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π def = lim -→ Vv Hom Gal(F /F ) r, H 1 ét (X V v Vv × F F , F) ,
where V v is a fixed compact open subgroup of (D ⊗ F A ∞,v F ) × , the inductive limit running over compact open subgroups V v of (D⊗ F F v ) × ∼ = GL 2 (F v ) and r : Gal(F /F ) → GL 2 (F) is a continuous absolutely irreducible Galois representation such that π = 0. Understanding such representations π of GL 2 (F v ) attached to Galois representations is important, as it is hoped that they realize a mod p Langlands correspondence. For instance, when F = Q (and X V is the compactified modular curve), under weak assumptions on r| Gal(Q p /Qp) the representation π of GL 2 (Q p ) is well understood (see [Eme]). This is far from being the case when F v = Q p , despite a great amount of effort during the past 20 years and we only have few guidelines from modularity lifting expectations. In particular, the work of [START_REF] Gee | Patching and the completed homology of locally symmetric spaces[END_REF], which follows the heuristic of [Eme14, §3.1.1], shows how relevant geometric properties of the "big" Hecke algebra are consequences of the Gelfand-Kirillov dimension of π (a measure of the growth of the dimension of invariant subspaces under principal congruence subgroups). For F v = Q p this dimension is known by [START_REF] Morra | Invariant elements for p-modular representations of GL2(Qp)[END_REF], thanks to the explicit description of the supersingular representations of GL 2 (Q p ) [START_REF] Breuil | Sur quelques représentations modulaires et p-adiques de GL2(Qp). I[END_REF], but if F v = Q p the (over-)abundance of supersingular representations ( [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF], [START_REF] Hu | Sur quelques représentations supersingulières de GL2(Q p f )[END_REF]) makes it more difficult to obtain information, even for the invariants under the first congruence subgroup ( [START_REF] Le | Multiplicity one at full congruence level[END_REF], [START_REF] Hu | Multiplicity one for the mod p cohomology of Shimura curves: the tame case[END_REF], [START_REF]Multiplicity one for wildly ramified representations[END_REF], which are based on the patching construction of [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]).

The aim of this work is to lift a corner of the veil surrounding the smooth representations π coming from cohomology, by establishing their Gelfand-Kirillov dimension. Besides applications to the flatness of completed homology over a big Hecke algebra (Theorem 1.2 below) and on the candidate of [CEG + 16] for the p-adic Langlands correspondence (Theorem 1.3 below), our methods also lead us to an abelian subcategory of the category of smooth representations of GL 2 (F v ) that has desirable finiteness property, with further applications to a functor towards Galois representations; cf. our subsequent work ([BHH + ]).

We now describe in more detail our results.

1.2. The main theorem and its consequences. In order to state our main theorem, we first give the precise definition of dim GL 2 (Fv) (π), the Gelfand-Kirillov dimension of π in the context of smooth GL 2 (F v )-representations over mod p vector spaces. 1 We let

f def = [F v : Q p ], K def = GL 2 (O Fv ), K n def = 1 + p n M 2 (O Fv ) ⊆ K for n ≥ 1,
Z 1 the center of K 1 , and we assume p > 2. For π a nonzero 1 Strictly speaking, this is not quite the Gelfand-Kirillov dimension of π, see Remark 5.1.1 in the text, but this is the only dimension we will consider.

admissible smooth representation of GL 2 (F v ) over F with central character, we set (see §5.1)

dim GL 2 (Fv) (π) def = 3f -min{d ≥ 0 : Ext d F K 1 /Z 1 (π ∨ , F K 1 /Z 1 ) = 0}
, where F K 1 /Z 1 is the Iwasawa algebra of K 1 /Z 1 and π ∨ is the algebraic dual of π, considered as module over F K 1 /Z 1 (note that Z 1 acts trivially on π and that 3f = dim(GL 2 (F v )/Z 1 )). Another equivalent and maybe more intuitive definition of dim GL 2 (Fv) (π) is the following: it is the unique integer such that there exist a ≤ b in R >0 satisfying a ≤ dim F π Kn p n dim GL 2 (Fv ) (π) ≤ b for all n ≥ 1 (see Remark 5.1.1). (As alluded above, the dimension dim GL 2 (Fv) (π) measures the growth of π Kn when n grows: for instance it is 0 if and only if dim F (π) is finite and nonzero.) Theorem 1.1 (Corollary 8.4.6). Keep all the above assumptions on F , D, and assume that r is generic and that r| G F ( p √ 1) is absolutely irreducible. Let V v = w =v V w with V w = GL 2 (O Fw ) if neither D nor r ramifies at w, and

V w ⊆ 1 + pM 2 (O Fw ) if w | p (w = v).
Then for π as in (1) we have dim GL 2 (Fv) (π) = f . We also prove the same statement for the analog of π when D is totally definite. Although we did not check it carefully, the same method should also work in other global settings in which the group is GL 2 (F v ) at the place v, like for instance unitary groups which are forms of GL 2 . Moreover, from exchanges with Kozioł, we believe the same result applies when, in the global setup, the unitary group is a nonsplit unramified unitary group at v. In a companion paper (and the same global setup), Hu and Wang prove an analog of Theorem 1.5 below and apply our Theorem 1.6 to deduce dim GL 2 (Fv) (π) = [F v : Q p ] when r| Gal(F v /Fv) is not semisimple and sufficiently generic ( [START_REF]On the mod p cohomology for GL2: the non-semisimple case[END_REF]).

By work of Gee-Newton (see [START_REF] Gee | Patching and the completed homology of locally symmetric spaces[END_REF]), Theorem 1.1 can be applied to obtain "big R equals big T " results and flatness for the completed homology of towers of Shimura curves, when considered as a module over the "big Hecke algebra". More precisely let ψ be the Teichmüller lift of the product of det(r) and the mod p cyclotomic character, let

H 1 (V v ) ψ -1 r def = lim ← - n lim -→ Vv H 1 (X V v Vv × F F , W (F)/p n ) ψ -1
r be the ψ -1 -isotypic subspace of the completed cohomology "localized at r" and let T(V v ) ψ -1 r be the "big Hecke algebra" acting on it and let R ψ r,S be the universal deformation ring of r parametrizing deformations r of r which are unramified outside of S and such that ε det(r) = ψ (see §8.5 for precise definitions). Assume moreover that p is inert in F and that V w 1 is sufficiently small at a conveniently chosen place w 1 of F .

Theorem 1.2 (Corollary 8.5.1). There is an

isomorphism R ψ r,S ∼ -→ T(V v ) ψ -1 r , the T(V v ) ψ -1 r - module Hom W (F) ( H 1 (V v ) ψ -1 r , W (F)
) is faithfully flat, and T(V v ) ψ -1 r is a complete intersection.

We also prove the analogous result in the case of definite quaternion algebras. Note that the isomorphism R ψ r,S ∼ -→ T(V v ) ψ -1 r is related to a theorem of Allen ([All19, Thm. 6.3.6]) building on previous results of Gouvêa-Mazur and Chenevier (but without the determinant condition); however, flatness is new. This flatness was known in the case of modular curves using the full strength of the p-adic Langlands correspondence for GL 2 (Q p ) and the local-global compatibility result of [Eme].

As mentioned above, Theorem 1.1 also has important consequences for the existence of admissible unitary Banach representations of GL 2 (F v ) lifting the eigenspace of r. From now on we let

(2)

π def = lim -→ Vv Hom w|p w =v GL 2 (O Fw ) w|p w =v σ w , Hom G F r, H 1 ét (X V v Vv × F F , F) ,
where, for w | p, w = v, σ w is any Serre weight in the set W (r ∨ w ) of [BDJ10, §3] and V w ⊆ 1 + pM 2 (O Fw ) is normal in GL 2 (O Fw ), and V w 1 is sufficiently small at a nice place w 1 where nothing ramifies. (Note that, by dévissage, we can always replace π as in (1) by (2).) The representation π of GL 2 (F v ) in (2) can be "patched" as in [CEG + 16] or [START_REF] Dotto | Diagrams in the mod p cohomology of Shimura curves[END_REF]§6] giving rise to a "big" profinite R ∞ -module M ∞ endowed with an R ∞ -linear continuous action of GL 2 (F v ) such that M ∞ /m ∞ ∼ = π ∨ . Theorem 1.3 (Corollary 8.4.4). Keep the assumptions of Theorem 1.1 and let x : R ∞ → O be any homomorphism of local W (F)-algebras, where O is the ring of integers of a finite extension

E of W (F)[1/p]. Then Hom cont O M ∞ ⊗ R∞,x
O , E is a (nonzero) admissible unitary Banach representation of GL 2 (F v ) over E with a GL 2 (F v )invariant unit ball lifting π ⊗ F F , where F is the residue field of O .

Note that x : R ∞ → O gives rise to a Galois representation ρ x : Gal(F v /F v ) → GL 2 (E ) and that Hom cont O (M ∞ ⊗ R∞,x O , E ) is the natural candidate of [CEG + 16] for the Banach space representation of GL 2 (F v ) associated to ρ x by the hypothetical p-adic Langlands correspondence. So far it was not known that this representation is nonzero in this generality.

To deduce this from Theorem 1.1, by Schikhof duality (see [START_REF] Schneider | Banach space representations and Iwasawa theory[END_REF]§1]), it is enough to prove that M ∞ ⊗ R∞,x O is flat over O . But an argument due to Gee and Newton in [GN22, Cor. A.30] (and usually called "Miracle Flatness") shows that, when dim GL 2 (Fv) (π) = f , the R ∞ -module M ∞ is indeed flat over R ∞ , whence the result by base change.

We also prove several variants and generalizations of Theorem 1.1. For instance, without the assumption V w ⊆ 1 + pM 2 (O Fw ) for w | p, we still have dim GL 2 (Fv) (π) ≤ f , see Remark 8.4.7. We can take V w = GL 2 (O Fw ) for w outside any finite set S containing the ramification places of D and r provided R rw is formally smooth for all w ∈ S prime to p (see loc. cit.). It is likely that other variants of Theorem 1.1 can be proven, e.g. by fixing types at some places w prime to p instead of assuming R rw formally smooth. For instance, we have dim GL 2 (Fv) (π D,v (r)) = f , where π D,v (r) is the "local factor" π D,v (r) of [START_REF] Breuil | Formes modulaires de Hilbert modulo p et valeurs d'extensions entre caractères galoisiens[END_REF](3.3)] and [EGS15, §6.5] (see Remark 8.4.5).

The notion of genericity for r appearing in Theorem 1.1 is mainly dictated by the current technology for studying potentially crystalline deformation rings (cf. [LLHLM]). It is made explicit as follows. For a finite place w of F , let I Fw be the inertia subgroup at w and ω f , f ∈ {f, 2f } be Serre's fundamental character of level f . Then: (i) for w p such that either D or r ramifies, the framed deformation ring R rw of r w def = r| Gal(F w /Fw) over the Witt vectors W (F) is formally smooth;

(ii) for w | p, w = v, r| I Fw is generic in the sense of [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]Def. 11.7]; (iii) r| I Fv is semisimple of one of the following forms up to twist:

(a) ω (r 0 +1)+•••+p f -1 (r f -1 +1) f 0 0 1 12 ≤ r i ≤ p -15, (b) 
  ω (r 0 +1)+•••+p f -1 (r f -1 +1) 2f 0 0 ω p f (same) 2f
  13 ≤ r 0 ≤ p -14, 12 ≤ r i ≤ p -15 for i > 0.

Note that (iii) implies p > 23 and that (i) can be made explicit [START_REF] Shotton | Local deformation rings for GL2 and a Breuil-Mézard conjecture when = p[END_REF]).

1.3. The proof. We now sketch the proof of Theorem 1.1.

Smooth representations.

A key step in our method is to show that the representations π appearing in Theorem 1.1 satisfy a "minimal multiplicity" condition, namely condition (3) of Proposition 1.5 below. It is this condition that plays a key role in our subsequent work [BHH + ].

We describe these results in more detail. We let k( ∼ = F p f ) be the residue field of F v , and for each Serre weight σ ∈ W (r ∨ v ), we define D 0,σ as the largest subrepresentation of the injective envelope Inj GL 2 (k) σ such that σ only appears in the socle of D 0,σ and no other Serre weight of W (r ∨ v ) is a constituent of D 0,σ . We set D 0 (r ∨ v ) def = ⊕ σ∈W (r ∨ v ) D 0,σ as in [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]§13]. We also denote by m K 1 /Z 1 the maximal ideal of F K 1 /Z 1 . In order to get the above upper bound on dim GL 2 (Fv) (π), we will apply the following theorem to π in (2).

Theorem 1.4 (Theorem 6.4.7). Let π be an admissible smooth representation of GL 2 (F v ) over F with a central character. Assume that (i) we have an isomorphism

π K 1 = π[m K 1 /Z 1 ] ∼ = D 0 (r ∨ v ) ⊕r of representations of GL 2 (k) for some r ≥ 1; (ii) we have [π[m 2 K 1 /Z 1 ] : σ] = [π[m K 1 /Z 1 ] : σ] for all σ ∈ W (r ∨ v ).
Then dim GL 2 (Fv) (π) ≤ f .

(In fact we prove in Theorem 6.4.7 a slightly stronger statement.) Condition (i) in Theorem 1.4 is already familiar, for instance it is satisfied with r = 1 by the representation π D,v (r) mentioned above (see [START_REF] Hu | Multiplicity one for the mod p cohomology of Shimura curves: the tame case[END_REF] and [START_REF] Le | Multiplicity one at full congruence level[END_REF], which build upon [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF] and [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]). Thus it is rather condition (ii) which is important. Though it is purely local, the proof of Theorem 1.4 is not at all trivial, and it took us a long time before finding a proof (or even convincing ourselves that the statement was true!). The key idea is to look at the action on π of the Iwahori subgroup I of K instead of K itself. The proof of Theorem 1.4 is divided into two steps. The first step is the following result, where I 1 ⊆ I is the pro-p-Iwahori subgroup and m I 1 /Z 1 is the maximal ideal of the Iwasawa algebra F I 1 /Z 1 .

Theorem 1.5 (Proposition 6.4.6). Let π be an admissible smooth representation of GL 2 (F v ) over F with a central character and assume π satisfies (i) and (ii) of Theorem 1.4. Then for all continuous characters χ : I → F × such that [π[m I 1 /Z 1 ] : χ] = 0 we have:

(3) [π[m 3 I 1 /Z 1 ] : χ] = [π[m I 1 /Z 1 ] : χ].
Note that socle(π| I ) = π[m I 1 /Z 1 ] = π I 1 since p > 2. The proof of Theorem 1.5 is given in §6. It is a bit long and technical, but is rather standard (to apply Proposition 6.4.6 to π as in Theorem 1.4 one actually needs Corollary 6.3.13 and Lemma 6.4.3, see §6.4).

The second step is the following key result which gives the sought-after upper bound on the Gelfand-Kirillov dimension.

Theorem 1.6 (Corollary 5.3.5). Let π be an admissible smooth representation of GL 2 (F v ) over F with a central character and assume [π[m 3

I 1 /Z 1 ] : χ] = [π[m I 1 /Z 1 ] : χ] for all χ : I → F × such that [π[m I 1 /Z 1 ] : χ] = 0. Then dim GL 2 (Fv) (π) ≤ f .
Let us sketch the proof of Theorem 1.6. We view the algebraic dual π ∨ as a (finitely generated) module over F I 1 /Z 1 and denote by gr m π ∨ the associated graded module over gr m F I 1 /Z 1 for the m I 1 /Z 1 -adic filtration. The graded ring gr m F I 1 /Z 1 is not commutative, as the prop group I 1 /Z 1 is not uniform (see [START_REF] Clozel | Globally analytic p-adic representations of the pro-p-Iwahori subgroup of GL(2) and base change, I: Iwasawa algebras and a base change map[END_REF] and §5.3). But the assumption [π[m 3 I 1 /Z 1 ] : χ] = [π[m I 1 /Z 1 ] : χ] implies that the action of gr m F I 1 /Z 1 on π ∨ factors through a commutative quotient (gr m F I 1 /Z 1 )/I I 1 /Z 1 , where I I 1 /Z 1 is an explicit 2-sided ideal of gr m F I 1 /Z 1 generated by certain degree 2 elements (see Theorem 5.3.4). More precisely one has (4)

gr m F I 1 /Z 1 /I I 1 /Z 1 ∼ = F[e i , f i ; 0 ≤ i ≤ f -1]/(e i f i ; 0 ≤ j ≤ f -1),
where the (commutative) polynomial algebra F[e i , f i ; 0 ≤ i ≤ f -1] is itself the quotient of gr m F I 1 /Z 1 by a regular sequence (h 0 , . . . , h f -1 ) of central elements. By a general lemma (Lemma 5.1.3), dim GL 2 (Fv) (π) is equal to the dimension of the support of gr m π ∨ in the polynomial algebra gr m F I 1 /Z 1 /(h 0 , . . . , h f -1

) ∼ = F[e i , f i ; 0 ≤ i ≤ f -1],
which by (4) is smaller or equal than dim(gr m F I 1 /Z 1 /I I 1 /Z 1 ) = 2f -f = f . So we see that the fact that gr m π ∨ (for an admissible smooth representation of GL 2 (F v ) over F) is a module over (gr m F I 1 /Z 1 )/I I 1 /Z 1 , and not just over gr m F I 1 /Z 1 , turns out to be an important condition.

1.3.2. Patching: the setup. We now apply Theorem 1.4 to π in (2). For this, we need to prove that π satisfies conditions (i) and (ii) of Theorem 1.4. We first sketch the proof of (ii), which is the harder and more important one. We fix an arbitrary Serre weight σ in W (r ∨ v ). We need to prove

Hom K (σ, π) ∼ -→ Hom K (Proj K/Z 1 σ)/m 2 K 1 /Z 1 , π , (5) 
where Proj K/Z 1 σ is the algebraic dual of the injective envelope Inj K/Z 1 σ ∨ of σ ∨ in the category of smooth representations of K/Z 1 over F.

We do not know any other way to prove (5) than to "patch" (the dual of) both sides using the patching functors of [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]. This strategy is not new: it is initially due to Emerton, Gee, Savitt in [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF] (generalizing work of Diamond, of Fujiwara, and using of course the work of Taylor, Wiles and of Kisin) and has been generalized by Le, Morra, Schraen, by Hu, Wang, and by Le in [START_REF] Le | Multiplicity one at full congruence level[END_REF], [START_REF] Hu | Multiplicity one for the mod p cohomology of Shimura curves: the tame case[END_REF], [START_REF] Le | Lattices in the cohomology of U (3) arithmetic manifolds[END_REF] who proved (under various hypotheses) a result analogous to (5) but with m K 1 /Z 1 instead of m 2 K 1 /Z 1 . Recall that a patching functor is an exact (covariant) functor M ∞ from the category of continuous representations of K on finite type W (F)-modules to the category of finite type R ∞ -modules satisfying several "Cohen-Macaulay" properties, see [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]§6]. Here R ∞ is the relevant patched deformation ring, a power series ring over R loc (using standard notation), see §8.1. Note that one also has to be careful about determinants and central characters, but we ignore this minor issue in the introduction.

Thus proving (5) is equivalent to proving

M ∞ (Proj K/Z 1 σ)/m 2 K 1 /Z 1 /m ∞ ∼ -→ M ∞ (σ)/m ∞ , (6)
where m ∞ is the maximal ideal of R ∞ . The strategy in the above references to prove (a "multiplicity one" variant of) (6) with m 2 K 1 /Z 1 replaced by m K 1 /Z 1 is to use the isomorphism (7)

M ∞ ( Proj GL 2 (k) σ)/(p) ∼ = M ∞ (Proj GL 2 (k) σ) = M ∞ (Proj K/Z 1 σ)/m K 1 /Z 1 ,
where Proj GL 2 (k) σ is the unique projective W (F)[GL 2 (k)]-module lifting Proj GL 2 (k) σ ∼ = Inj GL 2 (k) σ, and to determine the support of M ∞ ( Proj GL 2 (k) σ) in R ∞ .

1.3.3. Lattices in locally algebraic representations. We apply a similar strategy in our case, which means we first have to lift (Proj K/Z 1 σ)/m 2 K 1 /Z 1 to a W (F)[K]-module. This is significantly more complicated than to lift (Proj K/Z 1 σ)/m K 1 /Z 1 . It is easy to check that the K-representation

(Proj K/Z 1 σ)/m 2 K 1 /Z 1 is a nonsplit extension 0 -→ (m K 1 /Z 1 /m 2 K 1 /Z 1 ) ⊗ F Proj GL 2 (k) σ -→ (Proj K/Z 1 σ)/m 2 K 1 /Z 1 -→ Proj GL 2 (k) σ -→ 0.
For convenience, let us fix an embedding σ 0 : k ∼ = F p f → F and write all others as σ 0 • ϕ j , j ∈ {0, . . . , f -1}, where ϕ is the Frobenius x → x p on k. Then we have

m K 1 /Z 1 /m 2 K 1 /Z 1 ∼ = f -1 j=0 Sym 2 (F 2 ) ⊗ F det -1 (j) ,
where (j) means that GL 2 (k) acts via σ 0 • ϕ j . Moreover, for each j, we fix a (non-canonical) GL 2 (k)-equivariant embedding

ι j : Proj GL 2 (k) σ → Sym 2 (F 2 ) ⊗ F det -1 (j) ⊗ F Proj GL 2 (k) σ.
We set L -1 def = Proj GL 2 (k) σ and R 2,j def = Sym 2 (W (F) 2 ) ⊗ W (F) det -1 (j) ⊗ W (F) L -1 j ∈ {0, . . . , f -1}, and we define a K-invariant lattice L j in the locally algebraic representation

L -1 [1/p] ⊕ j j =0 R 2,j [1/p] as follows L j def = {(x, (x j ) 0≤j ≤j ) ∈ L -1 ⊕ ⊕ j j =0
R 2,j : (x j mod pR 2,j ) = (x mod pL -1 ) via ι j : L -1 /pL -1 → R 2,j /pR 2,j ∀ j ∈ {0, . . . , j}}.

Equivalently, we have for j ∈ {0, . . . , f -1} that (8)

L j def = L j-1 × Proj GL 2 (k) σ R 2,j ,
where R 2,j def = {x ∈ R 2,j : (x mod pR 2,j ) ∈ ι j (L -1 /pL -1 )} (another K-invariant lattice in R 2,j [1/p]). By explicit computations carried out in §7, we first prove that the lattice L f -1 lifts (Proj K/Z 1 σ)/m 2 K 1 /Z 1 .

Theorem 1.7 (Corollary 7.3.4). We have a K-equivariant isomorphism

L f -1 /pL f -1 ∼ = (Proj K/Z 1 σ)/m 2 K 1 /Z 1 .
We then prove the following theorem.

Theorem 1.8 (Corollary 8.3.9). For j ∈ {-1, . . . , f -1} the R ∞ -module M ∞ (L j ) is free of finite rank over R ∞ /Ann R∞ (M ∞ (L j )). Moreover this rank depends neither on j nor on the fixed Serre weight σ in W (r ∨ v ).

Denote by r ≥ 1 the rank in Theorem 1.8. Applying Theorem 1.8 to both j = -1 and j = f -1, and using Theorem 1.7 when j = f -1, we see that the two F-vector spaces in (6) both have dimension r. Since the natural map from left to right in (6) is surjective by exactness of M ∞ , we obtain that (6) is an isomorphism, and hence that π satisfies condition (ii) of Theorem 1.4.

We now sketch the proof of Theorem 1.8, which is by induction of j. We first prove the following two statements for j ∈ {0, . . . , f -1}:

(i) M ∞ (L -1 ) is free of rank r over R ∞ /Ann R∞ (M ∞ (L -1 )); (ii) M ∞ (R 2,j ) is free of rank r over R ∞ /Ann R∞ (M ∞ (R 2,j )). Statement (i) is proven in §8.2 (see Proposition 8.2.6
) by a refinement of the techniques in [EGS15, §10] and [LMS22, §4] together with some commutative algebra. Statement (ii) is proven in Theorem 8.3.4 using standard dévissage techniques and "elementary" properties of the functor M ∞ (in particular [Le19, Lemma 4.5] instead of [EGS15, Lemma 10.1.13]) and some results of §8.2.

By exactness of M ∞ , (8) implies

M ∞ (L j ) ∼ = M ∞ (L j-1 ) × M∞(Proj GL 2 (k) σ) M ∞ (R 2,j ).
We know that M ∞ (R 2,j ) is free of rank r by (ii) above and we know that M ∞ (L j-1 ) is free of rank r over R ∞ /Ann R∞ (M ∞ (L j-1 )) by our induction hypothesis (which holds for j = 0 by (i)). Hence, to deduce the same statement for M ∞ (L j ), it is enough (in fact equivalent using Lemma 8.3.8) to prove

(9) Ann R∞ (M ∞ (Proj GL 2 (k) σ)) ⊆ Ann R∞ (M ∞ (L j-1 )) + Ann R∞ (M ∞ (R 2,j )).
1.3.4. Deformation rings, and conclusion. Statement (9) is the most subtle and the most technical part of the paper and is ultimately proven in Theorem 8.3.9, though in a somewhat indirect way as we explain now.

Recall that R r ∨ v is the local W (F)-algebra parametrizing framed deformations of r ∨ v . We let R (1,0),τ r ∨ v , resp. R (2,-1) j ,τ r ∨ v for j ∈ {0, . . . , f -1}, be the reduced p-torsion free quotient of R r ∨ v
parametrizing those deformations which have inertial type τ and parallel Hodge-Tate weights (1, 0), resp. Hodge-Tate weights (2, -1) in the embedding F v → W (F)[1/p] induced by σ 0 • ϕ j and (1, 0) elsewhere. An explicit computation that builds on the recent advances of Le-Le Hung-Levin-Morra [START_REF]Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], [START_REF] Le | Weight elimination in Serre-type conjectures[END_REF] (see Proposition 4.2.1) shows that these rings are all domains. It follows (see Proposition 8.

2.6) that R ∞ /Ann R∞ (M ∞ (L -1 )) is a power series ring over R r ∨ v / ∩ τ p (1,0) τ
, where p

(1,0) τ is the prime ideal ker(R r ∨ v R (1,0),τ r ∨ v
) and τ runs over the tame inertial types such that σ is a Jordan-Hölder factor in the mod p semisimplification of σ(τ ) (here σ(τ ) is the usual irreducible smooth representation of K associated by Henniart to τ in the appendix to [START_REF] Breuil | Multiplicités modulaires et représentations de GL2(Zp) et de Gal(Q p /Qp) en l = p[END_REF]). Likewise,

R ∞ /Ann R∞ (M ∞ (R 2,j )) is a power series ring over R r ∨ v / ∩ τ p (2,-1) j τ
, where

p (2,-1) j τ = ker(R r ∨ v R (2,-1) j ,τ r ∨ v
) and τ runs over the same tame types (see Theorem 8.3.4).

In the first version of our work, we tried to prove (9) directly. For that one has to deal with Ann R∞ (M ∞ (R 2,j )) which is essentially (forgetting formal variables) ∩ τ p (2,-1) j τ . However, computing elements in this intersection over the 2 f types τ turns out to be very hard because the ideals p (2,-1) j τ do not have simple generators (this is mainly due to the technical monodromy condition which appears as we have Hodge-Tate weights (2, -1)) and there was a gap in our proof. To avoid this intersection, we use the following detour, which is inspired by the proof of [START_REF]On the mod p cohomology for GL2: the non-semisimple case[END_REF]Prop. 4.18].

Choose a tame inertial type τ 0 such that the set of irreducible constituents of σ(τ 0 )/pσ(τ 0 ) coincides with the set W (r ∨ v ) (such a type exists) and define for j ∈ {0, . . . , f -1}

T 2,j def = Sym 2 (W (F) 2 ) ⊗ W (F) det -1 (j) ⊗ W (F) σ(τ 0 ) 0 , T 2,j def = image of the composition R 2,j → R 2,j T 2,j ,
where σ(τ 0 ) 0 is the image of L -1 in σ(τ 0 ) (equivalently the unique K-invariant lattice in σ(τ 0 ) with cosocle σ). Then the surjection R 2,j T 2,j induces a surjection

L j N j def = L j-1 × Y j T 2,j
where

Y j is an explicit quotient of Proj GL 2 (k) σ such that M ∞ (Y j ) = M ∞ (T 2,j /pT 2,j ) (Lemma 8.3.5
). We first prove that M ∞ (L j ) is free of rank r (over its schematic support) if and only if M ∞ (N j ) is free of rank r (see Proposition 8.3.7 and the last paragraph of the proof of Theorem 8.3.9). To prove the latter, as for (9) we have to prove for j ∈ {0, . . . , f -1}

Ann R∞ (M ∞ (Y j )) ⊆ Ann R∞ (M ∞ (L j-1 )) + Ann R∞ (M ∞ (T 2,j ))
or equivalently since Ann R∞ (M ∞ (Y j )) = (p) + Ann R∞ (M ∞ (T 2,j )) and since T 2,j is a lattice in

T 2,j [1/p], ( 10 
) p ∈ Ann R∞ (M ∞ (L j-1 )) + Ann R∞ (M ∞ (T 2,j )) = Ann R∞ (M ∞ (L j-1 )) + p (2,-1) j τ 0 .
Note that we have replaced the intersection ∩ τ p

(2,-1) j τ by just p

(2,-1) j τ 0 ! It is then possible to check (10) by an explicit computation, which can be done entirely "by hand", see Proposition 4.3.3 and the proof of Theorem 8.3.9. We have compiled in Tables 1 to 5 all the explicit computations of deformation rings that we use in the proofs (everything was checked "by hand").

To apply Theorem 1.4 to π in (2), it remains to show that π satisfies condition (i) of Theorem 1.4. But using (6) together with standard injectivity properties of localizations of Hecke modules at non-Eisenstein maximal ideals and (a lot of) representation theory of K (see Corollary 6.3.13), we actually obtain the complete structure of π[m 2 K 1 /Z 1 ] as a representation of K.

Theorem 1.9 (Theorem 8.4.2). Let π as in (2), we have

(11) π[m 2 K 1 /Z 1 ] ∼ = σ∈W (r ∨ v ) D σ ⊕r ,
where r is the rank in Theorem 1.8 and D σ is the largest subrepresentation of (

Inj K/Z 1 σ)[m 2 K 1 /Z 1 ] containing σ with multiplicity 1 (= its socle) and no other Serre weights of W (r ∨ v ). Moreover, each irreducible constituent of π[m 2 K 1 /Z 1 ] has multiplicity r.
Condition (i) of Theorem 1.4 then immediately follows from the isomorphism (11) in Theorem 1.9 by taking K 1 -invariants on both sides. In particular we finally obtain: Theorem 1.10 (Theorem 8.4.1). Let π be as in (2). Then dim GL 2 (Fv) (π) = f . 1.4. Notation. We only give some very general notation here, more specific notation will be given in each section. We fix an algebraic closure Q p of Q p . All finite extensions of Q p will be considered as subfields of Q p . We let v p denote the valuation of Q p such that v p (p) = 1.

We let E be a finite extension of Q p , with ring of integers O, uniformizer and residue field F, and will always assume that E is sufficiently large. We let k be a finite extension of F p of degree

f def = [k : F p ].
We fix an embedding σ 0 : k → F and let σ j def = σ 0 • ϕ j , where ϕ : x → x p is the arithmetic Frobenius on k. Then the set

J def = Hom(k, F) is identified with {0, . . . , f -1}.
We let ε (resp. ω) denote the p-adic (resp. mod p) cyclotomic character of the absolute Galois group G F , where F is any finite extension of Q or Q p . We normalize Hodge-Tate weights so that ε has Hodge-Tate weight 1 at every embedding.

Given a profinite group G, we write F G for its completed group algebra with F-coefficients, with augmentation ideal denoted by m G . We recall that Pontryagin duality M → M ∨ induces an exact anti-equivalence between the category of smooth G-representations over F, and the category of pseudocompact F G -modules. Recall that given a pseudocompact F G -module M , we have the radical rad G M def = m G M . Dually, given a smooth G-representation M we write soc G M for its socle.

