z € G', we have logyy, (1) (Ad(D)z) = Ad(D)logy, (1 (). As G = Ad(D)(G') N Ma(L), we
have

(38) logM2(L/)(G) = {x € My(L) : v(Ad(D)flx) > ;} = 0L ®z, 9z,

We use the notation to denote the valuation on D¢ associated to w as in section Let logp,,
be the logarithm map on Dg:

{xeDg:w(x—1)>pil}H{xEDg:w(x)>pil}.

The inclusion G C M»(Oy/) is continuous and extends to a continuous morphism of Z,-algebras
h : Zy|G] — M2(Oy/) and a morphism of Qp-algebras Q,[G] — Ma(L'). By definition of w, we
have the inequality w(z) < v(Ad(D~!)h(z)) for z € Z,[G], since v o Ad(D™1) o h is a valuation
w' on Zp|G] such that w'(x — 1) = w(z) for € G and w is defined as the pointwise infimum of
valuations w” with w”(z — 1) > w(z) for x € G. As w and v are valuations of Q,-algebras, we
deduce that this inequality is true for all z € Q,[G]. As My(L') is complete, we can extend h to a
morphism of valued Q,-algebras (Dg,w) — (Ma(L'),v 0 Ad(D)~1). Now, by continuity of h, the
composite

1
G 226, pi Iy My (L)

is the logarithm computed in Ma(L’). This implies that the restriction of h to logp, (G) is an
isomorphism of Lie algebras

(39) Lg =logp,(G) = logy, 1) (G)-
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Finally both valuations w and voAd(D) ! take value w(z) at x—1 for x € G. By [Laz65|, I11.1.1.5]
the condition w(z) > -1 for z € G implies then
P
w(logp,, (¢)) = w(z) = v(Ad(D ™) logag, (1 (7)),

proving that is an isomorphism of valued Lie algebras. The conclusion follows from and
from the fact that the valuation v o Ad(D~!) restricted to loga, (1) (G) = OL ®gz, 9z, is given by

BD. O

We endow the Lie algebra gz, with the restriction of the valuation w and we let g def grgz,. The
Lie algebra Lq is an Op-Lie algebra and, for a € O, and = € L, we have w(az) = vy(a) + w(z).
Hence the graded F,[¢]-Lie algebra gr G = gr L has the structure of a k[e]-graded Lie algebra
and is isomorphic to k ®p, g. Consequently the graded F)-Lie algebra grG = gr G ®p, ;) F) is

isomorphic to k ®p, g, where g oef Fp ®r, [ 9, and has a natural structure of graded k-Lie algebra.
We want to show that gr F),[G], defined by the valuation w associated to w, and gr,, F,[G] (the

graded ring for the mg-adic filtration of F,[G]) are isomorphic up to rescaling indices. We will
need the following lemma:

Lemma 5.3.2. Let G be a pro-p-group. Then for g and h in G, we have
gh—1=(@g—-1)+(h—-1) modm?, (¢9'—1)=—(g—1) modm%
in Fp[G]. Moreover if g € G, (¢gP — 1) € my,.

Proof. The first two assertions are consequences of the equality (¢ — 1)(h —1) = (gh — 1) — (g —
1) — (h—1) and from the fact that g — 1 € mq. The last one comes from (¢ — 1) = (¢ — 1)P. O

Proposition 5.3.3. We have, for j € %N,
m¥ = {z € F,[G] : w(x) > j}.

Proof. Let a € Of, such that F,[a] = k, hence O, = Z,[a]. Using Lemma (and its proof) we
see that we can choose an ordered basis (x1,...,23f) of G whose elements are

_ i - _ (1.0 _ ((=a’p)=t 0
Ei= ((1)al)’ Fi= (Wl)’ Hi = ( 0 kaip)
for0<i< f—1.
For j € %N, {z € F,[G] : w(x) > j} is the ideal generated by monomials 2z = H?il(xl — 1)

with 7(a) = Zf’il w(x;)ay > j. For 0 <i< f—1, we have E; —1 € mg, F; — 1 € mg. Let’s prove
that H; — 1 € m%. We have

ERE'F = H, (é —(1 —1pal)a22)P <pa,»(1 jpai)_l (1)>p‘
Using Lemma [5.3.2] this implies that
EFRE'Fy' —1=H; —1 mod m%
and finally that
H—1=E ~1+Fy—1—(E;—1)—(Fy—1) mod m%

=0 mod m%.
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Since w(E;) = w(F;) = 1/2 and w(H;) = 1, this proves that z* € mg when 7(a) > j, ie.
(z € F,[G] : w(x) > j} C my.
Noticing that mg = {z € Fy[G] : w(xz) > 1/2}, we have, conversely,
m, C {z € F,[G] : w(2) > 1/2) C {z € F,[G] : w() > j/2},

the last inclusion being deduced from the properties of a valuation. O

Proposition [5.3.3] suggests that we should rescale the gradings of g and g by replacing the
valuation w on gz, with 2w, and this is what we do from now on. Therefore, the multiplication
by € on g now has degree 2. We deduce from Proposition and isomorphism that we
have an isomorphism of IF,-Lie algebras

(40) gty Fu[G] = Uk, (k ®F, 9)-

We now determine g explicitly. The Z,-Lie algebra gz, has a Z,-basis given by
(0 1 (0 0 _(p O
6_<0 0)’ f_<p 0)’ h_(O —p>

e, f)=h, [h,e] =2pe, [h, f]=—2pf
and valuations 2w(e) = 2w(f) = 1, 2w(h) = 2. Hence the graded FFy[e]-Lie algebra g = grgz, is

g =TFplele @ Fple]f @ Fple]h
with e and f in degree 1 and relations
le, fl="h, [h,e]=2¢ce, [h,f]=—2¢f,
and the graded F,-Lie algebra g is

with relations

g=FedF,f ®F,h
with e and f in degree 1, h in degree 2 and relations

(41) le, fl="h, [he]=[h, f]=0.

Let H be the (prime-to-p) torsion subgroup of the diagonal torus of GL2(Or). Then H is a
finite subgroup of the “upper” Iwahori subgroup I of GL2(Op). It normalizes I; and G. Therefore
the group H acts on every object considered so far: F,[G], Lg, ¢, 8, ... and the isomorphism
is equivariant for this action of H. Note that the action of H on L, g and g is k-linear.
More precisely, we have, for g = (29) € H, and « € k:

gla®e) = (adla)®e, gla®f)=(ad ) a)®f, gla®h)=a®h.

Let IF be a field of characteristic p. Recall from the introduction that if F is an extension of
[F,, such that k£ embeds into F, we label the embeddings o; = 09 0 ¢/, so the set J of embeddings

k — F is identifed with {0, ..., f —1}. In this case, for 0 < j < f —1, we define g; d:efIF®Uj,k er G

and g, 'F ®o; .k g8 G. Then we have a decomposition

f-1
(42) F &, orG = Py,
j=0
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and canonical isomorphisms g; = F ®p, g as well as g; = F ®p, g. Using also (40) we deduce an
isomorphism of graded F-algebras

f-1
(43) gt F[G] = F @5, gr,, F,[G] = Q) Ur, (3;) = Ur, @)5 -
j=0

For 0 <j < f—1let ey, fj, h; € g; denote the images of 1 ®e,1® f,1® h under the isomorphism
F ®r, § = §;. Then we have, for g = (§9) € H, and for 0 < j < f —1,

gej = aj(ad_l)ej, gfj = Jj(ad_l)_lfj, ghj = hj.

Let Ig be the left ideal of gr, F[G] generated by the elements (1 ® e)(1 ® f) and 1 ® h (of
degree 2). We easily see that I is in fact a 2-sided ideal of gr, F[G]. If k embeds in IF, then I
is the left ideal generated by (e; f;, hj; 0 < j < f — 1) via the isomorphism .

Theorem 5.3.4. Let F be a field of characteristic p. The graded ring gr,, F[G] is Auslander-
regular and (gr, F[G])/Ic is a commutative Cohen—Macaulay F-algebra of dimension f. More
precisely, if we assume moreover that k embeds in F, then

(i) the sequence (ho,...,hf_1) is a regular sequence of central elements of gr,F[G] and
gro F[G]/(ho, ..., hy—1) is isomorphic to Fle;, f;; 0 < j < f — 1], a polynomial ring in
2f variables;

(ii) we have an isomorphism

(grn FIG])/Ic = Flej, fj; 0 < j < f—1]/(ejfj30<j < f—1).

Proof. By [LvO96l, §I11.2.4.4], the graded ring gr,, F[G] is Auslander-regular since it is isomorphic
to an enveloping algebra. Assume now that k embeds in F.

(i) It follows from that ho,...,hy_1 are central elements of gr,, F[G]. For 0 <i < f -1,
the ring (gr,, F[G])/(ho,...,h;) is isomorphic to the enveloping algebra of the quotient of the
Lie algebra F @, gr G' by the ideal generated by hy, ..., h; and is therefore a ring without zero
divisors by the Poincaré-Birkhoff-Witt Theorem. This proves that h;iq is a regular element

of (gr, F[G])/(ho,...,h;) and that (ho,...,hs_1) is a regular sequence of central elements of
g F[G]. The last assertion is clear by (41).

(ii) Using the isomorphism of F-algebras
(e FIGD/Ic = Q) (Ur,(8;)/(¢ifj: 7)),
0<j<f-1
the assertion is a consequence of (i). The sequence (e;fj; 0 < j < f — 1) is a regular sequence in
Fle;, fj; 0 < j < f — 1], so the ring (gr, F[G])/Ig is Cohen-Macaulay of dimension f.

In general (if £ does not embed in ), we can find a finite extension F’'/F such that k& embeds in
F’. By what precedes, the ring F' @ ((gr,, F[G])/Ic) = gr(F'[G]/(F' ®@F 1)) is Cohen-Macaulay
of dimension f, hence so is (gr, F[G])/Ic |Gro65, Cor. (6.7.8)]. O

Corollary 5.3.5. Let m be an admissible smooth representation of I/Zy over F. Assume that for
each character such that Homy(x, ) # 0, the natural injection

Homj(x, ) < Hom (W, 3,7)
is an isomorphism, where Wy 3 is defined in (45]). Then dim;(r) = dimy /7, (7) < f.
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Proof. By increasing F we may assume that k& embeds in F. As 7 is an admissible representation
of I/Zy, it is an admissible representation of G = I1/Z; and wV is a finitely generated F[G]-
module. Moreover the socle filtration on 7 coincides with the socle filtration on 7|g and with the
dual of the mg-adic filtration on 7V so that (soc; 7/soc;_1 7)Y = gré V. Moreover the graded

gr, F[G]-module gr,, 7V is generated by its homogeneous elements of degree 0.

Let I be the graded ideal of gr,,, F[G] defined above and let I g ) be its homogeneous component

of degree 2. Note that H acts trivially on Ig). If Hom;(x, grd ) # 0, then by assumption

Hom;y(x,gr3 7V) = 0, so we have Ig) (grd V) = 0. As gr, 7" is generated by grd 7V

and Ig by
Ig), we deduce that Ig(gr, 7¥) = 0 and that gr,, 7" is actually a gr,, F[G]/Ig-module. Theorem
[.3.4] implies that the dimension of its support is < f. We can therefore apply Lemma [5.1.3
(with I = (ho,...,hs 1)) to conclude that dim;,z (7) = dimg(7) < f. The equality dim(7) =

dimy 7, () follows from Lemma[5.1.2 O

Using and the Poincaré—Birkhoff-Witt Theorem, we can write down explicitly the structure
of the first three graded pieces of gr,, F[I1/Z1] as I-representations, assuming that k& embeds in
[F:

f—1
g0 F[I1/Z:] =F, gy F[I1/Z1] = P (Fa; & Fo; ),
(44) i=0
gr? F[1, /2] = F¥ & @ Foo; @ @ Fai_lozj_l ® @ Faiaj»_l,
0<i<j<f-1 0<i<j<f-1 0<iAj<f—1

where o is the character (§ 2) — aj(ad_l). As a consequence, each nontrivial character appears

with multiplicity at most one as a Jordan-Holder factor of F[I;/Z1]/ m;’l 171
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6. ON SMOOTH REPRESENTATIONS OF GLs

The aim of this section is to prove Theorem below which provides a useful criterion for
bounding the dimension of an admissible smooth representation of GLa(L).

We keep the notation of L is a finite unramified extension of Q, of degree f with ring of

integers Or, and residue field k, I (resp. I1) is the upper (resp. upper pro-p) Iwahori subgroup of

K GL2(Op) and Z; is the center of I;. We set K &y +pM2(Op) C .

If H is a compact p-adic analytic group and if V' is an admissible smooth F-rational represen-
tation of H we denote Inj; V' an injective envelope of V' in the category of admissible smooth
representations of H; it is unique up to nonunique isomorphism. As an F[H]-module, the dual
V'V is finitely generated and we denote by Proj; V" a projective cover of V'V in the category
of pseudocompact F[H]-modules. The radical rad M of a pseudocompact F[H]-module is the
submodule mg M.

If G is a p-adic analytic group, H a closed subgroup of G and V a smooth H-representation
over F, we denote by IndgV the F-vector space of smooth functions f : G — V such that
f(hg) = hf(g) for all g € G and h € H. The group G acts on Ind% V by translation on the right.
If H is cocompact in G, the representation Indg V' is smooth and if moreover V is admissible, it
is admissible.

If A € X*(T') we use the notation y, to denote the character T'(k) — I'(F) 2, F*, where the
first map is the inclusion. We use the same notation x) to denote the character of I obtained by
composition with I — T'(k). Equivalently y, is the character of I acting on F(\)™.

In this section, we always assume that p > 2.

6.1. On some representations of the Iwahori.

Let a; : T(k) — F* denote also the character xa,, i.e. the character sending (29) € T'(k) to
oi(ad™1). In particular, o;; = ozgl as characters of T'(k) for 0 <i < f — 1.

We let x : I — F* be a smooth character. For any n > 1, we set
def .
(45) Wym = (PTOJI/Zl X)/m,.

(Note that via the natural map F[I] — F[I/Z1] the actions of m7 and mj , coincide on
Proj,z, x; similar comment will apply later on for pseudocompact F[//Z1]-modules.)

Let xo be the trivial character of I. As any smooth character x : I — F* is trivial on 7, there
is an isomorphism of F[I/Z;]-modules

Proj;,z, x = x ®r Projy 7, xo

and an isomorphism of F[//Z]-modules Proj;, xo = F[I1/Z:1]. (Note that the decomposition
I =1, x H with H as in gives a natural left action of I on F[I;/Z1], where I; acts by left
translation and H by conjugation.) Consequently for any n > 1, we have an isomorphism of
I-representations Wy, = x ®r (F[I1/Z1]/m?). From the description of gr, F[/1/Z1] in (44)), we
can deduce the following result.

Lemma 6.1.1. We keep the above hypotheses.
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(i) For any X" # X Wi : X< 1
(ii) Suppose that x,x’ : I — F* are smooth characters such that EXt}/Zl (x,X') # 0. Then

X € {xaf' : 0 <i < f—1} and we have dimg Ext}/z1 (x,X') = 1. Letting E,s,, denote
the unique nonsplit I-extension

(46) 0=>x = Ey,—x—0,
the group K1 acts trivially on Ey , if and only if X' = xoy for some 0 <i < f —1.

Proof. Part|(i)|follows from equation by twisting and part follows from [Hul(, Lemma 2.4]
(i) and (ii). ]

Now, let x’ be a character such that Ext}/Zl(x,X’) # 0. Since [W, 3 : X'] =1 and x’ occurs

as a subquotient in rady, (W, 3) which is killed by m%l, there is a unique (up to scalar) nonzero
I-equivariant morphism W,s o — W, 3.

Lemma 6.1.2. If Ext}/Z1 (x,X") # 0, then any nonzero morphism Wy o — Wy, 3 is injective.

Proof. By twisting, it is sufficient to consider the case where x is the trivial character y¢. In this
case, there is an [-equivariant isomorphism F[I1/Z1] = Proj;,z, xo. Let e € gri F[1,/Z1] be an
eigenvector of weight x’. There is a unique degree 1 morphism of graded gr,, F[I1/Z:]-modules
frgraFlL/Z1] — gro F[11/Z1] sending 1 to e. As gr, F[I;/Z;] is isomorphic to an enveloping
algebra over a field by , the Poincaré-Birkhoff-Witt Theorem implies that it has no zero
divisor so that the map f is injective. Let € € my /7, such that gr,(é) = e. We define a degree
1 morphism of filtered F[I;/Z;]-modules f : F[I,/Z] — F[I,/Z,] sending z to zé. Obviously
we have f = gr,( f ). Moreover, if we choose for € a x’-eigenvector for the action of the group H,
then f induces an H- equivariant map f X' @p F[I,/Z1] — F[I,/Z1]. As I = I, x H, the map
f" is I-equivariant. Since f’ is injective on graded modules for the my,-adic filtration, it induces
an [-equivariant injective map

WX’,2 = PrOjI/Z1 X//m% = PrOjI/Zl XO/mi = WX073' O

For an integer 0 < £ < g — 1 we let ¢; denote the i-th base p digit of ¢, so £ = Z{;OI L

Lemma 6.1.3. Let 7, o Injpy x- Then Iy has socle and cosocle isomorphic to x, and its

remaining Jordan—Hélder factors onaj, 0 < j < q—1, occur with multiplicity 1. Its submodule
structure is determined by the following property: the unique proper submodule of I, with cosocle

Xaaj (0<j <q—1) has Jordan—Hélder factors Xagg, where 0 <L < q—1 and {; < j; for all i.

Proof. The claim about socle and cosocle are true for injective envelopes of any finite group.

We first observe that Z, = Indg((;:)) X- The latter representation is injective by Frobenius
reciprocity (as any T'(k)-representation is injective). It has the correct socle and cosocle by

B(k)

Frobenius reciprocity, hence indeed Z, = IndT(k) X-

As the kernel of B(k) — T'(k) is a normal p-subgroup, every irreducible B(k)-representation
is trivial on it. To determine Jordan Hélder factors we may thus restrict to T'(k). By Mackey’s

formula, (Ind )\T(k = x® (Ind Z(k X)|z(k), where Z is the center of GLg. Thus the irreducible
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constituents of Z, are all the characters x' of T'(k) such that x'|zu) = X|z@), or equivalently

X = Xaaj for some 0 < j < g — 1, as well as one more copy of .

def

As in [BP12, §2] we define f; = Y 5o, M (§1)e, where e € IndT((k)) X is some function whose

support equals T'(k). It follows that f; is a T'(k)-eigenvector with eigenvalue ya, g

Assume now that j < ¢ — 1. An explicit calculation shows that (§%)f; = %:0 () (=)~ fo.
Hence the B(k)-representation W generated by f; has basis f; for £ such that () # 0 or equiva-
lently ¢; < 7; for all i. In particular, W # Z, since j < ¢ — 1. On the other hand, W is a quotient

of IndT((k)) X ”, so W is the unique proper subrepresentation of 1, with cosocle XOéo . ]

The element (g ) € GLa(L) normalizes I and its square is central. Let x* denote the conjugate
of x by (94) € GLa(L). By conjugating Z, by () §) € GLz(L) we obtain the following corollary.

Corollary 6.1.4. Given x : T(k) — F* there is a (finite-dimensional) smooth representation
Jy of I with the following properties. The socle and cosocle of J, are isomorphic to x°, and
the remaining Jordan—Hélder factors of J, are Xso% for 0 < j < q—1, each occurring with
multiplicity 1. The unique proper submodule of J, with cosocle XSO% (0<j<q—1) has Jordan—
Hoélder factors Xsaé, where 0 < € < q—1 and {; < j; for all i. Moreover, Jy admits a central
character.

Remark 6.1.5. On J, the action of I does not factor through its quotient B(k), contrary to the

case Z,, (cf. Lemma|6.1.1)).

6.2. On some indecomposable representations of K.

We will use again the notation of section In particular, recall that we have identified
J = Hom(k,F) with {0,1,..., f — 1} and that 7, & Yicgni for J C J. Also, for A € X*(T)
recall the injective map

s Ay = Xeeg(D)/(p — 1) X(D).

Let o’ be a Serre weight appearing in Injgr,, 1) F'(A). It follows from [BP12, Cor. 3.12] that there
exists a unique subrepresentation of Injgy, k) F'(A), denoted by I(F()),o’), with cosocle ¢’ and
such that [I[(F(\),0’) : F(A)] = 1. Moreover, I(F(\),c’) is multiplicity-free. As a consequence,
if W is a subrepresentation of Injqy,, ) £(A) such that [W : o'] # 0, then W contains I(F()),0")
as a subrepresentation. Dually, we have similar statements for quotients of Projgr,, ) £(A).

Lemma 6.2.1. We keep the above hypotheses.

(i) Suppose that 0 < (\,a)) < p—1 for alli. Then Ind¥ x3 is multiplicity-free with Jordan—
Hoélder factors {F(tx(—7;)): J C J}.

(i) Suppose that 0 < (A, o)) < p —2 for alli. The Jordan-Hoélder factors of Injgr,, ) F/(A)
are the {F'(t\(X ;e 7 aml)) (a;)ics € {0,213}, up to multiplicity.

iii) Suppose that 0 < (A, o)) < p—2 for all i. Let o' = F(tx(>;c7 ain;)) for some (a;) €

icg @il

{0,+1}7. The Jordan— Holder factors of I(F'(N),0") are {F(t\(X;eyai;)) : J C T}. As
a consequence, the length of I(F(\),0’) is equal to 211€T:ai#0}
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By Remark the condition on A in |(i)|is precisely that all weights t)(—7;) lie in Cp.
Also note in part |(iii)| that the Jordan—Hoélder factors correspond via ty precisely to the weights
lying on geodesics between 0 and ) ;. 7 a;7);.

Proof. Part is almost a special case of Propositionm (with sw™t =1, v =n,and u—n = \),
but the hypothesis is weaker here.