If G is a group and V a representation of G on a finite-dimensional E-vector space we denote by V the semisimplification of a G-stable O-lattice in V . If V a representation of G on a finitedimensional vector space, we let JH(V ) denote the set of Jordan-Hölder factors of V . Also, if σ is an irreducible representation of G, we let [V : σ] be the multiplicity of σ in the semisimplification of V . 1.5. Acknowledgements. The initial impetus for this work was a SQuaRE meeting at the American Institute of Mathematics at San Jose in August 2019 (though it was not quite clear at the time where we were really heading!). We heartily thank AIM for hosting and supporting us and for outstanding working conditions. We are also very grateful to Sug Woo Shin and Karol Kozioł for participating in this meeting and for sharing their thoughts with us. We are particularly grateful to Karol Kozioł for pointing out a mistake in an earlier version of this work. Finally, we heartily thank an anonymous referee for his or her report, especially for pointing out an embarrassing mistake in our previous use of multi-type deformation rings. C. B. thanks X. Caruso for discussions in an early attempt to approach the Gelfand-Kirillov dimension via computational techniques, and Ahmed Abbes and all the organizers of the Séminaire de Géométrie Arithmétique Paris-Pékin-Tokyo for their invitation to give the very last talk of this seminar on this work in June 2020. Y. H. thanks Ahmed Abbes for inviting him to I.H.É.S. for the period of November-December 2019 and I.H.É.S. for its hospitality. 

Preliminaries

Throughout this section K denotes the unramified extension of Q p of degree f with ring of integers O K and residue field k. Recall from §1.4 that we have fixed an embedding σ 0 : k → F, hence an embedding K → E which we still denote by the same symbol σ 0 . In particular we have compatible identifications of J = Hom(k, F) with Hom Qp (K, E) and with {0, . . . , f -1}.

2.1. Group theoretic preliminaries. We consider the group scheme GL n defined over Z, let T ⊆ GL n be the diagonal maximal torus and Z its center. We write R for the set of roots of (GL n , T ), W for its Weyl group, with longest element w and let B ⊆ GL n denote the Borel of upper-triangular matrices. In particular, B determines the subsets R + of positive roots. We identify the set of characters X * (T ) with Z n in the standard way. If n = 2, let α ∈ R + correspond to (1, -1) ∈ Z 2 so that R + = {α}. If A is any ring, we write GL n/A to denote the base change of GL n to A.

Let G 0 be the algebraic group Res O K /Zp GL n/O K with T 0 the diagonal maximal torus and center Z 0 . Let G be the base change G 0 × Zp O, and similarly define T and Z.

There is a natural isomorphism

G ∼ = J GL n/O induced by the ring homomorphism O K ⊗ Zp O ∼ = O J defined by x ⊗ 1 → (σ j (x)) j∈J . One has similar isomorphisms for T , Z, X * (T ), R, R ∨ ,
where R (resp. R ∨ ) denotes the set of roots (resp. coroots) of (G, T ). If µ ∈ X * (T ), then we correspondingly write µ = (µ j ) j∈J . We have an automorphism π on X * (T ), coming from the descent data of T induced by T 0 and corresponding to the arithmetic Frobenius, characterized by π(µ) j = µ j-1 .

We identify X * (T ) = ⊕ J X * (T ) with (Z n ) J as above. Moreover, if (a 1 , . . . , a n ) ∈ Z n we write (a 1 , . . . , a n ) to denote the element of X * (T ) whose corresponding tuple equals (a 1 , . . . , a n ) at each embedding j ∈ J . We let η j be (n -1, . . . , 1, 0) in the j-th coordinate and 0 otherwise. We let η def = j η j = (n -1, . . . , 1, 0). Given λ ∈ X * (T ) (resp. λ ∈ X * (T )), we let V (λ) /O denote the algebraic Weyl module of GL n/O (resp. G) with highest weight λ as defined in [START_REF] Carsten | Representations of algebraic groups[END_REF]II.8

.3]. If A is an O-algebra, we write V A (λ) to denote the restriction of V (λ) /O (A) to GL n (O K ) via the map GL n (O K ) → GL n (A) induced
by the ring homomorphism σ 0 . If j ∈ J and λ ∈ X * (T ), we write V (λ)

(j) /O to denote the algebraic representation of G obtained, by inflation from the j-th projection G ∼ = J GL n/O π j GL n/O , from the algebraic Weyl module V (λ) /O of GL n/O . Let R + ⊆ R (resp. R ∨,+ ⊆ R ∨ )
be the subset of positive roots (resp. coroots) of G with respect to the upper-triangular Borel in each embedding. If n = 2, let α j ∈ R be (1, -1) in the j-th coordinate and 0 otherwise, so that R + = {α j : j = 0, . . . , f -1}.

Let X *

+ (T ) be the set of dominant weights, i.e. the set of weights λ ∈ X * (T ) satisfying 0 ≤ λ, α ∨ for all α ∈ R + . We denote by X 1 (T ) ⊆ X * + (T ) be the subset of p-restricted weights λ ∈ X * + (T ) satisfying 0 ≤ λ, α ∨ ≤ p -1 for all simple roots α ∈ R + . Let X reg (T ) ⊆ X * + (T ) be the subset of weights λ ∈ X * + (T ) satisfying 0 ≤ λ, α ∨ < p -1 for all simple roots α ∈ R + . Finally, we let X 0 (T ) ⊆ X * + (T ) be the subset of weights λ ∈ X * (T ) satisfying λ, α ∨ = 0 for all simple roots α ∈ R + .

The lowest alcove is defined as

C 0 def = {λ ∈ X * (T ) ⊗ R : 0 < λ + η, α ∨ < p ∀ α ∈ R + }. Given N ≥ 0 and µ ∈ C 0 we say that µ is N-deep in C 0 if N < µ + η, α ∨ < p -N for all α ∈ R + . (Thus the existence of an N -deep weight in C 0 implies p ≥ 2N + 2.)
In particular, when n = 2, via the identifications above

X 1 (T ) = {λ ∈ (Z 2 ) f : 0 ≤ λ j,1 -λ j,2 ≤ p -1 ∀ j = 0, . . . , f -1}, X reg (T ) = {λ ∈ (Z 2 ) f : 0 ≤ λ j,1 -λ j,2 < p -1 ∀ j = 0, . . . , f -1}, and C 0 ∩ X * (T ) = X reg (T ).
Let W be the Weyl group of (G, T ), with longest element w 0 . It acts on X * (T ) and we have a compatible identification of W with j∈J W . Given w ∈ W , we write w j to denote its j-th component via the identification above.

Let W a and W be the affine Weyl group and extended affine Weyl group, respectively, of G.

Concretely, W a ∼ = Λ R W and W ∼ = X * (T ) W , where Λ R ⊆ X * (T ) is the root lattice of G.
The image of λ ∈ X * (T ) in W is denoted by t λ . Note that W ∼ = (Z n S n ) f and we will also write t a for the image of a ∈ Z n in Z n S n . We have the p-dot action of W on X * (T ), defined

as follows: if w = wt ν ∈ W and µ ∈ X * (T ) then w • µ def = w(µ + η + pν) -η.
Let Ω be the stabilizer of the lowest alcove C 0 in W , so W = W a Ω. Concretely, when n = 2, it is the subgroup of W generated by X 0 (T ) and 1, wt -(1,0) J .

Recall that the choice of C 0 endows W a with a Bruhat order, which is denoted by ≤. This induces a partial order ≤ on W , namely wa ω ≤ w a ω in W a Ω = W if and only if wa ≤ w a in W a and ω = ω in Ω. We denote W ∨ the group W , endowed with the Bruhat order induced by the choice of the antidominant base alcove, i.e.

C ∨ 0 def = {λ ∈ X * (T ) ⊗ R : -p < λ + η, α ∨ < 0 ∀ α ∈ R + }.
We have an anti-isomorphism

W ∨ ∼ -→ W w → w * defined by ((st µ ) * ) j = t µ f -1-j s -1 f -1-j such that w1 ≤ w2 if and only if w * 2 ≤ w * 1 [LLHL19, Lemma 2.1.3]. Given λ ∈ X * (T )
we let Adm ∨ (t λ ) denote the λ-admissible set in the sense of [START_REF] Kottwitz | Minuscule alcoves for GLn and GSp 2n[END_REF] relative to the Bruhat order defined above on W ∨ .

Let R be a commutative ring. If (x 1 , . . . , x n ) ∈ R n we write Diag(x 1 , . . . , x n ) for the diagonal matrix of M n (R) whose i-th diagonal entry is x i . If µ ∈ Z n and x ∈ R then we write x µ for the diagonal matrix Diag(x µ 1 , . . . , x µn ) ∈ M n (R).

Sometimes it will be convenient to consider W

∨ as subgroup of GL n (F((v))) f by the injective homomorphism sending st µ to ( ṡj v µ j ) j , where ṡj is the permutation matrix associated to s j ∈ S n .

If w ∈ S n we let sgn(w) ∈ {±1} denotes its sign.

The inertial local Langlands correspondence and Serre weights.

An inertial type is a representation τ :

I K → GL 2 (Q p )
with open kernel which can be extended to W K (or equivalently to G K ).

By a result of Henniart (see the appendix to [START_REF] Breuil | Multiplicités modulaires et représentations de GL2(Zp) et de Gal(Q p /Qp) en l = p[END_REF]), given an inertial type τ , there is an irreducible smooth GL 2 (O K )-representation σ(τ ) over Q p associated to it. We normalize it as in [BM02, §2.1.1] when τ is non-scalar, and when τ = χ ⊕ χ is scalar we let σ(τ ) def = χ • det (via local class field theory). (This is often referred as the inertial local Langlands correspondence; the representation σ(τ ) above is the same as the representation σ(τ ) appearing in [CEG + 16, Thm. 3.7] when, in the notation of loc. cit. G = GL 2 (K).) We remark that for any inertial type τ , the representation σ(τ ) can be realized over E, up to enlarging E if necessary.

A Serre weight of G 0 × Zp F p is an isomorphism class of an (absolutely) irreducible representations of G 0 (F p ) = GL n (k) over F. If λ ∈ X 1 (T )
, we write L(λ) /F (or sometimes just L(λ)) for the irreducible algebraic representation of G × O F of highest weight λ, and F (λ) for the restriction of L(λ) /F to the group G 0 (F p ). The map λ → F (λ) induces a bijection between X 1 (T )/(p-π)X 0 (T ) and the set of Serre weights of

G 0 × Zp F p (cf. [GHS18, Lemma 9.2.4]). A Serre weight σ is regular if σ ∼ = F (λ) with λ ∈ X reg (T ), cf. [Her09, Def. 6.1].
If n = 2 and ρ : G K → GL 2 (F) is a tame Galois representation then we have a set W (ρ) of Serre weights, defined by Buzzard-Diamond-Jarvis in [START_REF] Buzzard | On Serre's conjecture for mod Galois representations over totally real fields[END_REF]. We emphasize that W (ρ) depends only on ρ| I K .

2.3. Tame inertial types. Fix a pair (s, µ) ∈ W × X * (T ), which we will use to define a tame inertial type.

Writing s = (s 0 , . . . , s f -1 ) ∈ W we set s

τ def = s 0 s f -1 s f -2 • • • s 1 ∈ S n
and let r denote the order of s τ . Let f def = rf , e def = p f -1. Let K /K be the unramified extension of K of degree r with residue field k . We fix an embedding σ 0 : k → F extending σ 0 , so we can identify J def = Hom(k , F) with the set {0, . . . , f -1} via σ j def = σ 0 • ϕ j → j . We define the tame fundamental character ω f :

I K → F × as the composition I K = I K O × K k × → F × ,
where the first map is the local Artin map, normalized so that uniformizers correspond to geometric Frobenius elements, and the last map is given by σ 0 . We also let ω f :

I K → O × denote the Teichmüller lift of ω f . Define α (s,µ) ∈ (Z n ) Hom(k ,F) ∼ = X * (T ) r by α (s,µ),j def = s -1 1 s -1 2 • • • s -1 j (µ j + η j )
, where the indices on the right-hand side are considered modulo f . In particular, α (s,µ),j+kf = s -k τ α (s,µ),j , showing that α (s,µ),j only depends on j modulo f . Also define

a (j ) (s,µ) def = f -1 i =0 α (s,µ),-j +i p i ∈ Z n . Definition 2.3.1. Given (s, µ) ∈ W × X * (T ) define τ (s, µ + η) def = 1≤i≤n ω a (0) (s,µ),i f : I K → GL n (O).
Setting a (0) def = f -1 j=0 α (s,µ),j p j we can also write it as

(12) τ (s, µ + η) = 1≤i≤n ω 0≤k≤r-1 a (0) s k τ (i) p f k f .
From (12) we see that τ (s, µ + η) is a tame inertial type, i.e. can be extended to G K . Given a tame inertial type τ (s, µ + η), we write τ (s, µ + η) for its reduction mod .

Remark 2.3.2. Due to our choice of labeling of the embeddings of k in F, namely σ j = σ 0 • ϕ j , our definition of τ (s, µ + η) is not compatible with [LLHL19, Def. 2.2.1]. This choice is motivated by the fact that we do not think that the definition in loc. cit. is compatible with [START_REF] Herzig | The weight in a Serre-type conjecture for tame n-dimensional Galois representations[END_REF] and [START_REF] Gee | General Serre weight conjectures[END_REF]. However we checked that it does not affect our further references to [START_REF] Le | Weight elimination in Serre-type conjectures[END_REF].

Definition 2.3.3. Let τ be a tame inertial type and N ∈ Z ≥0 .

(i) We say that τ is N -generic if there is an isomorphism τ ∼ = τ (s, λ + η) for some s ∈ W and λ ∈ X * (T ) which is N -deep in alcove C 0 . (ii) A lowest alcove presentation of τ is a pair (s, µ) ∈ W × C 0 such that τ ∼ = τ (s, µ + η)
(which by definition exists exactly when τ is 0-generic).

We also recall the following definition.

Definition 2.3.4. Let ρ : G K → GL 2 (F) be a Galois representation and let N ∈ N. Let ρ ss | I K denote the restriction to I K of the semisimplification of ρ. We say that ρ is N -generic if ρ ss | I K ∼ = τ (s, µ) for some s ∈ W and µ -η ∈ X * (T ) which is N -deep in alcove C 0 .
Remark 2.3.5. Note that if a type τ is N -generic and (s, λ) is a lowest alcove presentation of τ , the weight λ is not necessarily N -deep in C 0 . However by [LLHL19, Prop. 2.2.15], we know that λ is (N -1)-deep in C 0 . (Similar comments apply to genericity of ρ.)

Below we will need the "orientation" s or ∈ (S n ) Hom(k ,F) ∼ = W r of α (s,µ) , which is defined by

s or,j def = s -1 1 s -1 2 • • • s -1 f -1-j
, where the indices on the right-hand side are considered modulo f . Hence s or,j+kf = s k τ s or,j , showing that s or,j only depends on j modulo f . (We remark that if µ ∈ X * (T ) is 0-deep in C 0 then s or,j is the unique element of W such that (s or,j ) -1 (a

(j) (s,µ) ) ∈ X * (T ) is dominant.)
2.4. Combinatorics of types and Serre weights. Let n = 2. We collect results on Serre weights for mod p Galois representations and Jordan-Hölder constituents of reductions of generic Deligne-Lusztig representations, expressed in terms of the extension graph of [START_REF] Le | Multiplicity one at full congruence level[END_REF]§2]. We caution the reader that we modify slightly the definition of the extension graph and translation map appearing in loc. cit.

Let Λ W def = X * (T )/X 0 (T ) denote the weight lattice of Res k/Fp SL 2 . We identify Λ W with Z J in the usual way. For µ ∈ X * (T ) we define

Λ µ W def = {ω ∈ Λ W : 0 ≤ µ + ω, α ∨ < p -1 ∀ α ∈ R + },
where µ denotes the image of µ in Λ W . The set Λ µ W is called the extension graph associated to µ.

We have an injective map t µ : Λ µ W → X reg (T )/(p -π)X 0 (T ) whose image consists of the weights λ ∈ X reg (T ) such that λ| Z = µ| Z modulo (p -π)X * (Z). (In other words, the map ω → F (t µ (ω)) defines a bijection between Λ µ W and regular Serre weights with central character µ| Z .)

The map t µ is constructed as follows. Given ω ∈ X * (T ) there is a unique w ∈ Ω∩t -π -1 (ω ) W a . Setting t µ (ω )

def = w • (µ + ω ) mod (p -π)X 0 (T )
we thus obtain a map t µ : X * (T ) → X * (T )/(p-π)X 0 (T ), which further factors through X * (T ) X * (T )/X 0 (T ) = Λ W , by the definition of w and since • is the p-dot action. We write t µ for the restriction of such a map to Λ µ W , and note that t µ has image in X reg (T )/(p-π)X 0 (T ) by definition of Λ µ W . Remark 2.4.1. In the notation of [LMS22, §2.2] the set Λ µ W above would be denoted by Λ µ+η W , and the map t µ above by t µ+η .

In terms of the identification Λ W ∼ = Z J the map t µ is described as follows: if µ = (a j , b j ) j ∈ X * (T ) and ω = (2n j + δ j ) j ∈ Λ µ W with n j ∈ Z, δ j ∈ {0, 1}, then a representative of t µ (ω) is given by

(t µ (ω)) j = (a j + n j + δ j , b j -n j ) if δ j+1 = 0, (b j -1 -n j , a j + n j + δ j -p + 1) if δ j+1 = 1. ( 13 
)
We now recall and slightly improve on a few results about t µ which will be important in §4 (for the combinatorics of tame inertial types and Serre weights) and in §6.2 (for the structure of certain GL 2 (O K )-representations with F-coefficients).

Given J ⊆ J we define η J def = j∈J η j ∈ X * (T ) and write η J for the image of η J in Λ W = X * (T )/X 0 (T ). Define Σ ⊆ Λ W to be the set {η J : J ⊆ J }.

Proposition 2.4.2. Suppose that ρ : 

G K → GL 2 (F) is a tame Galois representation such that ρ| I K ∼ = τ (s, µ) for some (s, µ) ∈ W × X * (T ) with µ -η lying 1-deep in alcove C 0 . Then (14) W (ρ) = {F (t µ-η (sω)) : ω ∈ Σ} . Proof.
= τ (sw -1 , µ -sw -1 (ν)) for some (s, µ), (w, ν) ∈ W × X * (T ) such that µ -sw -1 (ν) -η is 1-deep in alcove C 0 . If ν ∈ η + Λ R , then JH σ(τ ) = F (t µ-η (sw -1 (ω -ν))) : ω ∈ Σ .
Proof. Recall that, in the notation of [DL21, LLHL19], we have σ(τ ) ∼ = R sw -1 (µ -sw -1 (ν)) by [LLHL19, Cor. 2.3.5] (the deepness assumption on µ -sw -1 (ν) -η ensures that τ is 1-generic in the terminology of loc. cit., hence regular, see [LLHL19, Def. 2.2.9] and the comment after it; thus [LLHL19, Cor. 2.3.5] applies). Moreover, the deepness assumption on µ -sw -1 (ν) -η reads 1 < µ -sw -1 (ν), α ∨ < p -1 for α ∈ R + and since sw -1 (Σ), α ∨ ∈ {-1, 0, 1} we conclude that 0 < µ + sw -1 (Σ -ν), α ∨ < p for α ∈ R + . This is exactly the condition that sw -1 (Σ -ν) ⊆ Λ µ-η W and the statement is thus immediate from [DL21, Prop. 2.15] (keeping in mind that the translation map in loc. cit. is an η-shift of ours).

We recall the following "change of origin" formula for the map t λ , obtained from [LMS22, Prop. 2.5]. For ω ∈ Λ µ W let ω ∈ X * (T ) denote a lift of ω and define w ω as the image of the unique element w ∈ Ω ∩ t -π -1 (ω ) W a (as above) in W . By definition, w ω does not depend on the choice of lift ω of ω and in fact only depends on the image of

ω in Λ W /Λ R . Lemma 2.4.4. Let ω ∈ Λ µ W and let λ ∈ X * (T ) be such that t µ (ω) ≡ λ mod (p -π)X 0 (T ). Then t λ (ω ) = t µ (w -1 ω (ω ) + ω) for all ω ∈ Λ λ W . Equivalently t µ (ω ) = t λ (w ω (ω -ω))
. Remark 2.4.5. Recall from 2.1 that Λ R denotes the root lattice of G. (In particular, we have a natural inclusion Λ R → Λ W , which identifies Λ R with (2Z) J via the isomorphism Λ W ∼ = Z J .) (i) Given J ⊆ J we let w 0,J def = j+1∈J w j where w j ∈ W is nontrivial exactly at the embedding j. Recall moreover the element η J = j∈J η j ∈ X * (T ) associated to J. Then

w ω = w 0,J if ω ≡ η J mod Λ R . (ii) If ν ∈ Λ R , we have w ν = 1 and Lemma 2.4.4 implies that t µ+ν (ω) = t µ (ω + ν). (Note that t µ (ν) ≡ µ + ν mod (p -π)X 0 (T ).) (iii) From the definition, t µ (ω) ∈ C 0 if and only if µ + ω ∈ C 0 . In particular t µ ( a i η i ) ∈ C 0 ⇐⇒ 0 ≤ µ, α ∨ i + a i ≤ p -2 ∀i. (iv) Likewise, t µ (ω) is n-deep in C 0 if and only if µ + ω is n-deep in C 0 .
We use the terminology of [LMS22, Definition 2.8]: two elements ω, ω of Λ µ W are adjacent if ω -ω ≡ ±η j mod X 0 (T ) for some j ∈ J . This gives Λ µ W the structure of a graph. We have the following slight improvement of [LMS22, Prop. 2.9]. Lemma 2.4.6. Let ω, ω be elements of Λ µ W . Then

dim F Ext 1 GL 2 (k) (F (t µ (ω)), F (t µ (ω ))) = 1 if ω, ω are adjacent, 0 otherwise. Proof. Let λ def = t µ (ω)
. By Lemma 2.4.4 we have t µ (ω ) = t λ (ω ) with ω = w ω (ω -ω). As ω and 0 are adjacent if and only if ω and ω are adjacent, we may assume that ω = 0. By letting η i be η i mod X 0 (T ) we compute

t µ (η i ) ≡ w i-1 t -η i-1 • (µ + η i ) mod (p -π)X 0 (T ), t µ (-η i ) ≡ t η i-1 w i-1 • (µ -η i ) mod (p -π)X 0 (T ).
These are precisely the Serre weights that extend with F (µ) by [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]Cor. 5.6]. (Note that by assumption all Serre weights in this lemma are regular.)

Remark 2.4.7. The "change of origin" map Λ λ W ∼ -→ Λ µ W sending ω to w -1 ω (ω ) + ω (see Lemma 2.4.4) clearly preserves adjacency, i.e. is a graph automorphism. Under the identification Λ W ∼ = Z J it is of the form (a 0 , . . . , a f -1 ) → (ε 0 a 0 + n 0 , . . . , ε f -1 a f -1 + n f -1 ) for some ε i ∈ {±1} and n i ∈ Z.

Galois deformations: background and lemmas

3.1. Kisin modules with descent data and the monodromy condition. We keep the setup of §2, in particular K denotes the unramified extension of Q p of degree f , with residue field k. For this section we will recall and slightly extend some relevant background and notation from [START_REF]Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], [START_REF]Serre weights and Breuil's lattice conjecture in dimension three[END_REF], and [START_REF] Le | Weight elimination in Serre-type conjectures[END_REF].

3.1.1. Kisin modules. From now on we fix a tame inertial type τ together with a lowest alcove presentation (s, µ) for τ . (The lowest alcove presentation fixes an ordering of the characters in τ . This will be important in defining many of the concepts below, see Remark 3.1.3.) Recall that

s τ = s 0 s f -1 s f -2 • • • s 1 ∈ S n
and that r denotes the order of s τ .

As in §2.3 we let K /K be the unramified extension of K of degree r with residue field k . Fix an e -th root (-p) 1/e of -p, let E(u ) = (u ) e + p = v + p denote the minimal polynomial of (-p) 1/e over K , and let 

L def = K ((-p) 1/e ). Let ∆ def = Gal(L /K ) ⊆ ∆ def = Gal(L /K). If R is a complete noetherian local O-algebra with finite residue field define S L ,R def = (W (k ) ⊗ Zp R) u . Given a (W (k ) ⊗ Zp R) u -module M we define M (j ) def = M ⊗ W (k ),σ -j R,
) ∆=1 = (W (k) ⊗ Zp R) v .
Let h ≥ 0 be an integer. We define the category of Kisin modules over R of E(u )-height ≤ h and descent data of type τ as in [LLHLM20, Def. 3.1.3] (with the caveat that we consider modules of rank n as opposed to 3 in loc. cit.), and denote it by Y [0,h],τ (R). Given an object (M, φ M ) (or, for short, just M) of Y [0,h],τ (R) we have the notion of eigenbasis β = (β (j ) ) for M, as defined in [LLHLM20, Def. 3.1.6], [LLHL19, Def. 3.2.8].

In particular, given a Kisin module M ∈ Y [0,h],τ (R) and an eigenbasis β of M we can consider the matrix of the Frobenius morphism φ M . In the definition below we let ϕ be the R-linear endomorphism of R u which sends u to (u ) p . Definition 3.1.1. We let C (j ) M,β ∈ M n (R u ) denote the matrix of ϕ * (M (j ) ) → M (j +1) with respect to the bases ϕ * (β (j ) ) and β (j +1) , i.e. β (j +1) C (j )

M,β = φ (j ) M (ϕ * (β (j ) )). We denote by A (j ) M,β ∈ M n (R v ) the matrix A (j ) M,β def = Ad ( ṡ or,j +1 ) -1 (u ) -a (j +1) (s,µ) (C (j ) M,β )
(see also [START_REF] Le | Local models for Galois deformation rings and applications[END_REF]equation (5.4)], where C (j ) M,β in loc. cit. denotes the matrix of ϕ * (M (j -1) ) → M (j ) ).

Remark 3.1.2. We caution that Ad( ṡ(u ) µ ) denotes Ad( ṡ) Ad((u ) µ ) and not Ad((u ) s(µ) ), and we remind the reader that ṡ is the permutation matrix representing s and that we have (u ) µ = Diag((u ) µ 1 , . . . , (u ) µn ) for µ ∈ Z n . Remark 3.1.3. We stress that the notion of eigenbasis and the definition of A (j ) M,β depends on the choice of the lowest alcove presentation (s, µ) for τ . Moreover, when µ is 1-deep in alcove C 0 , the matrix A (j ) M,β only depends on j modulo f and is upper-triangular modulo v (see the discussion after [LLHLM, Rk. 5.1.7]).

If λ = (λ j,1 , . . . , λ j,n ) j ∈ X * (T ) is a dominant character such that λ j,i ∈ {0, . . . , h} for all j, i, we have a closed p-adic formal substack Y ≤λ,τ of Y [0,h],τ defined in [CL18, Theorem 5.3], which is flat over O and has reduced versal rings. It is characterized by the property that for any flat p-adically

complete noetherian local O-algebra R, a Kisin module M ∈ Y [0,h],τ (R) belongs to Y ≤λ,τ (R) if
and only if all i by i minors of A (j) M,β are divisible by (v + p) i k=1 λ j,n+1-k , for i ∈ {1, 2, . . . , n} (cf. [LLHLM] the discussion after Warning 5.3.2, see also [START_REF]Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF]Prop. 4.18]). This definition does not depend on the choice of the eigenbasis for M. Definition 3.1.4. Let M ∈ Y [0,h], τ (F). Write I(F) for the Iwahori subgroup of GL n (F v ) consisting of matrices which are upper triangular modulo v. We say that M has shape w ∈ W ∨ with respect to τ if for any choice of eigenbasis β the equality

I(F)A (j) M,β I(F) = I(F) wj I(F) holds in GL n (F((v)
)) for all j = 0, . . . , f -1. This notion is independent of β by [LLHLM18, Prop. 2.15, 2.16], but again depends on the choice of lowest alcove presentation of τ .

Fix M ∈ Y [0,h],τ (F) we recall that an eigenbasis β is a gauge basis if A (j) M,β has a particularly simple form [LLHL19, Def. 3.2.23]. A gauge basis always exists and is unique up to scaling by {(t j ) j ∈ T (F) f : t j = t k for j ≡ k mod f } (this is [LLHL19, Prop. 3.2.22] in the particular case h = n -1, and the general case follows from [LLHLM, Prop. 5.1.8, Lemma 5.2.2]).

We now fix M ∈ Y [0,h],τ (F) together with a gauge basis β for it. Write w = (w j t ν j ) j ∈ W ∨ for its shape with respect to τ .

The 

(h + 1)-generic tame inertial type. Let M ∈ Y [0,h],τ (R) together with an isomorphism M ⊗ R F ∼ = M.
Then there exists an eigenbasis β for M lifting β such that for all 1 ≤ i, k ≤ n and all j = 0, . . . , f -1 we have

(i) A (j) ik ∈ v δ i>k R[v + p], (ii) deg v (A (j) ik ) ≤ ν j,k -δ i<w j (k) with equality if (i, k) = (w j (k), k), where A (j) def = A (j)
M,β . Furthermore, such a β is uniquely determined up to scaling by the group {(t j ) j ∈ ker(T (R) → T (F))

f : t j = t k for j ≡ k mod f }. 

λ def = ∞ n=0 ϕ n E(u ) p = ∞ n=0 1 + v p n p ∈ O rig O ⊆ O rig R .
we have the derivation

N ∇ def = -u λ d d(u ) of O rig R .
Let M ∈ Y [0,h],τ (R) and write M rig for the base change M ⊗ R u O rig R , which decomposes as

M rig = ⊕ j M rig,(j ) .
The following result builds on [Kis06, Cor. 1.3.15] and is stated in [START_REF] Le | Local models for Galois deformation rings and applications[END_REF]Prop. 7

.1.3]. Proposition 3.1.7. Let M ∈ Y [0,h],τ (R) for R a p-adically complete flat O-algebra that is topo- logically of finite type. Then, M rig [1/λ] is equipped with a unique derivation N M rig over N ∇ such that (15) N M rig φ M rig = E(u )φ M rig N M rig and N M rig mod u = 0.
We have a decomposition of N M rig into N (j )

M rig : M rig,(j ) → M rig,(j ) and we write N (j )

M rig ,β to denote the matrix of the endomorphism N (j ) M rig with respect to the basis β (j ) , i.e. β (j ) N (j )

M rig ,β = N (j )
M rig (β (j ) ). Definition 3.1.8. Let M ∈ Y [0,h],τ (R) with eigenbasis β. The monodromy condition is the condition that λ h-1 N (j ) M rig ,β vanishes to order h -1 at u = (-p) 1/e for all j . We see as in [LLHLM18, Prop. 5.3] that the condition above is equivalent to N M rig (M rig ) ⊆ M rig . As in the proof of Thm. 6.14 in [START_REF]Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], the monodromy condition only depends on j modulo f . As in [LLHLM18, Thm. 5.6], [LLHL19, Prop. 3.4.12], given M ∈ Y [0,h],τ (R) with eigenbasis β, the matrix N (j ) M rig ,β can be expressed as

N (j ) M rig ,β = N (j ) 1 + ∞ i=1 i-1 k=0 ϕ k (C (j -k-1) M,β ) ϕ i (N (j -i) 1 ) 0 k=i-1 ϕ k E(u )(C (j -k-1) M,β ) -1 , where N (j ) 1 satisfies Ad ( ṡ or,j ) -1 (u ) -a (j ) (s,µ) (λ h-1 N (j ) 1 ) = = - ϕ(λ) p h -e v d dv A (j -1)
M,β -Diag((s or,j ) -1 (a

(j ) (s,µ) )), A (j -1) M,β (v + p) h (A (j -1) M,β ) -1 .
In what follows, define the leading term of the monodromy condition

P N (A (j-1) M,β ) def = -e v d dv A (j-1)
M,β -Diag((s or,j ) -1 (a

(j) (s,µ) )), A (j-1) M,β (v + p) h (A (j-1) M,β ) -1 (16) (where [M, N ] def = M N -N M )
, which again only depends on j modulo f . Proposition 3.1.9 [START_REF]Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF]). Let M ∈ Y [0,h],τ (R) with eigenbasis β. The monodromy condition is equivalent to the condition that

d du t u =(-p) 1/e Ad ( ṡ or,j ) -1 (u ) -a (j ) (s,µ) (λ h-1 N (j ) M rig ,β ) = 0 (17)
for all t = 0, . . . , h -2, j = 0, . . . , f -1 and only depends on j modulo f . Assume that τ is N -generic, where N ≥ 2h -3 and (N -1)(p -1) ≥ h. Then the monodromy condition has the form

d dv t v=-p P N (A (j-1) M,β ) + O(p N -(h-1)-t ) = 0
for all j = 0, . . . , f -1 and all t = 0, . . . , h -2, where the O(p N -(h-1)-t ) denote specific but inexplicit elements of p N -(h-1)-t M 2 (R).

Proof. The proof is a slight generalization of the argument appearing in the proof of [LLHL19, Prop. 3.4.12] (which is the particular case where h = n -1 and N = 2n -1).