If v € XOT), then from the definition, F(ty\,,(w)) = F(t\(w)) ®F F(v). (Note that F(v)
is one-dimensional.) We may therefore assume that \; is of the form (a;,0) for some integers
0<a; <p-—1.

Recall from Remark the notation wg ; = [[;;1cs0; € W, where w; denotes the Weyl
group element which is nontrivial exactly in the i-th embedding. We first calculate t)\(—7j;) = us
mod (p — )X (L), where p1j = (tz-1,,)wo,s) - (A — 1) € X*(T'). We have

o )\i—(sj(i)(l,()) ifi+1€J,
P13 = g - (M + (0,p) — 85(6)(1,0)) ifi+1€J,
[ (ai,0) — 6,5(i)(1,0) ifit+1¢.J,
C\p—=1,a;+1)=06;()(0,1) fi+1elJ,

where 0 is the characteristic function of J (cf. equation ) Replacing J by the set K dof {i e
J i+ 1¢ J}, we obtain precisely the formula for the composition factors listed in [Dia07, Prop.
1.1].

Part follows similarly from [BP12, Lemma 3.2], and part follows from [BP12, Cor.
4.11]. O

Proposition 6.2.2. Fiz A\ € X*(T). Suppose that integers B; € Z>o and signs ; € {£1}
(0 < i< f—1) satisfy the following conditions:

(i) B; = 51 (mod 2);
(ii) Z'ff‘:i = —1, then B; < <)\7 a;/> <p—2-— 1+Zi—1,,
(ili) if &, = 1, then Bi <p—2— (\,a)) <p—2— Hg=1,

Then there exists a multiplicity-free representation V' of K/Zy with Jordan—Holder constituents

o o F(t\(X eiaim;)), where 0 < a; < B; and whose submodule structure is determined as follows:

the unique subrepresentation with cosocle o, has constituents oy, for all b such that 0 < b; < a;
for alli. In particular, the socle of V' is isomorphic to F()\).

Proof. As a first step we consider the case where ¢; = —1 for all i. Let b; dof Blé_ L ¢ Z>q for

0 <i < f—1. Note that ty(—>; a;7;) € Cp for all 0 < a; < B; is equivalent to condition
def 5 . .
(cf. Remark . Let x = x\. Corollary gives us a representation W C 7, of I

with constituents x*of), where 0 < j; < b; for all 7, and such that the unique subrepresentation

of W with cosocle Xsa% has constituents Xsozé, where 0 < ¢; < j; for all 7. Let V def Indf( Ww.

By Lemma and Remark [2.4.5(ii), this representation is multiplicity-free with constituents
F(t\(= X cil;)), where 0 < ¢; < 2b; + 1 = B; for all 4.
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To determine the submodule structure, by Lemma [2.4.6] it is enough to show that for any
(ci)i as above and any j such that ¢; < 2b; + 1 there exists a length 2 subquotient with socle
F(ty(=>2¢m;)) and cosocle F/(tx(=7; — > ¢i7;)). To see this, write ¢; = 2d; +r; with 0 <7 < 1.
Observe that

F(ta(=Y_emy)) = Fita(=Y_ray — Y dioyy)) = Pt s g0, (= > i)

by applying Remark By Lemma this is a constituent of Ind% y’*, where x* =

s _ sazdipz

XA=S dia; — XAQ0
If 7; = 0, then F(t\(—=7; — > ¢:7;)) is a constituent of Ind¥ x’* as well, and we are done by

Lemma as V admits Ind¥ y/* as subquotient.

If rj = 1, then F(t\(—=7; — X ¢7;)) is a constituent of Ind¥ X’sagj. Letting the other r;
vary in {0,1}, we need to check the existence of the 2/=1 nonsplit extensions inside V between

constituents of Indf X’sagj and Indf X'® given by Lemma When f = 1 this is obvious,

as we can compute the cosocle of Ind¥ (Ex’s X,5apj) by Frobenius reciprocity (cf. Lemma 6.3.1)).
) 0

When f > 2 then [Hul0, Lemme 2.12(i)] confirms there are 2/~! nonsplit extensions, as required
(in the notation of that reference the condition is J(A) = J(0) U {j — 1}).

Finally we treat the general case. Let J & {0<i< f—1:6-1 =1} Set p=tr(wos(7y))-
Using Lemma and Remark we compute t\(3&;a:7;) = t,(— > (a; + 65(i))7;) for
integers a;. Note that §;(i) = Lﬁ

We apply the first step of the proof with the weight u, the bounds B; + §;(i) and all signs
—1. We obtain a representation V'’ with socle F'(u) satisfying the desired hypotheses with signs
—1 for all 4 and B; + d;(i) in place of B;. We note that its unique quotient with socle F'(\) has
the desired properties with signs €; and bounds B;. We just have to check that we can apply the
first step in this case. Namely it suffices to check that t,(— 3 a/7;) € Cp for 0 < a} < B; +0,(i),
noting that B; +0(i) = B; + HET“I is odd for all 7. Equivalently, we need that t)(3" €;a;7;) € Co
for —05(i) < a; < By, ie. 0 < (N, o) +gia; < p—2for =;(i) < a; < B; and all i. This is
equivalent to conditions (ii) and (iii) that we assumed. O

Assume that A is 1-deep in alcove Cy, ie. 1 < (A, «af) < p— 3 for all i. Let V be the
representation of Proposition with B; € {0,1} for all . Let a be such that 0 < a; < B; for
all 7. Then the subrepresentation of V' with cosocle o, of Proposition @ is isomorphic to the
representation I(F(X),o,) of [BP12, Cor. 3.12].

Lemma 6.2.3. Suppose that V is a finite-dimensional smooth representation of K that has irre-
ducible K-socle o = F(\) with 3 < (\, o)) <p—4 for alli. If [V : 0] =1 and all constituents of
V' occur in Injar, k) o, then V' is Ki-invariant.

Proof. By writing V' as a quotient of Projy (cosock V') and decomposing cosock V' as a direct sum
of irreducible representations, we see that V' is the sum of all subrepresentations with irreducible
cosocle. We may thus assume that V itself has irreducible cosocle 7, and we argue by induction on
the length (V') of V. If £(V)) = 1 there is nothing to show. By induction, rad V' is K;-invariant,
so V[m% ] = V. By [HW22, Thm. 2.23] we know that V is Kj-invariant. O
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Proposition 6.2.4. Fiz A\ € X*(T'). Suppose that integers B; € Z>o and signs ; € {£1}
(0 <i < f—1) satisfy the following conditions:

(i) B; = 71_82“1 (mod 2);
(ii) if e, = —1, then 3+ 2| B;/2| < (A, o)) <p—4;
(iii) ife; =1, then 3 < (N, o) < p—4—2|B;/2].

Let V be the K -representation defined by this choice of A\, By, €; in Proposition[6.2.2

Then for 0 <n—1< 37| B;/2] we have that V[m% | is the unique subrepresentation of V' with
cosocle ©o,, where the sum runs over all a such that 0 < a; < B; and

(i) a; is odd or a; = B,

(i) Ylai/2) =n— 1.

Proof. We proceed by induction on n > 1 and denote by V,, the unique subrepresentation in
the statement. For convenience let ¥y = 0. We need to show that V,/V,_1 = (V/V,_1)K.
The constituents of V,,/V,,—1 (resp. V/V,,_1) are all Serre weights o, with 0 < a; < B; and
Ylai/2] = n—1 (resp. Y.|a;/2] > n — 1). Using the submodule structure of V' given by
Proposition we see that V},/V,,_1 is a direct sum of indecomposable representations W,
where the index set is the same as in the statement of the proposition and the constituents of W,
are all o, with 0 < b; < B; and [b;/2] = |a;/2] for all i (and the submodule structure is described
by the usual partial order). Note that socx W, = o, where b; = 2|a;/2].

By Lemma Vi / V-1 is Ki-invariant (the given bounds guarantee that the lemma applies
by Remark see also Lemma. On the other hand, (V/V;,_1)%* has to inject into
the injective envelope Injgy,, (x) (sock (V/Vi-1)). By Lemmavve deduce that (V/V,,_1)51 C
Vi/Vn-1. (Note that our genericity bounds are stronger.) O

6.3. A result on maximal representations of K with prescribed socle. In this section,
we prove a structure result for certain representations of K killed by m%ﬁ.

We begin with some preliminary lemmas concerning Jordan—-Holder factors of subrepresenta-
tions of some parabolically induced representations. Recall from the representation E, , for
two characters x, X’ of I such that Ext} 17 (x,x") # 0.

Lemma 6.3.1. Assume x' = on;1 for some 0 < ¢ < f—1. The cosocle of Indf( E, . is equal to
the cosocle of Indf( X-

Proof. Let o be a Serre weight and assume there exists a surjection f : Indf( E,, — o. Then
Frobenius reciprocity induces a nonzero I-equivariant morphism f € Hom;(E,/ ,o|;). Since K;
acts trivially on o but not on E, , (see Lemma |6.1.1{(ii))), f* cannot be injective. In other words,

f’ factors through E,/, — x < o, i.e. f factors through Indf( E— Indf{ X- g

Remark 6.3.2. For the explicit structure of Ind¥ E,s when x' = xa; b, see [BP12, §18].
Given x satisfying x # x°, we denote by o, the unique Serre weight such that I acts on O'>I<1

via x. Recall that in this case Indf{ x has irreducible cosocle o, and irreducible socle o, (see e.g.
[BP12, Thm. 2.4]). Given a Serre weight o, we denote by X, the character of I acting on o',
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Lemma 6.3.3. Suppose that x = x\ with 2 < (\,«)) <p—3 for all0 <i < f—1. Then the
K -representation Indf Wy 2 is multiplicity-free, where W, o is defined in .

Proof. This is a direct check using Remark and Lemma [6.2.1(i)} The assumption on A
ensures that the hypothesis of Lemma applies to all Indf( X' with x" € JH(W,2). O

From now on we fix y = x with A € X;(T) such that 2 < (\,a/) <p—3forall 0 <i < f—1.

Let now ¥ & ya; for some i € J, so Ex‘c}/z1 (x,X") # 0. As E,, is a quotient of W, o,

Lemma implies that Indf{ E, . is multiplicity-free. On the other hand, K acts trivially

on Ind; E,/, by Lemma Hence there is a unique (up to scalar) nonzero map f :
Projar, @) ox — Ind& E,/ . Observe that the composite map

Projgr, ) ox ERN Ind¥ Eyy — Ind% y
is surjective, since it is surjective on K-cosocles.

Lemma 6.3.4. Suppose that x = xx with 2 < (A, o)) < p—3 for all 0 < i < f—1. Assume
X' = xa; for some i € J. We have

(47) JH(Im(f)) = JH(Ind* Ey ) N JH(Projgr, k) x)-

Proof. Observe that the K-socle of Indf{ E,. . is isomorphic to o,/ @ 0,5, i.e. the direct sum of
the socles of Ind¥ ¥’ and Ind¥ y. Indeed, it is clear that

oys C socg (Indf Eyry) C oys @ oys,

so it suffices to prove that HomK(aXs,Indf( E,s ) # 0, or equivalently Homy(oys|7, Ey ) # 0, by
Frobenius reciprocity. This can be checked directly, by writing down the standard basis of os.

Let V & Im(f). We claim that V N Ind¥ x’ # 0. Otherwise, the composite morphism V

Indf( Ey\ —» Indf x would be injective, and also surjective as remarked before the lemma.
Thus, we would have a K-equivariant decomposition Ind Eg = Ind¥X y @ Ind¥ y/, which is not
possible (see for example [AIp86) §8, Lemma 6(5)]). As a consequence of the claim, o,ss appears

in V (as a subobject), and therefore V' admits a quotient isomorphic to (o, oy ) (we recall that
this representation was defined in §6.2)).

Now we prove . The inclusion C is obvious. Let ¢ be a Serre weight lying in the right-hand
side of ([@7). If o € JH(Ind{ ), then clearly o € JH(V) because Indf* y is a quotient of V. So
we may assume o € JH(Ind¥ y’). Then, by Lemma and Remark [2.4.5(ii)] o is of the
form F(tyiq,(—7,)) = F(t\(27; — 7)) for some J C J. It follows from Lemma |6.2.1)(ii)} |(iii)| and
Remark that such a Serre weight is a Jordan-Holder factor of Projgr, i) oy if and only
if it is a Jordan-Holder factor of I(oys,0y). (Note that o = F(\) and oy = F(t\(27; — 7 7))-)
Since I(oyss,0y) is a quotient of V, this finishes the proof. O

Lemma 6.3.5. Suppose that x = xx with 2 < (A, o)) < p—3 for all 0 < i < f—1. Assume
X' = xa; for some i € J. Let Q be a quotient of Indf¥ E\s, such that [Q : o] = 0, then
Extl(0,0,) =0 for any o € JH(Q).
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Proof. Let M be the kernel of Indf{ E,, — Q. By Lemma and the assumption, we have
[M : 0y] = 1. As a consequence, the natural morphism M — Indff X is surjective (as oy is the
cosocle of Ind¥ y), and therefore Q is a quotient of Ind¥ ¥’ by the snake lemma. By Lemma
the Jordan-Holder factors of Indf ¥’ are of the form F(tyq,(~7;)) for J € J. It
follows from Lemma that the existence of o € JH(Q) such that Extj(c,0,) # 0 implies
the existence of J C J and j € J such that F(t\1q,(~7,)) € JH(Q) and tyiq,(—71;) = t(£7;).

By Remark we get 27); —7; = 47;, i.e. we must have J = {i} and j = i, and hence
o = F(t\())-

Consider again the unique (up to a scalar) nonzero map
. K
[ i Projgr, k) ox — Indp Ey .

By Lemma we have F(t\(7;)) € JH(Im(f)). However, o, € JH(M), thus by uniqueness of
f, we must have Im(f) C M. Then the Serre weight F'(tx(7;)) is a subquotient of both M and
Q. This contradicts the fact that Indf( E,/ , is multiplicity-free (cf. Lemma . O

We fix signs ¢ € {:l:l}j and define
(48) Dre EI(FON), F( emy)).

eJ
Its Jordan-Hélder factors are isomorphic to F(tx\(>2;c;€i7;)) for J C J by Lemma
Remark 6.3.6. Keep the previous hypotheses and setting.

(i) We have
Ind;( Xi = -D/\,;h
as follows from Lemma |6.2.1)(1)]
(ii) Let p be a 2-dimensional semisimple Galois representation which is 2-generic (see Defini-

tion [2.3.4). Then the GLy(k)-representation Dy(p) attached to p as in [BP12) §14] is a
direct sum of such D) .; see Theorem 14.8 in loc. cit.

We want to understand the structure of D) . ®F F'(«;).

Lemma 6.3.7. Suppose that x = x with 2 < (A, o)) <p—3 for all0 <i < f—1. The Jordan—
Holder factors of Dy ®r F(ay) have multiplicity one and are given by F(tx\(2'T; + Xic 7€)
for JC J and e € {—1,0,1}.

Proof. First note that we have F(A\) @ F(a;) = @)__ F(A+ia;) by [BP12, Prop. 5.4] or [LMS22,
Prop. 3.3(1)]. We then obtain the Jordan—-Hoélder factors using Remark [2.4.5{(ii)} The multiplicity
one property then follows from the injectivity of tx. Namely if 2¢17; + X, ), €if); = 2e57; +
Yic, EiTly, then J1 = Jo by passing to Ay /2Aw, so €] = €b. O

Lemma 6.3.8. Suppose that x = x with 2 < (\, o)) <p—3 for all0 <i < f—1. We have

S0CaLy (k) (Dag ®F F(ay)) = P F2n)),
e'e{-1,0,1}

€coS0CaL, (k) (D e ®F F(ay)) = B Fta@en+ > em)).
e'e{-1,0,1} e
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Proof. Let I, & Injgr, k) F/(A). We have inclusions F'(A) C Dy, C I, which induces inclusions
F(\) ®@F F(ay) € Dye ®r F(aj) € I\ @ F(aj),

and also inclusions of the corresponding K-socles. It follows from [LMS22, Prop. 3.3(2)] that
I\ ®F F(aj) = @oeq-1,01} Irtera,;- In particular, the K-socle of Iy ® F(a;) is isomorphic to
Dercr—1,013 F'(t2(2¢'7;)), which itself is isomorphic to F(A) ®F F(a;). The assertion on the socle
follows from this, and the one on the cosocle follows by duality. 0

Lemma 6.3.9. Suppose that x = xx, where \ is 4-deep in Cy, i.e. 3 < (A, o)) < p—75 for all
0<i<f—1 Lete€{-1,1} and write V for the unique extension of F(t\(7;)) by F(A):

0— F(\) =V = F(ta(en;)) — 0.

Then V @ F () has a 3-step increasing filtration whose successive graded pieces are Vi, Va, V3,
where

e V1 is a nontrivial extension of F(t\(3¢7;)) by F(t\(2¢7;)),
e Vs is a nontrivial extension of F(tx\(en;)) by F'(\) (i.e. V2= V), and
e V3 is a nontrivial extension of F(t\(—em;)) by F(t\(—2¢7;)).
As a consequence, F(tx(e7;)) is not contained in the socle of (V @ F(«a;))/F(t\(2e7;)).

Moreover, the corresponding extensions of Vo by Vi, and V3 by Va, are nonsplit.

The structure of V ®p F(«a;) can be illustrated by the extension graph

F(tA(3¢m;)) F(tx(em;)) F(tx(—em;))
F(t\(2e7m;)) F(X) F(tr(—2em;))

where the bottom (resp. top) row corresponds to the socle (resp. cosocle) of V ®p F(a;).

Proof. By Lemma the socle of V' ®r F(a;) is the direct sum of the F(t)(2¢'7;)) for ¢’ €
{~1,0,1} and (by duality) its cosocle is the direct sum of the F(tx((2¢" + ¢)7;)) (recall that
aj = 2ﬁj in Aw)

Let us begin with the case where ¢ = —1. We define V; as the image of the unique (up
to scalar) nonzero map Projqr, ) £'(tA(=37;)) — V ®F F(a;). Comparing Jordan-Hélder fac-
tors of V @ F(a;) and Projgp,u F/(tx(—37;)) (e.g. by means of Lemmas [6.2. and
and by the first sentence of the proof, we find that Vi has length two with socle F/(tx(—27;))
and cosocle F(tx\(—37;)). We define Vo C (V ®p F(ay))/V1 as the image of a nonzero map
Projar, ik F(tA(=1;)) = (V ®@F F(«a;))/Vi, and V3 as the quotient of (V ®F F(«;))/Vi by Va.

Using the fact that ¢ = —1 and Lemma [6.2.1(i)| and |(iii)|, we know that V is a subrepresentation
of the principal series Indf( x with x = x3. Therefore, V ®r F(c;) is a subrepresentation of

(Ind} x) ®F F(oy) = Indf (x @r F(oy)]r)-
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We deduce from the exactness of induction that Ind¥ (xy ®p F(a;)|;) has a 3-step increasing
filtration whose successive graded pieces are

Ind¥ X Ind¥ y, Indf Xaj_l.

We claim that
JH(V;) = JH(V ®F F(aj ) N JH(Ind¥ xa;).

Indeed, recalling x = x3, the Jordan-Holder factors of Ind¥ X0 = Ind¥ (x ,\aj_l)s are of the form
F(tr—o,(=17)) = F(tx(=27; —7,) for J C J, and the claim is checked as in the proof of Lemma
Since (Indf x) ®r F(a;) is multiplicity-free by Lemma we deduce that
(19) Vi = (V @ F(a)) N (Ind xay)
and hence an embedding

(V @F F(a;))/Vi = Ind¥ (x @F F(a;)|r)/Ind¥ xa; = Indff EX:XOl;l’

where the isomorphism holds because (x®r F'(v;)|1)/x«; is isomorphic to E, | -1 as I-representa-
X

tion.

As in the proof of Lemma [6.3.4, the K-socle of Ind¥ E, -1 is equal to F(X) & F(t\(27;)),
X

In particular, F(t\(—7;)) is not a subrepresentation of V2. As F(tx(7;)) and F'(t\(27;)) are not
Jordan-Hélder factors of Projgr, ) £'(tA(—7;)) (cf. Lemmas [6.2.1{(ii)| and [2.4.4), this implies that
the socle of V3 is equal to F'()\) and hence V3 is a nontrivial extension of F(tx(—7;)) by F'(}\), as
desired. Moreover, a similar argument as in last paragraph shows that

(50) Va = ((V @ F(ay))/V1) N (Indf* x)

which induces an embedding

V3 < Indj xa; .

Since the socle of Indf Xaj_l = Indff (xay)® is F(t\(27;)) and JH(V5) = {F(t,(27;)), F(t,(7,))},
V3 has to be a nontrivial extension of F'(t\(7;)) by F(t\(27;)) as desired.

Now we prove the last assertion (still when ¢ = —1). We only prove that the extension
of Vo by Vi, denoted by R, is nontrivial, the other case being analogous. It suffices to prove
that R admits a subquotient isomorphic to the (unique) nonsplit extension £ of F'(t\(—7;)) by
F(tAx(-27;)). By and , we see that R embeds in Ind¥ Eya; x, so by multiplicity-freeness
we are reduced to prove that Indf( Eya;,x admits a subquotient isomorphic to €. It follows from
the proof of Lemma that I(F(t\(—27,)),0y) is isomorphic to a subquotient of Ind* E,, i
Note that o, = F(tx(—77)) by Lemma [6.2.1(i)l so F(t\(-7;)) is a Jordan-Holder factor of

I(F(t\(=27;)), F(tA(=77))) by [6.2.1f(iii)} This finishes the proof in the case ¢ = —1.