As in the proof of [START_REF] Le | Weight elimination in Serre-type conjectures[END_REF]Prop. 3.4.12] the monodromy condition is equivalent to λ h-1 N (j ) M rig ,β vanishing to order h-1 at u = (-p) 1/e for all j , which, as u is invertible in R[u ]/(E(u )) [1/p], is equivalent to condition (17) for all t = 0, . . . , h -2 and all j . Defining Z (j ) i , M (j ) in analogy to Z (j) i , M (j) in loc. cit. (replacing n -1 and j in loc. cit. by h and j respectively) we see as in [START_REF] Le | Weight elimination in Serre-type conjectures[END_REF]Prop. 3.4.12] that Z

(j ) i ∈ v (N -1)p i-1 p i(h-1) M n (R v ) for i > 1 and Z (j ) 1 ∈ v N p h-1 M n (R v ) (as τ is N -generic), hence that (18) d dv t v=-p M (j ) ∈ p N -(h-1)-t M n (R) for t = 0, . . . , h -2. (Note that d dv t v=-p (ϕ i+1 (λ)/ϕ(λ)) h Z (j ) i is contained in t t =0 Z p d dv t v=-p Z (j )
i . Here we use that (N -1)(p -1) ≥ h to deal with the terms for i ≥ 2.) From the definition of Z (j ) i and M (j ) we deduce from (17) that the monodromy condition is equivalent to

d dv t v=-p -P N (A (j -1) M,β ) + M (j ) = 0
for all j and all t (note that (ϕ(λ)/p) h does not vanish at u = (-p) 1/e ), which gives the second part of the statement thanks to (18).

3.2. Lemmas on mod p Galois representations. Given (s, µ) ∈ W × X * (T ), consider the reduction τ (s, µ) : I K → GL n (F) of the tame inertial type τ (s, µ). Typically, the length of τ (s, µ) as representation of I K equals the number of orbits of

s τ = s f s f -1 • • • s 1 ∈ S n .
The following definition gives the precise condition for this to be true. Definition 3.2.1. We say that (s, µ)

∈ W × X * (T ) is good if f d(i)-1 j=0 p j (s -1 1 • • • s -1 j (µ j )) i ≡ 0 (mod q d(i) -1 q d -1 ) ∀ 1 ≤ i ≤ n ∀ d | d(i), 1 ≤ d < d(i),
where 

d(i) ≥ 1 is minimal such that s -1 1 s -1 2 • • • s -1 f d(i) (i) = i (
τ (s, µ) ∼ = n i=1 ω f d(i)-1 j=0 p j (s -1 1 •••s -1 j µ j ) i f d(i) .
In this case, any extension of τ (s, µ) to a G K -representation is irreducible.

Lemma 3.2.3. If µ -η ∈ C 0 , then (s, µ) is good for any s ∈ W . Proof. Fix i ∈ {1, . . . , n}. Let ν def = f -1 j=0 p j s -1 1 • • • s -1 j (µ j ) ∈ Z n and let c k def = (s -k τ ν) i .
By assumption, 0 < µ j , α ∨ j < p for all i, which implies that 0 < |c k -c | < q for all k ≡ (mod d(i)). It suffices to show that

d(i)-1 k=0 q k c k ≡ 0 (mod q d(i) -1 q d -1 ) for all d | d(i), 1 ≤ d < d(i).
This follows exactly as in the proof of [START_REF] Herzig | The weight in a Serre-type conjecture for tame n-dimensional Galois representations[END_REF]Lemma 6.24]. (Alternatively one can check that Definition 3. 

G K over F of dimension n such that V ( w, D)| G K∞ ∼ = V * K (M( w, D))
, where V * K denotes the contravariant functor of [START_REF] Fontaine | Représentations p-adiques des corps locaux. I[END_REF] from étale ϕ-modules to representations of G K∞ (see also [LLHL19, §3.1], where it is denoted by V * ). Its existence and uniqueness is guaranteed by [LLHL19, Prop. 3.1.2] and the equivalence for tame representations in [LLHL19, §3.1]. Lemma 3.2.6. For λ ∈ (F × ) f we have

V ( w, λD) ∼ = V ( w, D) ⊗ F nr f -1 j=0 λ j ,
where nr(α) denotes the unramified character of G K sending an arithmetic Frobenius to α ∈ F × .

Proof. As M( w, λD) is the tensor product of M( w, D) and M(1, λ) over k((v)) ⊗ Fp F and V * K is a tensor functor, it suffices to show that

V (1, λ) ∼ = nr( f -1 j=0 λ j ).
Note that M(1, λ) is isomorphic to the rank one étale ϕ-module with

ϕ (j) = 1 if 0 ≤ j < f -1, f -1 j =0 λ j if j = f -1 in the standard basis. By the proof of [GLS14, Lemma 6.3], V * K (M(1, λ)) ∼ = nr( f -1 j=0 λ j )| G K∞ Proposition 3.2.7. Suppose w ∈ W ∨ , w * = t µ s with (s , µ ) ∈ W × X * (T ) good. Then ρ : G K → GL n (F) : ρ| I K ∼ = τ (s , µ ) / ∼ = = {V ( w, D) : D ∈ T (F)} / ∼ = .
Proof. By [LLHL19, Prop. 3.1.2] we know that the right-hand side is contained in the left-hand side. As in line 1 of the proof of [LLHL19, Prop. 3.1.2] we may assume that ( w * ) j = 1 for all 0 ≤ j < f -1. Then we can split M( w, D) into a direct sum of ϕ-modules according to the orbits of (s * ) f -1 ∈ S n , so without loss of generality s 0 has only one orbit. (Note that the goodness of (s , µ ) is compatible with this decomposition.) As (s , µ ) is good and s 0 has only one orbit, we deduce by Remark 3.2.2 that V ( w, D) is irreducible. By Lemma 3.2.6 it follows that the left-hand side is contained in the right-hand side.

Recall that ρ :

G K → GL n (F) is cyclotomic free if ρ becomes upper triangular over an unram- ified extension K /K of degree prime to p such that H 0 (G K , (ρ| G K ) ss ⊗ F ω -1 ) = 0 [LLHLM18, Def. 3.8]. Lemma 3.2.8. If ρ 1 , ρ 2 are finite-dimensional representations of G K over F such that ρ ∨ 1 ⊗ F ρ 2 is cyclotomic free, then the natural map Hom G K (ρ 1 , ρ 2 ) → Hom G K∞ (ρ 1 | G K∞ , ρ 2 | G K∞ ) is an isomorphism.
Proof. This follows from (the proof of) [LLHLM, Lemma 7.2.10(3)]. 

Corollary 3.2.9. If ρ 1 , ρ 2 are finite-dimensional representations of G K over F such that ρ 1 is 2-generic (defined analogously to [LLHLM18, Def. 3.7]), then the natural injective map Isom G K (ρ 1 , ρ 2 ) → Isom G K∞ (ρ 1 | G K∞ , ρ 2 | G K∞ ) is a bijection. Proof. We first claim that ρ ss | G K∞ ∼ = (ρ| G K∞ ) ss for any finite-dimensional representation ρ of G K over F, i.e. that ρ ss | G K∞ is already semisimple. This follows as in [LLHL19, §3.1]: ρ ss is a representation of G K /I w K , where I w K is the wild inertia group and G K∞ /(G K∞ ∩ I w K ) ∼ = G K /I w K , as K ∞ /K is a totally ramified p-extension. Assume Isom G K∞ (ρ 1 | G K∞ , ρ 2 | G K∞ ) = 0.
∼ = ρ ss 2 , hence (ρ ∨ 1 ⊗ F ρ 2 ) ss ∼ = ad(ρ 1 ) ss . As ad(ρ 1 ) is cyclotomic
free by the analog of [LLHLM18, Prop. 3.9], we obtain ρ ∨ 1 ⊗ F ρ 2 cyclotomic free, and we can then conclude by Lemma 3.2.8.

A commutative algebra lemma

. Lemma 3.3.1. Let A def = O x 1 , . . . , x n , where O is a complete DVR with uniformizer and n ≥ 2. If f ∈ A × and d > 0, then x 1 x 2 + d f is irreducible in A. Moreover the ideals (x 1 x 2 + d f )
and (x 1 ) are distinct, and the ideals

(x 1 x 2 + d f ) and (x 1 x 2 + d g) are distinct if f ≡ g mod m A .
Proof. By the O-automorphism of A sending x 2 to x 1 + x 2 and fixing x i (i = 2), we may instead consider

x 2 1 + x 1 x 2 + d g (g ∈ A × ). By the Weierstrass preparation theorem, if x 2 1 + x 1 x 2 + d g is reducible then it has a factor of the form x 1 -b for some b ∈ m O x 2 ,...,xn . Evaluating at x 1 = b we see that b 2 + bx 2 + d g(b, x 2 , . . . , x n ) = 0, so d | b(b + x 2 ). Hence d | b or d | (b + x 2 ). In the first case, b = d c and d c 2 + cx 2 + g( d c, x 2 , . . . , x n ) = 0, so g ∈ m A , contradiction.
The second case is similar, and the last part is straightforward.

Galois deformation rings

4.1. Setup. From now on we consider the situation where n = 2.

Throughout this section we fix a semisimple Galois representation ρ :

G K → GL 2 (F) such that ρ| I K ∼ = τ (s, µ)
, where (i) s j = 1 (hence, s j = w) precisely when j = 0 and ρ is irreducible;

(ii) µ -η is N -deep in C 0 with N ≥ 12.
(This specific form of the lowest alcove presentation for ρ depends on the choice of the embedding σ 0 ; however, we see from Remark 2.3.5 that when ρ is 13-generic the conditions (i)-(ii) above can always be arranged by an appropriate choice of s.) Up to a twist by a power of ω f we can furthermore assume that µ j = (r j + 2, 1) j ∈ Z 2 with N < r j + 1 < p -N for all j, and hence

ρ| I K ∼ =          ω f -1 j=0 (r j +1)p j f ⊕ 1 ⊗ ω if ρ is reducible, ω f -1 j=0 (r j +1)p j 2f ⊕ ω f -1 j=0 (r j +1)p j+f 2f ⊗ ω if ρ is irreducible.
In this section we will study various framed Galois deformation rings of ρ, for which 3 f tame inertial types play a role, and we now introduce them. Given

w ∈ Adm ∨ (t (2,1) ) = t (2,1) , wt (2,1) , t (1,2) f arbitrary, write w * = t ν w for (w, ν) ∈ W × X * (T ). Define the type τ w def = τ (sw -1 , µ -sw -1 (ν))
(or just τ when there is no ambiguity on w), which we always consider together with its lowest alcove presentation (s(τ ), µ(τ ))

def = (sw -1 , µ -sw -1 (ν) -η).
Concretely, s(τ ) j = w -1 j except when j = 0 and ρ is irreducible, in which case we have s(τ ) 0 = ww -1 0 , and

µ(τ ) j + η j = (r j , 0) if (t ν j w j , s j ) ∈ {(t (2,1) , 1), (t (2,1) w, w), (t (1,2) , w)}, (r j + 1, -1) if (t ν j w j , s j ) ∈ {(t (2,1) , w), (t (2,1) w, 1), (t (1,2) , 1)}. Then (19) τ w ∼ =      ω a (0) 1 f ⊕ ω a (0) 2 f if f -1 j=0 s(τ ) j = 1, ω a (0) 1 +p f a (0) 2 2f ⊕ ω a (0) 2 +p f a (0) 1 2f otherwise,
where a (0) = (a

(0) 1 , a (0) 2 ) ∈ Z 2 is defined to be a (0) def = f -1 j=0 p j ( j i=1 w j )(µ(τ ) j + η j ).
Lemma 4.1.1. Up to isomorphism there exists a unique (semisimple

) Kisin module M in Y ≤(3,0),τ w (F) of shape w such that T * dd (M) ∼ = ρ| G K∞ .
Proof. Define a Kisin module M of type τ w by A (j) = D j wj (keeping the notation of Definition 3.1.1) for some D = (D j ) ∈ T (F). By definition it has shape w. As w ∈ Adm ∨ (t (2,1) ) ⊆ 

Mat(ϕ (j) ) = D w(sw -1 ) * t (µ-sw -1 (ν)) * j = (Ds * t µ * ) j
in some suitable basis. As µ -η ∈ C 0 we know by Lemma 3.2.3 that (s, µ) is good, hence by Proposition 3.2.7 we can choose

D ∈ T (F) such that T * dd (M) ∼ = ρ| G K∞ .
The uniqueness of M follows as in [LLHLM18, Thm. 3.2], [LLHL19, Prop. 3.2.18] (this uses that 3 < µ(τ ) j + η j , α ∨ j < p -4 for all j).

Lemma 4.1.2. There is a unique bijection

θ : W (ρ) → t (2,1) , t (1,2) f such that for σ ∈ W (ρ) and w ∈ Adm ∨ (t (2,1) ) we have σ ∈ JH σ(τ w) ⊗ F (N k/Fp • det) ⇔ ( wj = θ(σ) j ∀ j) .
Proof. Recall that ρ|

I K ∼ = τ (s, µ), where µ -η is N -deep in alcove C 0 and that, for w ∈ Adm ∨ (t (2,1) ), we write w * = t ν w for (w, ν) ∈ W × X * (T ) and τ w = τ (sw -1 , µ -sw -1 (ν)). We note that σ(τ w) ⊗ F (N k/Fp • det) ∼ = σ(τ (sw -1 , µ -sw -1 (ν) + (1, 1))), and as w ∈ Adm ∨ (t (2,1) ) we see that ν -(1, 1) ∈ η + Λ R .
Recall from §2.4 that the map ω → F (t µ-η (ω)) induces a bijection between Λ µ-η W ⊆ Λ W and the set of regular Serre weight with central character (µ -η)| Z . By Proposition 2.4.2, this map induces a bijection between sΣ ⊆ Λ µ-η W and the set W (ρ), and by Proposition 2.4.3 this map induces a bijection between sw -1 (Σ -ν) ⊆ Λ µ-η W and the set JH σ(τ w) ⊗ F N k/Fp • det . (Note that Propositions 2.4.2, 2.4.3 apply as soon as µ -η is 2-deep in alcove C 0 , and we have N ≥ 2.)

We conclude that the statement of the proposition is equivalent to: there is a unique bijection

θ Σ : Σ → t (2,1) , t (1,2) f such that for ω ∈ Σ and w ∈ Adm ∨ (t (2,1) ) we have (20) ω ∈ w -1 (Σ -ν) ⇔ wj = θ Σ (ω) j ∀ j .
Thus θ Σ (ω) j only depends on ω j , so we may assume that f = 1. In that case,

w ∈ Adm ∨ (t (2,1) ) = {t (2,1) , wt (2,1) , t (1,2) }
and note that correspondingly

(w, ν) ∈ {(1, η), (w, η), (1, -η)}.
As w = -1 on Λ W , we see from Figure 1 and (20) that θ Σ (0) = t (1,2) and θ Σ (η) = t (2,1) is the desired unique bijection.

Deformation rings I: single type.

We now compute some Galois deformation rings of ρ for a single type τ and Hodge-Tate weights ≤ (3, 0), meaning Hodge-Tate weights (3, 0) or (2, 1).

We suppose that ρ is as in §4.1. Fix now w ∈ Adm ∨ (t (2,1) ) and M ∈ Y ≤(3,0),τ w (F) semisimple of shape w such that T * dd (M) ∼ = ρ| G K∞ . By the proof of Lemma 4.1.1, M is such that the associated matrix A (j) is D j wj for some D j ∈ T (F) and some choice of an eigenbasis for M.

We use the notation

(21) D f -1-j =                              e * (j) 11 0 0 d 0 0 e * (j) 22   if wf-1-j = t (1,2) .
(See Tables 123, where the superscript (j) is omitted for readability.)

Let R ≤(3,0),τ w ρ denote the maximal reduced, O-flat quotient of R ρ that parametrizes lifts of ρ of Hodge-Tate weights ≤ (3, 0) in each embedding and tame inertial type τ w. For each dominant character λ ∈ X * (T ) let R λ,τ w ρ denote the maximal reduced, O-flat quotient of R ρ that parametrizes lifts of ρ of Hodge-Tate weights λ j in the j-th embedding σ j for all j and tame inertial type τ w.

Proposition 4.2.1. We have an isomorphism (j) and the rings R (j) and the ideals I (j) of R are found in Tables 123. The irreducible components of Spec R ≤(3,0),τ w ρ are given by the Spec R λ,τ w ρ , where λ = (λ j ) ∈ {(3, 0), (2, 1)} f .

R ≤(3,0),τ w ρ X 1 , . . . , X 2f ∼ = R/ j I (j) Y 1 , . . . , Y 4 , where R def = O,0≤j≤f -1 R

More precisely, via the isomorphism, for any choice of

λ = (λ j ) ∈ {(3, 0), (2, 1)} f the kernel of the natural surjection R ≤(3,0),τ w ρ X 1 , . . . , X 2f R λ,τ w ρ X 1 , . . . , X 2f is generated by the prime ideal f -1 j=0 p (j),λ f -1-j of R,
where the ideals p (j),λ f -1-j of R are found in Tables 123.

Remark 4.2.2. To obtain Proposition 4.2.1 we cannot use directly the results of [LLHLM], namely Theorem 7.3.2(2) there. In fact, on the one hand we need the precise equations for the ideals I (j) to perform the computations in Proposition 4.3.3 (where we check that p is contained in suitably chosen ideals in multi Hodge-type deformation rings). On the other hand we need to perform Elkik's approximation theorem (used in the proof of [LLHLM, Theorem 7.3.2(2)]) in an effective way to have "explicit" generators of the minimal primes of the multi-type deformation rings. As a byproduct, we have less stringent conditions on the tame inertial types appearing in Proposition 4.2.1 above, in that the genericity of τ w is the explicit requirement that µ(τ ) is 11-deep in C 0 , rather than a condition on an inexplicit polynomial P τ w ∈ Z[X 1 , X 2 ] such that P τ w (µ(τ ) j ) ≡ 0 (mod p) for all j ∈ J (cf. the genericity condition of [LLHLM, §1.2.1]).

Proof. We let τ def = τ w for short.

As A (j) = D j wj , the standard basis β is a gauge basis of M in the sense of [LLHL19, Def. 3.

2.23].

(There, M ∈ Y η,τ (F) but η plays no role.) For R a complete noetherian local O-algebra with residue field F define D (R) the corresponding matrices A (j) are given in row 1 of Tables 123, where the entries c

≤(3,0),τ M,β ( 
(j) 11 , c (j) 12 , . . . are in R, subject to A (f -1-j) reducing to our fixed A (f -1-j) modulo m R .
By the analog of [LLHLM18, Prop. 4.18] the finite height conditions are given by det

A (f -1-j) ∈ R × (v + p) 3 ∀ j,
giving rise to the generators of the ideal I (j),≤(3,0) in row 4 of Tables 123. As in [LLHLM18, Thm. 4.17], D

≤(3,0),τ M,β
is represented by the maximal reduced p-flat quotient of O,0≤j≤f -1 R (j) /I (j),≤(3,0) , which we also denote by R

≤(3,0),τ M,β
.

By Proposition 3.1.9 (applied with h = 3 and noting that τ is (N -1)-generic) the monodromy conditions are given by

d dv t v=-p P N (A (f -1-j) ) + O(p N -3-t ) = 0 for all 0 ≤ t ≤ 1, 0 ≤ j ≤ f -1. (Recall that the O(p N -3-t ) denote specific but inexplicit elements of p N -3-t M 2 (R).) Note that P N (A (f -1-j) ) ≡ -e v d dv A (f -1-j) + A (f -1-j) b (j) 0 0 c (j) (v + p) 3 (A (f -1-j) ) -1 ≡ -e v d dv A (f -1-j) -A (f -1-j) a (j) 0 0 0 (v + p) 3 (A (f -1-j) ) -1 modulo (v + p) 3 M 2 (R v ), where (b (j) , c (j) ) def = (s or,f -j ) -1 (a (f -j) (s(τ ),µ(τ )) ) and a (j) def = b (j) -c (j) e ∈ Z (p) . (Note that the "other" term b (j) 0 0 c (j) A (f -1-j) (v + p) 3 (A (f -1-j) ) -1 from the Lie bracket in equation (16) is in (v + p) 3 M 2 (R v ).)
We emphasize that the constants a (j) , b (j) and c (j) depend on the whole f -tuple w ∈ Adm ∨ (t 2,1 ).

Combining this, the monodromy condition is

d dv t v=-p v d dv A (f -1-j) -A (f -1-j) a (j) 0 0 0 (v + p) 3 (A (f -1-j) ) -1 + O(p N -3-t ) = 0 for all 0 ≤ t ≤ 1, 0 ≤ j ≤ f -1.
The entries of the left-hand side give rise to the eight generators in row 5 of Tables 123, where we denote a (j) by a

(j) 1 , a (j) 2 , a (j) 3 respectively. By [LLHL19, §3.2] we have (b (j) , c (j) ) ≡ (s or,f -j ) -1 (α (s(τ ),µ(τ )),f -j ) ≡ s(τ ) -1 j (µ(τ ) + η) j ≡ (ws -1 (µ) -ν) j (mod p), recalling that (s(τ ), µ(τ )) = (sw -1 , µ-sw -1 (ν)-η).
Hence a (j) ≡ -(ws -1 (µ)-ν) j , α ∨ j (mod p). As µ j = (r j + 2, 1), this gives us the explicit formulas for a (j) (mod p) listed below Tables 123

. Let R ≤(3,0),τ,∇ M,β
be the maximal reduced and O-flat quotient of R/ j (I (j),≤(3,0) + I (j),∇ ). As in [LLHLM18, §5], using that ad(ρ) is cyclotomic free we get

(22) R ≤(3,0),τ ρ X 1 , . . . , X 2f ∼ = R ≤(3,0),τ,∇ M,β Y 1 , . . . , Y 4 .
(See in particular Thm. 5.12, Cor. 5.13, and Diagram (5.9) in [START_REF]Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows[END_REF], noting that for us n = 2, so the addition of the gauge basis requires 2f instead of 3f variables and the framing of the Galois deformation requires 2 2 = 4 instead of 3 2 = 9 variables. Note also that T 8 should be T 9 in [LLHLM18, Cor. 5.13], cf. the errata in [START_REF]Serre weights and Breuil's lattice conjecture in dimension three[END_REF]§6]. Finally note that we allow deformations with any Hodge-Tate weights ≤ (3, 0), so we do not have a restriction on the shape as in [LLHLM18, Cor. 5.13].)

We now compute "explicit" generators of

I ∞ def = ker R R ≤(3,0),τ,∇ M,β
and show that I ∞ = j I (j) , where the ideals I (j) of R are given in row 6 of Tables 123. (Note that the O(p N -8 ) tails in Tables 1-3 involve variables of all embeddings. In particular, the tails depend on w and not just on wf-1-j and I (j) is not an ideal of R (j) in general!)

We first define a dense polynomial sub-O-algebra R 

(j) poly of R (j) for each 0 ≤ j ≤ f -1 by R (j) poly def = O[c 11 ,
] if wf-1-j = t (1,2) .
Note in fact that the subspace topology on R

(j)
poly is the m-adic topology, where m is the maximal ideal generated by all the polynomial variables above as well as . (Note that the polynomial variables above are power series generators of R (j) .) Let R poly We now show that I poly ⊆ (I ∞ , p N -5 ). 

In the following, we will focus on Table 2 (the other cases being similar). Let us label the elements on the right side of row 4 by (H

i ) (1 ≤ i ≤ 3), of row 5 by (M i ) (1 ≤ i ≤ 8), and of row 6 without their O(p N -8 ) tails by (G i ) (1 ≤ i ≤ 5). Then, omitting superscripts (j) for simplicity, 1 p -(M 7 ) + 1 p (M 8 ) = d * 12 c 21 + (a 2 -2)(c 12 d * 21 + d * 12 c 21 ) + (d 11 d 22 + pd * 12 d * 21 ) + O(p N -5 ) (23) = -c 12 d * 21 + (a 2 -
(G 1 ), (G 2 ) ∈ (I ∞ , p N -5
). (Note that the left hand side of equation ( 23) is in the p-saturation of the ideal I (j),≤(3,0) + I (j),∇ , so is in particular an element of I ∞ .) From (M 3 ) and (G 2 ) we get (G 3 ) ∈ (I ∞ , p N -5 ), as a 2 ≡ -1 (mod p).

From 1 p [-(M 5 ) + 1 p (M 6 )] and (G 1 ) we get (G 4 ) ∈ (I ∞ , p N -5
), as a 2 ≡ 2 (mod p). Replacing c 12 , c 21 , c 11 in 1 p (M 8 ) by using the elements (G 1 ), (G 2 ), (G 3 ) and as a 2 ≡ 0, -1 (mod p) we get

(d 11 d 22 + pd * 12 d * 21 ) d 11 d 22 + p (a 2 -2)(a 2 + 1) a 2 (a 2 -1) d * 12 d * 21 + O(p N -5 ) ∈ I ∞ , hence (G 5 ) ∈ (I ∞ , p N -5 ).
For any 0

≤ j ≤ f -1 we can then consider the commutative diagram of O-algebras R/(I ∞ , p N -5 ) R (j)
poly /I (j) poly

φ (j) o o R/I ∞ O O O O O O O o o
where φ (j) is induced by the inclusion R (j) poly → R. Let H (j) be the ideal of the polynomial ring R Proof. We give detail for the case wf-1-j = wt (2,1) , the others being simpler. To ease notation, we set

x def = d 11 d * 12 , y def = d 22 d * 21 and a def = (a 2 -2)(a 2 +1) a 2 (a 2 -1)
so that (G 5 ) = (xy + p)(xy + ap). It follows directly from the definitions that H (j) contains the 5 × 5 minors of the Jacobian matrix of I (j) poly = ((G 1 ), . . . , (G 5 )) (i.e. the ideal M (α) with α = (1, . . . , q = 5) in the notation of [Elk73, §0.2]), in particular, by direct inspection, contains the element ∂ ∂x (G 5 ) = 2xy 2 + p(a + 1)y. Thus, the ideal

H (j) + I (j) poly contains 2(a + 1)xy + p(a -1) 2 (G 5 ) -(a + 1)xy + p(a 2 + 1) x ∂ ∂x (G 5 ) = p 3 a(a -1) 2 .
As a -1 = -2 a 2 (a 2 -1) and a 2 -1 ≡ ±(r j + 1) (mod p), we conclude that a(a -1) 2 ∈ O × and hence p 3 ∈ H (j) + I (j) poly . The cases where wf-1-j ∈ {t (1,2) , t (2,1) } are similar, giving actually p 2 ∈ H (j) + I (j) poly .

We now apply Elkik's lemma analogously to [START_REF] Le | Local models for Galois deformation rings and applications[END_REF]Lemma 3

.3.7]. Let A def = R/I ∞ which is p-torsion free and p-adically complete. Write R (j) poly = O[X 1 , . .

. , X k ] (relabeling the generators above). Let H (j)

B denote the Elkik ideal for the finitely presented algebra

A → B def = A[X 1 , . . . , X k ]/I (j)
poly obtained by pushout, so that H

(j) B contains the image of H (j) . The diagram above gives rise to a = (a 1 , . . . , a k ) ∈ A k such that I (j) poly (a) ⊆ p N -5 A. By Lemma 4.2.3 we get p 3 ∈ H B (a) + I (j) poly (a) ⊆ H B (a) + p N -5 A, so p 3 ∈ H B (a).
As N -5 > 2 × 3 we may apply [Elk73, Lemme 1] (with I = (0), k = 0, n = N -5 and h = 3 in the notation of the reference) to find a ∈ A k that lifts a modulo p N -8 . In other words, we deduce the existence of an O-algebra homomorphism φ (j) : R (j) poly /I (j) poly → R/I ∞ such that φ (j) agrees with φ (j) (i.e. the natural map) modulo p N -8 . By taking a tensor product of the φ (j) for 0 ≤ j ≤ f -1 we get an O-algebra homomorphism φ : R poly /I poly → R/I ∞ such that φ agrees with the natural map modulo p N -8 . Since N > 8, φ is continuous and hence induces φ : R/I poly → R/I ∞ that agrees with the natural map modulo p N -8 . As N ≥ 10, the map φ : R/I poly → R/I ∞ has to be surjective.

By Lemma 3.3.1, R (j) /I (j)
poly is reduced, O-flat, with two irreducible components that are geometrically integral and of relative dimension 3 over O. By [Cal18, Lemma 2.6] and [BLGHT11,

Lemma 3.3], R/I poly = O,j R (j) /I (j)
poly is reduced, O-flat with 2 f irreducible components, each of relative dimension 3f over O. Hence the surjection

(24) φ : R/I poly R/I ∞ ∼ = R ≤(3,0),τ,∇ M,β is an isomorphism, provided that R ≤(3,0),τ,∇ M,β
, or equivalently R ≤(3,0),τ ρ by ( 22), has at least 2 f irreducible components. To see this, it suffices to show that for any choice of λ ∈ {(3, 0), (2, 1)} f , ρ admits a potentially crystalline lift ρ of type τ with HT j (ρ) = λ j for all j. This in turn follows from [GHLS17, Thm. D], provided

(25) JH(σ(τ ) ⊗ E E,j V E (λ j -(1, 0)) (j) ) ∩ W (ρ) = 0. The left-hand side contains JH(σ(τ ) ⊗ E E,j V E ((1, 1)) (j) )∩W (ρ) as L(a, b)⊗ F L(2, 0) ∼ = L(a+ 2, b) ⊕ L(a + 1, b + 1) ⊕ L(a, b + 2) if 2 ≤ a -b ≤ p -3.
(Note that the highest weights of the elements of JH(σ(τ )) are 7-deep, as follows from Proposition 2.4.3 and Remark 2.4.5(iv).) Hence (25) follows from Lemma 4.1.2. As (24) is an isomorphism and induces the natural map modulo p N -8 , we conclude that (I poly , p N -8 ) = (I ∞ , p N -8 ).

Lemma 4.2.4. There exists an automorphism of local O-algebras

ψ : R ∼ -→ R such that R ψ ∼ / / R R/I poly φ ∼ / / R/I ∞ commutes and such that ψ induces the identity modulo p N -8 . Proof. Let us write R = O X 1 , . . . , X k . As φ induces the identity modulo p N -8 we see that for each x ∈ R there exists ε(x) ∈ R such that φ(x + I poly ) = x + p N -8 ε(x) + I ∞ . Define ψ by demanding that ψ(X i ) = X i + p N -8 ε(X i ) for all 1 ≤ i ≤ k.
As N ≥ 10 it follows that ψ is an automorphism of local O-algebras, and the lemma follows.

In particular, ψ identifies I poly with I ∞ . Thus I ∞ = j I (j) , where I (j) is the ideal of R given by the explicit generators in Tables 1-3 (by applying ψ to the generators of I poly ). Moreover it follows that the ideals p λ def = j p (j),λ f -1-j for λ ∈ {(2, 1), (3, 0)} f , where the p (j),λ f -1-j are defined in Tables 1-3, are the distinct minimal primes containing I ∞ .

By the above argument that (24) is an isomorphism, we know that the irreducible components of Spec R ≤(3,0),τ w ρ are in bijection with the set {(3, 0), (2, 1)} f , explicitly given by sending a component C to the labeled Hodge-Tate weights of the framed deformation corresponding to any closed point of the generic fiber of C. So the components are indeed given by the Spec R λ,τ w ρ , where λ = (λ j ) ∈ {(3, 0), (2, 1)} f . It remains to establish the final claim identifying irreducible components. For any λ = (λ j ) ∈ {(3, 0), (2, 1)} f consider the kernel of the composition

φ λ : R φ R ≤(3,0),τ,∇ M,β R ≤λ,τ,∇ M,β
.

By above we know that ker(φ λ ) is of the form λ ∈X p λ for some subset X of {(3, 0), (2, 1)} f of cardinality 2 k , where k def = #{j : λ j = (3, 0)}. For the identification of components it suffices, by induction on λ, to show that λ j = (2, 1) implies that λ j = (2, 1) for all λ ∈ X. If this is false, then there exists 0 ≤ j ≤ f -1 and λ ∈ X such that λ f -1-j = (2, 1) and λ f -1-j = (3, 0). By the same argument as above for row 4 of Tables 1-3, from λ f -1-j = (2, 1) we deduce that c

(j) ik ∈ ker(φ λ ) for all 1 ≤ i, k ≤ 2 and moreover d (j) 11 d (j) 22 + pd * (j) 11 d * (j)
22 ∈ ker(φ λ ) in case of Table 2 (using row 4). From the additional assumption that λ f -1-j = (3, 0) it is now easy to see that p ∈ p λ , which is a contradiction. (In the notation of Remark 4.2.5 we have p ∈ q (j),(2,1) + p (j),(3,0) ⊆ p λ , where q (j),(2,1) denotes the ideal defined there.) Remark 4.2.5. Suppose that λ ∈ {(3, 0), (2, 1)} f is such that λ f -1-j = (2, 1) and let p λ def = j p (j ),λ f -1-j . As observed at the end of the proof of Proposition 4.2.1, we see that c 

+ p ⊆ p λ if wf-1-j = wt (2,1) , (c 11 , c 12 , c 21 , c 22 , d 22 ) ⊆ p λ if wf-1-j = t (1,2) ,
where we omit the superscripts (j) for readability. Moreover, the sum of the ideals on the left equals p λ if λ f -1-j = (2, 1) for all j (by dimension reasons or since the monodromy condition is vacuous in this case).