To deal with the case e = +1, we begin by constructing the quotient V3, then V5 and finally V;.
We define V3 as the image of the unique nonzero map V&g F'(cj) — Injar, ) F(tx(—27;)) extend-
ing the inclusion F(t\(—27;)) = Injgr, ) F(tA(—27;)) (and using the fact that F(t\(—27;)) —
V ®F F(a;)). Comparing Jordan-Holder factors and using again the first sentence of the proof,
V3 has length 2 with cosocle F'(t\(—7;)). Let R be the kernel of V @ F/(a;) — V3. We define
V3 as the image of R — Injqr, ) F'(A) and Vi as the kernel. Assume first f > 2. Using the fact

that & = +1, we know that V is a quotient of Ind}* y,,, where u & tA(7;) (use Lemma [2.4.4) and
note that A = t,(—7;)). Therefore we can use a similar argument as in the case ¢ = —1. The case
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f =1 (ie. k =TF)p) is a little subtler, because V' is neither a subrepresentation nor a quotient of
any principal series. To handle this case, we note the following exact sequence (see [BP12, §3])

0=V = Injgr,m,) F(\) = V' =0,
where V' = Ind¥ x, is a principal series, and the decomposition ([LMS22, Prop. 3.3(2)])

(Injgr,r,) £(N) ®r F(oy) = Injar,w,) F (A (27;)) © Injar,r,) F(A) © Injar,m,) F (0 (=27;)).
We define V3 to be the image of the composite map
V @r Faj) = (Injar,m,) F(A) @F F(ay) > Injar,m,) F 0 (=27;)).

Comparing Jordan-Holder factors, it is easy to see that V3 is equal to either F'(t\(—27;)) or a
nonsplit extension of F(t\(=7;)) by F(t\(—27;)). However, if we had V3 = F(t\(—27;)), then
V' @p F(a;) would admit a quotient isomorphic to (Injgr, k) F(tx(—27;)))/F (tA(—27;)) by the
snake lemma, which contradicts the case ¢ = —1. We can continue in this way to define V5 and
V1, and show that the corresponding extensions of V5 by Vi, and V3 by Vs, are nonsplit. As an
example, we show that the extension of V3 by V5 is nonsplit, and leave to the reader the proofs

of the other assertions. Indeed, if the extension of V3 by V5 were split, then V ®p F'(a;) would
contain a subrepresentation isomorphic to V3, and the image of the composite map

Vs =V @r Floy) = (Injgr,r,) F1(A) @ F(a))

would be contained in the summand Injgy,,) £'(tr(—27;)). Moreover, comparing Jordan-Hélder
factors, we must have

(V @r F(a;)) NInjgrym,) F (0 (=27;)) = Vs,
the intersection being taken inside (Injqr,,(r,) £'(A)) ®@r F(a;). We then deduce an embedding

(Tnjcr,@,) F(t(=27;)))/Vs = V' @ F(a;)
which contradicts the case ¢ = —1. ([
Proposition 6.3.10. Suppose that x = x», where X is 4-deep in Cy, i.e. 4 < (A, o)) <p—6 for
all0 <i< f—1. Let 0 < j < f—1. There is an increasing 3-step filtration of Dy . @ F(cy)
whose successive graded pieces are:
D)\+5jaj,§7 D/\,ga D)\fajaj,g-

As a consequence, there is an embedding DA%jajé — D). ®F F(a;) whose cokernel has socle
F(X) @ F(ta(—2¢;7;)).

Proof. By Lemma we know what are the socle and cosocle of Dy . ®r F(¢;).

During this proof, we will use the notation 7/, f Sicseini if J C T (note that 7, does depend
on the sign ). We recall that t\(7; +2¢;7;) = ta1¢;a, (7;) by Remark By Lemmam7
there exists a unique (up to scalar) nonzero map

Projar, k) F(tA(2¢57; +77)) = Daz ®F F(a);
let Wy be its image. The socle of W7 is contained in the socle of D). ®@p F'(ay). But F/(t\(2¢7;))
is the only constituent of this socle which is also a constituent of Projgr,, ) F (tn(2e5m; + 7))
cf. Lemmas [6.2.1f(ii)| and [2.4.4] This implies that W7 is a quotient of Projgr,, ) F'(tA(26;7; +77))
with socle F'(t\(2¢;7,)) and such that [W; : F(tx(2¢,7;))] = 1. We conclude that W; is isomorphic
t0 Diyeja,e- Let Q be the quotient of D). ®p F(a;) by Wi. Then @ has cosocle isomorphic
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to the direct sum of F(t\(7'7)) and F(t\(—2¢,7; + 7'7)). Let W2 be the image in @ of the

unique nonzero map Projgr, k) F(tA(77)) — Q and let Wi E) /Ws. Then W3 is a quotient of

PrOjGLQ(k) F(f)\(—2€jﬁ] + ﬁif]))

We claim that F'()) is in the socle of Ws. Let’s assume it for now. As W5 is multiplicity-free,
it has a unique quotient with socle F'(\), namely W5 has a quotient isomorphic to D) .

We can check that the Serre weight I'(t)(—2¢,7;)) is not a subquotient of Projgr,, ) £ (tA(77))
(again, by Lemmas [6.2.1f(ii)| and [2.4.4]) so that F'(t\(—2¢;7;)) is a constituent of the socle of Wj.
As above, we can conclude that W5 has a quotient isomorphic to Dy—¢;q; . It follows from length
considerations that we must have Wy = D) . and W3 = Dy, ¢

We still have to prove that F'()) is contained in the socle of W or equivalently that F'(\) is a
subquotient of W5. Assume it is not the case. Let W5 be the image in D) . ® F'(c) of the unique
nonzero map Projgr, k) F(t(77)) — Dz ®r F(a;). Then Wy is a quotient of W, and the kernel
of WQ — Wa is contained in Wj. Thus F'(A) is not a subquotient of VT/Q. The socle of Wg is con-
tained in the socle of D) . ®p F'(«a;), which itself is equal to F'(tx(2¢,7;)) ® F'(\) © F(tx(—2¢;7;))
by Lemma However, F(\) does not appear in the socle of Wg by hypothesis, neither does
F(t\(—2¢;7;)) since it is not a subquotient of Projgr, k) F(tA(777)). The socle of W is then

(t (.2(2¢7;)), F(tA(77))). Con-
sequently Wy /F(tx(2¢,7;)) contains F'(ty(g;7;)) in its socle by Lemma E(m) This contradicts
Lemma Namely if V' is the unique extension of F(tx(g;7;)) by F'(\), then V' C D, . and
V ®@r F(oj) € Dy, Qr F(a;) and Lemma shows that F(tx(g;7;)) is not contained in the
socle of (V @ F(ay))/F(t\(2€;7;)).

equal to F'(t\(2¢;7;)). By multiplicity-freeness, we have Wy = I(F

The last assertion of the proposition is a consequence of the fact that the representation
F(ty(—2¢;7,)) has no extension with the subquotients of D)., which itself is a consequence

of Lemma m - O

Theorem 6.3.11. Fiz A\ € X1(T) which is T-deep in Cy and £ € {£1}7. We set

W_e E{F(t(= Y em,) : J C T}

jeJ

There exists a largest subrepresentation W of (Injg 7, F(X)[m%,] satisfying [W : 7] = 0p(y),, for
T € W_.. Moreover it has the following properties:

) Wk = Dy 5

) the representation W is an extension of @Do<i<f—1 Drtesaie by Dag;
(iii) the representation W is multiplicity-free;
(iv) the cosocle of W is isomorphic to @o< ;<1 F(t\(2857; + Xo<i<r—1€M:));

) its submodule structure is determined by: for 0 < a; < 3 such that o, = F(t\(> €;a:7;))
is a subquotient of W, the unique subrepresentation of W with cosocle o, has constituents
oy for all b such that 0 < b; < a; for alli.

Remark 6.3.12. The proof shows that A only needs to be 4-deep in C{ for W to exist and
for part to hold. In particular, in this case WX = D, . is the largest subrepresentation of

(Injg )z, F(A)[mk, | = Injgr, ) F(N) satisfying WHEL 7] = 6pn),» for T € W_.
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Proof. Let I, & Injar,x £/(A) and let L« (Injg/z, F()\))[mi(l], which is finite-dimensional by

dualising and using Nakayama’s lemma. We have I = I\[mg,].

The existence of a largest subrepresentation W C I, satisfying the desired hypothesis follows
exactly as in [BP12) Prop. 13.1]. As the representation D) . satisfies [W : 7] = dp(y) - for 7 € W_,

by Lemma we have D). C WK1, Conversely, note that WX is a subrepresentation of
ffﬁ = Injgr,k) F(A). As [WEL: F()\)] = 1it follows by [BP12, Prop. 3.6 & Cor. 3.11] that WX is
multiplicity-free. By Lemma 6.2.1(iii)|and our hypothesis on multiplicities, JH(W 1) C JH(D, ).
Hence W1 = D, , proving [(i)

Consider the short exact sequence:
0—= Dy, =W —=W/Dy.—0.
The long exact sequence of K1/Z;-invariants gives an injection
W/Dy. = (W/Dy )" < HY(K1/Z1,Dy.) = Dy, @p H (K1/Z1,TF),
where the last isomorphism holds because Kp acts trivially on D) .. Using the isomorphism
HY(K,/Z,F) = @;;é F(cy) (see [BP12, Prop. 5.1]), we have:
-1

W/D) e < @ (Drc @r F(oy)).
j=0

For each 0 < j < f — 1, we have a decomposition:
0= Dxie;a;e = Dae ®@r Faj) = Qj — 0
with socqr, k) Qj = F'(A) © F(ta(—2¢;7;)) by Proposition
The assumption [W : FI(A)] = 1 implies that
socx (W/Dy.) = socK(W/WKl) — @F(t,\(j:%jﬁj)).

(2
For 0 < j < f—1, Lemma implies that the representation F(t)(—2¢;7;)) has no extension
with Jordan-Holder factors of D)., consequently the Serre weights F(t\(—2¢;7;)) are not in
the socle of W/D) .. We conclude that the image of W/D, . in Q; is zero and that W/D, . C
—1
69;:0 D>\+€jaj,§'

Let V be the representation of K constructed in Proposition [6.2.2] Note that the deepness
assumption on A allows us to apply it with B, =4 if ¢,y =1 and B; = 3 if ;1 = —1. Let
W’ = V[m% ]. By Proposition we have [W' : 7] = dp(y) » for 7 € W_. so that W' C W by
maximality of W’. It follows from Proposition with n = 2 and n = 1 that

cosocg (W') = EB F(tx(2e5m; + Z&'ﬁi))
0<j<f-1 i

and WK1 = Dy, = Wi, By what precedes we have an inclusion
f—1
W /W C W/WHEY C €D Diseja, e
j=0
However, the outside terms have the same cosocle, so these inclusions are equalities. From W1 =
W' and W//W'Kr = W/WEt we deduce that W' = W. This also proves that W/D, . is
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isomorphic to @f;& Dyie;a;e and gives We then deduce properties to from the
J O

properties of V' given by Proposition

Corollary 6.3.13. Let p: G, — GL2(FF) be a tame Galois representation such that p|;, = 7(s, )
such that pu —n is 8-deep in C,.

~

(i) Let T be a finite-dimensional semisimple representation of K over F of the form 7 =
EBUGW@ o™ with my > 1 for all 0. Then there exists a largest K-subrepresentation V

inside (Injg 7, 7)[m% ] with socx V =7 such that for all o € W (p),

[V :o]=[1:0] =m,.
Moreover V= @gcw ) Vs, where Vo C (Inj/z7, o)[m%,] is the largest K -subrepresenta-
tion of (Injg/z, o)[m¥k, ] such that [Vy : 0] = 650 for all o' € W(p).

(ii) Fiz o € W(p) and choose X\ € X1(T) such that ¢ = F(\). There exists ¢ = (;) € {£1}7
such that W (p) = {F(tx\(— Xie ;) : J C T}. Then V, is multiplicity-free and V.1 =
Dy .. Moreover the Jordan—Hélder constituents of V,, are the g = F(\(3 €;a:7;)), where
a; > 0 and Y;|a;/2] < 1, with submodule structure determined as follows: the unique
subrepresentation of Vy with cosocle o4 has constituents oy, for all b such that 0 < b; < a;

for all 1.
(i) If o and o are both in W (p) and nonisomorphic, the sets JH(V,) and JH(V,) are disjoint.

Remark 6.3.14. In Corollary [6.3.13(ii)| the condition a; > 0 and > ;|a;/2| < 1 means exactly
that a; € {0,1,2,3} and that at most one of them is > 2.

Proof. Part follows by the same argument as in the proof of [BP12, Prop. 13.1]. For the
existence of V' we have to prove that, if V; and V; are two subrepresentations of (Injg/z, 7)[m% ]
such that Homg (o, Vi) = Homg (Projg o, V;) for all o € W (p), then Vi + V5 has the same property.
This follows from the exactness of the sequence
0 — Homg (Projg,z, 0, V1 N V2)
— Hom g (Projg /7, o, V1) ® Homg (Projg 7, 0, V2)
— Homg (Projg 7, 0, V1 + V) — 0.
By assumption, we have
dimp (Hom g (Projg 7, 0, Vi) = dimp (Hom g (Projg 7, 0, V1 N V2)) = m,
so that
dimg (Hom (Projgz, 0, Vi + V2)) = m, = dimg (Homg (o, V1 + V2)).
As T = EBUGW@ o™, there is a K-equivariant inclusion
Ve @ (Injgz o)™ [mk,]
€W (p)
and, by maximality of V', we have
P Vviecve @ (njgz o)™ [mk,].
€W (p) €W (p)

By definition of V;,, the socle of (Injg/z, o)[m%,]/Vs contains only Serre weights of W (p). Hence
the socle of V/ (@Jew(ﬁ) Vo) has the same property. However it follows from the exactness of
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Hom g (Projf/z, 0, —) that we have for all o € W (p)
Hom g (ProjK/Z1 o, V/( @ Vi) ) =
ceW(p)
so that sockx (V/(Bsew @) Vo o)) =0 and

V= p v

ocW(p)

Now we prove part By Proposition[2.4.2|the elements of W (p) are of the form F(t,_,(s7:))
for J/ C J and we let J C J be such that o = F(t,(0)) = F(t,—,(s7;)). In particular, all
elements of W(p) are 7-deep in C, (for example, by Remark [2.4.5(iv)). By Remark there
exists € = (g;) € {£1}7 such that W(p) = {F(tr(— ;e &) : J/ C J}. The properties of V,
are then immediate consequences of Theorem [6.3.11Ki)| and

For part [(iii)] let A, \" € X1 (T) be such that o = F()), ¢/ =2 F(X) and ¢ such that
W(p) = {F(t\(D_ —em)) : J € T}

ieJ
Then

(51) JH(V,) = {F(tA(Z £a:;)) : a; > O,ZLai/QJ <1}

Choose J C J such that F(\') = F(t\(— X>_;cs€i7;)).- Then by part and Remark we see
that

(52) JH(V,:) = {F(t\(— Zsl (bi + 1) + Y b)) 1 b >0, [bi/2] <1}

VAVS i
(Note that W (p) is obtained by putting —1 < b; < 0.) If JH(V,) and JH(V,/) are not disjoint,
then J =0 (as b; + 1 > 0), contradicting o % o’. O

Corollary 6.3.15. Let p, my and V be as in Corollary m Then
mKl @ DOU 7,
oceW(p)
where Do »(p) is the representation of GLa(k) constructed in [BP12, §13].

Proof. This follows from Corollary [6.3.13(i)| and as well as Remark [6.3.12 O

6.4. Multiplicity one result for the pro-p-Iwahori. The aim of this subsection is to prove
that some multiplicity one assumption on the first two layers of the Kj-socle filtration implies a
multiplicity one result on the first three layers of the I;-socle filtration of an admissible smooth
representation of GLa(L).

Proposition 6.4.1. Suppose that x = x» with 2 < (\, o)) <p—3 forall0 <i< f—1. Let W
be a smooth and finite length representation of I over F satzsfymg the following conditions:

e both the socle and cosocle of W are irreducible and isomorphic to x;
e we have socy(W) C rad;(W) and rad;(W)/socr (W) is semisimple; in other words, the
Loewy length of W is equal to 3.
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Let @ be a nonzero quotient of Indf( W such that [Q : o] = 1. Then the composition

x =socy (W) — W i) Qlr

s zero, where f is induced by Frobenius reciprocity.

Proof. Assume that fls,,(w) is nonzero, or equivalently f is injective, for a contradiction. Then
the image of Ind¥ soc;(W) — Q is nonzero and has cosocle o, (recall that o, is the cosocle
of Indf( X). Since [Q : oy] = 1 by assumption, we may replace @ by the image of the unique
(up to scalar) nonzero morphism @ — Injg /7 oy, and therefore assume sock (Q) = oy. Indeed,
letting @" be this image, we have [ker(Q — Q') : o] = 0. Since o, is a Jordan-Hoélder factor
of the image of Ind¥ soc;(W) in Q, the map from Ind¥ soc; (W) to @’ is nonzero and hence the
composite socr(W) — @ — Q' is nonzero. From now on we suppose that sock(Q) = o,. Note
that, the image of the map
Ind% soc; (W) — Q

is then exactly sockx @ = oy. Also note that /o, # 0, otherwise f could not be injective because
(W : x] =2 while [oy|7 : x] = 1.

Using Lemma @L we deduce that rad;(W)/socy(W) is isomorphic to a direct sum of char-
acters of the form Xafl, each appearing at most once. Let Sy (resp. S_) be the set of characters
appearing in rad;(W)/socr(W) and of the form ya; (resp. xo; '). Also let W/ C W be the
subrepresentation defined by

0=x—>W = @ x—0,
x'€S—
and W"” = W/W' so that
0=+ P X =W —=x—0.
X'ES+
Note that both W’ and W are fixed by K1, see Lemma

We claim that f(W’) is contained in oy. This is equivalent to showing that the morphism
Indf( W' — @ (induced from f by Frobenius reciprocity) has image contained in (and hence
equal to) oy. Let @’ denote the image of Indf W'. Clearly, Q' is contained in Q%' which itself
is a subrepresentation of Injqp, (k) Ox- If o, € @', then, as f(soc; W) C oy, we would obtain

=

a nonzero morphism Indf (W'/x) — Q'/ay < (Injgry k) 0x)/0x. However, one checks that no

Jordan—Holder factors of Indf( X' for ¥ € S_ can appear in Injgr, k) oy, using Lemma
Hence we have Q' = o,.

We obtain a surjective morphism
def
ndf W” - Q" = Q/oy #0.

Since [Q" : 0] = 0, Lemma implies that no Jordan-Holder factors of @” have nontrivial
extensions with o,. However, as ) has irreducible socle o, we obtain a contradiction. O

Definition 6.4.2. Let V be a semisimple smooth representation of I over F. We say V is
connected if the following condition is satisfied: for any two smooth characters y # x” of I
occurring in V' such that x” € soc;(W, 3), there exists a character x’ occurring in V' such that

Ext}/Zl(X’, X") # 0 and Ext}/z1 (x,x") #0.



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2 72

The motivation of the above definition comes from the following result.

Lemma 6.4.3. Let p: G — GLo(FF) be a 6-generic representation, not necessarily semisimple.

Let Do(p) be the GLa(k)-representation constructed in [BP12, §13]. Then Di(p) & Do(p)1t is
connected in the sense of Definition[6.4.3 As a consequence, if V is a semisimple representation
of I such that JH(V') = JH(D1(p)) up to multiplicity, then V is connected.

Proof. We first note the general fact that up to multiplicity

JH(Do(p)) = JH ( Doew (p) IanLg(k) U)

Indeed, the inclusion “C” is trivial and “O” follows from [BP12, Lemma 12.8, Prop. 13.4]. As a
consequence, we have

JH(Dy(p)) € JH(Dy(5*)).
We write p*|;, = 7(s, ) such that g — n is 6-deep in Cyy. As in the proof of Corollary [6.3.13(ii)
we know that W (p*) = {F(t,—,(>_;e:im;)) + J € J} for some choice of ¢; € {£1}. By using
Remarks [6.3.12| and [2.4.7| we see that JH(Dg(5%)) = {F(ty—y (> giai;)) : =1 < a; < 2}

Suppose x and x” are as in Definition for V.= Di(p). By Lemma X" has the form
Xaiillozil for some 0 < 41,99 < f—1. Say x = o't and x” = (¢”)"* for some o, 0" € JH(Dy(p)). By
the discussion in last paragraph, we may write o = F(t,_, (> €;4;7;)) and 0" = F(t,_, (3 €;a{7;))
for some —1 < a;,a] <2.

First suppose that i; = i5. Recalling that F'(A\)t = y, and tyt24, (w) = t\(w +47;) we see that
Y eiaim; = Y eiaT; + 47;, for some —1 < a;,a; < 2; contradiction. (The 6-deepness of p —n
guarantees that we are staying inside Af;, ")

Now suppose i1 # i2. As in the previous case we know that |a; — af| = 2 if i € {i1,i2} and

a; = a] otherwise. We let o] & g, for i # iy, aj, & aj, o' & F(ty—n(>eiaim;)), and X/ (),
We claim that ' € Di(p)"*. Equivalently we need to show that the unique principal series
with cosocle o’ contains an element of W (p) as constituent (then the principal series admits a
quotient that contains precisely one element of W (p) and that as its socle). By Lemma [6.2.1)(i)]
and Remark the principal series with cosocle o has constituents F(t,—,(3 ;a:7; +>_ 7 €57;))
(J C J) for certain signs ¢, € {£1}. By Remark the same is true for the principal
series with cosocle o’ (resp. 0”), by replacing a; by a; (resp. a). The claim follows, since the
condition of containing a weight of W () is checked separately for each embedding. (Use if

p is semisimple and [Lel9, Prop. 3.2], as well as [LMS22 Def. 3.5], otherwise.)

The last assertion immediately follows from the first one, because by definition the connected-
ness of V' depends only on JH(V') up to multiplicity. O

We now consider an admissible smooth G-representation m satisfying the following properties:

(a) ﬂ[m%ﬁ} | is isomorphic to a subrepresentation of a direct sum
 b:-
g
oceWwW

for some set of Serre weights W, some K-representations D, with socg Dy & o, and
some integers m, > 1;
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(b) the K-representation
def @
D,
oceW

is multiplicity-free and for each Jordan—Holder factor o’ of D we have Xo! 7 Xo (equiv-
alently, 1 < dimp o’ < q).

In our application below we will have W = W (p) for some tame mod p Galois representation
0. Note that if x € 511 then Frobenius reciprocity induces a nonzero morphism Ind¥ T X— DX,
By condmon . Ind¥ 7 x has irreducible cosocle o, so there is a unique ¢ € W such that o,
occurs in DK1 (or equivalently, such that y occurs in DI > ). In particular, o, does not occur as a
subquotient of D/D*1,

We also note that D! is multiplicity-free: for a character x of I we have Homj(x 1511) =
Hom g (Ind¥ Xs ) By condition . we know that y # x*, so Ind¥ X has an irreducible cosocle.
As moreover D is multiplicity-free, we deduce that Hom g (Ind¥ ¥, D) is one-dimensional.

Lemma 6.4.4. Let © and D be as above satisfying the conditions @, @ Suppose x € w1 is of
the form xx with 2 < (\,a)) <p—3 for all 0 <i < f — 1. Then the natural quotient morphism
Wy 2 = x induces an zsomorphzsm

Homy(x, 7) = Hom(W,y 2, 7).

Proof. Since W, 5 is killed by m%l, any morphism W, o — 7| has image contained in

m[m7,] € 7[mi, .

Let f: Wy 2 — 7|7 be an I-equivariant morphism. For o € W, consider the map f, : Wy » —
Df,”” |1 obtained by composing f with the projection to the corresponding direct factor in condition

Let X’ be a character in soc;(Wy2). By Lemma there exists ¢ € J such that /' = oniﬂ
and the y/-isotypic subspace is 1-dimensional.

We first consider the case where x’ is of the form xa; L for some i € J. Assume for contradiction
that f is nonzero on the (one-dimensional) x’-isotypic space of W, . Then there exists at least
one o € W such that f, is nonzero on the yx’-isotypic subspace of W, o.

As a consequence of Lemma [6.3.3] (and Frobenius reciprocity), no character ¢ of socr(Wy,2)
other than X’ can occur in D , otherwise o would be a common irreducible subquotient of both
Ind¥ y/ and Ind 4. Hence, the map f, factors through the quotient E,,, of W, 5 and induces
an embedding E,/, < D®™|}. Let

fo :nd¥ B — DI
be the induced morphism by Frobenius reciprocity. Lemma [6.3.1] implies that the cosocle of
Indf B,/ is equal to that of Indf y, i.e. oy, hence so is the cosocle of Im(f,). Since E,/ , is not

Ki-invariant, neither is Im(f,) because the morphism E\\ — Im( fs)|1 is injective. We deduce
that o, occurs in D,/DX1. This contradicts |(b), as remarked just before this lemma.

We conclude that the map f is zero on all x'-isotypic subspaces of W, o for x' = xa; lieyg.
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The general case can be reduced to the above case, using the fact that = carries an action of
¢ o (2 0). Namely let f’ be the map from W;Q (conjugate representation by ¢) to m defined by
to f. As f is I-equivariant, the map f’ is I-equivariant. As Wfﬂ = Wys 2 and as the x'-isotypic
subspace of W, o coincides with the x’*-isotypic subspace of W;g, it follows from the first case
that ¢ o f, and hence f, is zero on the y/-isotypic subspace of W, o for x' = xa; with i € J. As a

consequence, f is zero on socy(Wy 2). O

We will not use the following Corollary of Lemma [6.4.4 but we state it since the result can be
useful.

Corollary 6.4.5. Let m and D be as above satisfying the conditions @L @ Suppose x € w1 is
of the form xx with 2 < (\,a)) < p—3 for all0 < i < f — 1. Then for any character x' € 7!t
such that Ext} 17 (x,X') # 0 there exists no I-equivariant embedding

EX/7X ‘—)71"].

We now make an additional assumption on 7:

(c) 7!t is connected (cf. Definition [6.4.2)).

Proposition 6.4.6. Let m and D be as above satisfying the conditions @ @, . Suppose
x € 7t is of the form x with 2 < (\,a) < p—3 for all0 <i < f—1. Then the natural quotient
morphism W, 3 — x induces an isomorphism

Homy(x, ) = Homp(W, 3, ).

Proof. Let f : W, 3 — 7|1 be a nonzero I-equivariant morphism. It suffices to prove that f factors
through the cosocle W, 3 — x. Let’s assume this is not the case and derive a contradiction. Note
that this implies that f[soc,(w, ;) is nonzero by Lemma

Step 1. We first show that f is zero when restricted to X" o ®x”, where the direct sum is
taken over all characters x” in soc;(W, 3) which are different from x (recall that [W, 3 : x"] =1
for such a x”). Indeed, if there exists such a x” such that f is nonzero when restricted to x”,
then in particular x” € w1, Since 7!t is assumed to be connected by we can find ' € 7!t as
in Definition By construction, " occurs in the second layer of the socle filtration of W, 3
and Lemma shows that x” occurs in the socle of the image of any nonzero morphism

WX’Q — vag.

But, the composition W,, o — W, 3 i) 7 gives a morphism that does not factor through its cosocle
X', which contradicts Lemma, As a consequence, f factors through the quotient W, 3/X".
Note that W, 3/X" is killed by m%ﬁ, because we may define a suitable subrepresentation W’
of Wy 3/X", with quotient W”, such that both W’ and W" are killed by mg, (cf. the proof of

Proposition [6.4.1). Hence, Im(f) is contained in m[m% ].

Step 2. Since f|soe /(W5 is nonzero, combining with Step 1, we deduce that x occurs in the socle
of Im(f). By |(a), m[m%, ] € Boew DE™s | 5o there exists a projection pr : @,y DE™ — D,
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such that pr o f remains nonzero on the x-isotypic part of socy(W, 3). By Frobenius reciprocity
oy occurs as a subquotient in D,[mg,]. Consider the composite morphism

fo: Wys 5 ximZ ]l 2 Dslr.

Let W & Im( f») and Q be the image of the induced morphism IndX W, 3 — D,. By Lemma

any ' with Ext? 12, (x, X') # 0 cannot occur in D{,l, otherwise o would be a common Jordan—
Holder factor of both Ind¥ x and Ind¥ x’. Combining with Step 1, we deduce that socz(W) is
X-isotypic (being a subrepresentation of 15(51) Since 15(51 is multiplicity-free by @ (as observed
above), we must have soc;(W) = x. Since [Q : 0,] = 1 (as D, is multiplicity-free by ,
Proposition provides the desired contradiction. O

We can now prove the main theorem of this section. Let p : G — GL2(F) be a tame Galois
representation such that p|;, = 7(s, u) (cf. Definition [2.3.1]) with © —n being 8-deep in Cy (§2.1)).

Theorem 6.4.7. Let m be an admissible smooth GLa(L)-representation over F with a central
character. Assume that:

(i) we have JH(sock(m)) = W (p) (up to multiplicity);
(ii) for all o € W(p), we have [r[m% ] : o] = [sock () : o];
(iii) we have JH(w!') = JH(D1(p)) (up to multiplicity).

Then dlmGL L)( ) < f

Proof. As m has a central character, the group Z; acts trivially on w. Therefore, by Corollary
6.3.13] Corollary [6.3.15| and Lemma [6.4.3] the representation 7 satisfies hypotheses @7 @,
above. Then Proposition [6.4.6] shows that Hom;(x,7) = Hom;(W, 3,7) for all characters x
occurring in 7't. We can then apply Corollary to conclude that dimy(7|;) < f and thus
that dimgr,()(m) < f (since I is open in GLa(L)). O
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7. CONSTRUCTION OF A LATTICE

In this section we construct a GLy(Op)-stable lattice with simple cosocle in some particular
locally algebraic representation of GLa(L).

We keep the notation of section @ Hence, L is a finite unramified extension of @@, of degree f,
ring of integers Oy, residue field k. Recall that we have set K et GL2(Op), K3 L +pM2(Op)
and 71 < Z(0L) N K.

Let o be a Serre weight for G xz, F,. We write P, & Projqr,(x) o for the projective cover

of o in the category of F[GLa(k)]-modules and we let P, be the projective O[GL2(k)]-module
lifting P,. Then P, ®o E is a (semisimple) finite-dimensional representation of GLa(k) over E.
By inflation, we view it as K-representation on which the subgroup K acts trivially.

The space slp 1, of 2 x 2 matrices of trace zero with coefficients in L is endowed with the adjoint
action of GLg 7, which is isomorphic to V(a), = Sym?(L?) ® det™!. In particular it has an
action of K. The goal of this section is to show the existence of a K-stable lattice V° in the
locally Qp-algebraic representation slz 1 ®q, P, such that (V°/wV°), is isomorphic to P, (and
hence such that o is the K-cosocle of V°) under some mild genericity assumption on o.

As P, is defined over W (F), and since Homg,-a1g(L, W(F)[1/p]) has [L : Q] elements, we may
assume that E is unramified over Q.

Throughout this section, E is assumed to be unramified over Q,. We recall that, as before, we
assume p > 2.

7.1. Locally algebraic lattices. Let VV° be some K-stable O-lattice in some continuous finite-
dimensional representation (V, p) of K/Z; over E. We assume that the group K7 acts trivially on
Ve /pVe.

As p > 2, the map z — exp(pr) induces a bijection sly 0, — K1/Z; (note that since p > 2,
the map Ky N SLo(L) — K3/Z; is an isomorphism) and a group isomorphism

(53) sbo, /psb.o, — (K1/Z1)/(K1/Z1)P.
(See [Laz65, I11.1.1.4, TI1.1.1.5, IT1.1.1.8].)

By assumption, we have p(k) € Idye +pEndp(V°) for k € K;. For x € sly;, and v € V°/pV°,
we choose lifts & € sl 0, of x and ¥ € V° of v and we define:

Bie(x,v) = p~*(p(exp(p))s — 7) mod pV°.

Note that (. (z,v) does not depend on the choices of  and v and is Fp-linear in = and F-linear
in v. The independence and linearity in x is a consequence of and of the fact that if g € K1,
we have [gP] — 1 € m% in F[Ki].

Therefore there exists a unique F-linear map

Bvo : sl ®F, (Ve /pV°) — V°/pV°
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such that Bye(z®v) = By (z,v) for z € sl and v € V°/pV°. (Alternatively, one can verify that
the natural Lie algebra action of slp 0, on V preserves V° and gives rise to Syo upon reduction
modulo p.)

The map Sye measures the defect of exactness of the functor (—)g, on finite quotients of V°.
It is a particular case of a Bockstein homomorphism in some homology long exact sequence. More
precisely, we have the following lemma.

Lemma 7.1.1. The following sequence is exact:
slyy ®r, (V°/pV°) By, Ve pve B (Ve ptve)k, — V°/pV° — 0,
where the last map is the reduction mod p (recall that (V°/pV°)k, = V°/pV°).

Proof. As the functor of Kj-coinvariants is right exact and since (V°/pV°)g, = V°/pV°, it is
sufficient to check that the kernel of the second map coincides with the image of Syo.

Let z € sly, and v € V°/pV° and choose & € sly o, and © € V° lifting « and v. By definition
we have:
pBye(z ® v) = p(exp(pi))o — o mod p*V° € ker((V°/p*V°) = (V°/p*V°)k,).
This implies that the composite pgy - is zero.
Conversely let v € V°/pV° be such that pv is zero in (V°/p?V°)k,. This implies that there

exist k1,...,k. in K1 and ¥y, ...,0, in V° such that

r

pv =Y (p(ki) — 1) mod p*V°.

i=1
Then there exist Z1,...,Z, in slp 0, such that k; = exp(p;) and we have fyo (3, z; ® v;) = v in
Ve /pV°, where z; € slyj, v; € V°/pV° are the images of Z;, ¥;. d

Recall that the group K acts by the adjoint action on sl 5, and induces a Q,-algebraic E-linear
representation of K on sly ®q, F. There is a decomposition

f-1
sly L ®g, F = @5[2,&
i=0
where K acts on the i-th summand by the adjoint action via the embedding K < GLy(E) given
by o; : L < E on the coefficients. The sub-O-module sly o, ®z, O is a K-stable lattice and the
action of K on (sly,0, ®z, O)/p(slz,0, @z, O) = slyp ®r, F factors through GLa(k) so that K
acts trivially on this quotient.

Now we compute Byo in the case where V° is the lattice sly 0, ®z, O in the locally algebraic
representation sly ; ®q, F.

Lemma 7.1.2. Assume that V° = sly 0, ®z, O. Then V°/pV° = sly; @, F and the map By is
given explicitly by

Bre(z®@y®@z) = [2,y] ® 2
forx,y €slyy, and z € F.
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Proof. Let & and 3 in slp o, lifting  and y. We have:
exp(p)j exp(pz) ™' — § = piy — pjz (mod p25[27@L)
so that Sy, ®Zpo(m ®y® 1) = [z,y] and we conclude by F-linearity. O

Remark 7.1.3. By construction of Sy. we can check that Syeqye = Bve @ Pyp and, if W* is
another lattice on which Kj acts trivially, Syegowe = Bre @ Idyyo /piye.

We leave to the reader the task to verify the following lemma along the lines of the proof of

Lemma [T.1.1]
Lemma 7.1.4. Let W C V°/pV*® be a sub-F-vector space stable under K and let V> C V° be the

inverse image of W in V°. We have a commutative diagram with exact rows:

Byelsty &p, W

sl @, W ————F— Vo /pV° — L (VP /p?V°)k, w 0

J | | |

o o Byo o o o o o o
sly ; QF, (Ve /pV©) — 5V /pV S N (V /p2V )k, —— V°/pV° ——— 0.

7.2. Preliminary computations. In this technical subsection, we make some explicit computa-
tions with sly p-representations and deduce that a certain endomorphism of a direct sum of Serre
weights is actually an automorphism.

If G is an algebraic group over F, we use the notion of G-module M as defined in [Jan03|
1.2.7]. Such an object has an underlying structure of an F-vector space. It has moreover a natural
structure of a module over the Lie algebra Lie(G) such that the structure map Lie(G) @ M — M

is a morphism of G-modules, where Lie(G) is considered as a G-module for the adjoint action
([Jan03, 1.7.11 & 1.7.18.(1)]).

Given A € X*(T) (resp. A € X*(T)), as in §2.2) we let L(\)r be the irreducible algebraic
representation of GLg/r (vesp. of G) of highest weight . We write L()) instead of L(A)/p in
order not to overload notation.

If A= (/\i)()gigf—l with A; € Xl(T), we have
f-1 '
L) =@ L)Y,
=0

where L()\;)® is the inflation of the GLg p-module L();) to G via the map G = [] 7 GLg ™ QLo
corresponding to the ¢-th projection.

Moreover L(A) inherits an action of the group G(F) = GLa(k ®F, F) and F(A) = L(\)|ar, )
via the inclusion GLz(k) < G(F) = GLz(k ®F, F) corresponding to the ring homomorphism
k—kop, F,a—a®1 (see §2.2).

We fix the following F-basis (e, h, f) of sla p:

=(3 ) n=(y ") =(0 %)

Recall that the space sl r is a GL2 p-module for the adjoint action and if p > 2 we have o € X (T)
and sly p is isomorphic to L(c).
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Let A € X1(T). We recall that L(\) has a structure of sl; p-module. Let vy be a highest weight

vector of L(A). Then the F-vector space L(\) has a basis given by (f'vy)o<i<, with 7 &of A aY)
and the action of GLy(F) is given, for v € L()), by

1 a\ ne" 1 0y Wt
(0 I)U—Z(I EU’ <a 1>U—Za H’U.
n n>0

(See [Jan03, I1.1.19(6)] and note that here the sum over 0 < n < p — 1 suffices.)

Assume from now on that A is 2-deep in the lowest alcove, i.e. 2 < r < p—4. Then we have an
isomorphism of GLg /p-modules (see [Hum89, Lemmal):

(54) slyp ®p L(N) 2 L(a) @ L(A) = L(A) @ LA+ a) ® L(A — a),

noting that the weights A+« and A — « are p-restricted. We note that the vector 2(e® fvy)+r(h®
vy) is annihilated by e and is a weight vector of weight A, it therefore generates the submodule
isomorphic to L(A) in slo g@p L(A). The vector e®u) (resp. e® f2uy+(r—1)h® foy—r(r—1)f@wvy)
is annihilated by e and is a weight vector of weight A4+« (resp. A—«) and generates the submodule
isomorphic to L(A + «) (resp. L(A — «)).

We denote by dy the unique map of GLg/p-modules L()\) < slor @ L()) sending vy onto
2(e ® fuy) + r(h ® vy). Note that this is the unique (up to scalar) nonzero map between these
GLg p-modules.

Lemma 7.2.1. The composite map of GLg p-modules

Ids, 5 ®dx [—,—I®IdL(a

w)\ : 5[2,]:5‘ XF L(/\) _— 5[27]17 KF 5[2715‘ XE L(A) ) 5[271[7 (S L()\)

s an isomorphism.

Proof. As both sides have the same dimension, it is sufficient to prove that this map is injective.
As a GLg p-module, sly r @ L(A) is a direct sum of distinct simple modules by , it is therefore
sufficient to prove that the map ¢, is nonzero on some well chosen vector of each direct summand.
We will check this for each of these modules.

The submodule isomorphic to L(A + «) contains the vector e ® vy. We have
Ua(e®@vy) = ([, -] @Idrn))(e @ (2(e ® for) +7r(h @ vy)))

=2[e, €] ® fuy + rle, h] @ vy
=2re@uy #0

since 2r # 0 in F.

The submodule isomorphic to L(A) contains the vector dy(vy) = 2(e ® fvy) + r(h @ vy). Note
that

da(fur) = f(2e ® fox+rh @ v)y)
:2{f7€]®fv,\+26®f2v,\+r[f,h]®vk+rh®fw
= —2h ® fux+2e® fPor+2rf @ oy +7Th @ fuy
=2e® fPor+ (r —2)h ® fur+2rf @y
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We have
Ya(da(vr)) = ([=, =] @ Id)) (2e @ da(foa) + 7h @ dx(vy))
= 4[e,e] ® 2o\ + 2(r —2)[e, h] ® foy +4re, fl] @ vy + 2r[h,e] @ foy + r2[h, h] ® vy
= —4(r —2)e® fuy +4rh @ vy + 4re ® fuy
=8e® fuy+4rh @uvy #0

since, for example, 8 # 0 in F.

The submodule isomorphic to L(A—a) contains the vector e® f2vy+(r—1)h® fuy—r(r—1) fQuy.
We first check that

dr(f?v)) =2e® fPuy + (r—4)h @ fPon+4(r—1)f @ fuy.
Then we have
Ua(e® fPon+ (r—1)h @ fuy —r(r —1)f @ vy)
=2(r+2)e® fPon+2(r — D(r +2)h @ foy —2r(r —1)(r +2)f @ vy

and this is nonzero, since 2 < r < p — 4. This proves the lemma.

O

Let o be a Serre weight for G, xz, IF,. It is an absolutely irreducible representation of G (IF;)
GLay(k). There exists a p—restrlcted Welght A € X1(T) such that o = F(\) = L(\)|gr, k)

®7 0 LD |aLyp (see §2.2).

Assume from now on that A is 2-deep in C;. Then the weights A\, A £ a; are p-restricted, hence
we have an isomorphism of GLg(k)-representations

sly g Qo FN) ZF(A) & F(A+ o) & F(A — ),

where the summands on the right-hand side are irreducible and pairwise nonisomorphic. For
each 7, we choose a nonzero map d,; € Homgp, 1) (0,5l21 ®k0, 0). By comparing with (54) it

[Pl

follows that that the map dy; is a nonzero multiple of the map Id® e ®dg\) and we deﬁne

d, o (ds,;) which is a GLa(k)-equivariant map from o to slyj, ®p, 0 = EB (slo. @k, 0). (Note

that sly; @k, o is isomorphic to the GLa(k)-restriction of (slyy ®@p L(A;))® &~ ;L)Y or,
equivalently, of L(a;) ®p L(X).)
Proposition 7.2.2. Assume that X is 2-deep in C. Then the map of GLa(k)-representations

Id_,[2k®d [—,—]®I
V:slyy ®p, 0 —>5[2k ®r,, slok QF, 0 4) sly  @p, 0

s an isomorphism.

Proof. As the map [—, —] is k-bilinear, the map [—, —] ® Id, factors through
sly k. ®p, Slok Op, 0 — sy ®p slo ) O, 0

Therefore, the map W is the direct sum of the maps V¥;, where ¥, is the F-linear composite map

Id5[2k®doz [ ]
ﬁ[gk Qk,o; T 4>5[2k ®k5[2k Qk,o; T —>5[2k Qk,o; T

First of all we remark that all the modules involved in the statement are actually restrictions to
GLa(k) of G-modules. Namely, o = L(\)|gr,x) and the action of GLa(k) on sl ®j o, F is the
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restriction to GLa(k) of the action of G on 5[(i) Moreover the maps d,; and [—, —] are maps of
G-modules. As L) 2 ®; L(\) and sly j, ® 0, 0 = = Qs L)Y @ (slar @p L(A)), we have
U =Q; @Z)l L where 1); ; is the identity of L(\;) when j 75 i and ;4 is a nonzero scalar multiple

of the endomorphlsm ¥y, (where ), is defined in Lemma |7 . By Lemma [7.2.1] - the map ¥, is
an isomorphism, hence so is W. ]

7.3. Construction of the lattice. Let o be a Serre weight. We recall that we denote by P,
the projective cover of o in the category of F[GLy(k)]-modules and P, the projective O[GLa(k)]-
module lifting P,. Then P, ®¢ E is a (semisimple) finite-dimensional representation of GLa (k)
over F. By inflation, we view it as a K-representation on which the subgroup K acts trivially.