Corollary 4.2.6.

For each λ = (λ j ) ∈ {(3, 0), (2, 1)} f and w ∈ Adm ∨ (t (2,1) ) the special fibre of Spec R λ,τ w ρ
is reduced and all its irreducible components are formally smooth over F.

Proof. Referring back to the proof of Proposition 4.2.1 as well as Lemma 4.2.4 we have an isomorphism R

≤(3,0),τ,∇ M,β ∼ = R/I poly and (26) R λ,τ w ρ X 1 , . . . , X 2f ∼ = O,0≤j≤f -1 R (j) /p (j),λ f -1-j poly Y 1 , . . . , Y 4 ,
where p

(j),λ f -1-j poly is the ideal of R (j)
poly generated by the elements of rows 7 and 8 in Tables 1-3 without their O(p N -8 ) tails.

From Proposition 4.2.1 we get by right exactness of completed tensor products that

(27) (R λ,τ w ρ / ) X 1 , . . . , X 2f ∼ = F,0≤j≤f -1 R (j) /( , p (j),λ f -1-j poly ) Y 1 , . . . , Y 4 .
By Tables 1-3 we see that R (j) /( , p

(j),λ f -1-j poly ) ∼ = F Z 1 , . . . , Z 3+m /(Z 1 Z 2 , . . . , Z 2m-1 Z 2m ) for some m ≤ 1. It follows from (27) and Lemma 8.1.2 that R λ,τ w ρ / ∼ = F U 1 , . . . , U f +4+m /(U 1 U 2 , . . . , U 2m-1 U 2m )
for some m ≤ f . 

X(σ) def = { w ∈ Adm ∨ (t (2,1) ) : wj = ( wσ ) j ∀ j}, we see that Spec R ≤(3,0),σ ρ is the flat closure of w∈X(σ) Spec R ≤(3,0),τ w ρ [1/p] inside Spec R ρ . Also, define a bijection i : Adm ∨ (t (2,1) ) → {1, 2, 3} f by letting i( w) be the f -tuple given by i( w) j def =        1 if wj = t (2,1) 2 if wj = wt (2,1) 3 if wj = t (1,2)
for all 0 ≤ j ≤ f -1. Proposition 4.3.1. We have an isomorphism j) and the ring S (j) and the ideals I (j) w of S are as in Table 4 if ( wσ ) f -1-j = t (1,2) , whereas S (j) and the ideals I (j) w of S are as in Table 5 

R ≤(3,0),σ ρ X 1 , . . . , X 2f ∼ = S/ w∈X(σ) j I (j) w Y 1 , . . . , Y 4 , where S def = O,0≤j≤f -1 S (
if ( wσ ) f -1-j = t (2,1) . The irreducible components of Spec R ≤(3,0),σ ρ are given by the Spec R λ,τ w ρ , where λ = (λ j ) ∈ {(3, 0), (2, 1)} f and w ∈ X(σ).

More precisely, via the isomorphism, for any choice of

λ = (λ j ) ∈ {(3, 0), (2, 1)} f and w ∈ X(σ) the kernel of the natural surjection R ≤(3,0),σ ρ X 1 , . . . , X 2f R λ,τ w ρ X 1 , . . . , X 2f is generated by the prime ideal f -1 j=0 p (j),λ f -1-j w
of S, where the ideals p

(j),λ f -1-j w
of S are found in Tables 45.

Proof. Recall that ρ| I K ∼ = τ (s, µ). The proof of Lemma 4.1.1 shows that the étale ϕ-module associated to ρ| G K∞ is given by Mat(ϕ (j) ) = (Ds * t µ * ) j in some basis, for some D = (D j ) ∈ T (F).

Define δ

(j) 12 , δ (j)
21 ∈ O × to be the Teichmüller lifts of the diagonal entries of D f -1-j . Also let

µ j def = µ j -(1, 1) = (r j + 1, 0). Let S def = S/ w∈X(σ) j I (j)
w . Consider the étale ϕ-module M over O E,S given by Mat(ϕ

(f -1-j) M ) =   (v + p)(δ (j) 12 + x * (j) 12 ) + c (j) 12 + b (j) 12 v 1 v (v + p)d (j) 11 + c (j) 11 (v + p)d (j) 22 + c (j) 22 (v + p)(δ (j) 21 + x * (j) 21 ) + c (j) 21 + b (j) 21 v   s -1 j v µ j
in a suitable basis, where b

(j) 21 def = 0 if ( wσ ) f -1-j = t (1,2) and b (j) 12 def = 0 if ( wσ ) f -1-j = t (2,1) . Write S Y def = S Y 1 , . . . , Y 4 for short and define the ϕ-module M S Y def = M ⊗ S S Y over O E,S Y . (Recall that O E denotes the p-adic completion of W (k) v [1/v] and O E,S Y def = O E ⊗ Zp S Y .) Let M F def = M ⊗ S F.
As every variable in S (j) gets sent to zero in F and µ j = (r j + 2, 1), we see that

V * K (M F ) ∼ = ρ| G K∞ . Fix an F-basis γ F of V * K (M F ) ∼ = ρ| G K∞ . If ρ is reducible, we demand moreover that γ F,1 , γ F,2 each span G K∞ -stable lines. Fix an S-basis γ of V * K (M) that lifts γ F . Then the G K∞ -representation V * K (M S Y ) together with basis 1 + Y 1 Y 2 Y 3 Y 4 γ ⊗ 1 gives rise to a homomorphism ψ 0 : R ρ| G K∞ → S Y .
For notational convenience, rename the variables (X 1 , . . . , X f ) as

X def = (X 0 , . . . , X f -1 ) and (X f +1 , . . . , X 2f ) as X def = (X 0 , . . . , X f -1 ). Extend ψ 0 to a homomorphism ψ : R ρ| G K∞ X , X → S Y as follows: ψ(X j ) = x * (j) 12 if 0 ≤ j < f -1 or ρ is irreducible; Y 1 if j = f -1 and ρ is reducible; ψ(X j ) = x * (j) 21 if 0 ≤ j < f -1; Y 4 if j = f -1.
On the other hand we have surjections

R ρ| G K∞ R ρ R ≤(3,0),σ ρ .
(For the first, see [LLHLM18, Prop. 3.12] and use that ad(ρ) is cyclotomic free.)

Claim 1. The map ψ : R ρ| G K∞ X , X → S Y is surjective.
We will check it is injective on reduced tangent vectors, i.e. on F[ε]/(ε 2 )-points. Pick any continuous homomorphism t :

S Y → F[ε]/(ε 2 ), let t 0 : S Y → F → F[ε]/(ε 2
) be the zero vector, and suppose that t • ψ = t 0 • ψ. Abusing notation, we will write t(b

(j) ik ) = εb (j) ik for some b (j)
ik ∈ F on the right, and similarly t(c

(j) ik ) = εc (j) ik , t(d (j) ik ) = εd (j) ik , t(x * (j) ik ) = εx (j) ik , t(Y i ) = εy i . From the definition of ψ (and t • ψ = t 0 • ψ) we deduce x (j) 12 = x (j) 21 = 0 for 0 ≤ j < f -1, y 4 = 0, and (28) x (f -1) 12 = 0 if ρ is irreducible, y 1 = 0 if ρ is reducible.
Also, there is an isomorphism

(29) λ : M S Y ⊗ S Y ,t F[ε]/(ε 2 ) ∼ -→ M S Y ⊗ S Y ,t 0 F[ε]/(ε 2 ) such that V * K (λ) sends the basis (1 + ε y 1 y 2 y 3 y 4 )(γ ⊗ 1) to γ ⊗ 1. In particular V * K (λ mod ε) is the identity of M F .
Hence the isomorphism λ is realized by change of basis matrices of the form

1 + εM f -1-j ∈ GL 2 (O E,F[ε]/(ε 2 ) ), for some M f -1-j ∈ M 2 (O E,F ) = M 2 (F((v))). In other words, (1 + εM j-1 ) δ (j) 12 δ (j) 21 s -1 j v µ j (1 -εϕ(M j )) = = δ (j) 12 + ε(x (j) 12 + c (j) 12 v -1 + b (j) 12 v -2 ) ε(d (j) 11 v -1 + c (j) 11 v -2 ) ε(d (j) 22 + c (j) 22 v -1 ) δ (j) 21 + ε(x (j) 21 + c (j) 21 v -1 + b (j) 21 v -2 ) s -1 j v µ j , ( 30 
)
where we have divided by v, and j is considered in Z/f Z, as usual.

Let

k j ∈ Z be minimal such that v k j M j ∈ M 2 (F v ). Consider 1 -εϕ(M j ) = v -µ j s j δ (j) 12 δ (j) 21 -1 (1 -εM j-1 )• • δ (j) 12 + ε(x (j) 12 + c (j) 12 v -1 + b (j) 12 v -2 ) ε(d (j) 11 v -1 + c (j) 11 v -2 ) ε(d (j) 22 + c (j) 22 v -1 ) δ (j) 21 + ε(x (j) 21 + c (j) 21 v -1 + b (j) 21 v -2 ) s -1 j v µ j .
Then multiplying the right-hand side by v

r j +1 • v k j-1 • v 2 makes it v-integral, hence pk j ≤ k j-1 + r j + 3 < k j-1 + p -1 by genericity. This implies p max j k j < max j k j + p -1, so max j k j < 1, meaning M j ∈ M 2 (F v ) for all j.
From (30) we get by multiplying on the right by v -µ j s j :

(31)

M j-1 δ (j) 12 δ (j) 21 - δ (j) 12 δ (j) 21 s -1 j v µ j ϕ(M j )v -µ j s j = = x (j) 12 + c (j) 12 v -1 + b (j) 12 v -2 d (j) 11 v -1 + c (j) 11 v -2 d (j) 22 + c (j) 22 v -1 x (j) 21 + c (j) 21 v -1 + b (j)
21 v -2 . Recall that we assumed s j = 1 for all 0 < j ≤ f -1, and hence s 0 = 1 if and only if ρ is reducible (due to our genericity assumption).

As the (1, 1) and (2, 2)-entries of the left-hand side of (31) are v-integral, we deduce that c

(j) 12 = b (j) 12 = c (j) 21 = b (j) 21 = 0.
From the (2, 1)-entry of (31) when s j = 1 (resp. the (1, 2)-entry of (31) when s j = 1) and from 2 < r j + 1 < p we deduce that v | (M j ) 21 for all j. This implies that the left-hand side of (31) is v-integral and its (2, 1)-entry is divisible by v. In particular, d If s j = 1 (e.g. if j = 0) we have by (31) and the previous paragraph (32) x

(j) 12 = δ (j) 12 (M j-1 ) 11 -(M j ) 11 | v=0 , x (j) 21 = δ (j)
In particular, as x

(j) 12 = x (j) 21 = 0 for 0 ≤ j < f -1, we conclude that (33) (M j ) 11 | v=0 , (M j ) 22 | v=0 are independent of j.
If s j = 1 then we have by (31) and the previous paragraph

(34) x (j) 12 = δ (j) 12 (M j-1 ) 11 -(M j ) 22 | v=0 , x (j) 21 = δ (j) 21 (M j-1 ) 22 -(M j ) 11 | v=0 .
If ρ is reducible (i.e. s 0 = 1) we deduce by (32) and (33) that x (j) 12 = x (j) 21 = 0 for all j. Otherwise (i.e. s 0 = 1), we deduce from (28), (33), and (34) that x (j) 12 = x (j) 21 = 0 for all j. As a result, the right-hand side of (31) vanishes and we conclude that

(M f -1-j ) j ∈ End ϕ-mod (M F ).
Denote this endomorphism by ξ. From (29) we have (1

+ εV * K (ξ))(1 + ε y 1 y 2 y 3 y 4 )(γ ⊗ 1) = γ ⊗ 1, so so V * K (ξ) = - y 1 y 2 y 3 y 4 with respect to the basis γ F . On the other hand, End ϕ-mod (M F ) ∼ = End G K∞ (ρ| K∞ ) ∼ = End G K (ρ) by Lemma 3.2.8.
If ρ is (absolutely) irreducible, then End ϕ-mod (M F ) = F. As y 4 = 0 we conclude from the formula for V * K (ξ) that y i = 0 for all i. If ρ is reducible, then End ϕ-mod (M F ) ∼ = F × F. By our condition that γ F,1 , γ F,2 each span G K∞ -stable lines, we conclude that y 2 = y 3 = 0. Using (28) we also have y 1 = y 4 = 0.

We have shown that t = t 0 , completing the proof of Claim 1. Thus the ϕ-module M S Y ⊗ S Y κ(x) is one of the ϕ-modules described in Tables 1-3 for the type τ w, at least after replacing O by O κ(x) . (To see this, note that we can identify the ϕ-module described in Tables 1-3 with the ones in Tables 4-5, via the changes of variables in Figure 2, where we omit the superscripts (j) for readability. Keep in mind that the constants a i and the O(p N -8 ) tails in Tables 1-3 depend on w and not just on wf-1-j . Moreover, recall that the O(p N -8 ) tails in Tables 1-3 involve variables of all embeddings, so the change of variables of I (j) really depends on w and not just on wf-1-j .

In particular, by the proof of Proposition 4.2.1 we know that

V * K (M S Y ⊗ S Y κ(x))
is the restriction to G K∞ of a potentially crystalline representation ρ x of G K over κ(x), of inertial types τ w and Hodge-Tate weights ≤ (3, 0). Together with the basis γ For short, let

⊗ x 1, ρ x | G K∞ is a framed
I w def = j I (j)
w for any w ∈ X(σ). Recall that #X(σ) = 2 f . As S = S/ w∈X(σ) I w and each S/I w is, by construction, identified with the ring R/ j I (j) of Proposition 4.2.1 (for type τ w), we deduce that S is reduced and O-flat and that, in order to establish the claim about irreducible components, it suffices to show that the ideals I w are pairwise relatively prime in S[1/p]. Pick w = w in X(σ) and choose j such that wf-1-j = w f -1-j . Assume ( wσ ) f -1-j = t (1,2) , so we are in the setting of Table 4 

+ p + O(p N -8 ) = p(a 2 -1)d * 12 + (a 1 + a 2 -2)
d 11 d 22 d * 21 + O(p N -8 ).
As a 2 ≡ 1 (mod p), a 1 + a 2 ≡ 2 (mod p) (see the explicit formulas below Tables 12), and N ≥ 10 we deduce that p ∈ I

(j) w + I (j)
w , which in turn is contained in I w + I w . The case where ( wσ ) f -1-j = t (2,1) is analogous, checking that p ∈ I (j) w + I (j) w by using the two elements of the form c 21 + . . . from Table 5. This establishes Claim 3.

Conclusion of the proof. By Claims 1 and 2 we have a surjective morphism

R ≤(3,0),σ ρ X , X S Y . By [Kis08, Thm. (3.3.8)] the ring R ≤(3,0),σ ρ
is reduced, O-flat, and each irreducible component is of relative dimension f + 4 over O. By Proposition 4.2.1 it has precisely 4 f irreducible components. By Claim 3 we deduce that R

≤(3,0),σ ρ X , X ∼ = S Y .
The identification of irreducible components follows from Proposition 4.2.1, as for any w ∈ X(σ) ), where we omit the superscripts (j) for readability and we consider these as ideals of S (j) . Let w ∈ X(σ). Then q (j),(2,1)

the isomorphism R ≤(3,0),σ ρ X , X ∼ = S Y factors through the isomorphism R ≤(3,0),τ w ρ X , X ∼ = S/I w Y of Proposition 4.2.1 (keeping in mind the change of variables discussed in the proof of Claim 2). Lemma 4.3.2. If ( wσ ) f -1-j = t (1,2) let q (j),(2,
i( w) f -1-j ⊆ f -1 j =0 p (j ),λ f -1-j w whenever λ f -1-j = (2, 1) and f -1 j =0 q (j ),(2,1) i( w) f -1-j = f -1 j =0 p (j ),(2,1) w
(as ideals of S).

Proof. This follows from Remark 4.2.5 (and the identifications in the proof of Proposition 4.3.1).

Recall that ρ :

G K → GL 2 (F) is such that ρ| I K ∼ = τ (s, µ), where µ -η is N -deep with N ≥ 12 (see item (ii) in §4.1).

Proposition 4.3.3. Keep the hypotheses of Proposition 4.3.1 and the definitions of Lemma 4.3.2. Then for any

0 ≤ j ≤ f -1 and any w ∈ X(σ) such that i( w) f -1-j = 2 we have p ∈ q (j),(2,1) 1 ∩ q (j),(2,1) 2 + p (j),(3,0) w if ( wσ ) f -1-j = t (1,2) and p ∈ q (j),(2,1) 2 ∩ q (j),(2,1) 3 + p (j),(3,0) w if ( wσ ) f -1-j = t (2,1) .
Proof. Suppose that ( wσ ) f -1-j = t (1,2) . We will systematically omit superscripts (j) and write p (3,0) 2 instead of p + p using the last element we get

c 21 + 2p a 2 d * 21 + O(p N -8 ) ∈ p (3,0) 2 .
Noting that c 21 is in q

(2,1) 1 ∩ q

(2,1) 2

we deduce that

p (3,0) 2 + q (2,1) 1 ∩ q (2,1) 2 2p a 2 d * 21 + O(p N -8 ) = p 2 a 2 d * 21 + O(p N -9 ) .
As N ≥ 10, the factor in parentheses is a unit in S, so we obtain p ∈ p

(3,0) 2 + q (2,1) 1 ∩ q (2,1) 2 .
The case ( wσ ) f -1-j = t (2,1) is completely analogous, using from Table 5 that

c 12 - 2p a 2 -1 d * 12 + O(p N -8 ) ∈ p (3,0) 2 , c 12 ∈ q (2,1) 2 ∩ q
(2,1) 3

.

(Alternatively, we mention that the element 0 1 v 0 normalizing the Iwahori interchanges shapes t (2,1) and t (1,2) and preserves wt (2,1) . It can then be seen that Tables 1 and3, and likewise Tables 4 and5, are interchanged under the transformation sending c ik , d ik , . . . to c 3-i,3-k , d 3-i,3-k , . . . and a i to 1 -a 4-i . In this way we can reduce the second case of this proposition to the first.) 

Table 1. Shape wf-1-j = t (2,1) , i.e. A (f -1-j) = e * 11 v 2 0 0 d * 22 v . A (f -1-j) (v + p) 2 e * 11 + (v + p)d 11 + c 11 c 12 v((v + p)d 21 + c 21 ) (v + p)d * 22 + c 22 ϕ-module at the 1 v (v + p) 2 e * 11 + (v + p)d 11 + c 11 c 12 (v + p)d 21 + c 21 (v + p)d * 22 + c 22 s -1 j v r j +1 0 0 1 (f -1 -j)-th embedding R (j) O c 11 ,
I (j),∇ (a 1 -1)d 11 c 22 + a 1 c 11 d * 22 + p(d 11 d * 22 + 2e * 11 c 22 ) + O(p N -4 ), c 22 (a 1 c 11 + pd 11 ) + O(p N -3 ), c 12 ((a 1 -1)d 11 + 2pe * 11 ) + O(p N -4 ), c 12 (a 1 c 11 + pd 11 ) + O(p N -3 ),
I (j) d 11 + (a 1 -2) c 12 d 21 d * 22 + O(p N -8 ), c 22 -(a 1 -1) c 12 d 21 e * 11 + O(p N -8 ), c 21 + (a 1 -1)(a 1 -2) a 1 c 12 (d 21 ) 2 e * 11 d * 22 + O(p N -8 ), c 11 - c 12 d 21 d * 22 (a 1 -1) 2 (a 1 -2) a 1 c 12 d 21 e * 11 d * 22 -p + O(p N -8 ), c 12 + O(p N -8 ) (a 1 -1)(a 1 -2) c 12 d 21 e * 11 d * 22 -2p + O(p N -8 ) p (j),(2,1) I (j) + c 12 + O(p N -8 ) p (j),(3,0) I (j) + (a 1 -1)(a 1 -2) c 12 d 21 e * 11 d * 22 -2p + O(p N -8 )
Here, a1 ∈ Z (p) and a1 ≡ - ]. Note that both a1 and the O(p N -8 ) tails depend on the whole f -tuple w and not just on wf-1-j . Also, the O(p N -8 ) tails involve variables of all embedding and I (j),∇ , I (j) , p (j),(2,1) and p (j),(3,0) are not ideals of R (j) in general. A similar comment applies to Tables 2-5 below.

s -1 j (µj ) -(2, 1), α ∨ j ≡ -
Table 2. Shape wf-1-j = wt (2,1) , i.e. 

A (f -1-j) = 0 d * 12 v d * 21 v 2 0 . A (f -1-j) (v + p)d 11 + c 11 (v + p)d * 12 + c 12 v((v + p)d * 21 + c 21 ) (v + p)d 22 + c 22 ϕ-module at the (v + p)d * 12 + c 12 1 v (v + p)d 11 + c 11 (v + p)d 22 + c 22 (v + p)d * 21 + c 21 s -1 j v r j +1 0 0 1 (f -1 -j)-th embedding R (j) O c 11 ,
+ p + O(p N -8 ) a 2 (a 2 -1) (a 2 -2)(a 2 + 1) d 11 d 22 d * 12 d * 21 + p + O(p N -8 ) p (j),(2,1) I (j) + d 11 d 22 d * 12 d * 21 + p + O(p N -8 ) p (j),(3,0) I (j) + a 2 (a 2 -1) (a 2 -2)(a 2 + 1)
d 11 d 22 d * 12 d * 21 + p + O(p N -8 )
Here, a2 ∈ Z (p) and a2 ≡ -ws -1 j (µj) -(2, 1), α ∨ j ≡ sgn(sj)(rj + 1) + 1 (mod p). For readability we write a2, c ik , etc. instead of a Table 4. Multi-type deformations: shapes wf-1-j = t (2,1) and wf-1-j = wt (2,1) .

(j) 2 , c (j) ik , etc. Also, note that x * 12 def = d * 12 -[d * 12 ] and x * 21 def = d * 21 -[d * ]. Table 3. Shape wf-1-j = t (1,2) , i.e. A (f -1-j) = d * 11 v 0 0 e * 22 v 2 . A (f -1-j) (v + p)d * 11 + c 11 (v + p)d 12 + c 12 vc 21 (v + p) 2 e * 22 + (v + p)d 22 + c 22 ϕ-module at the (v + p)d * 11 + c 11 1 v (v + p)d 12 + c 12 vc 21 1 v (v + p) 2 e * 22 + (v + p)d 22 + c 22 s -1 j v r j +1 0 0 1 (f -1 -j)-th embedding R (j) O c 11 ,
I (j),∇ a 3 c 11 d 22 + (a 3 -1)d * 11 c 22 -p(d * 11 d 22 + 2c 11 e * 22 ) + O(p N -4 ), c 11 (a 3 -1)c 22 -pd 22 + O(p N -3 ), c 21 (a 3 d 22 -2pe * 22 ) + O(p N -4 ), c 21 (a 3 -1)c 22 -pd 22 + O(p N -3 ),
Multi-type ϕ-module at 

(v + p)d * 12 + c 12 + b 12 v 1 v (v + p)d 11 + c 11 (v + p)d 22 + c 22 (v + p)d * 21 + c 21 s -1 j v r j +1 0 0 1 the (f -1 -j)-th embedding S (j) O c 11 ,
I (j) w , i( w) f -1-j = 1 c 11 + pd 11 , c 12 -pd * 12 + (a 1 -2) d 11 d 22 d * 21 + O(p N -8 ), c 21 -(a 1 -1) d 11 d 22 d * 12 + O(p N -8 ), c 22 + (a 1 -1)(a 1 -2) a 1 d 11 (d 22 ) 2 d * 12 d * 21 + O(p N -8 ), b 12 -pc 12 - d 11 d 22 d * 21 (a 1 -1) 2 (a 1 -2) a 1 d 11 d 22 d * 12 d * 21 -p + O(p N -8 ), d 11 + O(p N -8 ) (a 1 -1)(a 1 -2) d 11 d 22 d * 12 d * 21 -2p + O(p N -8 ) I (j) w , i( w) f -1-j =
+ p + O(p N -8 ) a 2 (a 2 -1) (a 2 -2)(a 2 + 1) d 11 d 22 d * 12 d * 21 + p + O(p N -8 ) p (j),(2,1) w , i( w) f -1-j = 1 I (j) w + d 11 + O(p N -8 ) p (j),(3,0) w , i( w) f -1-j = 1 I (j) w + (a 1 -1)(a 1 -2) d 11 d 22 d * 12 d * 21 -2p + O(p N -8 ) p (j),(2,1) w , i( w) f -1-j = 2 I (j) w + d 11 d 22 d * 12 d * 21 + p + O(p N -8 ) p (j),(3,0) w , i( w) f -1-j = 2 I (j) w + a 2 (a 2 -1) (a 2 -2)(a 2 + 1)
d 11 d 22 d * 12 d * 21 + p + O(p N -8 )
For readability we write ai, c ik , etc. instead of a Table 5. Multi-type deformations: shapes wf-1-j = wt (2,1) and wf-1-j = t (1,2) .

Multi-type ϕ-module at 

(v + p)d * 12 + c 12 1 v (v + p)d 11 + c 11 (v + p)d 22 + c 22 (v + p)d * 21 + c 21 + b 21 v s -1 j v r j +1 0 0 1 the (f -1 -j)-th embedding S (j) O c 11 ,
+ p + O(p N -8 ) a 2 (a 2 -1) (a 2 -2)(a 2 + 1) d 11 d 22 d * 12 d * 21 + p + O(p N -8 ) I (j) w , i( w) f -1-j = 3 c 22 +
-2p + O(p N -8 ) p (j),(2,1) w , i( w) f -1-j = 2 I (j) w + d 11 d 22 d * 12 d * 21 + p + O(p N -8 ) p (j),(3,0) w , i( w) f -1-j = 2 I (j) w + a 2 (a 2 -1) (a 2 -2)(a 2 + 1) d 11 d 22 d * 12 d * 21 + p + O(p N -8 ) p (j),(2,1) w , i( w) f -1-j = 3 I (j) w + d 22 + O(p N -8 ) p (j),(3,0) w , i( w) f -1-j = 3 I (j)
w + a 3 (a 3 + 1)

d 11 d 22 d * 12 d * 21 -2p + O(p N -8 )
For readability we write ai, c ik , etc. instead of a ) tails coming from Tables 1-2 (by the change of variables in Figure 2) depend on the whole f -tuple w ∈ X(σ).

Gelfand-Kirillov dimension and representations of the Iwahori

We introduce an analog of the Gelfand-Kirillov dimension for smooth modulo p representations of p-adic analytic groups and prove Corollary 5.3.5 which gives an upper bound for this dimension in the case of representations of the Iwahori subgroup of GL 2 (L), L unramified, satisfying a "multiplicity one" assumption in the first three layers of their socle filtration.

Let F be a finite field of characteristic p. If H is a compact p-adic analytic group, we define m n H /m n+1 H .

Z p H def = lim ← - H ⊆H Z p [H/H ], F H def = F ⊗ Zp Z p H ,
5.1. Review of Gelfand-Kirillov dimension. We recall the notion of Gelfand-Kirillov dimension of an admissible smooth F-representation of a p-adic analytic group. General references for this part are [START_REF] Venjakob | On the structure theory of the Iwasawa algebra of a p-adic Lie group[END_REF] and [START_REF] Ardakov | Ring-theoretic properties of Iwasawa algebras: a survey[END_REF]. We recall here some useful definitions and results for the reader.

Let H be a compact p-adic analytic group and let M be a finitely generated F H -module. Its grade j H (M ) is the smallest integer d such that Ext d F H (M, F H ) = 0 (with the convention that the smallest element of the empty set is +∞). Moreover, if M = 0, we have

0 ≤ j H (M ) ≤ dim(H),
where dim(H) is the dimension of H as a Q p -analytic variety. This is a consequence of the following two facts: We also define a dimension function by dim H (M )

(i) if H ⊆ H is
def = dim(H) -j H (M ).
When H is a uniform pro-p-group, the graded F-algebra gr m F H is commutative isomorphic to the polynomial algebra in dim(H) variables over F (see the paragraph after Remark 3.31 in [START_REF] Venjakob | On the structure theory of the Iwasawa algebra of a p-adic Lie group[END_REF]). If M is a finitely generated F H -module, its graded module gr m M for the m H -adic filtration is a finitely generated gr m F H -module and dim H (M ) is equal to the dimension of the support of gr m M in Spec(gr m F H ) (see [START_REF] Venjakob | On the structure theory of the Iwasawa algebra of a p-adic Lie group[END_REF]Thm. 3

.21.(ii)]).

Let G be a p-adic analytic group and π an admissible smooth F-representation of G. For each compact open subgroup H of G, the dual π ∨ def = Hom F (π, F) of π is a finitely generated F Hmodule. Its grade does not depend on the choice of H and is denoted j G (π ∨ ). The dimension, or Gelfand-Kirillov dimension, of π is then dim G (π) For n ≥ 1, let H p n be the subgroup of p n -th powers of elements of H. There exist real numbers

def = dim(G) -j G (π ∨ ) = dim H (π ∨ ).
a ≥ b ≥ 1 (dim G (π))! such that (35) bp n dim G (π) + O(p n(dim G (π)-1) ) ≤ dim F π H p n ≤ ap n dim G (π) + O(p n(dim G (π)-1) ).
For this reason, the integer 0 Since gr m M is annihilated by I, there is a spectral sequence • ω(xy -1 ) ≥ min(ω(x), ω(y));

≤ dim G (π) ≤ dim(G) (or -∞ if π = 0) is
E p,q 2 = Ext p A/I (gr m M, Ext q A (A/I, A)) ⇒ Ext p+q A (gr m M, A). Let (h 1 , . . . , h
• ω(x -1 y -1 xy) ≥ ω(x) + ω(y); • ω(x) = +∞ ⇔ x = e G ; • ω(x) > 1 p-1 ; • ω(x p ) = ω(x) + 1. A p-valuation ω on G is saturated [Laz65, III.2.1.5] if, for all x ∈ G, ω(x) > p p -1 ⇐⇒ ∃y ∈ G, y p = x.
Now we assume that there exists, and we fix it, a saturated p-valuation ω on G. For ν ∈ R >0 , we define

G ν def = {x ∈ G : ω(x) ≥ ν}, G ν + def = {x ∈ G : ω(x) > ν}, gr ν G def = G ν /G ν + .
The sets G ν and G ν + are normal subgroups of G. They form a fundamental system of neighborhoods of e G for a structure of topological group on G. The direct sum gr

G def = ν gr ν G is a graded Lie algebra [Laz65, II.1.1.7]. If x ∈ G \ {e G },
we define gr(x) as being the image of x in gr ω(x) G ⊆ gr G. We assume that the topological group G is compact so that ω(G) is discrete in The map gr(x) → gr(x p ) from gr ν to gr ν+1 induces an endomorphism of degree 1 of the graded Lie algebra gr G. Let F p [ε] be the graded polynomial algebra in ε with ε in degree 1. Then there is a unique structure of graded F p [ε]-Lie algebra on gr G such that ε acts via gr(x) → gr(x p ). The graded

R >0 ∪ {+∞} [Laz65, Prop. III.2.2.6]. Let Z p G def = lim ← -ν Z p [G/G ν ]
F p [ε]-module gr G is then a graded-free F p [ε]-module [Laz65, III.2.1.3]. If G is a compact p-adic analytic group, this F p [ε]-module has finite rank d = dim(G) [Laz65, Prop. III.3.1.3].
From now on we assume that G is a compact p-adic analytic group (and still that it has a saturated p-valuation). We fix a family (x i ) 1≤i≤d of elements of G such that (gr(x i )) 1≤i≤d is a basis of the F p [ε]-module gr G (so that x i = 1 for all i). We call the family (x i ) 1≤i≤d an ordered basis of G.