We set Ry def P, and we recall that we have the Qp-algebraic action of the group K on slp 1 ®q, E
by the adjoint action. The O-module Rs def slho, ®z, P, is a K-stable lattice of R>[1/p] such

that K acts trivially on Rs/pRa. As the group K acts trivially on ]50, Remark implies
that Sr, = Bety0, @,,0 ® Idp,. From Lemma @ we deduce that

Br, = [—, —] ®1dp, : sloy ®r, slox O, Pr — slax Or, Ps.

Let Ro; < sly o, ®0,.0, Br so that Ry = @), Ry,. Let A € X1(T) be such that o = F(A) and
assume that A is 2-deep in Cy. For 0 < i < f—1, it is well known that there exists an isomorphism
of K-representations (see for example [LMS22] Prop. 3.3(2))):

(55) RQ,Z'/pRZi = 5[2,k ®k:,ai Pa = PO‘ 57 PJM ¥ Pag,p

where 01; = F(A — ;) and 02; = F(A+ ;). We fix such an isomorphism and use it to define a
K-equivariant injection ¢; : Py < Ra;/pR2;. We let ¢ denote the “diagonal” embedding of P,:

via = (1i(2)); € Re/pRe = @D Rai/pRai-

As a first step, we consider a modification of the lattice Ry. We define a new lattice in Ry[1/p]
as follows:
R, {z € Ry : (x mod pR2) € «(Py)}.
Note that pRy C R). As K, acts trivially on P,, the map R)/pR, — P, sending z to ¢! (x mod
p) factors through R,/pR) — (R,/pR5)k, and gives rise to a K-equivariant surjective map
( / pR/ )k, = Po.

Proposition 7.3.1. For z € R, we can find elements ky,..., k. € K1 and x1,...,2, in Ry such
that

r

2:(143Z — Dz; =pz  (mod p*Ry).
i=1
Hence the K -equivariant map (Ry/pRS) Kk, — P, is an isomorphism.

Proof. By Lemmas and we have a commutative diagram with exact rows:

sly g ®r, Po ——— Ra/pRy —— (Ry/p*Ry)k, Py 0

o 1 \ H | [

5[2k®15‘p (RQ/]ORQ *> RQ/pRQ *> (Rz/pQRQ) K, —— RQ/pRQ — 0.
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We will prove that the diagonal map is surjective (equivalently, an isomorphism, for dimension
reasons). This is equivalent to the first statement of the proposition, and the second statement
immediately follows.

As Ry/pRy = sl ®F, Py and g, = [, =] ® Idp,, we need to prove that the composite map
([<,—]®@1dp,) o (Idsy, , @¢) is surjective:

I, , @ [, ]®ldp
sly  ®p, Po ———— sly @, slo Qr, Po

5 [Z,k ®]Fp P,.
For dimension reasons, it is equivalent to prove that it is injective. This can be checked on the
socle.

The socle of P, is isomorphic to o and the nonzero map (unique up to scalar) o < P, induces a
K-equivariant map sl ; ®p, 0 < sl QF, P, whose image is the socle of sl @, Py (see Lemma

below).

To summarize, we have a commutative diagram

Iy, ), @ulo [~ —]®ld,
slop Qp, 0 ———— sy ®p, slop Qp, 0 ——— sl Qp, 0

L e l I

s [_v_]®Id
slyk ®p, Pop ——— sly @, slox ®r, Py SRk 4 sy ®r, Po.
We need to prove that the composition of the maps of the top row is injective and we will be
done.

In the decomposition sly j ®r, 0 = @Zf;ol (sl2,x ®k,0, 0), the map ¢|, corresponds to (ti]e)o<i< f—1-
As ¢; is injective and o is the socle of P;, we have that ¢;|, is nonzero. We can apply Proposition
to conclude that the composite map in the top row of the diagram above is an isomorphism.

O

Lemma 7.3.2. The GLa(k)-equivariant map o — P, (resp. P, — o) induces a GLy(k)-equiva-
riant map sy ®F, 0 — sy r, Py (resp. sloy, @F, P — sy O, o) whose image is the socle
(resp. cosocle) of sly ), ®F, Py.

Proof. As the map sl j, ®F, 0 = sly; Qp, Py is k ® F-linear, it can be decomposed as the direct
sum of the maps sly , ®p 5, 0 — $lo Q. 5, Ps. Therefore it is sufficient to prove that the image of
the map sl @ 5, 0 — $lp 1 @k, Ps is the socle of the right-hand side for each 0 <7 < f—1. We
observe that the left-hand side is semisimple (by ), the map is injective and the socle of the
right-hand side has the same dimension as the left-hand side (by ) This implies the result.
The case of the cosocle is similar. ]

Using Proposition we identify (R5/pR5) K, with P, and we define the lattice R by “glue-
ing” Ry and R} along P,:
(56) R {(x1,72) € Ry ® R} : (x1 mod p) = (image of x3 mod p) in P, = (R,/pR5) K, }
= {(z1,22) € R1 ® Ry : (x2 mod p) = ¢(z1 mod p) € Ra/pRo}

(equivalently, R = Ry xp, RS). This is a K-stable lattice in R1[1/p] ® R2[1/p]. We define r to be
the map R — P, sending (x1,z2) to (z1 mod p).



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2 83

Theorem 7.3.3. There exists a short exact sequence of K-representations
(57) 0 — Ry/pRy — R/pR = P, — 0.
Moreover the map r : R/pR — P, induces an isomorphism (R/pR)k, — P,.

Proof. As pRy C ker(r) C R we have p?Ry C pR and the inclusion of pRj in ker(r) induces a map
pRy/p* Ry — ker(r)/pR. This map is actually a K-equivariant isomorphism

pRa/p* Ry = ker(r) /pR.

Namely these two representations are finite-dimensional over F and have the same dimension. It
is therefore sufficient to prove that pR N pRy = p>Ry. The right-hand side is clearly included
in the left-hand side. Conversely let (px1,px2) be some element in the left-hand side. We have
t(x1 mod p) = (z2 mod p) in Ry/pRe. As z1 = 0, we have xo € pRo, which proves the assertion.
This gives us the short exact sequence .

Now we prove the second assertion. We define 7 : R/pR — P, as the factorization of r by
R/pR. As K, acts trivially on P, and 7 is K-equivariant, the map 7 factors as (R/pR)x, — P5.
We need to prove that the kernel of 7 is contained in the kernel of R/pR — (R/pR)k,, i.e. that
each element of ker(7) can be written as a finite sum >_,(k; — 1)y; with k; € K1 and y; € R/pR.

Let x € ker(7). By what precedes, there exists y € Ry such that py reduces to  modulo pR.
By Proposition we can find kq,...,k, in Ky and z1,...,x, in RS such that

T

Py = Z(k‘] —1)z; (mod P’Ry).
j=1
Let z1,...,2 in Ry be such that ¢(z; mod p) = (z; mod p) for all 1 < j < r. Then (zj,z;) € R
for all 1 < j <r. Since K; acts trivially on Ry, we have (k; — 1)(2;,2;) = (0, (k; — 1)x;) so that

T

(58) > (k= 1)(zj,25) = (0, py + p*u)
j=1

for some u € Ry. Let y; be the image of (z;,z;) € R in R/pR. Reducing modulo pR, we

obtain
,

> (kj— 1y, =z,

j=1
proving that 7 induces an isomorphism (R/pR)k, — P,. O

Corollary 7.3.4. The K-cosocle of R/pR is isomorphic to o. Moreover the K -representations
(Projg/z, o)/m¥, (Projg/z, o) and R/pR are isomorphic.

Proof. As K is a normal pro-p-subgroup of K, the group K acts trivially on every semisim-
ple representation of K. Therefore the K-cosocle of R/pR is the GLa(k)(= K/Ki)-cosocle of
(R/pR)K,. As (R/pR)k, is isomorphic to P, by Theorem we obtain

cosock (R/pR) = cosocqr, k) ((R/pR)K,) = cosocgr, k) (Pyr) = 0.

Note that Z; acts trivially on Ry and Rs, and hence also on R. This implies that there exists a
K-equivariant map 6 : Projg, o — R/pR which is surjective on cosocles and is hence surjective.

Note that Re/pR3 is killed by mg, so that Theorem implies that R/pR is killed by m%l. The
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map ¢ factors through the quotient (Projg/z, o)/mi, (Projg, sz, o) and gives rise to a surjective
map

(Projy, 1z, 0)/mi, (Projk, /7, ) - R/pR.
We now prove that this map is an isomorphism. Namely, since R is a lattice of ]50[1/;0] &
@Zf:_ol (slor ®0, 0, 150), we have
f—1
dimg(R/pR) = dimp (Ps[1/p] © @ (sl ©0,.0, Pr))
i=0

= (3f+1)dimg (Ps[1/p]) = (3f +1)dimp(Py).
On the other hand, the isomorphism (Projg,z, 0)/mg, (Projg/z, 0) = P, induces an exact se-
quence
0— (mKl/Zl/mfjl(l/Zl) QF Py — (ProjK/Z1 a)/m%{1 (ProjK/Z1 o) — P, — 0.
(Note that Projg,z, o is projective in the category of pseudocompact Ki /Z1-modules, since K
is an open subgroup of K.) As the group K;/Z; is uniform of dimension 3f, we deduce

diIIl]F ((PrOjK/Z1 a)/m%ﬁ (PrOjK/Z1 U)) = (3f + 1) dimIF(PO')‘

This implies that dimp((Projg,z, o)/mi, (Projg/z, 0)) = dimp(R/pR), so the map 6 is an iso-
morphism. ]

7.4. Projectivity. We prove several results which will be used in the gluing process in

Proposition 7.4.1. Assume o = F(\) where A\ € X*(T) satisfies 2 < (\, o)) < p — 4 for all
i € J. The endomorphism ring Endk (Projg 7, o/ (Projg 7 0)) is commutative.

Proof. By Corollary it is equivalent to show that Endx (R/pR) is commutative.

Note that ]50 ®e E is isomorphic to a direct sum of of absolutely irreducible pairwise non-
isomorphic K-representations, as absolutely irreducible GLg(k)-representations over E are resid-
ually multiplicity-free (cf. [Dia07]) and [P, : o] = 2/ if 0 < (\,o)) < p—2foral i € J
(cf. ibidem, see also [LMS22, Lemma 3.15]). Thus, R ®o E is semisimple and isomorphic to a
direct sum of 2f (f + 1) absolutely irreducible and pairwise non-isomorphic K-representations.
We conclude that Endgg)(R ®0 E) is a commutative ring of dimension 2/(f +1). Since
Endpx)(R) ®0 E = Endgig)(R ®0 E), Endp(g)(R) is also a commutative ring and is a free

O-module of rank 2/(f + 1). The exact sequence 0 — R —% R — R/pR — 0 induces
0 = Endor)(R) —2 Endog)(R) - Homeyg (R, R/pR) = Endg(s)(R/pR).

From the construction of R, see (55) and (56), and using the fact that [P, : o] = 2/ and [P, , :
o] = [Py, : 0] = 0 (the latter justified by Proposition and the assumption on \), we get
[R/pR : o] =2f(f + 1), and so
dimp Endp(x|(R/pR) = 27 (f + 1)
by Corollary Hence 7 is surjective, and the result follows. O
We assume from now on that 5 < (\, @) < p — 7. Letting 7 be a Serre weight occurring

in JH(R/pR), we denote by R, the object R constructed in §7.3| with o replaced by 7. Then
Endg (R-/pR;) is also commutative by Proposition and the assumption on A.
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Lemma 7.4.2. As an Endg (R, /pR;)-module, Homg (R /pR;, R/pR) is a cyclic module.

Proof. By [HW22, Thm. 2.30] (which generalizes [BP12, Cor. 3.12]), there is a unique quotient
of R/pR, denoted by I(7,0), such that sock I(7,0) = 7 and [I(7,0) : 6] = 1; moreover I(7,0) is
multiplicity free. The projectivity of R /pR; then gives a morphism ¢, : R;/pR; — R/pR which
makes the following diagram commutative

R; / pR;
|

T

o7 |
Y

R/pR —— I(1,0).

We have [coker(¢;) : 7] = 0, because any quotient of R/pR in which 7 occurs must admit I(7, o)
as a quotient by [HW22, Thm. 2.30]. We deduce the result and also the fact that ¢, is a generator
of Homg (R, /pR:, R/pR) over Endg (R;/pR-). O

Proposition 7.4.3. Let Q be a quotient of R/pR. Then Q satisfies the following property: for
any subquotient Q' of Q, the projection R/pR — Q induces an isomorphism

Homg (Q, Q') = Homp (R/pR, Q").
In particular, if cosock (Q') = o, then there exists a K -equivariant surjection Q — Q.

Remark 7.4.4. Proposition [7.4.3| can be interpreted as saying that @) is a projective object in
the smallest abelian subcategory of F[K] /mﬁ{l—modules which contains all subquotients of Q.

Proof. Let 7 € JH(R/pR). The projectivity of R;/pR, implies a surjection
HomK(RT/pR‘ra R/pR) - HomK(RT/pRT7 Q)a
so that Homg (R, /pR:, Q) is a cyclic Endg (R, /pR.)-module generated by the composite map

60 Re/pRr 25 R/pR - Q

where ¢, is as in the proof of Lemma and the second map is the natural projection. Moreover,

the annihilator ideal
def

arQ = {h € Endg(R,/pR;) : ¢ oh =0}
is identified with Homg (R, /pR;,ker(¢-q)). By the projectivity of R;/pR., Homg (R, /pR-, Q")
is a subquotient of Homg (R, /pR;,Q) as Endg(R;/pR:)-modules, so it is also annihilated by
ar . Here we use the commutativity of Endg(R,/pR.) in Proposition This means that
any fr € Homg (R, /pR:, Q") is zero on the image of the evaluation map

Hompg (R:/pR: ker(¢r.q)) ® Rr/pR; — ker(érq)-

The projectivity of R;/pR, shows that the above image is identified with the largest submodule
of ker(¢- o) whose cosocle is T-isotypic; we denote it by ker(¢,)".

Now we consider the special case f; = fo¢;, for some f € Homg (R/pR, Q). The snake lemma
gives the following exact sequence

0 — ker(¢,) — ker(¢rq) RN kerg — coker(¢;)

where kerg &of ker(R/pR — @), and f is zero on the image of ker(¢- )" in kerg. Since [coker(¢) :
7] = 0 (see the proof of Lemma [7.4.2)), any morphism R,/pR, — kerg must factor through ¢,
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hence the image of ker(¢, )" is equal to the largest submodule of kerg whose cosocle is T-isotypic.
Since 7 is arbitrary, f must be identically zero on the whole kerg, namely f factors through Q.

The last assertion is obvious, because under the assumption on @’ there exists a K-equivariant
surjection R/pR — @' which must factor through @ by the first assertion. O
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8. GLOBAL APPLICATIONS

We prove our main global results: Theorem [8.3.11] Theorem Theorem Corollary
and Corollary

8.1. Patching functors. We introduce the global background and the patching functors that
we will use (following [EGST5l §6.2]). We assume p > 5 (for the main theorem, we will in fact
need p > 23) and E unramified, i.e. O = W(IF). We use the notation and conventions of

We fix I a totally real number field, and denote by O its ring of integers and S, the set of
places of F' above p. We assume F' is unramified at each place in S,. For each place w of F' we
denote by F,, the completion of I’ at w, Of, its ring of integers and Frob,, a geometric Frobenius
element at w. We denote by A7 the finite adeles of F'. For any finite place w of F', let ¢,, denote
the cardinality of the residue field of F,.

We fix D/F a quaternion algebra of center F' which is split at all places in S, and at no more
than one infinite place of F' (in the sequel we call the two cases the “indefinite case” and the
“definite case”). In the indefinite case we assume (F, D) # (Q,GLz2) (our main result is already
known in the case (F, D) = (Q, GL2)). We denote by Sp the set of finite places where D ramifies.

We fix a maximal order Op in D and isomorphisms (Op),, — My(Op,) for w ¢ Sp, where

(Op)w “op ®or OF, .

We fix 7 : Gp — GL2(F) a continuous representation and set 7, & 7|y, for each finite place
w of F. We assume that F]GF( D) is absolutely irreducible and 7, is generic in the sense of [BP12,
Def. 11.7] (or [EGSIH, Def. 2.1.1]) for w € S,. We let S be the set of (finite) places where 7 is
ramified (hence S, C Sy by the previous genericity) and we moreover assume that the universal
framed deformation ring Ry, of 7, over W (IF) is formally smooth over W () if w € (Sp U S7)\Sp
(see Remark below). We let ¢ : Gp — W(F)* be the Teichmiiller lift of wdet7 and set

def

w’u) = QMGFw

Assume first that we are in the indefinite case. For a compact open subgroup V of (D ®p A¥)*
let Xy be the associated smooth projective algebraic Shimura curve over F' (see e.g. [BD14, §3.1]
and the references therein). We choose the convention e = —1 as in [BDJ10] to define Xy,. This is
not the convention of [BD14], but we point out that the results of [BD14] that we will use below
do not depend on this choice. We assume that there exists V' such that

(59) Homg,. (7, HY (Xv xp F,F)) # 0.

Then one can always take V of the following form: V = [[V,, with Vi, C (Op); for all w,
Vw = (Op)ys for w ¢ SpU Sy and Vi, = 1+ pMy(Op, ) for w € S, (see e.g. [BD14, Thm. 3.2.2] or
the proof of [BD14, Cor. 3.2.3]). For Serre weights (0 )wes, and any V' = [[V,, such that (59)
holds and Vi, € 1+ pMy(OpF, ) is normal in (Op),; for w € S, we have by |[GK14l §5.5]:

(60) HomGLz((’)F®ZZp) (®F,w Ow, HOmGF (F, Hét(XV XF F, F))) 75 0<= oy € W(?Z)) Yw € Sp,
where we recall that W (7)) is defined as in [BDJI0, §3] (with p there being 7)), cf.

We now fix

(i) a finite place v € Sy, such that 7, is semisimple of one of the following forms up to twist:
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(ro+ 1)+ +pf ~H(rp_1+1) 0
(a) FU‘IFU ~ | Y 0 1 12<r; <p-15,
o+ Apf g +1) 0
(b) Tolrp, = Waf go(same) | 13 <70 <p—14,12 <y <p—15 for
L 0 Wor
1 >0,

o satisfies the same hypothesis; note that, up to twist, 7, is of the form
described at the beginning of ;
(ii) a finite place wy ¢ Sp U Sy such that
(a) Norm(w;) is not congruent to 1 mod p,
(b) the ratio of the eigenvalues of 7(Frob,, ) is not in {1, Norm(w; ), Norm(w;)~'},
(c) for any nontrivial root of unity ¢ in a quadratic extension of F, wy { (¢ + (7! —2)
(such a place wy exists by [EGS15, §§6.2, 6.5]);
(iii) a finite set of finite places S such that
(a) S contains Sp U Sy but not wy,
(b) for w € S\, the framed deformation ring Ryv of 7y, is formally smooth over W (F);
(iv) a compact open subgroup U = [],, Uy C I],,(Op). such that
(a) Uy = (Op)y = GL2(OF,) for w ¢ SU{w} or w € Sp,
b) holds for V= (Tlugs,us.(Op)w) (Tispusins, Uw) (Tlwes, 1 +pM2(OF,)),
(¢) Uy, is contained in the subgroup of (Op)y, = GL2(OF,, ) of matrices that are
upper-triangular unipotent mod w;.

Remark 8.1.1. Using [Shol6l, §5] one can make assumption |(iii )(b)| above completely explicit.
For instance, if Norm(w) is not congruent to £1 mod p, then Ry (or equivalently R, , the two

(equivalently, 7/

rings are isomorphic by duality) is always formally smooth, except when 7, = < 0 ?) up to

twist.

The following lemma due to Hamann [Ham75, Thm. 4] will be convenient below.

Lemma 8.1.2. Suppose that R, S are local rings. If R[xz] = S[x], then R = S.

For each w € Sp\{v} we fix a tame inertial type 7, such that JH(o(7,)Y) = JH(o(T

w))
contains exactly one Serre weight in W (7)) ([EGSI5, Prop. 3.5.1]) and we fix a GLg(OFw)
)-
a

V) in o(1y) = 0(7w)" (50, increasing F if necessary, o(7,Y) is a free W (F
module, see the last statement in [EGSI5 Lemma 3.1.1]). As any Serre weight in W (7,,) has
central character (w™! det7y,)|r,, = = 9|7} Ir,, and 7y Is tame, the central character of aO(rY) is @Z)|;F1

and det 7, = 9|1, . We define a representation op of [lwes\ v} Uw over W(F) by

invariant lattice o0 (7,” v

(61) 0 E Dyes\ (0300 (To)),

with [[yeq\ fo} Uw acting via [lpes\ o} Uw = wes,\fo3 Uw = Tlwes,\ o} GL2(OF,). As in
[EGST15, §§6.2, 6.4] using K = U, we then define a patching functor (depending on o7))

]\jg—é7 DOy —> MOO(U; ®W(IF) O'U)

from the category of continuous representations o, of GL2(OF,) on finite type W (F)-modules with
central character w|;Fl to the category of finite type Roo-modules, where (see |[GK14l §5.4.1])

def oc
Roo < R°°[X1, -, Xy (pgltis|-1]-
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Here ¢ is an integer > [F': Q] and

Rlec = (®wes\sp3$;“ )®W(}F) (®w€5‘p\{v}R§: Hre ww) e B

where the exponent 1, means framed deformations of 7,, with fixed determinant e 14/, and where
R@ ~Dimwte o the reduced p-torsion free quotient of Rd’“’ parametrizing those deformations which
have parallel Hodge-Tate weights (0, —1) and inertial type Tw (by local-global compatibility and
the inertial Langlands correspondence, for w € Sp,\{v} the action of R¢” on My (o) ®w (w) ov)
factors through this quotient). By assumption |(iii }(b)| above (with [GK14 Rk. 5.2.2] and Lemma
we have R;/’f = W(F)[ X1, X2, X3] for w € S\S,, and by genericity of 7, we have R;p: ~

W(F)[X1, ..., X313F,:q,]- Taking the duals of representations induces a canonical isomorphism
R( 1),mw,%w ~ R£1 0),, wﬂ/’w

o , where the ring on the right-hand side is the more familiar quotient
of Ry parametrlzmg potentially Barsotti-Tate deformations of 7, with inertial type 7,0 and

determinant eww . By [EGS15, Thm. 7.2.1(2)] (with [GKI14, Rk. 5.2.2] and Lemma we
have Ri Ot o = W(F)[X1,. .., X31(F,:Q,], so that we finally get

(62) Roo 2 R [X1, .., Xa(is|—1)ra—(rvay)] = WEX1, ., Xajsjsq-142(m0,)]-

Remark 8.1.3. Here are several remarks on the definition of Mo (o) ®w ) 0v) in [EGSTH].

(i) One needs to extend the action of U on o) @y gy 0v (which acts via U — [],,eg, Uw) to
an action of U(A¥)* with (A%)* acting via

(AF)" — (AF)* /P "5 Gal(F*/F) S W (E)*.

Note that we believe this action of (A%)* in [EGS15, §6.2] should also be via ™1, not v
(as it is there), otherwise there is a contradiction with (at least) det 7 = v|;,. in [EGS15,
§7.1], since the normalization of o(7) in [EGS15] §1.9] is dual to the one in [BMO02), §2.1.1].
(See also [CEGS, Rk. A.1], as was pointed out to us by David Savitt.)

(ii) Accordingly, we need to modify the maximal ideal m associated to 7 in [EGS15, §6.2]
as follows: m is the maximal ideal generated by T, — Sytr(7(Froby)), Norm(w) —
Swdet(T(Froby)) for w ¢ S U {w;} (this is the maximal ideal of [BDJ10, §4]).

(iii) For any V' C U the finite group V(A% )*/VF* acts on Xy without fixing any geometric
point (see e.g. part (iv) of the proof of [BD14, Lemme 3.6.2], replacing wq there by wy).
In the definition of S(o) in [EGSIH, §6.2] in the indefinite case, one should replace the
Shimura curve by its quotient by this finite action (which is still a smooth projective curve
over F'), analogously to the definite case of loc. cit., where S(o) is defined as functions
f:DX\(D®p A¥)* — o(8)* such that f(gd) = d~'f(g) for d € U(A®)* (not just d €
U). Note that replacing Xy by its quotient does not change Homg,, (7, H} (Xv x p F, F))
(arguing as in the proof of [BD14, Thm. 3.7.1]).

Denote by ms, the maximal ideal of Ry and for w € S,\{v} let o,, be the unique Serre weight

in W (7)) that appears in JH(o(7)). By a standard Hochschild-Serre spectral sequence (see e.g.
the proof of [BDJ10, Lemma 4. 11] or of [BD14, Lemme 3.6.2]) we have isomorphisms of finite-
dimensional F-vector spaces for any representation o, of GLa(OF,) over W (F) as above such that
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V, acts trivially on o, (see also [LMS22) (5.3)]):
M3 (0,) /e = Home, (7, Homy (@ e, (o} 0w) © 00, Hi (Xy x5 F,F)))
= Homy/y ((®w€sp\{v}aw) ® oy, Homg,, (T, H} (Xy xp F, IF‘)))V

_ \Y
(63) =~ Homy, v, (av, Hoy yo (@we $,\ (v} Tw, Home,. (7, Hy (Xy xp F, F))))

for any V' = [[V,, such that V,, = U, if w ¢ S, and V,, C 1+ pMy(Op,) with V,, normal in

GL2(Op,) if w € S, (and, as usual, U” & [l Uw and likewise for V). In particular, it follows

from and the exactness of the patching functor ]\4;:?i in [EGS15] §6.2] that Mgé; (0y) # 0 if
and only if JH(a,) N W (7)) # 0.

The definite case is analogous to the indefinite one. We have the equivalence , replacing
Homg,, (7, H} (Xv x p F,F)) by S(V,F)[m], where S(V,F) & {f : D*\(D @ A®)*/V — F} and
(as in Remark [8.1.3(ii)|) m is generated by Ty, — Sy tr(T(Froby)), Norm(w) — Sy, det(7(Frob,,)) for
w ¢ SU{w} such that Vi, = (Op)y, with Ty, S, acting on S(V,F) (via right translation on

. . Wy 0 wy 0
functions), respectively, by V/ < 0 1) Vv,V < 0wy
In the definition of M (o} @ (r) 0v) in [EGSIHL §6.2] one again modifies the maximal ideal m as

) V', where w,, is any uniformizer in Fy,.

P
in Remark [8.1.3((ii)l Finally (63]) becomes
oy \Y
(64) MoS (0v) /Mmoo = Homar,(0,,) (Um Homyv vv (®uwes,\ {v} 0w, S(V,F) [m])) :

For convenience, we consider the following admissible smooth representation m of GLy(F,) over
F with central character @71:

(65) 7% lim Homyo jyv (®w€5p\{v} 0w, Homg,, (F, Hi (Xyoy, xp F, IF))) in the indefinite case,
Vo

(66) m L lim Homyyo jyo (@wes,\fv} Tws SV Vy, F) [m]) in the definite case.
\Z

Then and both become

v

(67) M3 (0,)/ Mg = Homgr,(oy, ) (v, m)".

8.2. Freeness for types. We prove some freeness results for My, (o) and My, (o)[1/p] for various
representations o.

We now set K & GL2(OF,), K defy 4 pMa(OF,) and we freely use the notation of éa (with
L = F,, k the residue field, etc.) and in In order not to overload notation, we now just

write Mo for MS?. If A is a commutative ring and M is an A-module, we call scheme-theoretic
support of M the quotient A/Ann4(M).

Lemma 8.2.1. Let A be a commutative ring and N C M two A-modules. We assume there is
an integer r > 1 such that

(i) N and M/N are free of rank r over their respective scheme-theoretic supports;
(ii) M can be generated as an A-module by r elements;
(iii) there is an isomorphism of A-modules Anna(M/N)/Annys(M) = A/Anny(N).
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Then M 1is free of rank r over its scheme-theoretic support.
Proof. Replacing A by A/Anna(M), we can assume Anng(M) = 0. Let [ & Anny(M/N) and

f: A" - M an A-linear surjection by Then the composition of f with M — M/N factors
through (A/I)" and we deduce a commutative diagram of A-modules

0 Ir AT (A/T)" —— 0
b
0 N M M/N — 0.

By |(i)| we have an isomorphism of A-modules M/N = (A/I)" and it follows from e.g. [Mat89,
Thm. 2.4] that the surjection on the right is an isomorphism. The snake lemma then shows that
the vertical map on the left is surjective. Since I = A/Anna(N) by (recall Anng(M) = 0)
and N = (A/Anns(N))" by [Mat89, Thm. 2.4] again shows that the vertical map on the left
is bijective, and hence all vertical maps are bijective. O

Recall that a finite type module M over a noetherian local ring A is called maximal CM over A
if it is Cohen-Macaulay and if its Krull dimension (which is the Krull dimension of A/Ann4(M))
is equal to the Krull dimension of A. In particular, A/Anny, (M) has no embedded associated
prime.

Lemma 8.2.2. Let o be any smooth representation of K on a finite length W (F)-module. Then
the finite type Roo-module My (o) is mazximal CM over its scheme-theoretic support.

Proof. We can assume My (o) # 0. For each Serre weight o, such that My (o,) # 0, it follows
from [EGS15| Def. 6.1.1] that the Krull dimension of My (o,) does not depend on o, call it d,
and that My (o,) is Cohen-Macaulay. By exactness of the functor M., the Krull dimension of
Moo (0) is the maximum of the Krull dimensions of the My, (o,) for the constituents o, of o, hence
is also d. In particular, each nonzero such My (o,) is maximal CM over Ro/Anng_  (Ms(0)).
But being maximal CM over a given noetherian local ring A of residue field F is preserved by
extensions of modules (as can be checked from the characterization of Cohen-Macaulay modules
using Ext?y(F, —)). Hence My (o) is maximal Cohen-Macaulay. O

If 7 is a tame inertial type and A\ = ((a;,b;)) eqo,....,f—1}, Where a; > b; are integers, we set
(69) R R on,, BY,

where R;"VT parametrizes (framed) deformations of 7y of inertial type 7 and Hodge-Tate weights
(aj,b;) in the embedding o : F,, < E. Note that from the determinant condition (see (62)), one
must have a; +b; = 1 for all j in order for RXT to be nonzero. When a; = a and b; = b for all j,

we write R?7. We finally write Roo % Rog /(p) and 72;; R/ ().

Proposition 8.2.3. There exists an integer r > 1 such that

(i) for allo, € W(FY) the module My (o) is free of rank r over its scheme-theoretic support,
which is formally smooth over F;
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(ii) for all tame inertial types T such that JH(o (7)) NW (7)) # 0 and all K -invariant W (F)-
lattices o°(7) in o(7) with irreducible cosocle, the module My (c°(7)) is free of rank r
over its scheme-theoretic support, which is a domain.

Proof. Note first that the last assertions in [(i)| and are a consequence of [EGSI5L Def. 6.1.1],
[EGST5L Thm. 7.2.1(2), (5)], and [EGS15] Prop. 3.5.1]. The strategy of the proof is very close to
the one of [EGS15, Thm. 10.1.1] (which proves the case r = 1), and we freely use some notation
from loc. cit. (it would be too tedious to recall everything). By [EGSI15L §5.1] there is a set P
of subsets of {0,..., f — 1} and a unique J € P, such that ¢%(7) = 0Y(7). The constituents of

JH(cY(7)) N W(T)) are indexed by a certain subset W of P,, and for certain subsets J C W
called capped intervals (see [EGSI5], Def. 10.1.4]) there exists a subquotient @ of 0 (7) such that

the irreducible constituents of 37 are exactly the constituents of JH(c'(7)) N W (7)) indexed by
the elements of 7. We first prove by induction on | 7| that the module My, () is free of rank r
over its scheme-theoretic support for an integer r which depends neither on 7 nor on 7.

By the argument in the proof of [LLHLM20, Lemma 3.6.2], the ring Roo/Annﬁoo(Moo (7)) is
reduced. Indeed, it is generically reduced by dévissage, since the scheme-theoretic supports of
M () for Serre weights o, € W (7)) are reduced, irreducible, and pairwise distinct (of dimension
independent of ¢,) and since 7 is multiplicity-free; it also has no embedded associated prime,
since M. (@7) is Cohen-Macaulay by Lemma Let I7 be the ideal of Ry, defined in [EGS15),
§10.1], it follows that

(70) Amng (Myo(@7)) =17.

If | 7| < 2, then by [EGS15, Prop. 3.5.1], [EGS15 Prop. 10.1.11] and the very last paragraph
in the proof of [EGSI5, Lemma 10.1.12] there is a tame inertial type 7" and a W (F)-lattice o°(7')
in o(7') such that JH(o2 (7)) NW (7)) = JH(@7) and My (c0(7')) = M (7). By [EGSIH, Thm.
7.2.1(2)] (and [GK14, Rk. 5.2.2]) the local ring Rgv,o),f’,u;;l is regular, and hence also RO by
and . By [EGS15, Lemma 6.1.4] it follows that Moo (a2(7")) is free of finite type over
RO Hence Moo (09(7")) = M (37) is also free of finite type over RS;O)’T' ~ Reo/17.

If | 7| = 2, then @ has two distinct constituents oy, o9 and the freeness of My, (7Y) over
Roo/I7 (which is a power series ring over F[X1, X3]/(X1X3)) easily implies that M (o1) and
My (02) have the same rank over their schematic support (which is a power series ring over,
respectively, F[X1] and F[X3]). Using [EGS15, Prop. 10.1.11] and the fact that all Serre weights
in W(r)) can be “connected” by nonsplit extensions (as follows e.g. from [EGSI5, Prop. 3.5.2]
applied to a semisimple p), we obtain for a certain integer r > 1.

If | 7| > 2 and J has a unique minimal element Jy (for inclusion inside {0,..., f —1}), then
exactly as in the analogous case of the proof of [EGS15, Thm. 10.1.1] but using [Lel9, Lemma 4.5]
instead of [EGSTH, Lemma 10.1.13], we deduce that the R-module M (57) is generated by r
elements. Then one applies Lemma to M = My (7) and N = M., (7{/}) (the hypotheses
of the lemma are satisfied, as M/N = M. (7 \{/o}), Ingsy/I7 = Reo/Ip ;) and using )
together with the induction hypothesis on | 7| to deduce that My, () is free of rank r over
Ry/I7.
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If |7| > 2 and J has at least two distinct mlmmal elements Jy, Jo, let J; def J\{Ji},
i = 1,2. Then by the induction hypothesis My, (G71), My (772) and My (771772) are all free
of rank r over (respectively) Roo/l7,, Reo/I7, and Ry /I7,n7. Hence so is the fiber product
Moo (T71) X Mo (791072) My (791) =2 Moo (7)) over Ry /17, ¥ Roo/I7, & Ry /17 (see the

analogous case in the proof of [EGSI5, Thm. 10.1.1]).

EOO/IJ1V‘I.72

It remains to finish the proof of By the previous proof, M (09(7)) & M (3"V) is free of

rank 7 over Ro. /Iy = ES{O)’T. By Nakayama’s lemma, we deduce a surjection of Rg’o)’T—modules

f: (R&’O)’T)T — Moo (09(7)) which is an isomorphism modulo p, hence satisfies p ker(f) = ker(f)
since Moo (09(7)) has no p-torsion. By Nakayama’s lemma again we deduce ker(f) = 0, which
finishes the proof. O

Corollary 8.2.4. Let o X GB ¢ where m,n; > 1 and the o; = JsmOOth QF Jalg are pairwise

nonisomorphic absolutely @rreduczble locally Qp-algebraic representations of K over E satisfying
the following hypothesis: UmeOth lies in the image of the inertial local Langlands correspondence
T o(7) (after extending scalars to Q,) and J; JH(57) "W (TY) # 0. Let o° be any W (F)-lattice
in o preserved by K. Then

(1) Muo(0) is maximal CM over its scheme-theoretic support S & Reo/Anng_ (Moo (o)),
which is reduced;

(ii) MOO(UO)@)W(F)E is locally free over its scheme-theoretic support S[1/p|, which is formally
smooth over E.

Proof. Fori € {1,...,m} let ) be any K-invariant W (F)-lattice in o;. It easily follows from the
exactness of the functor My that there is an isomorphism of R [1/p]-modules

(71) Moo (6®)[1/p] = @ Moo (6?)[1/p])®me.

From the Taylor—Wiles—Kisin method, we know that the action of Re, on My (0V) factors through
a reduced equidimensional p-torsion free quotient of R., and that the support of Moo(a?) is a
union of irreducible components of that quotient (see e.g. [CEGT16, Lemmas 4.17, 4.18]). Hence
the scheme-theoretic support of My, (a?) is also a reduced p-torsion free quotient Ry, /I; of Ry
It follows from that the support of My, (a°)[1/p] is S[1/p] = (Reo/N; L:)[1/p] (as there is no
p-torsion). Since the Spec (Rso/I;)[1/p] for 1 < i < m correspond to disjoint closed subschemes
of Spec R [1/p] (as the locally algebraic representations o; are pairwise distinct), one has by the

Chinese remainder theorem
m

(72) S[/pl = oo/ﬂf [1/p] = [[(Reo/ L)1/,

=1

which is thus reduced and formally smooth over E by [KisO8, Thm. (3.3.8)], hence regular by
[Mat89, Thm. 28.7]. Since S has no p-torsion (as S acts faithfully on M. (c”) which has no
p-torsion by exactness of M), we deduce that S is also reduced.

The module M., (0°)/(p) = My (00) is a Cohen-Macaulay-module by Lemma and p is a
non-zero-divisor on M, (0”), hence My, (oY) is also Cohen-Macaulay, hence maximal CM over S.
Moreover applying [Mat89, Thm. 17.3(iii)] to Mo (c%) we see that Mo, (c%)[1/p] is also Cohen—
Macaulay as an S[1/p]-module. The Auslander-Buchsbaum formula applied to the localizations
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at prime ideals of S[1/p] of the Cohen—Macaulay module My, (c%)[1/p] over the regular ring S[1/p]
implies Mo (0%)[1/p] is locally free over S[1/p]. O

smooth :

The following remark shows that the assumption on o} is often satisfied.

Remark 8.2.5. If ¢ is any irreducible smooth representation of K over F that is tame (i.e. the
action of K factors through K — GLa(k)) and that is not a twist of the Steinberg representation
of GLa(k) (equivalently, is not of dimension g,), then o lies in the image of the inertial local
Langlands correspondence 7 — o(7), after extending scalars to @p. (To see this, first note that
o is absolutely irreducible by (the proof of) [EGSI5, Lemma 3.1.1]. If o is one-dimensional, then
it is clear that o lies in the image; otherwise, o is a principal series or cuspidal representation of
GLz2(k), and the claim follows from the case a = 1 in [BM02, Th. 2.1.1.4] or alternatively [EGH13|
Prop. 2.4.1].)

For any Serre weight Ov, recall that we have defined in the two GLqo(k)-representations
Py, = Projgr, ) 0v and Py, over, respectively, F and O = W(F).

Proposition 8.2.6. If o, € W (), then My (P,,) is free of rank r over Ro /Ny Py, where T runs

over the tame inertial types such that o, € JH(o (7)) and p- is the prime ideal ker(Roo — Reo

Proof. (i) We first prove that the Ruo-module My (P,,) can be generated by r elements. By
Nakayama’s lemma, it is enough to prove the same statement with My (P,,), or, equivalently,
that dimp(Mso(Pp,)/Me) < r. By it is enough to prove

dimp(Hom g (P, 7)) = dimp(Homg,, (1) (Pr, ,W)) =

where 7 is the admissible smooth representation of GLa(F,) defined in (65)) or (66) and W = & K
By Proposition |8.2. l we have dimp(Homgr,, 1) (0p, W)) = 7. Let DO( v) be the representation
of GLa(k) over F defined in [BP12, §13] (see also Lemma and recall that by construction

Homgr, k) (Ps,, Do(Ty )/ s0cGL, (k) Do(ﬁ )) =0.

Hence it is enough to prove that there is a GLa(k)-equivariant injection
W — Dg (71\]/ )EBT

(which is necessarily an isomorphism on socgr, k) W = (socgr, k) Do(7y))®"), or equivalently a
GLy(k)-equivariant surjection (Do(7y)Y)®" — WVY. But this follows exactly as in the proofs of
[LMS22|, Lemma 4.5] and [LMS22, Prop. 4.6] (plus Proposition|8.2.3|). More precisely, one replaces
the integer 1 by the integer r in the statements of loc. cit., and the proofs are basically the same,
replacing the surjection @, P, — Dy by a surjection &, PE" — DY (for [LMS22, Lemma 4.5], one
gets at the end of the proof dim(Homg (DyY,3%(7))) > r instead of dim(Homg (Dy,5°(7))) > 1).

(ii) We now prove the proposition. Let S = Reo/Anng, (M (P,,)) be the scheme-theoretic
support of M (P,,). The representation P, [1/p] over E is the direct sum of the (tame smooth)
representations o(7) for all the tame inertial types 7 such that o, € JH(o (1)), and each such

o(r) occurs only once. It follows from (71) (With all n; = 1), (72)) and Proposition that
My (P,,)[1/p] is free of rank r over S[1/p]. By (i), we have a SurJectlon ST — MOO(PUU) Wthh
is thus an isomorphism after inverting P ([Mat89 Thm. 2. 4]) hence is also injective. Finally we
obtain S = R/ N: p, from , from M (P ) < Myo(P,,)[1/p] and from the fact the rings

RO are all domains (Prop031t1on . O
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8.3. Freeness for projective covers. We prove that My (R) is free over its scheme-theoretic
support, where R is the lattice defined in §7.3]

We keep all the notation of and we fix a Serre weight o, € W(7)). We start with the
following lemma.

Lemma 8.3.1. If Q is a quotient of Projg Uv/m%{1 (Projg/z, o) satisfying the following con-
ditions

(a) JH(sock (Q)) € JH(Proj/k,00) up to multiplicity,
(b) [Q/s0ck(Q) : 0] =1,

then both radi (Q) and Q/S are fived by Ky, where S denotes the largest submodule of sock (Q)
which is oy-isotypic. If furthermore Q) satisfies

(c) JH(radg (Q)/sock (Q)) NW(Ty) =0,

then @ has Loewy length < 3.

Proof. Fix a decomposition of sock(Q) as @i 04, with o; irreducible (with o; = o; allowed).
For each i, @ admits a quotient, say @,, with socle o; (via 0; < @ — Qo,). Then the natural
morphism @ — @} Qy, is injective and

(73) radg (Q) € radg (62, Qo;) = ity rad i (Qo,)-

Moreover, since taking radical preserves surjective morphisms, see [AIp86, §1, Prop. 5] (applied
to a suitable finite-dimensional quotient of the ring F[K]), we have an induced surjection

(74) rad (Q)/ sock (Q) - radg (Qo,)/ s0ck (Qo;)-

Assume first that @ satisfies the conditions (a), (b). To prove that radg(Q) is fixed by Kj,
using we may assume sock (Q) is irreducible. We have two cases.

— If sock (Q) % oy, then [Q : 0] = 1 by (b). By [HW22, Thm. 2.30] @ is isomorphic to
I(sock(Q),0,), and @ is itself fixed by K; by (a).

— If sock (Q) = 0y, then [Q /0y, : 0,] = 1 and @ /o, is multiplicity free by [HW22, Cor. 2.26].
Then @ fits in an exact sequence 0 — o, — Q — Q/o, — 0 (analogous to [HW22,
(4.9)]), and the end of the proof of [HW22, Prop. 4.18] shows that radx (Q)/sock (Q) is
semisimple and embeds in @0, where the sum is taken over all Serre weights o7, such that
Ext}(/Kl(a;,av) # 0. Hence, radx (Q) C QX! by (the dual version of) [HW22, Cor. 2.31].
We also deduce that @ has Loewy length 3.