Let α = (α i ) 1≤i≤d ∈ N d . We define z α def = d i=1 (x i -1) α i ∈ Z p [G] and τ (α) def = d i=1 α i ω(x i
). Following Lazard, we define a valuation w : Z p [G] → R >0 ∪ {+∞} as the (pointwise) infimum of the set of all Z p -algebra valuations w such that, for all x ∈ G, w(x -1) ≥ ω(x). Actually Lazard takes the (pointwise) infimum of all filtrations [Laz65, III.2.3.1.2] but in our case this last infimum is a valuation, so that our definition is equivalent [Laz65, Thm. III.2.3.3, Cor. III.2.3.4].

Moreover by loc. cit., the Z p -algebra Z p G is isomorphic to the completion of Z p [G] for w. We have the following description of Z p G and w [Laz65, III.2.3.8.8, III.2.3.9]: We have

Z p G =    α∈N d λ α z α : λ α ∈ Z p    ; w   α∈N d λ α z α   = inf{v p (λ α ) + τ (α)}.
D G =    α∈N d λ α z α : λ α ∈ Q p , v p (λ α ) + τ (α) → +∞ as τ (α) → +∞    and that the closure of Z p [G] in D G is isomorphic to the completed group algebra Z p G . Let U Fp[ε] (gr G) be the enveloping algebra of the F p [ε]-Lie algebra gr G. As gr G is graded, the F p [ε]-algebra U Fp[ε] (gr G) is canonically a graded F p [ε]-algebra. Namely the tensor algebra T Fp[ε] (gr G) of the F p [ε]-module gr G inherits a grading from gr G (see [Laz65, I.3.3.2]) and, for x, y ∈ gr G two homogeneous elements, the element x ⊗ y -y ⊗ x -[x, y] is homogeneous in T Fp[ε] (gr G). Consequently U Fp[ε] (gr G) is a quotient
F p G = Z p G ⊗ Zp F p .
Let w be the quotient filtration (in the sense of [Laz65, I.2.1.7]) on F p G . It is defined by

w(x) def = sup{w(x) ∈ R ∪ {+∞} : x ∈ Z p G , x ≡ x mod p}. We have w   α∈N d λ α z α   = inf{τ (α) : λ α = 0}.
If x ∈ Z p G , we have w(px) = w(x) + 1 so that gr(px) = ε gr(x) and finally gr(pZ p G ) = ε gr(Z p G ) inside gr(Z p G ). This implies that the short exact sequence of filtered modules is strict

[Laz65, I.2.3.8.2] 0 -→ (pZ p G , w| pZp G ) -→ (Z p G , w) -→ (F p G , w) -→ 0.
Combined with the isomorphism U Fp[ε] (gr G) ∼ = gr Z p G , this implies the existence of an isomorphism of graded algebras

U Fp[ε] (gr G) ⊗ Fp[ε] F p ∼ = gr F p G .
Let gr G be the graded Lie algebra gr G ⊗ Fp[ε] F p . We deduce an isomorphism of graded algebras

(36) U Fp (gr G) ∼ = gr F p G .
We now give a convenient way to compute gr G. Actually we rather compute gr G and deduce gr G after quotienting by ε.

Let L be a Z p -Lie algebra. A p-valuation on L is a map w : L → R >0 ∪ {+∞} such that for all λ ∈ Z p and x, y ∈ L:

• w(λx) = v p (λ) + w(x); • w(x + y) ≥ inf(w(x), w(y)); • w([x, y]) ≥ w(x) + w(y).
If (L, w) is a p-valued Lie algebra, the set gr L has a canonical structure of graded Lie algebra. Moreover the map gr(x) → gr(px) extends to a degree 1 morphism gr L → gr L and to a structure of graded F p [ε]-Lie algebra on gr L.

If x ∈ G, the series log D G (x) def = n≥0 (-1) n-1 n (x -1) n converges in D G .
The associative algebra D G with its valuation w is a p-valued Lie algebra for the commutator bracket. The subset

L G def = {log D G (x) : x ∈ G} of D G is then a p-valued sub-Z p -Lie algebra of D G .
Moreover there is canonical isomorphism of graded F p [ε]-Lie algebras gr L G ∼ = gr G (this is a consequence of [Laz65, Thm. IV.3.2.5 and IV.1.3.5]). 5.3. The case of the pro-p-Iwahori of GL 2 . We compute the graded ring of the completed group algebra of the pro-p-Iwahori subgroup I 1 of GL 2 (L) for unramified L and introduce an interesting ideal which allows us to control the Gelfand-Kirillov dimension of representations of I 1 .

Let L be an unramified extension of Q p of degree f with ring of integers O L and residue field k. We are interested in the particular case of the group I 1 /Z 1 which is the quotient of the (upper) pro-p-Iwahori subgroup of GL 2 (O L ) by its center. This group is isomorphic to the subgroup

G def = I 1 ∩ SL 2 (O L ) of I 1 since p > 2.
The following results can also be deduced from [START_REF] Clozel | Globally analytic p-adic representations of the pro-p-Iwahori subgroup of GL(2) and base change, I: Iwasawa algebras and a base change map[END_REF]. However we prefer to follow [START_REF] Lazard | Groupes analytiques p-adiques[END_REF] in order to emphasize that the graded ring naturally has the structure of an enveloping algebra (see (43)).

We follow [Laz65, III.3.2.7] to define a saturated p-valuation on G. We assume that p > 3. Let L = L( √ p) and v : M 2 (L ) → R >0 ∪ {+∞} be the valuation defined by v((m i,j ))

def = min{v p (m i,j )}.
Let D be the diagonal matrix 1 0 0 √ p in M 2 (O L ). We define, for x ∈ G:

ω(x) def = v(D -1 xD -I 2 ).
It follows from [Laz65, III.3.2.7] that ω is a saturated p-valuation on G (here we are using that p > 3). Explicitly, for a, b, c, d ∈ O L such that (1 + pa)(1 + pd) -pbc = 1:

ω 1 + pa b pc 1 + pd = min{1 + v p (a), 1 2 + v p (b), 1 2 + v p (c), 1 + v p (d)}.
Let g Zp be the sub-Z p -Lie algebra of sl 2,Zp defined by

g Zp def = pa b pc -pa : (a, b, c) ∈ Z 3 p .
Lemma 5.3.1. We have an isomorphism of p-valued Lie algebras

L G ∼ = O L ⊗ Zp g Zp with valuation, for a, b, c ∈ O L , (37) w pa b pc -pa = min{1 + v p (a), 1 2 + v p (b), 1 2 + v p (c)}.
Proof. Let G be the subgroup of GL 2 (L ) defined by

G = x ∈ M 2 (L ) : v(x -I 2 ) ≥ 1 2 . As p -1 > 2, it follows from [Bou72, II.8.4, Prop. 4] that log M 2 (L ) (G ) is the sub-Lie algebra of M 2 (L ) defined by log M 2 (L ) (G ) = x ∈ M 2 (L ) : v(x) ≥ 1 2 . For x ∈ G , we have log M 2 (L ) (Ad(D)x) = Ad(D) log M 2 (L ) (x). As G = Ad(D)(G ) ∩ M 2 (L), we have (38) log M 2 (L ) (G) = x ∈ M 2 (L) : v(Ad(D) -1 x) ≥ 1 2 = O L ⊗ Zp g Zp .
We use the notation to denote the valuation on D G associated to ω as in section 5.2. Let log D G be the logarithm map on D G :

x ∈ D G : w(x -1) > 1 p -1 -→ x ∈ D G : w(x) > 1 p -1 . The inclusion G ⊆ M 2 (O L ) is continuous and extends to a continuous morphism of Z p -algebras h : Z p [G] → M 2 (O L ) and a morphism of Q p -algebras Q p [G] → M 2 (L )
. By definition of w, we have the inequality

w(x) ≤ v(Ad(D -1 )h(x)) for x ∈ Z p [G], since v • Ad(D -1 ) • h is a valuation w on Z p [G] such that w (x -1) = ω(x)
for x ∈ G and w is defined as the pointwise infimum of valuations w with w (x -1) ≥ ω(x) for x ∈ G. As w and v are valuations of Q p -algebras, we deduce that this inequality is true for all

x ∈ Q p [G]. As M 2 (L ) is complete, we can extend h to a morphism of valued Q p -algebras (D G , w) → (M 2 (L ), v • Ad(D) -1
). Now, by continuity of h, the composite

G log D G ----→ D G h -→ M 2 (L )
is the logarithm computed in M 2 (L ). This implies that the restriction of h to log D G (G) is an isomorphism of Lie algebras (39)

L G = log D G (G) ∼ = log M 2 (L ) (G).
Finally both valuations w and v •Ad(D) -1 take value ω(x) at x-1 for x ∈ G. By [Laz65, III.1.1.5] the condition ω(x) > 1 p-1 for x ∈ G implies then w(log

D G (x)) = ω(x) = v(Ad(D -1 ) log M 2 (L ) (x)),
proving that (39) is an isomorphism of valued Lie algebras. The conclusion follows from (38) and from the fact that the valuation v • Ad(D -1 ) restricted to log M 2 (L ) (G) = O L ⊗ Zp g Zp is given by (37).

We endow the Lie algebra g Zp with the restriction of the valuation w and we let g We want to show that gr F p G , defined by the valuation w associated to ω, and gr m F p G (the graded ring for the m G -adic filtration of F p G ) are isomorphic up to rescaling indices. We will need the following lemma: Lemma 5.3.2. Let G be a pro-p-group. Then for g and h in G, we have

gh -1 ≡ (g -1) + (h -1) mod m 2 G , (g -1 -1) ≡ -(g -1) mod m 2 G in F p G . Moreover if g ∈ G, (g p -1) ∈ m p G .
Proof. The first two assertions are consequences of the equality (g -1)(h -1) = (gh -1) -(g -1) -(h -1) and from the fact that g -1 ∈ m G . The last one comes from (g p -1) = (g -1) p .

Proposition 5.3.3. We have, for j ∈ 1 2 N,

m 2j G = {x ∈ F p G : w(x) ≥ j}. Proof. Let a ∈ O L such that F p [a] = k, hence O L = Z p [a]
. Using Lemma 5.3.1 (and its proof) we see that we can choose an ordered basis (x 1 , . . . , x 3f ) of G whose elements are

E i = 1 a i 0 1 , F i = 1 0 pa i 1 , H i = (1-a i p) -1 0 0 1-a i p for 0 ≤ i ≤ f -1. For j ∈ 1 2 N, {x ∈ F p G : w(x) ≥ j} is the ideal generated by monomials z α = 3f i=1 (x i -1) α i with τ (α) = 3f i=1 ω(x i )α i ≥ j. For 0 ≤ i ≤ f -1, we have E i -1 ∈ m G , F i -1 ∈ m G . Let's prove that H i -1 ∈ m 2 G .
We have

E i F 0 E -1 i F -1 0 = H i 1 -(1 -pa i )a 2i 0 1 p 1 0 pa i (1 -pa i ) -1 1 p .
Using Lemma 5.3.2, this implies that

E i F 0 E -1 i F -1 0 -1 ≡ H i -1 mod m 2 G
and finally that

H i -1 ≡ E i -1 + F 0 -1 -(E i -1) -(F 0 -1) mod m 2 G ≡ 0 mod m 2 G . Since ω(E i ) = ω(F i ) = 1/2 and ω(H i ) = 1, this proves that z α ∈ m 2j G when τ (α) ≥ j, i.e. {x ∈ F p G : w(x) ≥ j} ⊆ m 2j G . Noticing that m G = {x ∈ F p G : w(x) ≥ 1/2}, we have, conversely, m j G ⊆ {x ∈ F p G : w(x) ≥ 1/2} j ⊆ {x ∈ F p G : w(x) ≥ j/2}
, the last inclusion being deduced from the properties of a valuation. Proposition 5.3.3 suggests that we should rescale the gradings of g and g by replacing the valuation w on g Zp with 2w, and this is what we do from now on. Therefore, the multiplication by ε on g now has degree 2. We deduce from Proposition 5.3.3 and isomorphism (36) that we have an isomorphism of F p -Lie algebras

(40) gr m F p G ∼ = U Fp (k ⊗ Fp g).
We now determine g explicitly. The Z p -Lie algebra g Zp has a Z p -basis given by

e = 0 1 0 0 , f = 0 0 p 0 , h = p 0 0 -p with relations [e, f ] = h, [h, e] = 2pe, [h, f ] = -2pf and valuations 2w(e) = 2w(f ) = 1, 2w(h) = 2. Hence the graded F p [ε]-Lie algebra g = gr g Zp is g = F p [ε]e ⊕ F p [ε]f ⊕ F p [ε]h
with e and f in degree 1 and relations

[e, f ] = h, [h, e] = 2εe, [h, f ] = -2εf,
and the graded F p -Lie algebra g is

g = F p e ⊕ F p f ⊕ F p h
with e and f in degree 1, h in degree 2 and relations

(41) [e, f ] = h, [h, e] = [h, f ] = 0.
Let H be the (prime-to-p) torsion subgroup of the diagonal torus of GL 2 (O L ). Then H is a finite subgroup of the "upper" Iwahori subgroup I of GL 2 (O L ). It normalizes I 1 and G. Therefore the group H acts on every object considered so far: F p G , L G , g, g, . . . and the isomorphism (40) is equivariant for this action of H. Note that the action of H on L G , g and g is k-linear. More precisely, we have, for g = a 0 0 d ∈ H, and α ∈ k:

g(α ⊗ e) = (ad -1 α) ⊗ e, g(α ⊗ f ) = ((ad -1 ) -1 α) ⊗ f, g(α ⊗ h) = α ⊗ h.
Let F be a field of characteristic p. Recall from the introduction that if F is an extension of F p such that k embeds into F, we label the embeddings σ j = σ 0 • ϕ j , so the set J of embeddings k → F is identifed with {0, . . . , f -1}. In this case, for 0 ≤ j ≤ f -1, we define g

j def = F ⊗ σ j ,k gr G and g j def = F ⊗ σ j ,k gr G. Then we have a decomposition (42) F ⊗ Fp gr G ∼ = f -1 j=0 g j
and canonical isomorphisms g j ∼ = F ⊗ Fp g as well as g j ∼ = F ⊗ Fp g. Using also (40) we deduce an isomorphism of graded F-algebras

(43) gr m F G ∼ = F ⊗ Fp gr m F p G ∼ = f -1 j=0 U Fp (g j ) ∼ = U Fp (g) ⊗f F .
For 0 ≤ j ≤ f -1 let e j , f j , h j ∈ g j denote the images of 1 ⊗ e, 1 ⊗ f, 1 ⊗ h under the isomorphism F ⊗ Fp g ∼ = g j . Then we have, for g = a 0 0 d ∈ H, and for 0 ≤ j ≤ f -1, ge j = σ j (ad -1 )e j , gf j = σ j (ad -1 ) -1 f j , gh j = h j .

Let I G be the left ideal of gr m F G generated by the elements (1 ⊗ e)(1 ⊗ f ) and 1 ⊗ h (of degree 2). We easily see that I G is in fact a 2-sided ideal of gr m F G . If k embeds in F, then I G is the left ideal generated by (e j f j , h j ; 0 ≤ j ≤ f -1) via the isomorphism (43).

Theorem 5.3.4. Let F be a field of characteristic p. The graded ring gr m F G is Auslanderregular and (gr m F G )/I G is a commutative Cohen-Macaulay F-algebra of dimension f . More precisely, if we assume moreover that k embeds in F, then (i) the sequence (h 0 , . . . , h f -1 ) is a regular sequence of central elements of gr m F G and gr m F G /(h 0 , . . . , h f -1 ) is isomorphic to F[e j , f j ; 0 ≤ j ≤ f -1], a polynomial ring in 2f variables; (ii) we have an isomorphism

(gr m F G )/I G ∼ = F[e j , f j ; 0 ≤ j ≤ f -1]/(e j f j ; 0 ≤ j ≤ f -1).
Proof. By [LvO96, §III.2.4.4], the graded ring gr m F G is Auslander-regular since it is isomorphic to an enveloping algebra. Assume now that k embeds in F.

(i) It follows from (41) that h 0 , . . . , h f -1 are central elements of gr m F G . For 0 ≤ i ≤ f -1, the ring (gr m F G )/(h 0 , . . . , h i ) is isomorphic to the enveloping algebra of the quotient of the Lie algebra F ⊗ Fp gr G by the ideal generated by h 0 , . . . , h i and is therefore a ring without zero divisors by the Poincaré-Birkhoff-Witt Theorem. This proves that h i+1 is a regular element of (gr m F G )/(h 0 , . . . , h i ) and that (h 0 , . . . , h f -1 ) is a regular sequence of central elements of gr m F G . The last assertion is clear by (41).

(ii) Using the isomorphism of F-algebras

(gr m F G )/I G ∼ = 0≤j≤f -1 (U Fp (g j )/(e j f j , h j )),
the assertion is a consequence of (i). The sequence (e j f j ; 0

≤ j ≤ f -1) is a regular sequence in F[e j , f j ; 0 ≤ j ≤ f -1], so the ring (gr m F G )/I G is Cohen-Macaulay of dimension f .
In general (if k does not embed in F), we can find a finite extension F /F such that k embeds in F . By what precedes, the ring

F ⊗ F ((gr m F G )/I G ) ∼ = gr m (F G /(F ⊗ F I G )) is Cohen-Macaulay of dimension f , hence so is (gr m F G )/I G [Gro65, Cor. (6.7.8)].
Corollary 5.3.5. Let π be an admissible smooth representation of I/Z 1 over F. Assume that for each character such that Hom I (χ, π) = 0, the natural injection

Hom I (χ, π) → Hom I (W χ,3 , π)
is an isomorphism, where W χ,3 is defined in (45). Then dim I (π) = dim I/Z 1 (π) ≤ f . Proof. By increasing F we may assume that k embeds in F. As π is an admissible representation of I/Z 1 , it is an admissible representation of G ∼ = I 1 /Z 1 and π ∨ is a finitely generated F Gmodule. Moreover the socle filtration on π coincides with the socle filtration on π| G and with the dual of the m G -adic filtration on π ∨ so that (soc i π/ soc i-1 π) ∨ ∼ = gr i m π ∨ . Moreover the graded gr m F G -module gr m π ∨ is generated by its homogeneous elements of degree 0.

Let I G be the graded ideal of gr m F G defined above and let I

(2) G be its homogeneous component of degree 2. Note that H acts trivially on I

(2) G . If Hom I (χ, gr 0 m π ∨ ) = 0, then by assumption Hom I (χ, gr 2 m π ∨ ) = 0, so we have I

(2) G (gr 0 m π ∨ ) = 0. As gr m π ∨ is generated by gr 0 m π ∨ and I G by I

(2) G , we deduce that I G (gr m π ∨ ) = 0 and that gr m π ∨ is actually a gr m F G /I G -module. Theorem 5.3.4 implies that the dimension of its support is ≤ f . We can therefore apply Lemma 5.1.3 (with I = (h 0 , . . . , h f -1 )) to conclude that dim I/Z 1 (π) = dim G (π) ≤ f . The equality dim I (π) = dim I/Z 1 (π) follows from Lemma 5.1.2. Using (43) and the Poincaré-Birkhoff-Witt Theorem, we can write down explicitly the structure of the first three graded pieces of gr m F I 1 /Z 1 as I-representations, assuming that k embeds in F:

gr 0 m F I 1 /Z 1 = F, gr 1 m F I 1 /Z 1 ∼ = f -1 i=0 (Fα i ⊕ Fα -1 i ), gr 2 m F I 1 /Z 1 ∼ = F 2f ⊕ 0≤i≤j≤f -1 Fα i α j ⊕ 0≤i≤j≤f -1 Fα -1 i α -1 j ⊕ 0≤i =j≤f -1 Fα i α -1 j , (44) 
where α j is the character a 0 0 d → σ j (ad -1 ). As a consequence, each nontrivial character appears with multiplicity at most one as a Jordan-Hölder factor of F I 1 /Z 1 /m 3 I 1 /Z 1 .

On smooth representations of GL 2

The aim of this section is to prove Theorem 6.4.7 below which provides a useful criterion for bounding the dimension of an admissible smooth representation of GL 2 (L).

We keep the notation of §5.3: L is a finite unramified extension of Q p of degree f with ring of integers O L and residue field k, I (resp. I 1 ) is the upper (resp. upper pro-p) Iwahori subgroup of

K def = GL 2 (O L ) and Z 1 is the center of I 1 . We set K 1 def = 1 + p M 2 (O L ) ⊆ I 1 .
If H is a compact p-adic analytic group and if V is an admissible smooth F-rational representation of H we denote Inj H V an injective envelope of V in the category of admissible smooth representations of H; it is unique up to nonunique isomorphism. As an F H -module, the dual V ∨ is finitely generated and we denote by Proj H V ∨ a projective cover of V ∨ in the category of pseudocompact F H -modules. The radical rad M of a pseudocompact F H -module is the submodule m H M .

If G is a p-adic analytic group, H a closed subgroup of G and V a smooth H-representation over F, we denote by Ind G H V the F-vector space of smooth functions f : G → V such that f (hg) = hf (g) for all g ∈ G and h ∈ H. The group G acts on Ind G H V by translation on the right.

If H is cocompact in G, the representation Ind G H V is smooth and if moreover V is admissible, it is admissible. If λ ∈ X * (T ) we use the notation χ λ to denote the character T (k) → T (F) λ -→ F × ,
where the first map is the inclusion. We use the same notation χ λ to denote the character of I obtained by composition with I T (k). Equivalently χ λ is the character of I acting on F (λ) I 1 .

In this section, we always assume that p > 2.

6.1. On some representations of the Iwahori.

Let α i : T (k) → F × denote also the character χ α i , i.e. the character sending a 0 0 d ∈ T (k) to σ i (ad -1 ). In particular, α i = α p i 0 as characters of T (k) for 0 ≤ i ≤ f -1.

We let χ : I → F × be a smooth character. For any n ≥ 1, we set (45) W χ,n def = (Proj I/Z 1 χ)/m n I 1 . (Note that via the natural map F I → F I/Z 1 the actions of m n I 1 and m n I 1 /Z 1 coincide on Proj I/Z 1 χ; similar comment will apply later on for pseudocompact F K/Z 1 -modules.) Let χ 0 be the trivial character of I. As any smooth character χ : I → F × is trivial on I 1 , there is an isomorphism of F I/Z 1 -modules

Proj I/Z 1 χ ∼ = χ ⊗ F Proj I/Z 1 χ 0
and an isomorphism of F I/Z 1 -modules Proj I/Z 1 χ 0 ∼ = F I 1 /Z 1 . (Note that the decomposition I = I 1 H with H as in §5.3 gives a natural left action of I on F I 1 /Z 1 , where I 1 acts by left translation and H by conjugation.) Consequently for any n ≥ 1, we have an isomorphism of I-representations W χ,n ∼ = χ ⊗ F (F I 1 /Z 1 /m n I 1 ). From the description of gr m F I 1 /Z 1 in (44), we can deduce the following result. Lemma 6.1.1. We keep the above hypotheses.

(i) For any χ = χ, [W χ,3 : χ ] ≤ 1. (ii) Suppose that χ, χ : I → F × are smooth characters such that Ext 1 I/Z 1 (χ, χ ) = 0. Then χ ∈ {χα ±1 i : 0 ≤ i ≤ f -1} and we have dim F Ext 1 I/Z 1 (χ, χ ) = 1. Letting E χ ,χ denote the unique nonsplit I-extension (46) 0 → χ → E χ ,χ → χ → 0,
the group K 1 acts trivially on E χ ,χ if and only if χ = χα i for some 0 ≤ i ≤ f -1.

Proof. Part (i) follows from equation (44) by twisting and part (ii) follows from [Hu10, Lemma 2.4] (i) and (ii). Now, let χ be a character such that Ext 1 I/Z 1 (χ, χ ) = 0. Since [W χ,3 : χ ] = 1 and χ occurs as a subquotient in rad I 1 (W χ,3 ) which is killed by m 2 I 1 , there is a unique (up to scalar) nonzero

I-equivariant morphism W χ ,2 → W χ,3 . Lemma 6.1.2. If Ext 1 I/Z 1 (χ, χ ) = 0, then any nonzero morphism W χ ,2 → W χ,3 is injective.
Proof. By twisting, it is sufficient to consider the case where χ is the trivial character χ 0 . In this case, there is an I-equivariant isomorphism F I 1 /Z 1 ∼ = Proj I/Z 1 χ 0 . Let e ∈ gr 1 m F I 1 /Z 1 be an eigenvector of weight χ . There is a unique degree 1 morphism of graded gr m F I 1 /Z 1 -modules f : gr m F I 1 /Z 1 → gr m F I 1 /Z 1 sending 1 to e. As gr m F I 1 /Z 1 is isomorphic to an enveloping algebra over a field by (43), the Poincaré-Birkhoff-Witt Theorem implies that it has no zero divisor so that the map f is injective. Let ẽ ∈ m I 1 /Z 1 such that gr m (ẽ) = e. We define a degree 1 morphism of filtered F I 1 /Z 1 -modules f : F I 1 /Z 1 → F I 1 /Z 1 sending x to xẽ. Obviously we have f = gr m ( f ). Moreover, if we choose for ẽ a χ -eigenvector for the action of the group H, then f induces an H-equivariant map f : χ ⊗ F F I 1 /Z 1 → F I 1 /Z 1 . As I = I 1 H, the map f is I-equivariant. Since f is injective on graded modules for the m I 1 -adic filtration, it induces an I-equivariant injective map

W χ ,2 = Proj I/Z 1 χ /m 2 I 1 → Proj I/Z 1 χ 0 /m 3 I 1 = W χ 0 ,3 .
For an integer 0 ≤ ≤ q -1 we let i denote the i-th base p digit of , so = f -1 i=0 i p i . Lemma 6.1.3. Let I χ def = Inj B(k) χ. Then I χ has socle and cosocle isomorphic to χ, and its remaining Jordan-Hölder factors χα -j 0 , 0 < j < q -1, occur with multiplicity 1. Its submodule structure is determined by the following property: the unique proper submodule of I χ with cosocle χα -j 0 (0 ≤ j < q -1) has Jordan-Hölder factors χα - 0 , where 0 ≤ < q -1 and i ≤ j i for all i.

Proof. The claim about socle and cosocle are true for injective envelopes of any finite group.

We first observe that

I χ ∼ = Ind B(k) T (k) χ.

The latter representation is injective by Frobenius reciprocity (as any T (k)-representation is injective). It has the correct socle and cosocle by Frobenius reciprocity, hence indeed

I χ ∼ = Ind B(k) T (k) χ.

As the kernel of B(k)

T (k) is a normal p-subgroup, every irreducible B(k)-representation is trivial on it. To determine Jordan-Hölder factors we may thus restrict to T (k). By Mackey's formula, (Ind

B(k) T (k) χ)| T (k) ∼ = χ⊕(Ind T (k) Z(k) χ)| Z(k)
, where Z is the center of GL 2 . Thus the irreducible constituents of I χ are all the characters χ of T (k) such that χ | Z(k) = χ| Z(k) , or equivalently χ = χα -j 0 for some 0 ≤ j < q -1, as well as one more copy of χ.

As in [BP12, §2] we define f j def = λ∈k λ j 1 λ 0 1 e, where e ∈ Ind B(k) T (k) χ is some function whose support equals T (k). It follows that f j is a T (k)-eigenvector with eigenvalue χα -j 0 .

Assume now that j < q -1. An explicit calculation shows that 1 x 0 1 f j = j =0 j (-x) j-f .

Hence the B(k)-representation W generated by f j has basis f for such that j = 0 or equivalently i ≤ j i for all i. In particular, W = I χ since j < q -1. On the other hand, W is a quotient of Ind

B(k)
T (k) χα -j 0 , so W is the unique proper subrepresentation of I χ with cosocle χα -j 0 .

The element 0 1 p 0 ∈ GL 2 (L) normalizes I and its square is central. Let χ s denote the conjugate of χ by 0 1 p 0 ∈ GL 2 (L). By conjugating I χ by 0 1 p 0 ∈ GL 2 (L) we obtain the following corollary.

Corollary 6.1.4. Given χ : T (k) → F × there is a (finite-dimensional) smooth representation J χ of I with the following properties. The socle and cosocle of J χ are isomorphic to χ s , and the remaining Jordan-Hölder factors of J χ are χ s α j 0 for 0 < j < q -1, each occurring with multiplicity 1. The unique proper submodule of J χ with cosocle χ s α j 0 (0 ≤ j < q -1) has Jordan-Hölder factors χ s α 0 , where 0 ≤ < q -1 and i ≤ j i for all i. Moreover, J χ admits a central character.

Remark 6.1.5. On J χ the action of I does not factor through its quotient B(k), contrary to the case I χ (cf. Lemma 6.1.1).

On some indecomposable representations of K.

We will use again the notation of section 2.4. In particular, recall that we have identified J = Hom(k, F) with {0, 1, . . . , f -1} and that η J def = i∈J η i for J ⊆ J . Also, for λ ∈ X * (T ) recall the injective map

t λ : Λ λ W → X reg (T )/(p -π)X 0 (T ).
Let σ be a Serre weight appearing in Inj GL 2 (k) F (λ). It follows from [BP12, Cor. 3.12] that there exists a unique subrepresentation of Inj GL 2 (k) F (λ), denoted by I(F (λ), σ ), with cosocle σ and such that [I(F (λ), σ ) : F (λ)] = 1. Moreover, I(F (λ), σ ) is multiplicity-free. As a consequence, if W is a subrepresentation of Inj GL 2 (k) F (λ) such that [W : σ ] = 0, then W contains I(F (λ), σ ) as a subrepresentation. Dually, we have similar statements for quotients of Proj GL 2 (k) F (λ). Lemma 6.2.1. We keep the above hypotheses.

(i) Suppose that 0 < λ, α ∨ i < p -1 for all i. Then Ind K I χ s λ is multiplicity-free with Jordan- Hölder factors {F (t λ (-η J )) : J ⊆ J }. (ii) Suppose that 0 < λ, α ∨ i < p -2 for all i. The Jordan-Hölder factors of Inj GL 2 (k) F (λ) are the {F (t λ ( i∈J a i η i )) : (a i ) i∈J ∈ {0, ±1} J }, up to multiplicity. (iii) Suppose that 0 < λ, α ∨ i < p -2 for all i. Let σ = F (t λ ( i∈J a i η i ))
for some (a i ) ∈ {0, ±1} J . The Jordan-Hölder factors of I(F (λ), σ ) are F (t λ ( i∈J a i η i )) : J ⊆ J . As a consequence, the length of I(F (λ), σ ) is equal to 2 |{i∈J :a i =0}| . By Remark 2.4.5(iii) the condition on λ in (i) is precisely that all weights t λ (-η J ) lie in C 0 . Also note in part (iii) that the Jordan-Hölder factors correspond via t λ precisely to the weights lying on geodesics between 0 and i∈J a i η i .

Proof. Part (i) is almost a special case of Proposition 2.4.3 (with sw -1 = 1, ν = η, and µ-η = λ), but the hypothesis is weaker here.

If ν ∈ X 0 (T ), then from the definition, F (t λ+ν (ω)) ∼ = F (t λ (ω)) ⊗ F F (ν). (Note that F (ν) is one-dimensional.) We may therefore assume that λ i is of the form (a i , 0) for some integers 0 < a i < p -1.

Recall from Remark 2.4.5(i) the notation w 0,J = i+1∈J w i ∈ W , where w i denotes the Weyl group element which is nontrivial exactly in the i-th embedding. We first calculate t λ (-η J ) ≡ µ J mod (p -π)X 0 (T ), where µ J = (t π -1 (η J ) w 0,J ) • (λ -η J ) ∈ X * (T ). We have

µ J,i = λ i -δ J (i)(1, 0) if i + 1 ∈ J, w 0 • λ i + (0, p) -δ J (i)(1, 0) if i + 1 ∈ J, = (a i , 0) -δ J (i)(1, 0) if i + 1 ∈ J, (p -1, a i + 1) -δ J (i)(0, 1) if i + 1 ∈ J,
where δ J is the characteristic function of J (cf. equation ( 13)). Replacing J by the set Proposition 6.2.2. Fix λ ∈ X * (T ). Suppose that integers B i ∈ Z ≥0 and signs ε i ∈ {±1} (0 ≤ i ≤ f -1) satisfy the following conditions:

K def = {i ∈ J : i + 1 ∈ J},
(i) B i ≡ 1-ε i-1 2 (mod 2); (ii) if ε i = -1, then B i ≤ λ, α ∨ i ≤ p -2 -1+ε i-1 2 ; (iii) if ε i = 1, then B i ≤ p -2 -λ, α ∨ i ≤ p -2 -1+ε i-1 2 .
Then there exists a multiplicity-free representation V of K/Z 1 with Jordan-Hölder constituents

σ a def = F (t λ ( ε i a i η i ))
, where 0 ≤ a i ≤ B i and whose submodule structure is determined as follows: the unique subrepresentation with cosocle σ a has constituents σ b for all b such that 0 ≤ b i ≤ a i for all i. In particular, the socle of V is isomorphic to F (λ).