We prove that Q/S is fixed by K. Using the exact sequence 0 — S — @ — @Q/S — 0,
we deduce that if Homg(o,@Q/S) # 0 for some Serre weight o, then either o € sock(Q), or
Ex‘c}(/z1 (0,004) # 0. In either case, we have o € JH(Proj/k, (0v)) (use [HW22, Lemma 2.10(ii)]

in the second case). Noting that [Q)/S : o,] = 1 by the construction of S, the conclusion follows
from [HW22|, Cor. 2.31].

Assume now that @) also satisfies condition (c). Again using and , we may assume
sock (Q) is irreducible. The case sock (Q) = o, is treated above. Assume sock (@) 2 0,. As seen
above, Q = I(sock (Q),0,). Since sock (Q) € W(FY), it follows from [HW1S8|, Prop. 2.24] that any
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Jordan-Hoélder factor of @ lies in W (T,/). Hence, we must have radx(Q)/sock(Q) = 0 by (c),
and () has Loewy length 2. This finishes the proof. O

def

For j € {0,....f — 1} let V(a;) € V((1,-1)%) 5 = (Sym*(W(F)?) @ det™)0) be the
algebraic representation of K over W(F) as defined in As in §7.3| we define the locally
algebraic representation Ry ; o V(ay) @w ) P,, of K over W(F) (so Ry = ®;Ra.;). We set

def
'QJ ={zr € Ry : (x mod pRy ;) € Py, }

using the fixed embedding ¢; : P,, — Ry ;/pRs; from This is a K-invariant W (IF)-lattice
in Ry j[1/p] such that pRy; C R’QJ C Ry ; and RIQJ/pRQ,j = P,,. Comparing the constructions
of Ry ; and of Ry (in §7.3), it is direct to see that the natural map Ry — Rj; (induced by
the projection Ry = ©;Ry; — Ry j) is surjective, hence Ry/pRy — Ry ;/pR; ; is also surjective.
By Proposition [7.3.1} we deduce (Ry;/pRj) )k, = Ps, (hence cosock(R5;/pRy ;) = 0y) and a
K-equivariant short exact sequence

(75) 0— P, ,®P,,; — Ry ;/pRy ; — P,, — 0.

2,3

Lemma 8.3.2. For all j €{0,...,f — 1} the Rs-module MOO(R’QJ) is generated by r elements.

Proof. We prove by induction on the length of @ (as a representation of K) that if @ is a
nonzero quotient of R’QJ / pR’Q’j, then M. (Q) is minimally generated by r elements. If 1g(Q) = 1,
then @ = o, (as (Ry;/pRy ;)k, = Py,) and M (0y) is minimally generated by r elements by
Proposition Now assume that the result is proved for all quotients of R; ;/pR; ; of length
< n. Returning to our fixed o, € W(7)), let @ be a quotient of R} ;/pR) ; of length n + 1. If
the socle of @ contains a Serre weight o which is not in W (7)), then My (Q) = M (Q/c) and
M+ (Q/0) is minimally generated by 7 elements by induction. Hence we can assume that all the
Serre weights in the socle of @ are in W (T))).

Assume first that [radg(Q)/sock(Q) : 0y] # 0 (in particular [Q : 0] > 2 as cosock (Q) = 0y).
Then we may find a submodule @' C @ such that cosock(Q') = o, and Q" is not contained
in sock Q. By Proposition Q' is isomorphic to a (proper) quotient of @, so M (Q') is
minimally generated by r elements by induction. On the other hand, let ¢’ be a Serre weight
in sock(Q'). Then My (Q'/o’) and My (Q/0o’) are also minimally generated by r elements by
induction. The conclusion follows from [Lel9, Lemma 4.5] with M, M’ and M” taken to be
M (Q), Mx(Q') and My (c') respectively.

Assume now that [radx(Q)/sock(Q) : 0,] = 0, so that [Q/sock(Q) : o,] = 1. Moreover,
if S denotes the largest submodule of sock (Q) which is o,-isotypic, then /S is a quotient of
Py = (R5;/pRy ;) K, by the first part of Lemma here condition (a) holds by our assumption
on sock (Q) above and the fact W (7)) C JH(Projk k, 0v) (see [BP12, §11]). Using (75), this
means that the composite morphism P, ; @ Py, , — Ry ;/pRy; — Q has image contained in
S. Since S is oy,-isotypic (and o, 2 01,,02;), this image must be zero and @ is a quotient of
P, . As M (P,,) is generated by r elements by Proposition it follows that M (Q) is also
generated by r elements. As My (0,) is minimally generated by r elements by Proposition [8.2.3(i)|
and My (0y) is a quotient of M (Q), we finally have that M (Q) is minimally generated by r
elements.
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We conclude that the Roc-module Mo (R ;/pR5 ;) is generated by r elements, from which the
result follows by Nakayama’s lemma. O

Proposition 8.3.3. Suppose that 7° is a representation of K/Ki = GLa(k) on a finite free
W (F)-module such that T°[1/p] is irreducible and cosock 7° = o, Fix j € {0,...,f —1}. If L is
any K-stable lattice of finite index in V (cy) @ (p) 79 such that cosocy L = o, then My (L) is
free of rank r over its schematic support, which is a domain.

The proof shows that such a lattice L exists and is unique up to homothety.
Proof. As cosock 7 22 ¢, we have a surjection pr : ]5% — 70 and we let Lo denote the image of

’Q’j C V(ay) @wr) P, in V(aj) @y 70 under the projection id ® pr. By the paragraph before
Lemma/[8.3.2| we see that Lg is a lattice as in the statement of the proposition, and that it moreover
contains p(V (o) @y (r) 70). If L is any K-stable lattice of finite index in V (a;) Ow (F) 79 such that
cosocg L = 0y, then after scaling we may assume that L is not contained in p(V (a;) @y g 7°). As
the reduction F () ®p 70 of V(a;) Qw (F) 70 is multiplicity-free by Proposition |6.3.10|it contains
a unique subrepresentation with cosocle o, and as Lo contains p(V (a;) @y ) 7°), we see that L

is contained in L. On the other hand, the inclusion L C Lg induces an isomorphism on cosocles
and hence L = L.

Now take the lattice I Loy constructed in the previous paragraph. We first show that
Moo (L/pL) is free of rank r over its schematic support. We have a short exact sequence

0— W1 L L/pL — Wy — 0,

where W; & (V(ey) @wwy 7°)/L and Wy & L/p(V(aj) @wewy 7). We will show that (i)

Myo(W1) = 0 and (i) there exists a lattice 70 in a tame type with cosocle o, and a surjec-

tion Wa — 7/0 such that My (Wa) = Moo(79). We then conclude by Proposition that
Moo (L/pL) = M (7"0) can be generated by r elements.

We will use repeatedly in this proof that if V; and V5 are multiplicity-free representations of
GL2(k) over F having cosocle oy, then JH(V;) C JH(V2) implies that V7 is a quotient of Va. (The
reason is that the V; are quotients of P, , hence factor through the largest quotient of P, that is
multiplicity-free [BP12, Prop. 3.6, Thm. 4.7].) Using notation as in §2|locally at the place v we
will also use that if a weight A is 7-deep in C and ¢ € {£1}7, then the submodule structure of

D) . is known by Theorem |6.3.11} parts and (where the integers a; are now restricted by
7

0 <a; <1). (It is also known by [BP12, Thm. 4.7], but using different notation.)

We write o, = F(\) for some A € X;(T) that is 8-deep in C by Proposition and our
genericity assumption. By Remark and Proposition (and Lemma ere exist
p € X1(T) and signs ¢ € {£1}7 such that JH(70) = JH(D,.), where F(t,(X&7;)) = o
and D, . is defined in (48). By the previous paragraph we have 70 = D,c. As X is 8-deep
in Cy we know that p and p + gja; are 7-deep in Cy. By Proposition [6.3.10] we know that
F(oj) ®F D, is multiplicity-free, hence W5 is (by its definition) the unique subrepresentation
of F(aj) ® D, with cosocle o, = F(t,(>°¢;7;)). By Proposition Lemma and the
submodule structure of Dj,ic;q;c We see that each irreducible constituent of W3 is of the form
F(t,(>¢eia:m;)), where 0 < a; < 1 forall i # j and 0 < a; < 2. Conversely we claim that all of
these Serre weights occur in Wa. By the submodule structures of Dy ¢ q;c and D, it suffices
to show that F'(t,(e;7; + >_&7;)) occurs in Wa. This is true, as D), . surjects onto the nonsplit
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extension of F'(t,(>°e:7;)) by F(t,(32;.;€i;)) and hence F(aj) ®r Dy, contains as subquotient
the nonsplit extension of F(t,(3"em;)) by F(tu(e;m; + > eim;)) by Lemma m (and Lemma
9.4.4).

By above, the constituents of Wi have the form F'(t,(3" €;a:7;)), where 0 < a; <1 for all i # j
and aj € {-2,-1,3}. As 0, = F(t,(3¢€;7;)) is modular, we see by Proposition that any
other modular Serre weight is of the form F(t,(>"e;b;7;)) with 0 < b; < 2. We conclude that
Moo (W) = 0.

For short let v & > €in;. Using again Proposition we write the modular Serre weights as
F(t,(v + X eibm;)) for some signs ¢’ € {£1}7 and integers 0 < b; < 1 (with b = 0 corresponding
to 0,) and note that the constituents of Wy are given by F(t,(v — > ¢7;)), 0 < ¢; < 1fori #j
and —1 <¢; <1.

By Proposition m (and Lemma [2.4.4)) we can find a representation 7" of GLa(k) on a finite
free W (F)-module such that 7/°[1/p] is irreducible and such that

IH() = {F(t (v~ Y+ <)) 0 < ds < 1 for all ).
i#]j

We may assume that 7'0 has cosocle o,. As 770 and W5 are multiplicity-free, have cosocle o, and
JH(70) C JH(W2) we see that 7/ is a quotient of W5. By construction, the Serre weights in the
complement JH(W>) \ JH(70) are not modular, so Mo (W2) = My (770), as desired.

We have shown that My (L/pL) is free of rank r over its schematic support. To deduce that

My (L) is free of rank r over its schematic support S, we first observe that S = Rg{_l)j 7

where (2,—1); is (2,—1) in the embedding o; : F;, — E and (1,0) elsewhere, as RETVIT i
a domain (apply Proposition [4.2.1] and [GK14, Rk. 5.2.2] to p = T after a suitable twist).

v
Therefore, Mo (L/pL) is an S/pS = R module that is (set-theoretically) supported on all
of Spec(S/pS). By Corollary S/pS is reduced. Hence S/pS is the schematic support of
My (L/pL). By the argument in the last paragraph of the proof of Proposition we deduce
that M (L) is free of rank r over its schematic support S. O

Theorem 8.3.4. Let j € {0,...,f — 1}. Then Moo(R5;) is free of rank r over R/ N: pr,
where T Tuns over the tame inertial types such that o, € JH(o(7)) and p, is the prime ideal
ker(Roo — Rg’_l)j’T), where (2, —1); is (2, —1) in the embedding o; : F,, — E and (1,0) elsewhere.

Proof. By Lemma the Reo-module My (R ;) is generated by r elements, i.e. there is a
surjection f: 8" — Moo (R5 ;), where S oo Roo/Annpg, (Moo (RS ;).

Note that Rj ;[1/p] = Rg ;[1/p] over E is the direct sum of the representations V(a;)r ®g o(7)

for all the tame inertial types 7 such that o, € JH(o (7)), and each such o(7) occurs only once.
In particular, it is as in Corollary where for all ¢ we have n; = 1. Arguing as in the last
sentence of the proof of Proposition it follows from and the fact that all the rings
RE ™97 for 1 such that o, € JH(o(7)) are domains (apply Proposition and [GK14, Rk.
5.2.2] to p =T, after a suitable twist) that S = R/ N, p, for p, as in the statement.



GELFAND-KIRILLOV DIMENSION AND MOD p COHOMOLOGY FOR GL2 99

By Proposition for each type 7 as in the previous paragraph the module Mo, (V (o) @y (r)

o(1)9)[1/p] is free of rank r over Rg’_l)j’T[l/p]. Thus by and the S[1/p]-module
Moo (R4 ;)[1/p] is locally free of rank r by Proposition i.e. the localization of Mo (R ;)[1/p]
at each prime ideal of S[1/p] is free of rank r. Hence (using again [Mat89, Thm. 2.4]), we see
that (ker(f)[1/p])p = 0 for all prime ideals p of S[1/p], which implies ker(f)[1/p] = 0, and hence
ker(f) = 0 since S has no p-torsion. This finishes the proof. O

Set L_; & P, and for j € {0,..., f —1} define a K-stable W (F)-lattice L;in

Py, [1/p] ® (&%_o V() @ww) Po,)[1/p] = Po, [1/p] © (@,_o Rajr)[1/p]
by induction by
def

(76) ;%

or equivalently

/
Lj-1 xp,, Ry,

Lj = {(:Ul, (acgJ/)OSj/gj) S ﬁov D (@gxzo RQJ‘/) : (:U?,j’ mod pRQJ/) = (acl mod pf’ov)
in Py, — RQJ‘//pRQJ‘/ i j/ S {0, - ,]}}
Note that L;_; = R (see §7.3).

Let 7 be a tame inertial type such that o, € JH(7T). Then o(7) is a quotient of P, [1/p], and
the image of P,, is a W (FF)-lattice in o(7) which we denote by o(7)". Let
Ty, = V() @w e o(r)°
and let Téyj C T5; be the sublattice constructed in the proof of Proposition which satisfies
cosocg T ; = 0y,. Then by the proof of loc. cit., Ty ; is identified with the image of the composite
morphism
RIQJ — Rg’j —» Tg’j.

In particular, we have pTy; C Ty ; (as pRa; C Ry ;). Set Y; e T3 ;/pTs,4, so Yj is a quotient of

P,, and hence of Lj_q. For 0 < j < f — 1, define

def

det !
Nj = Lg—l XY]- T2,j'

Lemma 8.3.5. With the above notation, the surjection T2’7j/pT2’7j — Y, induces an isomorphism
Moo (T ;/pT5 5) = Moo (Y5).

Proof. Note that the representations Tévj / pTéyj and Y; are exactly the representations denoted
by L/pL and W5 respectively in the proof of Proposition and that Mo (L/pL) = M (Wa)
follows from Mo (W7) = 0, see the second paragraph of this proof. O

For a smooth K-representation V' over I of finite dimension, we denote by (radi (V))i>o its
radical filtration: rad% (V) = V and inductively rad% (V) = radg(radi*(V)) for i > 1. As
remarked in the proof of Lemmam taking rad’% (—) preserves surjective morphisms (see [Alp86,
§1, Prop. 5]).

Lemma 8.3.6. The surjection R’Qj —» Téj induces a surjection L; — Nj, which induces an
isomorphism

(Lj/pL;)/ vad (L;/pL;) = (N;/pN;)/ rad (N;/pN;).
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Proof. As seen above, we have ker(TQ’J — Yj) = pT5 ;, which implies a short exact sequence

0—>T27jﬁ>Nj—>Lj71—>0
and consequently
0— Tgyj/pTQJ‘ ﬁ) Nj/pNj — Lj—l/pLj—l — 0.
Since ker(Rj ; — P,,) = pRa j, we have a similar exact sequence for L; which fits in the following
commutative diagram

X
0 —— Ry /PRy ; B Lj/pLj —— Lj_1/pLj—1 ——0

(77) i la

0—— TQ,j/pTQ,j —— Nj/pNj e Ljfl/pLjfl — 0.
It is direct to check that the morphism ~ is identified with
F(aj) @k (Py, /pPs,) = F(az) @ (o(7)°/po(7)")

and is induced from the quotient morphism f’av — o(7)Y. In particular, v is surjective, hence so
is # from which the first claim follows.

To prove the second claim, it is enough to show ker(8) C rad% (L;/pL;). Observe that if M
is a quotient of Projg/z, 0/ m%, (Projg /7, 0v) which admits P, as a quotient, then the induced
morphism

M/ rads (M) — P, /radi (P,,)
is an isomorphism for ¢ = 1,2. Indeed, this is clear for i = 1, and can be deduced using [HW22,
Lemma 2.10(ii)] for ¢ = 2. Thus, noting that both L;/pL; and N;/pN; admit P, as a quotient,
we get ker() = ker(rad% (8)), and hence it is enough to prove
ker(rad(3)) C radk (rad% (L;/pL;)).
Since Lj_1/pLj_1 also admits P, as a quotient, we again obtain from the observation above a
commutative diagram as in , but with L;/pL;j, N;j/pN; and L;_1/pL;_1 replaced by their
rad% (—), from which we obtain ker(rad?(3)) = ker(y). Hence it is enough to prove ker(y) C

radg (Ro,j/pRa,j), equivalently v induces an isomorphism on cosocles. But this follows from the
proof of Lemma [6.3.8 U

The reason for introducing N; is as follows.

Proposition 8.3.7. For j € {0,..., f — 1}, the following statements are equivalent:

(i) Mso(Lj) can be generated by r elements over Ruo;
(ii) Mo (Nj) can be generated by r elements over Ro.

Proof. Let m be the admissible smooth representation of GLa(F),) over F defined in or ([66).
Then by we see that (i) (resp. (ii)) is equivalent to saying that dimp Hompg (L;,7) = r
(resp. dimp Homg (Nj, ) = r). Moreover, since N; is a quotient of L;, we clearly have (i)=(ii).

The proof of (ii)=-(i) is motivated by that of [HW22, Prop. 4.18]. Assume dimp Homg (L;, 7) >
r. Then there exists a nonzero morphism h : L; — 7 which does not factor through cosocy L;.
We choose h such that [Im(h) : o,] is minimal; denote by @ the image of h. We must have
[Q/sock(Q) : o,] = 1, otherwise ) contains a submodule @' with cosocle o, and such that
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[Q'/sock(Q') : 0y] =1, so there exists a morphism L; — 7 with image @’ by Proposition
hence contradicts the choice of h. By the proof of Proposition we have w51 = Do(7Y)9". Tt
in particular implies

sock (Q) C sock (Do(Ty)") = @pew o™
Note that W (r;) C JH(Projg, g, 0v) (see [BPI2, §11]), so Q satisfies the conditions (a), (b)

in Lemma m Thus, by the (first) part of loc. cit. we have radx(Q) € Q¥t C 7K1, Since
sock(Q) = Q Nsock (), we also have rad (Q)/sock (Q) — 751 /socy (7) which implies that Q
satisfies (¢) of Lemma and hence ) has Loewy length < 3. Lemma then shows that
h: Lj — Q factors through Nj, hence gives a contradiction to (ii). U

Lemma 8.3.8. Suppose that R is a commutative noetherian local ring. Suppose that My, Mo,
M are nonzero R-modules that are free of rank r over their respective schematic support and that
we are given surjections M; — M for i = 1,2. Then the following are equivalent:

(i) My xpr My is free of rank r over its schematic support;
(ii) Anng(M) = Anng(M;) + Anng(Ms);
(iii) Anng(M) C Anng(M;) + Anng(Ms).

In any case we have Anng(M; X Ma) = Anng(M;) N Anng(Ma).

Proof. By assumption we can write M; = (R/L;)®" and M = (R/I)®" for (proper) ideals I; C
I. Without loss of generality we may assume that the given surjections are the natural maps
(R/L)®" — (R/I)®". Then My xp Ma = (R/I1 X/ R/I2)®" and by Nakayama we are reduced
to the case r = 1, which is [HW22, Lemma 8.11]. The last part is clear, since the M; surject onto
M. O

From now on, we choose the tame inertial type 7 in the discussion above such that W (7)) C

JH(o(7)); this is always possible by [EGS15, Prop. 3.5.2]. Since 7,/ is assumed to be semisimple,

(2

this forces W (7)) = JH(o (7)) and 7 is uniquely determined. We will denote it by 79 in what
follows.

Theorem 8.3.9. Let j € {—1,...,f —1}. Then My (Lj) is free of rank r over Ros/ Nxr Prr,
where py ; is the prime ideal ker(Ro — RAT) with T running over the tame inertial types such

that o, € JH(o(7)) and A = (A\jr)o<ji<f—1 running over the Hodge—Tate weights such that \j €

Proof. Twisting all the Galois deformations by e, we can replace 7,/ by 7y (1), {(1,0), (2,—1)} by
{(2,1),(3,0)} and o, € JH(o(7)) by 0y ® (Ny/k, © det™!) € JH(o(7)) (all the deformations now
have determinant 31, 1). Note first that all the rings RA7 are domains by Proposition m
(and [GK14, Rk. 5.2.2]) applied to a suitable twist of 7/ to get p =7, as in The proof is
by induction on j > —1. If j = —1, this is Proposition [8:2.6] Assume the statement is true for

Moo (Lj—1) and let us prove it for Moo (L;).

We first prove that the R.-module M (IN;) can be generated by 7 elements. From the exact-
ness of M, and we deduce
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Note that the maps Moo(Lj—1) — Moo(Y)), Moo(T3;) — Moo(Y;) are surjective. These three
modules are free of rank r over their schematic supports by induction hypothesis, Proposition|8.3.3
and Lemma [8.3.5] By Lemma [8.3.8| it is enough to prove
(78) Anng, (Mxo(Y;)) € Anng, (Moo(Lj-1)) + Anng, (Moo(T5 ;).
By Lemma we have My (Y;) = Moo (T3 ;/pT5 ), s0
Anng, (Mo (Yj)) = Anng, (Moo (T3 ;/pT3 5)) = (p) + Anng, (Moo (T3,5)),

where the second equality holds because MOO(TQ’J-) is free of rank r over its schematic support.
Hence, to prove it is enough to prove

(79) p € Anng_ (Mao(Ly—1)) + Anng (Mao(T} ).

Consider the ring

def <(3,0),00 ~
Rgo(&(])’ov = Roo ®R;v R{X( ho = Roo/ m)\,T p/\,’rv

where }L SB07 i5 as in Proposition [4.3.1|and where p) , = ker(Roo — R47) with 7 running over

the tame mertial types such that o, ® (Nk/Fp odet™) € JH(o(7)) and A = (\j)o<jr<f—1 Tunning
over {(2,1),(3,0)}/. By Proposition and 1.) and 1ncreas1ng q if necessary, we have for
some integer h > 1 and a certain exphmt ring S = ®(’) 0<j<f— IS / J that

RSB000 > GIX, . X,]

(using again [GK14 Rk. 5.2.2] and Lemma as we have conditions on the determinant here).
For each A € {(2,1),(3,0)}/ and k € {1, 2} in Proposition an “explicit” prime ideal of S is

defined that we denote here simply by p7 E= 2 p & U)A7 and that we consider as ideals of R (30000

via S — ROO(3 09 1 other words, the ideals pgu)’ 7 from Proposition 4.3.1|are relabeled as p(g)’) J

and any value of i(w); equal to 3 is changed to 1 here, to simplify notation. Moreover there is a
bijection

L1 0y ® (Nyyp, o det) € JH(o o(m)} = {1, 2}f

suéh that p f\,T =pt A7) From Lemma we also have prime ideals of V) that we rélabel here;is
qgj)’(m), qgj)’(m) such that qgjj)’@’l) C pg whenever \; = (2,1) and such that >, q,g]j)’(g’l) = p%
for all k € {1,2}/.

We note that by Lemma |4.1.2) we have 19 = 7, where w; = tot(y 1) for each 0 < j < f —1, so
Prr = pﬁ. Then by Proposition [8.3.3| and Proposition we deduce

Amng (Muo(T3,)) = PV,
Anan(Moo(RIQ’j/)) - mpk(])a
k
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where A(j') ' (2,1) if j” # j/ and A" 4 (3,0). From the definition of L;j_1 as an iterated

fiber product we have using the last part of Lemma and Proposition that

Annp  (Mso(Lj-1)) = Anng_ (Moo(-ﬁav)) N ( n Anan(Moo(RIQ,j'))>

0<j'<j—1

N0 N e
k

0<j'<j—1 k

By above we get that qgj)’@’l) N qgj)’@’l) C Anng_(Moo(Lj—1)) (note that A(j"); = (2,1) for
0<j <j—1)and péj)’(&o) C Anng_ (Mx(T5 ;)). Hence to prove it is enough to prove that

pe qgj),(ll) n qgj)7(2,1) + p(gj),(&o)

, which is a special case of Proposition 4.3.3

We have shown that M (NN;) can be generated by r elements, so the same is true for My (L;)
by Proposition [8.3.7 Let S = Ro/Anng, (Moo(L;)). Now we can argue just as in part (ii) of
the proof of Proposition [8.2.6] to see first that My (L;)[1/p] is free of rank 7 over S[1/p] and
then deduce that any surjection S” — My (L;) has to be an isomorphism. This completes the
proof. O

Corollary 8.3.10. The module M (R) is free of rank r over Ros/ Nxr Pa,r, where py ; is the

prime ideal ker(Ry, — RXT) with T running over the tame inertial types such that o, € JH(o (7))
and A = (\j)o<j<f—1 running over the Hodge-Tate weights such that \; € {(1,0),(2,—1)} for all
j. In particular, dimp My (R)/ms = 7.

Recall that we have defined the K-representation (Projg,z, ov) Jm%, with cosocle o, (see e.g.

§7.3]). From Corollary|8.3.10) Proposition|8.2.3(i)|and the isomorphism R/pR = (Proj o,)/m2
K/Z Ki
de g result.

of Corollary [7:3:4] we deduce the followin

Theorem 8.3.11. The surjection
(ProjK/Zl O—’U)/m%{1 — Oy
induces an isomorphism of (nonzero finite-dimensional) F-vector spaces
M ((Proj ez, o) /M, ) /Mog — Moo (0) /Moo

Remark 8.3.12. The exactness of the functor My, shows that the isomorphism in Theorem
[8:311] is of course totally wrong without quotienting by me.

8.4. Gelfand—Kirillov dimensions. We prove our main global results.

We keep all our previous notation. We recall our assumptions: F' is a totally real number field
unramified at p, D is a quaternion algebra of center F' split above p and at not more than one
infinite place, v is a fixed place of F' above p and 7 : Gp — GL2(IF) is a continuous representation
satisfying the following conditions: F|GF(P/T) is absolutely irreducible, 7, is generic in the sense of

[BP12, Def. 11.7] if w|p, w # v, T, is semisimple generic in the sense of (the latter implies
p > 23) and Ry, is formally smooth over W(F) if w € (Sp U S7)\Sp.

We choose wy, S and U = [[U, as in and consider the admissible smooth represen-
tation 7 of GLy(F}) defined in or (66). Recall we defined the Gelfand-Kirillov dimension

dimGLg(Fv) (7T) in
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Theorem 8.4.1. We have dimgy,,(p,)(7) = [Fy : Qp).

Proof. (i) By [GK14] §5.5] m satisfies assumption (i) in Theorem (for p = 7). It follows

v
from (67)) and Theorem [8.3.11f (choosing Mo, = M3? as in for o, asin with JH(o(7))N
W (r.,) = {ow}) that for all o, € W(F)) we have

[W[m%ﬁ] s oy] = [sock () : oy,

so that 7 satisfies also assumption (ii) in Theorem Finally, we prove that JH(m') =
JH(D1(7))) (up to multiplicity), and so by Lemma 7 satisfies assumption (iii) in Theorem

We only give the proof in the definite case, the indefinite case can be treated similarly (see
e.g. below). The K-equivariant embedding @, cw rv) oy 7" < m, where my, = [sock(7) :
oy], induces a K x (U"/V")-equivariant morphism

P o) Q ow)—lim SV, F)m,
owEW (7)) weSy\{v} Vo
which is injective because ®yesg,\ {v}0w is irreducible. By [Brel4, Lemma 9.2], the last embedding
extends to an embedding

B Do) e ( R ow) = lim SV, F)m
€W (7)) weSy\{v} Ve

and gives in turn an embedding

@ Do, ()" < m.
o EW (7))

In particular, we have JH(D1(7Y)) C JH(x't). But using [BP12, Lemma 14.1], we actually have
JH(D1(7))) = JH(x™) (up to multiplicity), and so 7 satisfies assumption (iii) in Theorem m
We can thus apply Theorem which gives dimgr,(r,)(7) < [Fy @ Q).

(ii) By the arguments of [DL21], §6], replacing K" in [DL21) §6.1] by U", the representation
V' = QueswzoVw of KY in loc. cit. by the representation o, of U" in and forgetting the
Hecke operators Ty, at places w € S’ (since we do not care about multiplicity 1), the same patching

process as in [DL21] §6.2] (which is a variant/special case of the main construction of [CEG™16]
and [Sch18| §9]) produces a “big” patched module My, over Ry [GL2(OF,)] (with a compatible

def

action of GLg(F,)) which is finitely generated free over the local ring Sy [K1/Z1], where Soo =
W(F)[z1, ..., 2454¢-1] (see for q). Moreover we have My, /ms = 7V and for any continuous
representation o, of GLa(Op,) over a finite type W (F)-module with central character w|I_F1v we
have Moo (o) = Hom{p{k) 161,(0p, ) (Moo, o), where ()Y def Homip( (—, /W (F)) and M is
endowed with its natural profinite topology. It follows from [GN22, Lemma A.16], Lemma
and that we have (where the grade j4 is as in

(80) jRoo[[Kl/Zl]](Moo) > jIF[[Kl/Zl]}(MOO/mOO) = dim(K1/Z1) — dimGLQ(FU)(W)
= 3[qu . @p] — dil’nGLQ(FU)(ﬂ').

Since Ml is free of finite type over So[K1/Z1], we have js_[x,/2,](Mo) = 0. It then follows
from [GN22, Lemma A.19] (together with [GN22, Def. A.2] and [GN22, Prop. A.4(1)]) that

(81) Jnofcy /) (Moo) = (dim(Roo) + dim(K1/Z1)) — (dim(Soc) + dim(K1/Z1)) = 2(F, : Q)
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where the last equality follows from and the definition of So,. Combining and , we
deduce 2[F, : Q] > 3[F, : Qp] — dimgy,(r,)(7), ie. dimgr,(r,)(7) > [Fy @ Qp], which finishes the
proof. O

Recall that for any Serre weight o, we have defined in §§| the injective envelope Injg /5 o, with
socle oy.

Theorem 8.4.2. There is an integer r > 1 such that ﬂ[m%ﬁ] = (EBUUGW(?X) Bgv)®r, where ﬁav is
the largest subrepresentation of (Injgz, UU)[m%(I] containing o, with multiplicity 1 (= its socle)
and no other Serre weights of W (7). In particular, each irreducible constituent of w[m¥% | has
multiplicity r.

Proof. The existence of 15% is proven in Corollary | It follows from its construction in
[DL21] §6.2] and [CEG™16] that M (see part (ii) of the proof of Theorem [8.4.1)) is projective of
finite type over Sy[K]z, where S [K]z is the largest quotient of Soo[K] on which the center
of K = GL2(OF,) acts by |1, . In particular, Moo /(p, 71, . . ., T4)5|+4—1) is finite projective over
F[K]z. As Hom%ﬁ%)ﬂm (Moo, 0y) # 0 if and only if o, € W (7)), we deduce

Moo/ (P15 -+, Za514q—1) = o cw 7y (PrOj 7, 0 ) F M

for some integers m,, > 1 (in fact m,, > r, where r > 1 is as in Proposition [8.2.3(i)]). This
implies by the definition of D,

Hom[CFCﬁI[lg]] (Moo/(pv T1y--- 7x4|S|+q—1)7 15;-/1)> ;> Homl%?[%] (Moo/(pa X1, 71:4|S|+q—1)7 0':;)

and hence taking on both sides the subspaces where mq, acts by 0 (ms acts through the action
of Roo on Mo /(p, 1, - - -, T4 §]4q—1)) We get

Homg§§he, (Moo . D’gv) 5 Hom§h, (Moo /g, )
Using My, /Moo = 7 this last isomorphism can be rewritten
Hompg (D,,, ) = HomK(ﬁgv,w[mgﬁ]) — Homf (0, m) = Hom (0, sock 7).
Since socy ™ = (S, cw (7)) " by Proposition we deduce an inclusion
M D
(82) (o ewy) Do) C mlmi].

But it follows from Corollary [6.3.13(i)| and Theorem 8.3.11|that 7[m%: ] cannot be (strictly) larger,
whence the isomorphism of the statement. The last sentence in the statement then follows from
Corollary [6.3.13{(i1)| and |(iii)} O

Theorem 8.4.3. The Ro-module My, is faithfully flat.

Proof. Since M is free of finite type over Soo[K1/Z1], it follows from |[GN22, Cor. A.29] applied
to M = Moo, A = Soo[K1/Z1] and B = Roo[K1/Z1] (using (62)) that My, is a Cohen—Macaulay
R[K1/Z1]-module. By Theorem (80), and we have

jRoo[[Kl/Zlﬂ (MOO) = jIF[[Kl/le](MOO/mOO) = 2[Fv : Qp]v

and it then follows from [GN22, Cor. A.30] (“Miracle Flatness”) that M is flat over Rs. As R
is a local and M, /my # 0, it follows that M, is faithfully flat over Ro. O
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Corollary 8.4.4. Let x : Roo — O’ be any homomorphism of local W (F)-algebras, where O is
the ring of integers of a finite extension E' of E, and set

V(z) £ Homgrt (Mo ®p.2 O, E).
Then V(x) is a nonzero admissible unitary Banach representation of GLo(Fy,) over E' with a
GLay(F,)-invariant unit ball (given by Hom&S"™ (Me g, O, 0')) lifting m @ F', where F' is the
residue field of O'.

Proof. The fact that V (z) is an admissible unitary Banach representation of GLgy(F,) follows from
[CEGT16, Prop. 2.13]. We need to prove V(z) # 0 (note that we know My, ®p._ . O # 0, as
My /Mmoo # 0, but it could be p-power torsion). By Theorem the Roo-module M, is flat,
hence My, ®@p_ » O is flat over O’ by base change, and the result easily follows by [ST02, Thm.
1.2]. O

Remark 8.4.5. Under slightly more general hypotheses on 7, one can prove Theorem [8.4.1
Theorem and Corollary with 7 replaced by the “minimal local factor” of [BD14} §3.3]
and [EGS15, §6.5]. The strategy is completely similar using Theorem the patching functor
MDn of [EGSI5, §6.5] (and the “big” minimal patched module of [DL.21], §6]), and the variant of

Corollary [8.3.10| with ]\40““0in instead of My, = Mgé; , where we now have » = 1. Details are left to
the reader.

Corollary 8.4.6. For any compact open subgroup
vi= [ o II v < [1n)
w¢SpUSx we(SpUSF)\{v} wH#v
such that V, is a subgroup of 1 +pMs(OF,) for w € Sp\{v} and such that ™ # 0, where

- def lim Home;, (7, HY (Xvvy, xp F,TF)) in the indefinite case,
Wu

def

T = liﬂS(V”VU,F) [m] in the definite case,
Vo
we have dimgy, (r,)(m) = [Fy : Qp).

Proof. Note that the ideal m in the definite case is as in Remark [8.1.3(ii)| for S big enough (the
resulting eigenspace does not depend on S by [BDJ10, Lemma 4.6(a)]). We prove the indefinite
case only, the definite case being similar. We can and do choose a place wy as in

(i) We first prove dimgr,, (r,)(7) < [F, : @p]. Since the Gelfand-Kirillov dimension of a subspace
is at most as big as the one of the space, it is enough to prove this upper bound for a smaller
V. In particular, we can assume that V,, is a subgroup of the group of matrices that are upper-

triangular unipotent mod w; and that V, is a subgroup of 1 + pMs(Opf,) which is normal in
def def

GL2(Op,) for w € S,\{v}. Let S = SpU Sy and U = [[, Uy, with U, = V,, if w ¢ S, and
Upw & (0Op)2 = GLy(Op,) if w € Sp, then S and U satisfy all the conditions in and we have

o GL2(Op, _ —
(83) = limHomyuyo (Suesy o) (dSH©) 1) Home, (7, HY (Xyoy, x5 F,F))),
Vo
where (IndeQ(OF w) 1)z is the maximal quotient of Ind‘(il:Q(OF ©) 1 on which the center of GL2(Op,)

acts by E_1| I, - Writing each (IndSwLQ(OF w) 1)z as a successive extension of Serre weights for
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GL2(Opf, ), an obvious dévissage shows that it is enough to prove that for all Serre weights
(Uw)weSp\{v}7 we have

dimGLg(Fu) <h$’l HomUu/Vu (®w€$'p\{v} Ow, HomGF (T, Hélt(XV“VU XF F, F)))) < [Fv : Qp]
Vo

But this follows from and Theorem In fact, using

Homygse sy (—, Homg,, (F, Hyy (Xvvy, xp F,F))) = Homg, (7, Homg o (—, Hiy (Xvoy, xp F,F)))
together with

Homg,, (T, Homygyv jyv (-, H} (Xyoy, xpF, F))) = Homg, (T, Homygyv o (—, H} (Xyoy, xpF, F)m))

(for m as in Remark |8.1.3{(ii)]) and the fact that H} (Xyvy, X p F, F)y is an injective representation
of UV/V? over F (since m is non-Eisenstein), we easily deduce that, in the above dévissage, 7 as

in contains
lim Homygyo jyv (®w65p\{v} ow, Homg,. (F, Hyy (Xvov, xp F, F)))
Vu

for at least one tuple (0w)wes,\ (v} With 0w, € W(7y,) for all w € S,\{v} (since m # 0). (We also
use that Homgw o (Ques\ v} 0w, Heg (Xvoy, Xp F,F)n) # 0 if and only if o, € W(7y,) for all w,

by [BDJ10, Lemma 4.10].) This implies dimgp,(r,)(7) = [F : Q] by Theorem (for 7 as in
83))-

(ii) We now prove dimgp,(r,)(7) = [Fy @ Qp] for 7 as in the statement. Set V" =[], ., Vi,
with V,, = Vi, if w # wy and V,;, = subgroup of (Op);5, of matrices that are upper-triangular
unipotent mod w;. By lThara’s Lemma at the place w;, which is easy here thanks to all the

assumptions on wi, we have for sufficiently small V,, that
_ = @2 _ =
Homg,. (7, Hy (Xvoy, xr F,F)" = Homg,, (7, Hg (Xywy, xp F,F))
and hence a GLa(F},)-equivariant isomorphism

72 o g lim Homg,, (7, H (Xyry, xr F,F)).
Vi

In particular, dimgy,(p,)(7) = dimgr,(p,) (7). Replacing V' by V', we can thus assume that V,,
is the subgroup of (Op);5, of matrices that are upper-triangular unipotent mod wy. It is enough
to prove dimgr, (g, (7) = [Fy : Qp] when V,, = 1+ pM2(OF, ) for w € S,\{v} (as dimgr,(f,)(7)
for the subgroup V,, of 14+ pMsy(OpF, ) can only grow, but is anyway bounded by [F, : Q,] by (i)).
But this follows from the last assertion in part (i) above. U

Remark 8.4.7. If V¥ = [[,¢5(Op)y [lwes (v} Vo for some finite set S containing Sp U S such
that Ry, is formally smooth for w € S\, the same proof gives dimgy,(r,)(7) = [Fy : Q).
Without assuming Vi, € 1+ pMs(Op, ) for w € S,\{v}, the above proof still gives the bound
dimgr, (r,) (1) < [Fy : Qp).

8.5. Flatness for the dual of completed cohomology. We give an application to the flatness
of the dual of completed cohomology.

In this section we assume moreover that p is inert, so that v is the unique place dividing p. Let

V¥ be as in the beginning of Le. V¥ =[]z Vi with Vi = Uy, if w ¢ Sp.
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For each compact open subgroup V,, C 1+ pM3(OF,) and for each n > 1 we define the ¢ ~!-
isotypic subspaces

1

Hi(Xyoy, xp F,W(F)/p")""

for the action of the center (A¥)* of (D ®@p AY)*, where 1h~1 is viewed as a character of
(AR)* via the global Artin map (sending uniformizers to geometrlc Frobenius elements) Let

T(VV,, W(F)/p™)¥ " be the W (F)- bubalgebra of Endyy g (HE (Xyey, xp F,W(F)/p")¥ " (re-
spectively Endyy ) (S(VVV,, W(F)/p" )¥"")) generated by the endomorphisms T, and S, for
w ¢ SU{w} and "]I‘(V”V},,VV(IE‘)/pn)?i1 its localization at the maximal ideal generated by

the elements T,, — Sy, tr(7(Froby,)), Norm(w) — Sy, det(7(Frob,,)) for w ¢ SU{w;}. Let r/IJ‘(V“);V
be the “big Hecke algebra”

(resp. S(VV,, VV(IF‘)/p”)lV1 in the definite case)

T(V)Y © lim T(V*V,, W(F)/p")E
n,Vy

We define respectively

- 1 def = nye ! v nye!
Hl(V”) L@( HXvov, xp FWE) /DY @ryay, ) pmye—r TV Vo, W(E)/p ) >
Sy = lz_lﬂ ( VoV, W(E) /0" @iy, wisy ey TV Vo WE) )2 )

so that }All(V”):f_l and its dual HomW(F)(fll(V”):f—l, W (F)) (resp. ,SA’(V”);V1 and its dual) are
naturally T(V”):f ' _modules.

Let Rif SU{wr} be the universal deformation W (IF)-algebra of 7 parametrizing deformations r of

7 such that r is unramified outside of SU{w; } and 1) = edet(r). It follows from the construction of
My in [CEGT16, §2], [Schi8|, §9] and [DL21], §6] that we have a sequence of surjective morphisms
of local rings

~ -1
(84) Roo @50 W(F) = Roo/ (21, -, Tajsi49-1) = R g0y — T(V')
and a compatible isomorphism
-~ -1
Moo @50 W(F) = Moo/ (21, ..., Zai5)1g-1) = Hompy e (H (V)Y W(F)).

Corollary 8.5.1. All the maps in are isomorphisms. Moreover Homyy () (f[l(Vv):f_l, W (TF))
(resp. HomW(F)(g(V“):fil, W(F))) is a faithfully flat T(V”)gil—module and T(V”);FI is a com-

plete intersection.

Proof. This is |[GN22 Prop. 4.3.1]. However, since our setup is slightly different, we reproduce
the proof in our case. We only prove the case of Shimura curves, the definite case being identical.

We first notice that Homyy () (FII(V“) _1, W(F)) = Meo/(21- - -, T4)5|4q-1) 18 @ faithfully flat
Reo/(21,- -, T4)5|+9—1)-module, since M, is a faithfully flat Ry module by Theorem Asa
consequence, the composite of the maps

—1

-~ —1 ~
Reo/ (@1, 24i514g-1) = RE g gy = TV — Endyye) (Homy g (H (V)Y W (F)))
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is injective. This proves the first claim and the faithful flatness of Homyy () (H I(V”);f _1, W(F))

as a T(V”):fﬁl—module. As M is a faithfully flat R, and S,-module, R, is a faithfully flat
Soo-module. As (71,...,%4g4q-1) 18 a regular sequence in Su, it is Roc-regular and therefore

r7

Roo /(%1 -+ Ty 8] 4q—1) = R%}SU{wl} ~ T(V”)$71 is a complete intersection. O

Remark 8.5.2. We expect the statement of Corollary to hold without assuming that p is
inert in F: one should extend the results of §8:4] to include all places above p, or use a non-
constant coefficient system at all places w € S,\{v}. This is somewhat beyond the purpose of
this work, and we decided not to pursue it here.
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