Proof. As a first step we consider the case where

ε i = -1 for all i. Let b i def = B i -1 2 ∈ Z ≥0 for 0 ≤ i ≤ f -1. Note that t λ (-i a i η i ) ∈ C 0 for all 0 ≤ a i ≤ B i is equivalent to condition (ii)
(cf. Remark 2.4.5(iii)). Let χ def = χ λ . Corollary 6.1.4 gives us a representation W ⊆ J χ of I with constituents χ s α j 0 , where 0 ≤ j i ≤ b i for all i, and such that the unique subrepresentation of W with cosocle χ s α j 0 has constituents χ s α 0 , where 0 ≤ i ≤ j i for all i. Let V def = Ind K I W . By Lemma 6.2.1 and Remark 2.4.5(ii), this representation is multiplicity-free with constituents

F (t λ (-c i η i )), where 0 ≤ c i ≤ 2b i + 1 = B i for all i.
To determine the submodule structure, by Lemma 2.4.6 it is enough to show that for any (c i ) i as above and any j such that c j < 2b j + 1 there exists a length 2 subquotient with socle F (t λ (c i η i )) and cosocle F (t λ (-η j -c i η i )). To see this, write c i = 2d i + r i with 0 ≤ r i ≤ 1. Observe that

F (t λ (- c i η i )) = F (t λ (- r i η i - d i α i )) = F (t λ-d i α i (- r i η i ))
by applying Remark 2.4.5(ii). By Lemma 6.2.1 this is a constituent of Ind G B χ s , where

χ s = χ s λ-d i α i = χ s λ α d i p i 0 . If r j = 0, then F (t λ (-η j -c i η i )
) is a constituent of Ind K I χ s as well, and we are done by Lemma 6.2.1, as V admits Ind K I χ s as subquotient.

If

r j = 1, then F (t λ (-η j -c i η i )) is a constituent of Ind K I χ s α p j 0 .
Letting the other r i vary in {0, 1}, we need to check the existence of the 2 f -1 nonsplit extensions inside V between constituents of Ind K I χ s α p j 0 and Ind K I χ s given by Lemma 2.4.6. When f = 1 this is obvious, as we can compute the cosocle of Ind K I (E

χ s ,χ s α p j 0
) by Frobenius reciprocity (cf. Lemma 6.3.1).

When f ≥ 2 then [Hu10, Lemme 2.12(i)] confirms there are 2 f -1 nonsplit extensions, as required (in the notation of that reference the condition is

J(λ) = J(θ) {j -1}).
Finally we treat the general case. Let

J def = {0 ≤ i ≤ f -1 : ε i-1 = 1}. Set µ = t λ (w 0,J (η J )). Using Lemma 2.4.4 and Remark 2.4.5(i) we compute t λ ( ε i a i η i ) = t µ (-(a i + δ J (i))η i ) for integers a i . Note that δ J (i) = 1+ε i-1 2 .
We apply the first step of the proof with the weight µ, the bounds B i + δ J (i) and all signs -1. We obtain a representation V with socle F (µ) satisfying the desired hypotheses with signs -1 for all i and B i + δ J (i) in place of B i . We note that its unique quotient with socle F (λ) has the desired properties with signs ε i and bounds B i . We just have to check that we can apply the first step in this case. Namely it suffices to check that t µ (-

a i η i ) ∈ C 0 for 0 ≤ a i ≤ B i + δ J (i), noting that B i + δ J (i) = B i + 1+ε i-1 2
is odd for all i. Equivalently, we need that t λ (

ε i a i η i ) ∈ C 0 for -δ J (i) ≤ a i ≤ B i , i.e. 0 ≤ λ, α ∨ i + ε i a i ≤ p -2 for -δ J (i) ≤ a i ≤ B i
and all i. This is equivalent to conditions (ii) and (iii) that we assumed.

Assume that λ is 1-deep in alcove C 0 , i.e. 1 ≤ λ, α ∨ i ≤ p -3 for all i. Let V be the representation of Proposition 6.2.2 with B i ∈ {0, 1} for all i. Let a be such that 0 ≤ a i ≤ B i for all i. Then the subrepresentation of V with cosocle σ a of Proposition 6.2.2 is isomorphic to the representation

I(F (λ), σ a ) of [BP12, Cor. 3.12]. Lemma 6.2.3. Suppose that V is a finite-dimensional smooth representation of K that has irre- ducible K-socle σ = F (λ) with 3 ≤ λ, α ∨ i ≤ p -4 for all i. If [V : σ] = 1 and all constituents of V occur in Inj GL 2 (k) σ, then V is K 1 -invariant.
Proof. By writing V as a quotient of Proj K (cosoc K V ) and decomposing cosoc K V as a direct sum of irreducible representations, we see that V is the sum of all subrepresentations with irreducible cosocle. We may thus assume that V itself has irreducible cosocle τ , and we argue by induction on the length (V ) of V . If (V ) = 1 there is nothing to show. By induction, rad

V is K 1 -invariant, so V [m 2 K 1 ] = V . By [HW22, Thm. 2.23] we know that V is K 1 -invariant.
Proposition 6.2.4. Fix λ ∈ X * (T ). Suppose that integers B i ∈ Z ≥0 and signs ε i ∈ {±1} (0 ≤ i ≤ f -1) satisfy the following conditions:

(i) B i ≡ 1-ε i-1 2 (mod 2); (ii) if ε i = -1, then 3 + 2 B i /2 ≤ λ, α ∨ i ≤ p -4; (iii) if ε i = 1, then 3 ≤ λ, α ∨ i ≤ p -4 -2 B i /2 .
Let V be the K-representation defined by this choice of λ, B i , ε i in Proposition 6.2.2.

Then for 0 ≤ n -1 ≤ B i /2 we have that V [m n K 1 ]
is the unique subrepresentation of V with cosocle ⊕σ a , where the sum runs over all a such that 0 ≤ a i ≤ B i and

(i) a i is odd or a i = B i , (ii) a i /2 = n -1.
Proof. We proceed by induction on n ≥ 1 and denote by V n the unique subrepresentation in the statement. For convenience let V 0 = 0. We need to show that

V n /V n-1 = (V /V n-1 ) K 1 . The constituents of V n /V n-1 (resp. V /V n-1
) are all Serre weights σ a with 0 ≤ a i ≤ B i and

a i /2 = n -1 (resp. a i /2 ≥ n -1).
Using the submodule structure of V given by Proposition 6.2.2, we see that V n /V n-1 is a direct sum of indecomposable representations W a , where the index set is the same as in the statement of the proposition and the constituents of W a are all σ b with 0 ≤ b i ≤ B i and b i /2 = a i /2 for all i (and the submodule structure is described by the usual partial order). Note that soc K W a ∼ = σ b , where b i = 2 a i /2 . By Lemma 6.2.3, V n /V n-1 is K 1 -invariant (the given bounds guarantee that the lemma applies by Remark 2.4.5(iii), see also Lemma 6.2.1(ii)). On the other hand, (V /V n-1 ) K 1 has to inject into the injective envelope Inj GL 2 (k) (soc K (V /V n-1 )). By Lemma 6.2.1(ii) we deduce that (V /V n-1 ) K 1 ⊆ V n /V n-1 . (Note that our genericity bounds are stronger.) 6.3. A result on maximal representations of K with prescribed socle. In this section, we prove a structure result for certain representations of K killed by m 2 K 1 . We begin with some preliminary lemmas concerning Jordan-Hölder factors of subrepresentations of some parabolically induced representations. Recall from (46) the representation E χ ,χ for two characters χ, χ of I such that Ext 1

I/Z 1 (χ, χ ) = 0. Lemma 6.3.1. Assume χ = χα -1 i for some 0 ≤ i ≤ f -1. The cosocle of Ind K I E χ ,χ is equal to the cosocle of Ind K I χ.
Proof. Let σ be a Serre weight and assume there exists a surjection f : Ind K I E χ ,χ σ. Then Frobenius reciprocity induces a nonzero I-equivariant morphism f ∈ Hom I (E χ ,χ , σ| I ). Since K 1 acts trivially on σ but not on E χ ,χ (see Lemma 6.1.1(ii)), f cannot be injective. In other words,

f factors through E χ ,χ χ → σ| I , i.e. f factors through Ind K I E χ ,χ Ind K I χ. Remark 6.3.2. For the explicit structure of Ind K I E χ ,χ when χ = χα -1 i , see [BP12, §18].
Given χ satisfying χ = χ s , we denote by σ χ the unique Serre weight such that I acts on σ I 1 χ via χ. Recall that in this case Ind K I χ has irreducible cosocle σ χ and irreducible socle σ χ s (see e.g. [BP12, Thm. 2.4]). Given a Serre weight σ, we denote by χ σ the character of I acting on σ I 1 . Lemma 6.3.3. Suppose that χ = χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. Then the K-representation Ind K I W χ,2 is multiplicity-free, where W χ,2 is defined in (45).

Proof. This is a direct check using Remark 2.4.5(ii) and Lemma 6.2.1(i). The assumption on λ ensures that the hypothesis of Lemma 6.2.1(i) applies to all Ind K I χ with χ ∈ JH(W χ,2 ).

From now on we fix χ = χ λ with λ ∈ X 1 (T ) such that 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1.

Let now χ def = χα i for some i ∈ J , so Ext 1 I/Z 1 (χ, χ ) = 0. As E χ ,χ is a quotient of W χ,2 , Lemma 6.3.3 implies that Ind K I E χ ,χ is multiplicity-free. On the other hand, K 1 acts trivially on Ind K I E χ ,χ by Lemma 6.1.1(ii). Hence there is a unique (up to scalar) nonzero map f :

Proj GL 2 (k) σ χ → Ind K I E χ ,χ .
Observe that the composite map

Proj GL 2 (k) σ χ f -→ Ind K I E χ ,χ Ind K I χ is surjective, since it is surjective on K-cosocles. Lemma 6.3.4. Suppose that χ = χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. Assume χ = χα i for some i ∈ J . We have (47) JH(Im(f )) = JH(Ind K I E χ ,χ ) ∩ JH(Proj GL 2 (k) σ χ ).
Proof. Observe that the K-socle of Ind K I E χ ,χ is isomorphic to σ χ s ⊕ σ χ s , i.e. the direct sum of the socles of Ind K I χ and Ind K I χ. Indeed, it is clear that

σ χ s ⊆ soc K (Ind K I E χ ,χ ) ⊆ σ χ s ⊕ σ χ s ,
so it suffices to prove that Hom K (σ χ s , Ind K I E χ ,χ ) = 0, or equivalently Hom I (σ χ s | I , E χ ,χ ) = 0, by Frobenius reciprocity. This can be checked directly, by writing down the standard basis of σ χ s . Let V def = Im(f ). We claim that V ∩ Ind K I χ = 0. Otherwise, the composite morphism V → Ind K I E χ ,χ Ind K I χ would be injective, and also surjective as remarked before the lemma. Thus, we would have a K-equivariant decomposition Ind K I E χ ,χ ∼ = Ind K I χ ⊕ Ind K I χ , which is not possible (see for example [Alp86, §8, Lemma 6(5)]). As a consequence of the claim, σ χ s appears in V (as a subobject), and therefore V admits a quotient isomorphic to I(σ χ s , σ χ ) (we recall that this representation was defined in §6.2). Now we prove (47). The inclusion ⊆ is obvious. Let σ be a Serre weight lying in the right-hand side of (47). If σ ∈ JH(Ind K I χ), then clearly σ ∈ JH(V ) because Ind K I χ is a quotient of V . So we may assume σ ∈ JH(Ind K I χ ). Then, by Lemma 6.2.1(i) and Remark 2.4.5(ii), σ is of the form F (t λ+α i (-η J )) = F (t λ (2η i -η J )) for some J ⊆ J . It follows from Lemma 6.2.1(ii), (iii) and Remark 2.4.5(ii) that such a Serre weight is a Jordan-Hölder factor of Proj GL 2 (k) σ χ if and only if it is a Jordan-Hölder factor of I(σ χ s , σ χ ). (Note that σ χ ∼ = F (λ) and

σ χ s ∼ = F (t λ (2η i -η J )).) Since I(σ χ s , σ χ ) is a quotient of V , this finishes the proof. Lemma 6.3.5. Suppose that χ = χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. Assume χ = χα i for some i ∈ J . Let Q be a quotient of Ind K I E χ ,χ such that [Q : σ χ ] = 0, then Ext 1 K (σ, σ χ ) = 0 for any σ ∈ JH(Q).
Proof. Let M be the kernel of Ind K I E χ ,χ Q. By Lemma 6.3.3 and the assumption, we have [M : σ χ ] = 1. As a consequence, the natural morphism M → Ind K I χ is surjective (as σ χ is the cosocle of Ind K I χ), and therefore Q is a quotient of Ind K I χ by the snake lemma. By Lemma 6.2.1(i), the Jordan-Hölder factors of Ind K I χ are of the form F (t λ+α i (-η J )) for J ⊆ J . It follows from Lemma 2.4.6 that the existence of σ ∈ JH(Q) such that Ext 1 K (σ, σ χ ) = 0 implies the existence of J ⊆ J and j ∈ J such that F (t λ+α i (-η J )) ∈ JH(Q) and t λ+α i (-η J ) = t λ (±η j ). By Remark 2.4.5(ii) we get 2η i -η J = ±η j , i.e. we must have J = {i} and j = i, and hence σ = F (t λ (η i )).

Consider again the unique (up to a scalar) nonzero map

f : Proj GL 2 (k) σ χ → Ind K I E χ ,χ
. By Lemma 6.3.4 we have F (t λ (η i )) ∈ JH(Im(f )). However, σ χ ∈ JH(M ), thus by uniqueness of f , we must have Im(f ) ⊆ M . Then the Serre weight F (t λ (η i )) is a subquotient of both M and Q. This contradicts the fact that Ind K I E χ ,χ is multiplicity-free (cf. Lemma 6.3.3).

We fix signs ε ∈ {±1} J and define

(48) D λ,ε def = I F (λ), F t λ ( i∈J ε i η i ) .
Its Jordan-Hölder factors are isomorphic to F (t λ ( i∈J ε i η i )) for J ⊆ J by Lemma 6.2.1(iii).

Remark 6.3.6. Keep the previous hypotheses and setting.

(i) We have

Ind K I χ s λ ∼ = D λ,-1 ,
as follows from Lemma 6.2.1(i). (ii) Let ρ be a 2-dimensional semisimple Galois representation which is 2-generic (see Definition 2.3.4). Then the GL 2 (k)-representation D 0 (ρ) attached to ρ as in [BP12, §14] is a direct sum of such D λ,ε ; see Theorem 14.8 in loc. cit.

We want to understand the structure of D λ,ε ⊗ F F (α j ).

Lemma 6.3.7. Suppose that χ = χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. The Jordan-Hölder factors of D λ,ε ⊗ F F (α j ) have multiplicity one and are given by F (t λ (2ε η j + i∈J ε i η i )) for J ⊆ J and ε ∈ {-1, 0, 1}.

Proof. First note that we have

F (λ)⊗ F F (α j ) ∼ = ⊕ 1 i=-1 F (λ+iα j ) by [BP12, Prop. 5.4] or [LMS22, Prop. 3.3(1)].
We then obtain the Jordan-Hölder factors using Remark 2.4.5(ii). The multiplicity one property then follows from the injectivity of t λ . Namely if 2ε

1 η j + i∈J 1 ε i η i = 2ε 2 η j + i∈J 2 ε i η i , then J 1 = J 2 by passing to Λ W /2Λ W , so ε 1 = ε 2 . Lemma 6.3.8. Suppose that χ = χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. We have soc GL 2 (k) (D λ,ε ⊗ F F (α j )) ∼ = ε ∈{-1,0,1} F (t λ (2ε η j )), cosoc GL 2 (k) (D λ,ε ⊗ F F (α j )) ∼ = ε ∈{-1,0,1} F (t λ (2ε η j + i∈J ε i η i )). Proof. Let I λ def = Inj GL 2 (k) F (λ). We have inclusions F (λ) ⊆ D λ,ε ⊆ I λ , which induces inclusions F (λ) ⊗ F F (α j ) ⊆ D λ,ε ⊗ F F (α j ) ⊆ I λ ⊗ F F (α j ),
and also inclusions of the corresponding K-socles. It follows from [START_REF] Le | Multiplicity one at full congruence level[END_REF]Prop. 3.3(2)] that

I λ ⊗ F F (α j ) ∼ = ε ∈{-1,0,1} I λ+ε α j . In particular, the K-socle of I λ ⊗ F F (α j ) is isomorphic to ε ∈{-1,0,1} F (t λ (2ε η j )), which itself is isomorphic to F (λ) ⊗ F F (α j ).
The assertion on the socle follows from this, and the one on the cosocle follows by duality. Lemma 6.3.9. Suppose that χ = χ λ , where

λ is 4-deep in C 0 , i.e. 3 ≤ λ, α ∨ i ≤ p -5 for all 0 ≤ i ≤ f -1. Let ε ∈ {-1, 1} and write V for the unique extension of F (t λ (εη j )) by F (λ): 0 → F (λ) → V → F (t λ (εη j )) → 0.
Then V ⊗ F F (α j ) has a 3-step increasing filtration whose successive graded pieces are V 1 , V 2 , V 3 , where

• V 1 is a nontrivial extension of F (t λ (3εη j )) by F (t λ (2εη j )), • V 2 is a nontrivial extension of F (t λ (εη j )) by F (λ) (i.e. V 2 ∼ = V ), and • V 3 is a nontrivial extension of F (t λ (-εη j )) by F (t λ (-2εη j )). As a consequence, F (t λ (εη j )) is not contained in the socle of (V ⊗ F F (α j ))/F (t λ (2εη j )).
Moreover, the corresponding extensions of V 2 by V 1 , and V 3 by V 2 , are nonsplit.

The structure of V ⊗ F F (α j ) can be illustrated by the extension graph

F (t λ (3εη j )) F (t λ (εη j )) F (t λ (-εη j )) F (t λ (2εη j )) F (λ) F (t λ (-2εη j ))
where the bottom (resp. top) row corresponds to the socle (resp. cosocle) of V ⊗ F F (α j ).

Proof. By Lemma 6.3.8 the socle of V ⊗ F F (α j ) is the direct sum of the F (t λ (2ε η j )) for ε ∈ {-1, 0, 1} and (by duality) its cosocle is the direct sum of the F (t λ ((2ε + ε)η j )) (recall that

α j = 2η j in Λ W ).
Let us begin with the case where ε = -1. We define V 1 as the image of the unique (up to scalar) nonzero map Proj GL 2 (k) F (t λ (-3η j )) → V ⊗ F F (α j ). Comparing Jordan-Hölder factors of V ⊗ F F (α j ) and Proj GL 2 (k) F (t λ (-3η j )) (e.g. by means of Lemmas 6.2.1(ii) and 2.4.4) and by the first sentence of the proof, we find that V 1 has length two with socle F (t λ (-2η j )) and cosocle F (t λ (-3η j )). We define

V 2 ⊆ (V ⊗ F F (α j ))/V 1 as the image of a nonzero map Proj GL 2 (k) F (t λ (-η j )) → (V ⊗ F F (α j ))/V 1 , and V 3 as the quotient of (V ⊗ F F (α j ))/V 1 by V 2 .
Using the fact that ε = -1 and Lemma 6.2.1(i) and (iii), we know that V is a subrepresentation of the principal series Ind K I χ with χ = χ s λ . Therefore, V ⊗ F F (α j ) is a subrepresentation of

Ind K I χ ⊗ F F (α j ) ∼ = Ind K I χ ⊗ F F (α j )| I .
We deduce from the exactness of induction that Ind K I (χ ⊗ F F (α j )| I ) has a 3-step increasing filtration whose successive graded pieces are

Ind K I χα j , Ind K I χ, Ind K I χα -1 j . We claim that JH(V 1 ) = JH(V ⊗ F F (α j )) ∩ JH(Ind K I χα j )
. Indeed, recalling χ = χ s λ , the Jordan-Hölder factors of Ind K I χα j = Ind K I (χ λ α -1 j ) s are of the form F (t λ-α j (-η J )) = F (t λ (-2η j -η J ) for J ⊆ J , and the claim is checked as in the proof of Lemma 6.3.4. Since (Ind K I χ) ⊗ F F (α j ) is multiplicity-free by Lemma 6.3.7, we deduce that (49

) V 1 = (V ⊗ F F (α j )) ∩ (Ind K I χα j )
and hence an embedding

(V ⊗ F F (α j ))/V 1 → Ind K I (χ ⊗ F F (α j )| I )/ Ind K I χα j ∼ = Ind K I E χ,χα -1 j ,
where the isomorphism holds because (χ⊗

F F (α j )| I )/χα j is isomorphic to E χ,χα -1 j as I-representa- tion.
As in the proof of Lemma 6.3.4, the K-socle of Ind K I E χ,χα -1

j is equal to F (λ) ⊕ F (t λ (2η j )),
In particular, F (t λ (-η j )) is not a subrepresentation of V 2 . As F (t λ (η j )) and F (t λ (2η j )) are not Jordan-Hölder factors of Proj GL 2 (k) F (t λ (-η j )) (cf. Lemmas 6.2.1(ii) and 2.4.4), this implies that the socle of V 2 is equal to F (λ) and hence V 2 is a nontrivial extension of F (t λ (-η j )) by F (λ), as desired. Moreover, a similar argument as in last paragraph shows that (50)

V 2 = (V ⊗ F F (α j ))/V 1 ∩ (Ind K I χ) which induces an embedding V 3 → Ind K I χα -1 j . Since the socle of Ind K I χα -1 j = Ind K I (χ λ α j ) s is F (t λ (2η j )
) and JH(V 3 ) = {F (t λ (2η j )), F (t λ (η j ))}, V 3 has to be a nontrivial extension of F (t λ (η j )) by F (t λ (2η j )) as desired. Now we prove the last assertion (still when ε = -1). We only prove that the extension of V 2 by V 1 , denoted by R, is nontrivial, the other case being analogous. It suffices to prove that R admits a subquotient isomorphic to the (unique) nonsplit extension E of F (t λ (-η j )) by F (t λ (-2η j )). By (49) and (50), we see that R embeds in Ind K I E χα j ,χ , so by multiplicity-freeness we are reduced to prove that Ind K I E χα j ,χ admits a subquotient isomorphic to E. It follows from the proof of Lemma 6.3.4 that I(F (t λ (-2η j )), σ χ ) is isomorphic to a subquotient of Ind K I E χα j ,χ . Note that σ χ ∼ = F (t λ (-η J )) by Lemma 6.2.1(i), so F (t λ (-η j )) is a Jordan-Hölder factor of I(F (t λ (-2η j )), F (t λ (-η J ))) by 6.2.1(iii). This finishes the proof in the case ε = -1.

To deal with the case ε = +1, we begin by constructing the quotient V 3 , then V 2 and finally V 1 . We define V 3 as the image of the unique nonzero map

V ⊗ F F (α j ) → Inj GL 2 (k) F (t λ (-2η j )) extend- ing the inclusion F (t λ (-2η j )) → Inj GL 2 (k) F (t λ (-2η j )) (and using the fact that F (t λ (-2η j )) → V ⊗ F F (α j )).
Comparing Jordan-Hölder factors and using again the first sentence of the proof, V 3 has length 2 with cosocle F (t λ (-η j )). Let R be the kernel of V ⊗ F F (α j ) → V 3 . We define V 2 as the image of R → Inj GL 2 (k) F (λ) and V 1 as the kernel. Assume first f ≥ 2. Using the fact that ε = +1, we know that V is a quotient of Ind K I χ µ , where µ def = t λ (η j ) (use Lemma 2.4.4 and note that λ = t µ (-η j )). Therefore we can use a similar argument as in the case ε = -1. The case f = 1 (i.e. k = F p ) is a little subtler, because V is neither a subrepresentation nor a quotient of any principal series. To handle this case, we note the following exact sequence (see [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]§3])

0 → V → Inj GL 2 (Fp) F (λ) → V → 0,
where V = Ind K I χ λ is a principal series, and the decomposition ([LMS22, Prop.

3.3(2)]) (Inj GL 2 (Fp) F (λ)) ⊗ F F (α j ) ∼ = Inj GL 2 (Fp) F (t λ (2η j )) ⊕ Inj GL 2 (Fp) F (λ) ⊕ Inj GL 2 (Fp) F (t λ (-2η j )).
We define V 3 to be the image of the composite map

V ⊗ F F (α j ) → (Inj GL 2 (Fp) F (λ)) ⊗ F F (α j ) Inj GL 2 (Fp) F (t λ (-2η j )).
Comparing Jordan-Hölder factors, it is easy to see that V 3 is equal to either F (t λ (-2η j )) or a nonsplit extension of F (t λ (-η j )) by F (t λ (-2η j )). However, if we had

V 3 = F (t λ (-2η j )), then V ⊗ F F (α j ) would admit a quotient isomorphic to Inj GL 2 (k) F (t λ (-2η j )) /F (t λ (-2η j )
) by the snake lemma, which contradicts the case ε = -1. We can continue in this way to define V 2 and V 1 , and show that the corresponding extensions of V 2 by V 1 , and V 3 by V 2 , are nonsplit. As an example, we show that the extension of V 3 by V 2 is nonsplit, and leave to the reader the proofs of the other assertions. Indeed, if the extension of V 3 by V 2 were split, then V ⊗ F F (α j ) would contain a subrepresentation isomorphic to V 3 , and the image of the composite map

V 3 → V ⊗ F F (α j ) → (Inj GL 2 (Fp) F (λ)) ⊗ F F (α j )
would be contained in the summand Inj GL 2 (Fp) F (t λ (-2η j )). Moreover, comparing Jordan-Hölder factors, we must have

V ⊗ F F (α j ) ∩ Inj GL 2 (Fp) F (t λ (-2η j )) = V 3 , the intersection being taken inside (Inj GL 2 (Fp) F (λ)) ⊗ F F (α j ).
We then deduce an embedding

Inj GL 2 (Fp) F (t λ (-2η j )) /V 3 → V ⊗ F F (α j )
which contradicts the case ε = -1.

Proposition 6.3.10. Suppose that χ = χ λ , where

λ is 4-deep in C 0 , i.e. 4 ≤ λ, α ∨ i ≤ p -6 for all 0 ≤ i ≤ f -1. Let 0 ≤ j ≤ f -1.
There is an increasing 3-step filtration of D λ,ε ⊗ F F (α j ) whose successive graded pieces are:

D λ+ε j α j ,ε , D λ,ε , D λ-ε j α j ,ε .
As a consequence, there is an embedding

D λ+ε j α j ,ε → D λ,ε ⊗ F F (α j ) whose cokernel has socle F (λ) ⊕ F (t λ (-2ε j η j )).
Proof. By Lemma 6.3.8, we know what are the socle and cosocle of D λ,ε ⊗ F F (α j ).

During this proof, we will use the notation η J def = i∈J ε i η i if J ⊆ J (note that η J does depend on the sign ε). We recall that t λ (η J + 2ε j η j ) = t λ+ε j α j (η J ) by Remark 2.4.5(ii). By Lemma 6.3.7, there exists a unique (up to scalar) nonzero map

Proj GL 2 (k) F (t λ (2ε j η j + η J )) → D λ,ε ⊗ F F (α j ); let W 1 be its image. The socle of W 1 is contained in the socle of D λ,ε ⊗ F F (α j ). But F (t λ (2εη j ))
is the only constituent of this socle which is also a constituent of Proj GL 2 (k) F (t λ (2ε j η j + η J )), cf. Lemmas 6.2.1(ii) and 2.4.4. This implies that W 1 is a quotient of Proj GL 2 (k) F (t λ (2ε j η j + η J )) with socle F (t λ (2ε j η j )) and such that [W 1 :

F (t λ (2ε j η j ))] = 1. We conclude that W 1 is isomorphic to D λ+ε j α j ,ε . Let Q be the quotient of D λ,ε ⊗ F F (α j ) by W 1 . Then Q has cosocle isomorphic to the direct sum of F (t λ (η J )) and F (t λ (-2ε j η j + η J )). Let W 2 be the image in Q of the unique nonzero map Proj GL 2 (k) F (t λ (η J )) → Q and let W 3 def = Q/W 2 . Then W 3 is a quotient of Proj GL 2 (k) F (t λ (-2ε j η j + η J )).
We claim that F (λ) is in the socle of W 2 . Let's assume it for now. As W 2 is multiplicity-free, it has a unique quotient with socle F (λ), namely W 2 has a quotient isomorphic to D λ,ε .

We can check that the Serre weight F (t λ (-2ε j η j )) is not a subquotient of Proj GL 2 (k) F (t λ (η J )) (again, by Lemmas 6.2.1(ii) and 2.4.4) so that F (t λ (-2ε j η j )) is a constituent of the socle of W 3 . As above, we can conclude that W 3 has a quotient isomorphic to D λ-ε j α j ,ε . It follows from length considerations that we must have

W 2 ∼ = D λ,ε and W 3 ∼ = D λ-ε j α j ,ε .
We still have to prove that F (λ) is contained in the socle of W 2 or equivalently that

F (λ) is a subquotient of W 2 . Assume it is not the case. Let W 2 be the image in D λ,ε ⊗ F F (α j ) of the unique nonzero map Proj GL 2 (k) F (t λ (η J )) → D λ,ε ⊗ F F (α j ). Then W 2 is a quotient of W 2 and the kernel of W 2 → W 2 is contained in W 1 . Thus F (λ) is not a subquotient of W 2 . The socle of W 2 is con- tained in the socle of D λ,ε ⊗ F F (α j ), which itself is equal to F (t λ (2ε j η j )) ⊕ F (λ) ⊕ F (t λ (-2ε j η j ))
by Lemma 6.3.8. However, F (λ) does not appear in the socle of W 2 by hypothesis, neither does

F (t λ (-2ε j η j )) since it is not a subquotient of Proj GL 2 (k) F (t λ (η J )). The socle of W 2 is then equal to F (t λ (2ε j η j )). By multiplicity-freeness, we have W 2 ∼ = I(F (t λ (2ε j η j )), F (t λ (η J ))). Con- sequently W 2 /F (t λ (2ε j η j )) contains F (t λ (ε j η j )
) in its socle by Lemma 6.2.1(iii). This contradicts Lemma 6.3.9. Namely if V is the unique extension of

F (t λ (ε j η j )) by F (λ), then V ⊆ D λ,ε and V ⊗ F F (α j ) ⊆ D λ,ε ⊗ F F (α j ) and Lemma 6.3.9 shows that F (t λ (ε j η j )) is not contained in the socle of (V ⊗ F F (α j ))/F (t λ (2ε j η j )).
The last assertion of the proposition is a consequence of the fact that the representation F (t λ (-2ε j η j )) has no extension with the subquotients of D λ,ε , which itself is a consequence of Lemma 2.4.6. Theorem 6.3.11. Fix λ ∈ X 1 (T ) which is 7-deep in C 0 and ε ∈ {±1} J . We set

W -ε def = {F (t λ (- j∈J ε j η j )) : J ⊆ J }.
There exists a largest subrepresentation W of (

Inj K/Z 1 F (λ))[m 2 K 1 ] satisfying [W : τ ] = δ F (λ),τ for τ ∈ W -ε .
Moreover it has the following properties:

(i) W K 1 = D λ,ε ; (ii) the representation W is an extension of 0≤i≤f -1 D λ+ε i α i ,ε by D λ,ε ; (iii) the representation W is multiplicity-free; (iv) the cosocle of W is isomorphic to 0≤j≤f -1 F (t λ (2ε j η j + 0≤i≤f -1 ε i η i )); (v) its submodule structure is determined by: for 0 ≤ a i ≤ 3 such that σ a = F (t λ ( ε i a i η i ))
is a subquotient of W , the unique subrepresentation of W with cosocle σ a has constituents σ b for all b such that 0 ≤ b i ≤ a i for all i.

Remark 6.3.12. The proof shows that λ only needs to be 4-deep in C 0 for W to exist and for part (i) to hold. In particular, in this case

W K 1 = D λ,ε is the largest subrepresentation of (Inj K/Z 1 F (λ))[m K 1 ] = Inj GL 2 (k) F (λ) satisfying [W K 1 : τ ] = δ F (λ),τ for τ ∈ W -ε . Proof. Let I λ def = Inj GL 2 (k) F (λ) and let I λ def = (Inj K/Z 1 F (λ))[m 2 K 1 ],
which is finite-dimensional by dualising and using Nakayama's lemma. We have

I λ = I λ [m K 1 ].
The existence of a largest subrepresentation W ⊆ I λ satisfying the desired hypothesis follows exactly as in [BP12, Prop. 13.1]. As the representation D λ,ε satisfies [W : τ ] = δ F (λ),τ for τ ∈ W -ε by Lemma 6.2.1(iii), we have

D λ,ε ⊆ W K 1 . Conversely, note that W K 1 is a subrepresentation of I K 1 λ ∼ = Inj GL 2 (k) F (λ). As [W K 1 : F (λ)] = 1 it follows by [BP12, Prop. 3.6 & Cor. 3.11] that W K 1 is
multiplicity-free. By Lemma 6.2.1(iii) and our hypothesis on multiplicities, JH(

W K 1 ) ⊆ JH(D λ,ε ). Hence W K 1 = D λ,ε , proving (i).
Consider the short exact sequence:

0 → D λ,ε → W → W/D λ,ε → 0.
The long exact sequence of K 1 /Z 1 -invariants gives an injection

W/D λ,ε = (W/D λ,ε ) K 1 → H 1 (K 1 /Z 1 , D λ,ε ) ∼ = D λ,ε ⊗ F H 1 (K 1 /Z 1 , F),
where the last isomorphism holds because K 1 acts trivially on D λ,ε . Using the isomorphism [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]Prop. 5.1]), we have:

H 1 (K 1 /Z 1 , F) ∼ = f -1 j=0 F (α j ) (see
W/D λ,ε → f -1 j=0 (D λ,ε ⊗ F F (α j )).
For each 0 ≤ j ≤ f -1, we have a decomposition:

0 → D λ+ε j α j ,ε → D λ,ε ⊗ F F (α j ) → Q j → 0 with soc GL 2 (k) Q j = F (λ) ⊕ F (t λ (-2ε j η j )
) by Proposition 6.3.10.

The assumption [W :

F (λ)] = 1 implies that soc K (W/D λ,ε ) = soc K (W/W K 1 ) → i F (t λ (±2ε j η j )).
For 0 ≤ j ≤ f -1, Lemma 2.4.6 implies that the representation F (t λ (-2ε j η j )) has no extension with Jordan-Hölder factors of D λ,ε , consequently the Serre weights F (t λ (-2ε j η j )) are not in the socle of W/D λ,ε . We conclude that the image of

W/D λ,ε in Q j is zero and that W/D λ,ε ⊆ f -1 j=0 D λ+ε j α j ,ε .
Let V be the representation of K constructed in Proposition 6.2.2. Note that the deepness assumption on λ allows us to apply it with

B i = 4 if ε i-1 = 1 and B i = 3 if ε i-1 = -1. Let W = V [m 2 K 1 ]. By Proposition 6.2.2 we have [W : τ ] = δ F (λ),τ for τ ∈ W -ε so that W ⊆ W by maximality of W . It follows from Proposition 6.2.4 with n = 2 and n = 1 that cosoc K (W ) = 0≤j≤f -1 F (t λ (2ε j η j + i ε i η i )) and W K 1 = D λ,ε = W K 1 .
By what precedes we have an inclusion

W /W K 1 ⊆ W/W K 1 ⊆ f -1 j=0 D λ+ε j α j ,ε .
However, the outside terms have the same cosocle, so these inclusions are equalities. From W K 1 = W K 1 and W /W K 1 = W/W K 1 we deduce that W = W . This also proves that W/D λ,ε is isomorphic to f -1 j=0 D λ+ε j α j ,ε and gives (ii). We then deduce properties (iii) to (v) from the properties of V given by Proposition 6.2.2. Corollary 6.3.13. Let ρ : G L → GL 2 (F) be a tame Galois representation such that ρ|

I L ∼ = τ (s, µ) such that µ -η is 8-deep in C 0 . (i) Let τ be a finite-dimensional semisimple representation of K over F of the form τ ∼ = σ∈W (ρ) σ mσ , with m σ ≥ 1 for all σ. Then there exists a largest K-subrepresentation V inside (Inj K/Z 1 τ )[m 2 K 1 ] with soc K V = τ such that for all σ ∈ W (ρ), [V : σ] = [τ : σ] = m σ . Moreover V ∼ = ⊕ σ∈W (ρ) V mσ σ , where V σ ⊆ (Inj K/Z 1 σ)[m 2 K 1 ] is the largest K-subrepresenta- tion of (Inj K/Z 1 σ)[m 2 K 1 ] such that [V σ : σ ] = δ σ,σ for all σ ∈ W (ρ). (ii) Fix σ ∈ W (ρ) and choose λ ∈ X 1 (T ) such that σ ∼ = F (λ). There exists ε = (ε i ) ∈ {±1} J such that W (ρ) = {F (t λ (-i∈J ε i η i )) : J ⊆ J }. Then V σ is multiplicity-free and V K 1 σ ∼ = D λ,ε . Moreover the Jordan-Hölder constituents of V σ are the σ a = F (t λ ( ε i a i η i ))
, where a i ≥ 0 and i a i /2 ≤ 1, with submodule structure determined as follows: the unique subrepresentation of V σ with cosocle σ a has constituents σ b for all b such that 0 ≤ b i ≤ a i for all i. (iii) If σ and σ are both in W (ρ) and nonisomorphic, the sets JH(V σ ) and JH(V σ ) are disjoint. Remark 6.3.14. In Corollary 6.3.13(ii) the condition a i ≥ 0 and i a i /2 ≤ 1 means exactly that a i ∈ {0, 1, 2, 3} and that at most one of them is ≥ 2.

Proof. Part (i) follows by the same argument as in the proof of [BP12, Prop. 13.1]. For the existence of V we have to prove that, if V 1 and V 2 are two subrepresentations of (

Inj K/Z 1 τ )[m 2 K 1 ] such that Hom K (σ, V i ) ∼ = Hom K (Proj K σ, V i ) for all σ ∈ W (ρ), then V 1 +V 2 has
the same property. This follows from the exactness of the sequence

0 -→ Hom K (Proj K/Z 1 σ, V 1 ∩ V 2 ) -→ Hom K (Proj K/Z 1 σ, V 1 ) ⊕ Hom K (Proj K/Z 1 σ, V 2 ) -→ Hom K (Proj K/Z 1 σ, V 1 + V 2 ) -→ 0.
By assumption, we have

dim F Hom K (Proj K/Z 1 σ, V i ) = dim F Hom K (Proj K/Z 1 σ, V 1 ∩ V 2 ) = m σ so that dim F Hom K (Proj K/Z 1 σ, V 1 + V 2 ) = m σ = dim F Hom K (σ, V 1 + V 2 ) . As τ ∼ = σ∈W (ρ) σ mσ , there is a K-equivariant inclusion V → σ∈W (ρ) (Inj K/Z 1 σ) mσ [m 2 K 1 ]
and, by maximality of V , we have

σ∈W (ρ) V mσ σ ⊆ V ⊆ σ∈W (ρ) (Inj K/Z 1 σ) mσ [m 2 K 1 ].
By definition of V σ , the socle of (Inj K/Z 1 σ)[m 2 K 1 ]/V σ contains only Serre weights of W (ρ). Hence the socle of V /( σ∈W (ρ) V mσ σ ) has the same property. However it follows from the exactness of Hom K (Proj K/Z 1 σ, -) that we have for all σ ∈ W (ρ)

Hom K Proj K/Z 1 σ, V / σ∈W (ρ) V mσ σ = 0, so that soc K (V /( σ∈W (ρ) V mσ σ )) = 0 and V = σ∈W (ρ) V mσ σ .
Now we prove part (ii). By Proposition 2.4.2 the elements of W (ρ) are of the form F (t µ-η (sη J )) for J ⊆ J and we let J ⊆ J be such that σ ∼ = F (t λ (0)) ∼ = F (t µ-η (sη J )). In particular, all elements of W (ρ) are 7-deep in C 0 (for example, by Remark 2.4.5(iv)). By Remark 2.4.7 there

exists ε = (ε i ) ∈ {±1} J such that W (ρ) = {F (t λ (-i∈J ε i η i )) : J ⊆ J }.
The properties of V σ are then immediate consequences of Theorem 6.3.11(i), (iii), and (v).

For part (iii), let λ, λ ∈ X 1 (T ) be such that σ ∼ = F (λ), σ ∼ = F (λ ) and ε such that

W (ρ) = {F (t λ ( i∈J -ε i η i )) : J ⊆ J }. Then (51) JH(V σ ) = {F (t λ ( i ε i a i η i )) : a i ≥ 0, i a i /2 ≤ 1}. Choose J ⊆ J such that F (λ ) ∼ = F (t λ (-i∈J ε i η i )).
Then by part (ii) and Remark 2.4.7 we see that

(52) JH(V σ ) = {F (t λ (- J ε i (b i + 1)η i + J \J ε i b i η i )) : b i ≥ 0, i b i /2 ≤ 1}.
(Note that W (ρ) is obtained by putting -1 ≤ b i ≤ 0.) If JH(V σ ) and JH(V σ ) are not disjoint, then J = ∅ (as b j + 1 > 0), contradicting σ ∼ = σ .

Corollary 6.3.15. Let ρ, m σ and V be as in Corollary 6.3.13. Then

V [m K 1 ] = σ∈W (ρ) D 0,σ (ρ) mσ , where D 0,σ (ρ) is the representation of GL 2 (k) constructed in [BP12, §13].
Proof. This follows from Corollary 6.3.13(i) and (ii), as well as Remark 6.3.12.

6.4. Multiplicity one result for the pro-p-Iwahori. The aim of this subsection is to prove that some multiplicity one assumption on the first two layers of the K 1 -socle filtration implies a multiplicity one result on the first three layers of the I 1 -socle filtration of an admissible smooth representation of GL 2 (L).

Proposition 6.4.1. Suppose that χ = χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. Let W be a smooth and finite length representation of I over F satisfying the following conditions:

• both the socle and cosocle of W are irreducible and isomorphic to χ; • we have soc I (W ) rad I (W ) and rad I (W )/ soc I (W ) is semisimple; in other words, the Loewy length of W is equal to 3.

Let Q be a nonzero quotient of Ind K I W such that [Q : σ χ ] = 1. Then the composition χ = soc I (W ) → W f → Q| I
is zero, where f is induced by Frobenius reciprocity.

Proof. Assume that f | soc I (W ) is nonzero, or equivalently f is injective, for a contradiction. Then the image of Ind K I soc I (W ) → Q is nonzero and has cosocle σ χ (recall that σ χ is the cosocle of Ind K I χ). Since [Q : σ χ ] = 1 by assumption, we may replace Q by the image of the unique (up to scalar) nonzero morphism Q → Inj K/Z 1 σ χ , and therefore assume soc

K (Q) ∼ = σ χ . Indeed, letting Q be this image, we have [ker(Q → Q ) : σ χ ] = 0. Since σ χ is a Jordan-Hölder factor of the image of Ind K I soc I (W ) in Q, the map from Ind K I soc I (W ) to Q is nonzero and hence the composite soc I (W ) → Q Q is nonzero.
From now on we suppose that soc K (Q) ∼ = σ χ . Note that, the image of the map

Ind K I soc I (W ) -→ Q is then exactly soc K Q = σ χ . Also note that Q/σ χ = 0, otherwise f could not be injective because [W : χ] = 2 while [σ χ | I : χ] = 1.
Using Lemma 6.1.1, we deduce that rad I (W )/ soc I (W ) is isomorphic to a direct sum of characters of the form χα ±1 i , each appearing at most once. Let S + (resp. S -) be the set of characters appearing in rad I (W )/ soc I (W ) and of the form χα i (resp. χα -1 i ). Also let W ⊆ W be the subrepresentation defined by 0

→ χ → W → χ ∈S - χ → 0,
and

W = W/W so that 0 → χ ∈S + χ → W → χ → 0.
Note that both W and W are fixed by K 1 , see Lemma 6.1.1(ii).

We claim that f (W ) is contained in σ χ . This is equivalent to showing that the morphism Ind K I W → Q (induced from f by Frobenius reciprocity) has image contained in (and hence equal to)

σ χ . Let Q denote the image of Ind K I W . Clearly, Q is contained in Q K 1 , which itself is a subrepresentation of Inj GL 2 (k) σ χ . If σ χ Q , then, as f (soc I W ) ⊆ σ χ , we would obtain a nonzero morphism Ind K I (W /χ) Q /σ χ → (Inj GL 2 (k) σ χ )/σ χ .
However, one checks that no Jordan-Hölder factors of Ind K I χ for χ ∈ S -can appear in Inj GL 2 (k) σ χ , using Lemma 6.2.1. Hence we have Q = σ χ .

We obtain a surjective morphism

Ind K I W Q def = Q/σ χ = 0.
Since [Q : σ χ ] = 0, Lemma 6.3.5 implies that no Jordan-Hölder factors of Q have nontrivial extensions with σ χ . However, as Q has irreducible socle σ χ we obtain a contradiction. Definition 6.4.2. Let V be a semisimple smooth representation of I over F. We say V is connected if the following condition is satisfied: for any two smooth characters χ = χ of I occurring in V such that χ ∈ soc I (W χ,3 ), there exists a character χ occurring in V such that Ext 1 I/Z 1 (χ , χ ) = 0 and Ext 1 I/Z 1 (χ, χ ) = 0.

The motivation of the above definition comes from the following result.

Lemma 6.4.3. Let ρ : G L → GL 2 (F) be a 6-generic representation, not necessarily semisimple.

Let D 0 (ρ) be the GL 2 (k)-representation constructed in [BP12, §13]. Then D 1 (ρ) def = D 0 (ρ) I 1 is connected in the sense of Definition 6.4.2. As a consequence, if V is a semisimple representation of I such that JH(V ) = JH(D 1 (ρ)) up to multiplicity, then V is connected.
Proof. We first note the general fact that up to multiplicity

JH(D 0 (ρ)) = JH ⊕ σ∈W (ρ) Inj GL 2 (k) σ
Indeed, the inclusion "⊆" is trivial and "⊇" follows from [BP12, Lemma 12.8, Prop. 13.4]. As a consequence, we have JH(D 0 (ρ)) ⊆ JH(D 0 (ρ ss )).

We write

ρ ss | I L ∼ = τ (s, µ) such that µ -η is 6-deep in C 0 .
As in the proof of Corollary 6.3.13(ii) we know that W (ρ ss ) = {F (t µ-η ( J ε i η i )) : J ⊆ J } for some choice of ε i ∈ {±1}. By using Remarks 6.3.12 and 2.4.7 we see that JH(D 0 (ρ

ss )) = {F (t µ-η ( ε i a i η i )) : -1 ≤ a i ≤ 2}.
Suppose χ and χ are as in Definition 6.4.2 for V = D 1 (ρ). By Lemma 6.1.1, χ has the form

χα ±1 i 1 α ±1 i 2 for some 0 ≤ i 1 , i 2 ≤ f -1. Say χ = σ I 1 and χ = (σ ) I 1 for some σ, σ ∈ JH(D 0 (ρ))
. By the discussion in last paragraph, we may write

σ ∼ = F (t µ-η ( ε i a i η i )) and σ ∼ = F (t µ-η ( ε i a i η i )) for some -1 ≤ a i , a i ≤ 2. First suppose that i 1 = i 2 . Recalling that F (λ) I 1 = χ λ and t λ±2α i (ω) = t λ (ω ± 4η i ) we see that ε i a i η i = ε i a i η i ± 4η i 1 for some -1 ≤ a i , a i ≤ 2; contradiction.
(The 6-deepness of µ -η guarantees that we are staying inside Λ µ-η W .) Now suppose i 1 = i 2 . As in the previous case we know that |a i -

a i | = 2 if i ∈ {i 1 , i 2 } and a i = a i otherwise. We let a i def = a i for i = i 1 , a i 1 def = a i 1 , σ def = F (t µ-η ( ε i a i η i ))
, and χ def = (σ ) I 1 . We claim that χ ∈ D 1 (ρ) I 1 . Equivalently we need to show that the unique principal series with cosocle σ contains an element of W (ρ) as constituent (then the principal series admits a quotient that contains precisely one element of W (ρ) and that as its socle). By Lemma 6.2.1(i) and Remark 2.4.7 the principal series with cosocle σ has constituents F (t µ-η ( ε i a i η i + J ε i η i )) (J ⊆ J ) for certain signs ε i ∈ {±1}. By Remark 2.4.5(ii) the same is true for the principal series with cosocle σ (resp. σ ), by replacing a i by a i (resp. a i ). The claim follows, since the condition of containing a weight of W (ρ) is checked separately for each embedding. (Use 2.4.2 if ρ is semisimple and [Le19, Prop. 3.2], as well as [LMS22, Def. 3.5], otherwise.)

The last assertion immediately follows from the first one, because by definition the connectedness of V depends only on JH(V ) up to multiplicity.

We now consider an admissible smooth G-representation π satisfying the following properties: is multiplicity-free and for each Jordan-Hölder factor σ of D we have χ σ = χ s σ (equivalently, 1 < dim F σ < q).

(a) π[m 2 K 1 ]| K is isomorphic
In our application below we will have W = W (ρ) for some tame mod p Galois representation ρ. Note that if χ ∈ D I 1 , then Frobenius reciprocity induces a nonzero morphism Ind K I χ → D K 1 . By condition (b), Ind K I χ has irreducible cosocle σ χ , so there is a unique σ ∈ W such that σ χ occurs in D K 1 σ (or equivalently, such that χ occurs in D I 1 σ ). In particular, σ χ does not occur as a subquotient of D/ D K 1 .

We also note that D I 1 is multiplicity-free: for a character χ of I we have Hom I (χ, D I 1 ) ∼ = Hom K (Ind K I χ, D), By condition (b) we know that χ = χ s , so Ind K I χ has an irreducible cosocle. As moreover D is multiplicity-free, we deduce that Hom K (Ind K I χ, D) is one-dimensional. Lemma 6.4.4. Let π and D be as above satisfying the conditions (a), (b). Suppose χ ∈ π I 1 is of the form χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. Then the natural quotient morphism W χ,2 χ induces an isomorphism

Hom I (χ, π) ∼ -→ Hom I (W χ,2 , π). Proof. Since W χ,2 is killed by m 2 I 1 , any morphism W χ,2 → π| I has image contained in π[m 2 I 1 ] ⊆ π[m 2 K 1 ].
Let f : W χ,2 → π| I be an I-equivariant morphism. For σ ∈ W, consider the map f σ : W χ,2 → D mσ σ | I obtained by composing f with the projection to the corresponding direct factor in condition (a).

Let χ be a character in soc I (W χ,2 ). By Lemma 6.1.1, there exists i ∈ J such that χ = χα ±1 i and the χ -isotypic subspace is 1-dimensional.

We first consider the case where χ is of the form χα -1 i for some i ∈ J . Assume for contradiction that f is nonzero on the (one-dimensional) χ -isotypic space of W χ,2 . Then there exists at least one σ ∈ W such that f σ is nonzero on the χ -isotypic subspace of W χ,2 .

As a consequence of Lemma 6.3.3 (and Frobenius reciprocity), no character ψ of soc I (W χ,2 ) other than χ can occur in D I 1 σ , otherwise σ would be a common irreducible subquotient of both Ind K I χ and Ind K I ψ. Hence, the map f σ factors through the quotient E χ ,χ of W χ,2 and induces an embedding

E χ ,χ → D ⊕mσ σ | I . Let f σ : Ind K I E χ ,χ → D ⊕mσ σ
be the induced morphism by Frobenius reciprocity. Lemma 6.3.1 implies that the cosocle of Ind K I E χ ,χ is equal to that of Ind K I χ, i.e. σ χ , hence so is the cosocle of Im( f σ ). Since E χ ,χ is not

K 1 -invariant, neither is Im( f σ ) because the morphism E χ ,χ → Im( f σ )| I is injective. We deduce that σ χ occurs in D σ / D K 1
σ . This contradicts (b), as remarked just before this lemma.

We conclude that the map f is zero on all χ -isotypic subspaces of W χ,2 for χ = χα -1 i , i ∈ J .

The general case can be reduced to the above case, using the fact that π carries an action of t def = 0 1 p 0 . Namely let f be the map from W t χ,2 (conjugate representation by t) to π defined by t • f . As f is I-equivariant, the map f is I-equivariant. As W t χ,2 ∼ = W χ s ,2 and as the χ -isotypic subspace of W χ,2 coincides with the χ s -isotypic subspace of W t χ,2 , it follows from the first case that t • f , and hence f , is zero on the χ -isotypic subspace of W χ,2 for χ = χα i with i ∈ J . As a consequence, f is zero on soc I (W χ,2 ).

We will not use the following Corollary of Lemma 6.4.4 but we state it since the result can be useful.

Corollary 6.4.5. Let π and D be as above satisfying the conditions (a), (b). Suppose χ ∈ π I 1 is of the form χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. Then for any character χ ∈ π I 1 such that Ext 1 I/Z 1 (χ, χ ) = 0 there exists no I-equivariant embedding

E χ ,χ → π| I .
We now make an additional assumption on π:

(c) π I 1 is connected (cf. Definition 6.4.2).

Proposition 6.4.6. Let π and D be as above satisfying the conditions (a), (b), (c). Suppose χ ∈ π I 1 is of the form χ λ with 2 < λ, α ∨ i < p -3 for all 0 ≤ i ≤ f -1. Then the natural quotient morphism W χ,3

χ induces an isomorphism

Hom I (χ, π) ∼ -→ Hom I (W χ,3 , π).
Proof. Let f : W χ,3 → π| I be a nonzero I-equivariant morphism. It suffices to prove that f factors through the cosocle W χ,3 χ. Let's assume this is not the case and derive a contradiction. Note that this implies that f | soc I (W χ,3 ) is nonzero by Lemma 6.4.4.

Step 1. We first show that f is zero when restricted to X def = ⊕χ , where the direct sum is taken over all characters χ in soc I (W χ,3 ) which are different from χ (recall that [W χ,3 : χ ] = 1 for such a χ ). Indeed, if there exists such a χ such that f is nonzero when restricted to χ , then in particular χ ∈ π I 1 . Since π I 1 is assumed to be connected by (c), we can find χ ∈ π I 1 as in Definition 6.4.2. By construction, χ occurs in the second layer of the socle filtration of W χ,3 and Lemma 6.1.2 shows that χ occurs in the socle of the image of any nonzero morphism

W χ ,2 → W χ,3 .
But, the composition W χ ,2 → W χ,3 f → π gives a morphism that does not factor through its cosocle χ , which contradicts Lemma 6.4.4. As a consequence, f factors through the quotient W χ,3 /X . Note that W χ,3 /X is killed by m 2 K 1 , because we may define a suitable subrepresentation W of W χ,3 /X , with quotient W , such that both W and W are killed by m K 1 (cf. the proof of Proposition 6.4.1). Hence,

Im(f ) is contained in π[m 2 K 1 ].
Step 

f σ : W χ,3 f → π[m 2 K 1 ]| I pr → D σ | I .
Let W def = Im(f σ ) and Q be the image of the induced morphism Ind K I W χ,3 → D σ . By Lemma 6.3.3, any χ with Ext 1 I/Z 1 (χ, χ ) = 0 cannot occur in D I 1 σ , otherwise σ would be a common Jordan-Hölder factor of both Ind K I χ and Ind K I χ . Combining with Step 1, we deduce that soc I (W ) is χ-isotypic (being a subrepresentation of D I 1 σ ). Since D I 1 σ is multiplicity-free by (b) (as observed above), we must have soc I (W ) = χ. Since [Q : σ χ ] = 1 (as D σ is multiplicity-free by (b)), Proposition 6.4.1 provides the desired contradiction.

We can now prove the main theorem of this section. Let ρ : G L → GL 2 (F) be a tame Galois representation such that ρ| I L ∼ = τ (s, µ) (cf. Definition 2.3.1) with µ -η being 8-deep in C 0 ( §2.1).

Theorem 6.4.7. Let π be an admissible smooth GL 2 (L)-representation over F with a central character. Assume that:

(i) we have JH(soc K (π)) = W (ρ) (up to multiplicity); (ii) for all σ ∈ W (ρ), we have [π[m 2 K 1 ] : σ] = [soc K (π) : σ]; (iii) we have JH(π I 1 ) = JH(D 1 (ρ)) (up to multiplicity). Then dim GL 2 (L) (π) ≤ f . Proof.
As π has a central character, the group Z 1 acts trivially on π. Therefore, by Corollary 6.3.13, Corollary 6.3.15 and Lemma 6.4.3, the representation π satisfies hypotheses (a), (b), (c) above. Then Proposition 6.4.6 shows that Hom I (χ, π) ∼ = Hom I (W χ,3 , π) for all characters χ occurring in π I 1 . We can then apply Corollary 5.3.5 to conclude that dim I (π| I ) ≤ f and thus that dim GL 2 (L) (π) ≤ f (since I is open in GL 2 (L)).

Construction of a lattice

In this section we construct a GL 2 (O L )-stable lattice with simple cosocle in some particular locally algebraic representation of GL 2 (L).

We keep the notation of section 6. Hence, L is a finite unramified extension of Q p of degree f , ring of integers O L , residue field k. Recall that we have set

K def = GL 2 (O L ), K 1 def = 1 + p M 2 (O L ) and Z 1 def = Z(O L ) ∩ K 1 .
Let σ be a Serre weight for G 0 × Zp F p . We write P σ def = Proj GL 2 (k) σ for the projective cover of σ in the category of F[GL 2 (k)]-modules and we let P σ be the projective O[GL 2 (k)]-module lifting P σ . Then P σ ⊗ O E is a (semisimple) finite-dimensional representation of GL 2 (k) over E. By inflation, we view it as K-representation on which the subgroup K 1 acts trivially.

The space sl 2,L of 2 × 2 matrices of trace zero with coefficients in L is endowed with the adjoint action of GL 2/L , which is isomorphic to V (α) /L ∼ = Sym 2 (L 2 ) ⊗ det -1 . In particular it has an action of K. The goal of this section is to show the existence of a K-stable lattice V • in the locally Q p -algebraic representation sl 2,L ⊗ Qp P σ such that (V • / V • ) K 1 is isomorphic to P σ (and hence such that σ is the K-cosocle of V • ) under some mild genericity assumption on σ.

As P σ is defined over W (F), and since Hom Qp-alg (L, W (F)[1/p]) has [L : Q p ] elements, we may assume that E is unramified over Q p .

Throughout this section, E is assumed to be unramified over Q p . We recall that, as before, we assume p > 2.

7.1. Locally algebraic lattices. Let V • be some K-stable O-lattice in some continuous finitedimensional representation (V, ρ) of K/Z 1 over E. We assume that the group K 1 acts trivially on

V • /pV • .
As p > 2, the map x → exp(px) induces a bijection sl 2,O L ∼ -→ K 1 /Z 1 (note that since p > 2, the map K 1 ∩ SL 2 (L) → K 1 /Z 1 is an isomorphism) and a group isomorphism

(53) sl 2,O L /psl 2,O L ∼ -→ (K 1 /Z 1 )/(K 1 /Z 1 ) p .
(See [Laz65, III.1.1.4, III.1.1.5, III.1.1.8].)

By assumption, we have

ρ(k) ∈ Id V • +p End O (V • ) for k ∈ K 1 . For x ∈ sl 2,k and v ∈ V • /pV • , we choose lifts x ∈ sl 2,O L of x
and ṽ ∈ V • of v and we define:

β V • (x, v) def = p -1 (ρ(exp(px))ṽ -ṽ) mod pV • .
Note that β V • (x, v) does not depend on the choices of x and ṽ and is F p -linear in x and F-linear in v. The independence and linearity in x is a consequence of (53) and of the fact that if g ∈ K 1 , we have [g p ] -1 ∈ m 2 K 1 in F K 1 . Therefore there exists a unique F-linear map

β V • : sl 2,k ⊗ Fp (V • /pV • ) -→ V • /pV • such that β V • (x ⊗ v) = β V • (x, v) for x ∈ sl 2,k and v ∈ V • /pV • .
(Alternatively, one can verify that the natural Lie algebra action of sl 2,O L on V preserves V • and gives rise to β V • upon reduction modulo p.)

The map β V • measures the defect of exactness of the functor (-) K 1 on finite quotients of V • . It is a particular case of a Bockstein homomorphism in some homology long exact sequence. More precisely, we have the following lemma.

Lemma 7.1.1. The following sequence is exact:

sl 2,k ⊗ Fp (V • /pV • ) β V • --→ V • /pV • p - → (V • /p 2 V • ) K 1 -→ V • /pV • -→ 0,
where the last map is the reduction mod p (recall that

(V • /pV • ) K 1 = V • /pV • ).
Proof. As the functor of K 1 -coinvariants is right exact and since (V 

• /pV • ) K 1 = V • /pV
pβ V • (x ⊗ v) = ρ(exp(px))ṽ -ṽ mod p 2 V • ∈ ker((V • /p 2 V • ) → (V • /p 2 V • ) K 1 ).
This implies that the composite pβ V • is zero.

Conversely let v ∈ V • /pV • be such that pv is zero in (V • /p 2 V • ) K 1 . This implies that there exist k 1 , . . . , k r in K 1 and ṽ1 , . . . , ṽr in V • such that pv = r i=1 (ρ(k i ) -1)ṽ i mod p 2 V • .
Then there exist x1 , . . . , xr in sl 2,O L such that k i = exp(px i ) and we have

β V • ( i x i ⊗ v i ) = v in V • /pV • , where x i ∈ sl 2,k , v i ∈ V • /pV • are the images of xi , ṽi .
Recall that the group K acts by the adjoint action on sl 2,L and induces a Q p -algebraic E-linear representation of K on sl 2,L ⊗ Qp E. There is a decomposition

sl 2,L ⊗ Qp E ∼ = f -1 i=0 sl 2,E ,
where K acts on the i-th summand by the adjoint action via the embedding K → GL 2 (E) given by σ i : L → E on the coefficients. 

V • = sl 2,O L ⊗ Zp O. Then V • /pV • ∼ = sl 2,k ⊗ Fp F and the map β V • is given explicitly by β V • (x ⊗ y ⊗ z) = [x, y] ⊗ z for x, y ∈ sl 2,k and z ∈ F.
Let λ ∈ X 1 (T ). We recall that L(λ) has a structure of sl 2,F -module. Let v λ be a highest weight vector of L(λ). Then the F-vector space L(λ) has a basis given by (f i v λ ) 0≤i≤r with r def = λ, α ∨ and the action of GL 2 (F) is given, for v ∈ L(λ), by

1 a 0 1 v = n≥0 a n e n n! v, 1 0 a 1 v = n≥0 a n f n n! v.
(See [Jan03, II.1.19(6)] and note that here the sum over 0 ≤ n ≤ p -1 suffices.)

Assume from now on that λ is 2-deep in the lowest alcove, i.e. 2 ≤ r ≤ p -4. Then we have an isomorphism of GL 2/F -modules (see [START_REF] Humphreys | Generic Cartan invariants for Frobenius kernels and Chevalley groups[END_REF]Lemma]):

(54) sl 2,F ⊗ F L(λ) ∼ = L(α) ⊗ F L(λ) ∼ = L(λ) ⊕ L(λ + α) ⊕ L(λ -α),
noting that the weights λ+α and λ-α are p-restricted. We note that the vector 2(e⊗f v λ )+r(h⊗ v λ ) is annihilated by e and is a weight vector of weight λ, it therefore generates the submodule isomorphic to L(λ) in sl 2,F ⊗ F L(λ). The vector e⊗v λ (resp. e⊗f 2 v λ +(r-1)h⊗f v λ -r(r-1)f ⊗v λ ) is annihilated by e and is a weight vector of weight λ+α (resp. λ-α) and generates the submodule isomorphic to L(λ + α) (resp. L(λ -α)).

We denote by d λ the unique map of GL 2/F -modules L(λ) → sl 2,F ⊗ F L(λ) sending v λ onto 2(e ⊗ f v λ ) + r(h ⊗ v λ ). Note that this is the unique (up to scalar) nonzero map between these GL 2/F -modules. Lemma 7.2.1. The composite map of GL 2/F -modules

ψ λ : sl 2,F ⊗ F L(λ) Id sl 2,F ⊗d λ -------→ sl 2,F ⊗ F sl 2,F ⊗ F L(λ) [-,-]⊗Id L(λ) --------→ sl 2,F ⊗ F L(λ)
is an isomorphism.

Proof. As both sides have the same dimension, it is sufficient to prove that this map is injective. As a GL 2/F -module, sl 2,F ⊗ F L(λ) is a direct sum of distinct simple modules by (54), it is therefore sufficient to prove that the map ψ λ is nonzero on some well chosen vector of each direct summand. We will check this for each of these modules.

The submodule isomorphic to L(λ + α) contains the vector e ⊗ v λ . We have

ψ λ (e ⊗ v λ ) = ([-, -] ⊗ Id L(λ) )(e ⊗ (2(e ⊗ f v λ ) + r(h ⊗ v λ ))) = 2[e, e] ⊗ f v λ + r[e, h] ⊗ v λ = -2re ⊗ v λ = 0 since 2r = 0 in F.
The submodule isomorphic to L(λ) contains the vector

d λ (v λ ) = 2(e ⊗ f v λ ) + r(h ⊗ v λ ). Note that d λ (f v λ ) = f (2e ⊗ f v λ + rh ⊗ v λ ) = 2[f, e] ⊗ f v λ + 2e ⊗ f 2 v λ + r[f, h] ⊗ v λ + rh ⊗ f v λ = -2h ⊗ f v λ + 2e ⊗ f 2 v λ + 2rf ⊗ v λ + rh ⊗ f v λ = 2e ⊗ f 2 v λ + (r -2)h ⊗ f v λ + 2rf ⊗ v λ .
We have

ψ λ (d λ (v λ )) = ([-, -] ⊗ Id L(λ) )(2e ⊗ d λ (f v λ ) + rh ⊗ d λ (v λ )) = 4[e, e] ⊗ f 2 v λ + 2(r -2)[e, h] ⊗ f v λ + 4r[e, f ] ⊗ v λ + 2r[h, e] ⊗ f v λ + r 2 [h, h] ⊗ v λ = -4(r -2)e ⊗ f v λ + 4rh ⊗ v λ + 4re ⊗ f v λ = 8e ⊗ f v λ + 4rh ⊗ v λ = 0 since, for example, 8 = 0 in F.
The submodule isomorphic to L(λ-α) contains the vector e⊗f 2 v λ +(r-1)h⊗f v λ -r(r-1)f ⊗v λ . We first check that

d λ (f 2 v λ ) = 2e ⊗ f 3 v λ + (r -4)h ⊗ f 2 v λ + 4(r -1)f ⊗ f v λ .
Then we have

ψ λ (e ⊗ f 2 v λ + (r -1)h ⊗ f v λ -r(r -1)f ⊗ v λ ) = 2(r + 2)e ⊗ f 2 v λ + 2(r -1)(r + 2)h ⊗ f v λ -2r(r -1)(r + 2)f ⊗ v λ
and this is nonzero, since 2 ≤ r ≤ p -4. This proves the lemma.

Let σ be a Serre weight for G 0 × Zp F p . It is an absolutely irreducible representation of G 0 (F p ) = GL 2 (k). There exists a p-restricted

weight λ ∈ X 1 (T ) such that σ ∼ = F (λ) = L(λ)| GL 2 (k) ∼ = f -1 i=0 L(λ i ) (i) | GL 2 (k) (see §2.2).
Assume from now on that λ is 2-deep in C 0 . Then the weights λ, λ ± α i are p-restricted, hence we have an isomorphism of GL 2 (k)-representations

sl 2,k ⊗ k,σ i F (λ) ∼ = F (λ) ⊕ F (λ + α i ) ⊕ F (λ -α i ),
where the summands on the right-hand side are irreducible and pairwise nonisomorphic. For each i, we choose a nonzero map d σ,i ∈ Hom GL 2 (k) (σ, sl 2,k ⊗ k,σ i σ). By comparing with (54) it follows that that the map d σ,i is a nonzero multiple of the map Id j =i L(λ j ) (j) ⊗d (i)

λ i and we define

d σ def = (d σ,i ) which is a GL 2 (k)-equivariant map from σ to sl 2,k ⊗ Fp σ ∼ = i (sl 2,k ⊗ k,σ i σ). (Note that sl 2,k ⊗ k,σ i σ is isomorphic to the GL 2 (k)-restriction of (sl 2,F ⊗ F L(λ i )) (i) j =i L(λ j ) (j) or, equivalently, of L(α i ) ⊗ F L(λ).) Proposition 7.2.2. Assume that λ is 2-deep in C 0 . Then the map of GL 2 (k)-representations Ψ : sl 2,k ⊗ Fp σ Id sl 2,k ⊗d σ -------→ sl 2,k ⊗ Fp sl 2,k ⊗ Fp σ [-,-]⊗Idσ ------→ sl 2,k ⊗ Fp σ is an isomorphism. Proof. As the map [-, -] is k-bilinear, the map [-, -] ⊗ Id σ factors through sl 2,k ⊗ Fp sl 2,k ⊗ Fp σ sl 2,k ⊗ k sl 2,k ⊗ Fp σ.
Therefore, the map Ψ is the direct sum of the maps Ψ i , where Ψ i is the F-linear composite map

sl 2,k ⊗ k,σ i σ Id sl 2,k ⊗d σ,i -------→ sl 2,k ⊗ k sl 2,k ⊗ k,σ i σ [-,-]⊗Idσ ------→ sl 2,k ⊗ k,σ i σ.
First of all we remark that all the modules involved in the statement are actually restrictions to GL 2 (k) of G-modules. Namely, σ = L(λ)| GL 2 (k) and the action of GL 2 (k) on sl 2,k ⊗ k,σ i F is the restriction to GL 2 (k) of the action of G on sl 

= i L(λ i ) (i) and sl 2,k ⊗ k,σ i σ ∼ = j =i L(λ j ) (j) ⊗ F (sl 2,F ⊗ F L(λ i )) (i) , we have Ψ i = j ψ (j)
i,j , where ψ i,j is the identity of L(λ j ) when j = i and ψ i,i is a nonzero scalar multiple of the endomorphism ψ λ i (where ψ λ i is defined in Lemma 7.2.1). By Lemma 7.2.1, the map Ψ i is an isomorphism, hence so is Ψ. 7.3. Construction of the lattice. Let σ be a Serre weight. We recall that we denote by P σ the projective cover of σ in the category of F[GL 2 (k)]-modules and P σ the projective O[GL 2 (k)]module lifting P σ . Then P σ ⊗ O E is a (semisimple) finite-dimensional representation of GL 2 (k) over E. By inflation, we view it as a K-representation on which the subgroup K 1 acts trivially.

We set R 1 def = P σ and we recall that we have the Q p -algebraic action of the group K on sl 2,L ⊗ Qp E by the adjoint action. The O-module R 

2 def = sl 2,O L ⊗ Zp P σ is a K-stable lattice of R 2 [1/p] such
β R 2 = [-, -] ⊗ Id Pσ : sl 2,k ⊗ Fp sl 2,k ⊗ Fp P σ -→ sl 2,k ⊗ Fp P σ . Let R 2,i def = sl 2,O L ⊗ O L ,σ i P σ so that R 2 ∼ = i R 2,i . Let λ ∈ X 1 (T ) be such that σ ∼ = F (λ) and assume that λ is 2-deep in C 0 . For 0 ≤ i ≤ f -1, it
is well known that there exists an isomorphism of K-representations (see for example [LMS22, Prop. 3.3(2)]):

(55) R 2,i /pR 2,i ∼ = sl 2,k ⊗ k,σ i P σ ∼ = P σ ⊕ P σ 1,i ⊕ P σ 2,i ,
where σ 1,i = F (λ -α i ) and σ 2,i = F (λ + α i ). We fix such an isomorphism and use it to define a K-equivariant injection ι i : P σ → R 2,i /pR 2,i . We let ι denote the "diagonal" embedding of P σ :

ι : x → (ι i (x)) i ∈ R 2 /pR 2 ∼ = i R 2,i /pR 2,i .
As a first step, we consider a modification of the lattice R 2 . We define a new lattice in R 2 [1/p] as follows:

R 2 def = {x ∈ R 2 : (x mod pR 2 ) ∈ ι(P σ )}. Note that pR 2 ⊆ R 2 . As K 1 acts trivially on P σ , the map R 2 /pR 2 P σ sending x to ι -1 (x mod p) factors through R 2 /pR 2 (R 2 /pR 2 ) K 1 and gives rise to a K-equivariant surjective map (R 2 /pR 2 ) K 1 P σ .

Proposition 7.3.1. For x ∈ R 2 , we can find elements k 1 , . . . , k r ∈ K 1 and x 1 , . . . , x r in R 2 such that r i=1

(k i -1)x i ≡ px (mod p 2 R 2 ).
Hence the K-equivariant map (R 2 /pR 2 ) K 1 P σ is an isomorphism.

Proof. By Lemmas 7.1.1 and 7.1.4, we have a commutative diagram with exact rows:

sl 2,k ⊗ Fp P σ R 2 /pR 2 (R 2 /p 2 R 2 ) K 1 P σ 0 sl 2,k ⊗ Fp (R 2 /pR 2 ) R 2 /pR 2 (R 2 /p 2 R 2 ) K 1 R 2 /pR 2 0. Id sl 2,k ⊗ι p ι β R 2 p
We will prove that the diagonal map is surjective (equivalently, an isomorphism, for dimension reasons). This is equivalent to the first statement of the proposition, and the second statement immediately follows.

As R 2 /pR 2 ∼ = sl 2,k ⊗ Fp P σ and β R 2 = [-, -] ⊗ Id Pσ , we need to prove that the composite map (

[-, -] ⊗ Id Pσ ) • (Id sl 2,k ⊗ι) is surjective: sl 2,k ⊗ Fp P σ Id sl 2,k ⊗ι ------→ sl 2,k ⊗ Fp sl 2,k ⊗ Fp P σ [-,-]⊗Id Pσ -------→ sl 2,k ⊗ Fp P σ .
For dimension reasons, it is equivalent to prove that it is injective. This can be checked on the socle.

The socle of P σ is isomorphic to σ and the nonzero map (unique up to scalar) σ → P σ induces a K-equivariant map sl 2,k ⊗ Fp σ → sl 2,k ⊗ Fp P σ whose image is the socle of sl 2,k ⊗ Fp P σ (see Lemma 7.3.2 below).

To summarize, we have a commutative diagram

sl 2,k ⊗ Fp σ sl 2,k ⊗ Fp sl 2,k ⊗ Fp σ sl 2,k ⊗ Fp σ sl 2,k ⊗ Fp P σ sl 2,k ⊗ Fp sl 2,k ⊗ Fp P σ sl 2,k ⊗ Fp P σ . Id sl 2,k ⊗ι|σ [-,-]⊗Idσ Id sl 2,k ⊗ι [-,-]⊗Id Pσ
We need to prove that the composition of the maps of the top row is injective and we will be done.

In the decomposition sl

2,k ⊗ Fp σ ∼ = f -1 i=0 (sl 2,k ⊗ k,σ i σ), the map ι| σ corresponds to (ι i | σ ) 0≤i≤f -1 .
As ι i is injective and σ is the socle of P σ , we have that ι i | σ is nonzero. We can apply Proposition 7.2.2 to conclude that the composite map in the top row of the diagram above is an isomorphism. Lemma 7.3.2. The GL 2 (k)-equivariant map σ → P σ (resp. P σ σ) induces a GL 2 (k)-equivariant map sl 2,k ⊗ Fp σ → sl 2,k ⊗ Fp P σ (resp. sl 2,k ⊗ Fp P σ sl 2,k ⊗ Fp σ) whose image is the socle (resp. cosocle) of sl 2,k ⊗ Fp P σ .

Proof. As the map sl 2,k ⊗ Fp σ → sl 2,k ⊗ Fp P σ is k ⊗ F-linear, it can be decomposed as the direct sum of the maps sl 2,k ⊗ k,σ i σ → sl 2,k ⊗ k,σ i P σ . Therefore it is sufficient to prove that the image of the map sl 2,k ⊗ k,σ i σ → sl 2,k ⊗ k,σ i P σ is the socle of the right-hand side for each 0 ≤ i ≤ f -1. We observe that the left-hand side is semisimple (by (54)), the map is injective and the socle of the right-hand side has the same dimension as the left-hand side (by ( 55)). This implies the result. The case of the cosocle is similar. Using Proposition 7.3.1, we identify (R 2 /pR 2 ) K 1 with P σ and we define the lattice R by "glueing" R 1 and R 2 along P σ :

R def = {(x 1 , x 2 ) ∈ R 1 ⊕ R 2 : (x 1 mod p) = (image of x 2 mod p) in P σ ∼ = (R 2 /pR 2 ) K 1 } (56) = {(x 1 , x 2 ) ∈ R 1 ⊕ R 2 : (x 2 mod p) = ι(x 1 mod p) ∈ R 2 /pR 2 } (equivalently, R ∼ = R 1 × Pσ R 2 ). This is a K-stable lattice in R 1 [1/p] ⊕ R 2 [1/p].
We define r to be the map R → P σ sending (x 1 , x 2 ) to (x 1 mod p).

Theorem 7.3.3. There exists a short exact sequence of K-representations

(57) 0 -→ R 2 /pR 2 -→ R/pR r - → P σ -→ 0.
Moreover the map r : R/pR P σ induces an isomorphism (R/pR) K 1 ∼ -→ P σ .

Proof. As pR 2 ⊆ ker(r) ⊆ R we have p 2 R 2 ⊆ pR and the inclusion of pR 2 in ker(r) induces a map pR 2 /p 2 R 2 → ker(r)/pR. This map is actually a K-equivariant isomorphism

pR 2 /p 2 R 2 ∼ -→ ker(r)/pR.
Namely these two representations are finite-dimensional over F and have the same dimension. It is therefore sufficient to prove that pR ∩ pR 2 = p 2 R 2 . The right-hand side is clearly included in the left-hand side. Conversely let (px 1 , px 2 ) be some element in the left-hand side. We have ι(x 1 mod p) = (x 2 mod p) in R 2 /pR 2 . As x 1 = 0, we have x 2 ∈ pR 2 , which proves the assertion. This gives us the short exact sequence (57).

Now we prove the second assertion. We define r : R/pR P σ as the factorization of r by R/pR. As K 1 acts trivially on P σ and r is K-equivariant, the map r factors as (R/pR) K 1 P σ . We need to prove that the kernel of r is contained in the kernel of R/pR (R/pR) K 1 , i.e. that each element of ker(r) can be written as a finite sum j (k j -1)y j with k j ∈ K 1 and y j ∈ R/pR.

Let x ∈ ker(r)

. By what precedes, there exists y ∈ R 2 such that py reduces to x modulo pR. By Proposition 7.3.1 we can find k 1 , . . . , k r in K 1 and x 1 , . . . , x r in R 2 such that

py ≡ r j=1 (k j -1)x j (mod p 2 R 2 ).
Let z 1 , . . . , z r in R 1 be such that ι(z j mod p) = (x j mod p) for all 1 ≤ j ≤ r. Then (z j , x j ) ∈ R for all 1 ≤ j ≤ r. Since K 1 acts trivially on R 1 , we have (k j -1)(z j , x j ) = (0, (k j -1)x j ) so that (58) r j=1 (k j -1)(z j , x j ) = (0, py + p 2 u) for some u ∈ R 2 . Let y j be the image of (z j , x j ) ∈ R in R/pR. Reducing (58) modulo pR, we obtain r j=1 (k j -1)y j = x, proving that r induces an isomorphism (R/pR) K

1 ∼ -→ P σ . Corollary 7.3.4. The K-cosocle of R/pR is isomorphic to σ. Moreover the K-representations (Proj K/Z 1 σ)/m 2 K 1 (Proj K/Z 1 σ) and R/pR are isomorphic.
Proof. As K 1 is a normal pro-p-subgroup of K, the group K 1 acts trivially on every semisimple representation of K. Therefore the

K-cosocle of R/pR is the GL 2 (k)(= K/K 1 )-cosocle of (R/pR) K 1 . As (R/pR) K 1 is isomorphic to P σ by Theorem 7.3.3, we obtain cosoc K (R/pR) ∼ = cosoc GL 2 (k) (R/pR) K 1 ∼ = cosoc GL 2 (k) (P σ ) ∼ = σ.
Note that Z 1 acts trivially on R 1 and R 2 , and hence also on R. This implies that there exists a K-equivariant map θ : Proj K/Z 1 σ → R/pR which is surjective on cosocles and is hence surjective. Note that R 2 /pR 2 is killed by m K 1 so that Theorem 7.3.3 implies that R/pR is killed by m 2 K 1 . The map θ factors through the quotient (Proj K/Z 1 σ)/m 2 K 1 (Proj K 1 /Z 1 σ) and gives rise to a surjective map (Proj

K 1 /Z 1 σ)/m 2 K 1 (Proj K 1 /Z 1 σ) R/pR.
We now prove that this map is an isomorphism. Namely, since R is a lattice of

P σ [1/p] ⊕ f -1 i=0 (sl 2,L ⊗ O L ,σ i P σ ), we have dim F (R/pR) = dim E P σ [1/p] ⊕ f -1 i=0 (sl 2,L ⊗ O L ,σ i P σ ) = (3f + 1) dim E P σ [1/p] = (3f + 1) dim F (P σ ).
On the other hand, the isomorphism (

Proj K/Z 1 σ)/m K 1 (Proj K/Z 1 σ) ∼ = P σ induces an exact se- quence 0 → (m K 1 /Z 1 /m 2 K 1 /Z 1 ) ⊗ F P σ -→ (Proj K/Z 1 σ)/m 2 K 1 (Proj K/Z 1 σ) -→ P σ -→ 0. (Note that Proj K/Z 1 σ is projective in the category of pseudocompact K 1 /Z 1 -modules, since K 1 is an open subgroup of K.) As the group K 1 /Z 1 is uniform of dimension 3f , we deduce dim F (Proj K/Z 1 σ)/m 2 K 1 (Proj K/Z 1 σ) = (3f + 1) dim F (P σ ). This implies that dim F ((Proj K/Z 1 σ)/m 2 K 1 (Proj K/Z 1 σ)) = dim F (R/pR
), so the map θ is an isomorphism.

7.4. Projectivity. We prove several results which will be used in the gluing process in §8.3.

Proposition 7.4.1. Assume σ ∼ = F (λ) where λ ∈ X * (T ) satisfies 2 < λ, α ∨ i < p -4 for all i ∈ J . The endomorphism ring End K (Proj K/Z 1 σ/m 2 K 1 (Proj K/Z 1 σ)) is commutative.
Proof. By Corollary 7.3.4, it is equivalent to show that End K (R/pR) is commutative.

Note that P σ ⊗ O E is isomorphic to a direct sum of 2 f absolutely irreducible pairwise nonisomorphic K-representations, as absolutely irreducible GL 2 (k)-representations over E are residually multiplicity-free (cf. [START_REF] Diamond | A correspondence between representations of local Galois groups and Lie-type groups, L-functions and Galois representations[END_REF]) and [P σ : σ] = 2 f if 0 < λ, α ∨ i < p -2 for all i ∈ J (cf. ibidem, see also [START_REF] Le | Multiplicity one at full congruence level[END_REF]Lemma 3.15]). Thus, R ⊗ O E is semisimple and isomorphic to a direct sum of 2 f (f + 1) absolutely irreducible and pairwise non-isomorphic K-representations. We conclude that End

E[K] (R ⊗ O E) is a commutative ring of dimension 2 f (f + 1). Since End O[K] (R) ⊗ O E = End E[K] (R ⊗ O E), End O[K] (R) is also a commutative ring and is a free O-module of rank 2 f (f + 1). The exact sequence 0 → R ×p -→ R → R/pR → 0 induces 0 → End O[K] (R) ×p -→ End O[K] (R) γ → Hom O[K] (R, R/pR) = End F[K] (R/pR).
From the construction of R, see (55) and (56), and using the fact that [P σ : σ] = 2 f and [P σ 1,i : σ] = [P σ 2,i : σ] = 0 (the latter justified by Proposition 6.2.1(ii) and the assumption on λ), we get [R/pR : σ] = 2 f (f + 1), and so dim F End F[K] (R/pR) = 2 f (f + 1) by Corollary 7.3.4. Hence γ is surjective, and the result follows.

We assume from now on that 5 < λ, α ∨ i < p -7. Letting τ be a Serre weight occurring in JH(R/pR), we denote by R τ the object R constructed in §7.3 with σ replaced by τ . Then End K (R τ /pR τ ) is also commutative by Proposition 7.4.1 and the assumption on λ. Lemma 7.4.2. As an End K (R τ /pR τ )-module, Hom K (R τ /pR τ , R/pR) is a cyclic module.

Proof. By [HW22, Thm. 2.30] (which generalizes [BP12, Cor. 3.12]), there is a unique quotient of R/pR, denoted by I(τ, σ), such that soc K I(τ, σ) = τ and [I(τ, σ) : σ] = 1; moreover I(τ, σ) is multiplicity free. The projectivity of R τ /pR τ then gives a morphism φ τ : R τ /pR τ → R/pR which makes the following diagram commutative

R τ /pR τ φτ / / / / τ _ R/pR / / / / I(τ, σ).
We have [coker(φ τ ) : τ ] = 0, because any quotient of R/pR in which τ occurs must admit I(τ, σ) as a quotient by [HW22, Thm. 2.30]. We deduce the result and also the fact that φ τ is a generator of Hom K (R τ /pR τ , R/pR) over End K (R τ /pR τ ).

Proposition 7.4.3. Let Q be a quotient of R/pR. Then Q satisfies the following property: for any subquotient Q of Q, the projection R/pR Q induces an isomorphism 

Hom K (Q, Q ) ∼ -→ Hom K (R/pR, Q ). In particular, if cosoc K (Q ) ∼ = σ,
= {h ∈ End K (R τ /pR τ ) : φ τ,Q • h = 0} is identified with Hom K (R τ /pR τ , ker(φ τ,Q )). By the projectivity of R τ /pR τ , Hom K (R τ /pR τ , Q ) is a subquotient of Hom K (R τ /pR τ , Q) as End K (R τ /pR τ )-
modules, so it is also annihilated by a τ,Q . Here we use the commutativity of End K (R τ /pR τ ) in Proposition 7.4.1. This means that any f τ ∈ Hom K (R τ /pR τ , Q ) is zero on the image of the evaluation map

Hom K (R τ /pR τ , ker(φ τ,Q )) ⊗ R τ /pR τ → ker(φ τ,Q ).
The projectivity of R τ /pR τ shows that the above image is identified with the largest submodule of ker(φ τ,Q ) whose cosocle is τ -isotypic; we denote it by ker(φ τ,Q ) τ . Now we consider the special case f τ = f • φ τ for some f ∈ Hom K (R/pR, Q ). The snake lemma gives the following exact sequence

0 → ker(φ τ ) → ker(φ τ,Q ) φτ -→ ker Q → coker(φ τ )
where ker Q def = ker(R/pR Q), and f is zero on the image of ker(φ τ,Q ) τ in ker Q . Since [coker(φ τ ) : τ ] = 0 (see the proof of Lemma 7.4.2), any morphism R τ /pR τ → ker Q must factor through φ τ , hence the image of ker(φ τ,Q ) τ is equal to the largest submodule of ker Q whose cosocle is τ -isotypic. Since τ is arbitrary, f must be identically zero on the whole ker Q , namely f factors through Q.

The last assertion is obvious, because under the assumption on Q there exists a K-equivariant surjection R/pR Q which must factor through Q by the first assertion.

Global applications

We prove our main global results: Theorem 8.3.11, Theorem 8.4.1, Theorem 8.4.2, Corollary 8.4.4 and Corollary 8.4.6. 8.1. Patching functors. We introduce the global background and the patching functors that we will use (following [EGS15, §6.2]). We assume p > 5 (for the main theorem, we will in fact need p > 23) and E unramified, i.e. O = W (F). We use the notation and conventions of §2.

We fix F a totally real number field, and denote by O F its ring of integers and S p the set of places of F above p. We assume F is unramified at each place in S p . For each place w of F we denote by F w the completion of F at w, O Fw its ring of integers and Frob w a geometric Frobenius element at w. We denote by A ∞ F the finite adèles of F . For any finite place w of F , let q w denote the cardinality of the residue field of F w .

We fix D/F a quaternion algebra of center F which is split at all places in S p and at no more than one infinite place of F (in the sequel we call the two cases the "indefinite case" and the "definite case"). In the indefinite case we assume (F, D) = (Q, GL 2 ) (our main result is already known in the case (F, D) = (Q, GL 2 )). We denote by S D the set of finite places where D ramifies. We fix a maximal order O D in D and isomorphisms

(O D ) w ∼ → M 2 (O Fw ) for w / ∈ S D , where (O D ) w def = O D ⊗ O F O Fw .
We fix r : G F → GL 2 (F) a continuous representation and set r w def = r| G Fw for each finite place w of F . We assume that r| G F ( p √ 1) is absolutely irreducible and r w is generic in the sense of [BP12, Def. 11.7] (or [EGS15, Def. 2.1.1]) for w ∈ S p . We let S r be the set of (finite) places where r is ramified (hence S p ⊆ S r by the previous genericity) and we moreover assume that the universal framed deformation ring R rw of r w over W (F) is formally smooth over W (F) if w ∈ (S D ∪ S r )\S p (see Remark 8.1.1 below). We let ψ : G F → W (F) × be the Teichmüller lift of ω det r and set

ψ w def = ψ| G Fw .
Assume first that we are in the indefinite case. For a compact open subgroup V of (D ⊗ F A ∞ F ) × let X V be the associated smooth projective algebraic Shimura curve over F (see e.g. [BD14, §3.1] and the references therein). We choose the convention ε = -1 as in [START_REF] Buzzard | On Serre's conjecture for mod Galois representations over totally real fields[END_REF] to define X V . This is not the convention of [START_REF] Breuil | Formes modulaires de Hilbert modulo p et valeurs d'extensions entre caractères galoisiens[END_REF], but we point out that the results of [BD14] that we will use below do not depend on this choice. We assume that there exists V such that (59) Hom G F r, H 1 ét (X V × F F , F) = 0. Then one can always take V of the following form: 

V = V w with V w ⊆ (O D ) × w for all w, V w = (O D ) × w for w / ∈ S D ∪ S r and V w = 1 + p M 2 (O Fw )
V = V w such that (59) holds and V w ⊆ 1 + p M 2 (O Fw ) is normal in (O D ) × w for w ∈ S p we have by [GK14, §5.5]: (60) Hom GL 2 (O F ⊗ Z Zp) ⊗ F,w σ w , Hom G F r, H 1 ét (X V × F F , F) = 0 ⇐⇒ σ w ∈ W (r ∨ w ) ∀w ∈ S p ,
where we recall that W (r ∨ w ) is defined as in [BDJ10, §3] (with ρ there being r ∨ w ), cf. §2.2.

We now fix (i) a finite place v ∈ S p such that r v is semisimple of one of the following forms up to twist:

(a) r v | I Fv ∼ = ω (r 0 +1)+•••+p f -1 (r f -1 +1) f 0 0 1 12 ≤ r i ≤ p -15, (b) r v | I Fv ∼ =   ω (r 0 +1)+•••+p f -1 (r f -1 +1) 2f 0 0 ω qv(same) 2f
  13 ≤ r 0 ≤ p -14, 12 ≤ r i ≤ p -15 for i > 0, (equivalently, r ∨ v satisfies the same hypothesis; note that, up to twist, r v is of the form described at the beginning of §4.1); (ii) a finite place w 1 / ∈ S D ∪ S r such that (a) Norm(w 1 ) is not congruent to 1 mod p, (b) the ratio of the eigenvalues of r(Frob w 1 ) is not in {1, Norm(w 1 ), Norm(w 1 ) -1 }, (c) for any nontrivial root of unity ζ in a quadratic extension of F , w 1 (ζ + ζ -1 -2) (such a place w 1 exists by [EGS15, § §6.2, 6.5]); (iii) a finite set of finite places S such that (a) S contains S D ∪ S r but not w 1 , (b) for w ∈ S\S p the framed deformation ring R r ∨ w of r ∨ w is formally smooth over For each w ∈ S p \{v} we fix a tame inertial type τ w such that JH(σ(τ w ) ∨ ) = JH(σ(τ ∨ w )) contains exactly one Serre weight in W (r ∨ w ) ([EGS15, Prop. 3.5.1]) and we fix a GL

W (F); (iv) a compact open subgroup U = w U w ⊆ w (O D ) × w such that (a) U w = (O D ) × w = GL 2 (O Fw ) for w / ∈ S ∪ {w 1 } or w ∈ S p , (b) (59) holds for V = w / ∈S D ∪S r (O D ) × w (S D ∪S r )\Sp U w w∈Sp 1 + p M 2 (O Fw ) , (c) U w 1 is contained in the subgroup of (O D ) × w 1 = GL 2 (O Fw 
2 (O Fw )- invariant lattice σ 0 (τ ∨ w ) in σ(τ ∨ w ) = σ(τ w ) ∨ (so, increasing F if necessary, σ 0 (τ ∨ w ) is a free W (F)- module, see the last statement in [EGS15, Lemma 3.1.1]). As any Serre weight in W (r ∨ w ) has central character (ω -1 det r ∨ w )| I Fw = ψ| -1 I Fw and τ w is tame, the central character of σ 0 (τ ∨ w ) is ψ| -1 I Fw and det τ w = ψ| I Fw . We define a representation σ v p of w∈S\{v} U w over W (F) by (61) σ v p def = ⊗ w∈Sp\{v} σ 0 (τ ∨ w ), with w∈S\{v} U w acting via w∈S\{v} U w w∈Sp\{v} U w = w∈Sp\{v} GL 2 (O Fw ).
As in [EGS15, § §6.2, 6.4] using K = U , we then define a patching functor (depending on σ

v p ) M σ v p ∞ : σ v -→ M ∞ (σ v p ⊗ W (F) σ v ) from the category of continuous representations σ v of GL 2 (O Fv ) on finite type W (F)-modules with central character ψ| -1 I Fv to the category of finite type R ∞ -modules, where (see [GK14, §5.4.1]) R ∞ def = R loc X 1 , • • • , X q-[F :Q]+|S|-1 .
V v acts trivially on σ v (see also [START_REF] Le | Multiplicity one at full congruence level[END_REF](5.3)]):

M σ v p ∞ (σ v )/m ∞ ∼ = Hom G F r, Hom U/V (⊗ w∈Sp\{v} σ w ) ⊗ σ v , H 1 ét (X V × F F , F) ∨ ∼ = Hom U/V (⊗ w∈Sp\{v} σ w ) ⊗ σ v , Hom G F r, H 1 ét (X V × F F , F) ∨ ∼ = Hom Uv/Vv σ v , Hom U v /V v ⊗ w∈Sp\{v} σ w , Hom G F r, H 1 ét (X V × F F , F) ∨ (63) for any V = V w such that V w = U w if w / ∈ S p and V w ⊆ 1 + p M 2 (O Fw ) with V w normal in GL 2 (O Fw ) if w ∈ S p (
and, as usual, U v def = w =v U w and likewise for V v ). In particular, it follows from (60) and the exactness of the patching functor M

σ v p ∞ in [EGS15, §6.2] that M σ v p ∞ (σ v ) = 0 if and only if JH(σ v ) ∩ W (r ∨ v ) = ∅.
The definite case is analogous to the indefinite one. We have the equivalence (60), replacing 

Hom G F (r, H 1 ét (X V × F F , F)) by S(V, F)[m], where S(V, F) def = {f : D × \(D ⊗ F A ∞ F ) × /V → F}
M σ v p ∞ (σ v )/m ∞ ∼ = Hom GL 2 (O Fv ) σ v , Hom U v /V v ⊗ w∈Sp\{v} σ w , S(V, F)[m] ∨ .
For convenience, we consider the following admissible smooth representation π of GL 2 (F v ) over

F with central character ψ -1 : π def = lim -→ Vv Hom U v /V v ⊗ w∈Sp\{v} σ w , Hom G F r, H 1 ét (X V v Vv × F F , F) in the indefinite case, ( 65 
) π def = lim -→ Vv Hom U v /V v ⊗ w∈Sp\{v} σ w , S(V v V v , F)[m]
in the definite case. (66) Then (63) and (64) both become

(67) M σ v p ∞ (σ v )/m ∞ ∼ = Hom GL 2 (O Fv ) (σ v , π) ∨ .
8.2. Freeness for types. We prove some freeness results for M ∞ (σ) and M ∞ (σ)[1/p] for various representations σ.

We now set

K def = GL 2 (O Fv ), K 1 def = 1 + p M 2 (O Fv
) and we freely use the notation of §6 (with L = F v , k the residue field, etc.) and in §8.1. In order not to overload notation, we now just write M ∞ for M σ v p ∞ . If A is a commutative ring and M is an A-module, we call scheme-theoretic support of M the quotient A/Ann A (M ). Lemma 8.2.1. Let A be a commutative ring and N ⊆ M two A-modules. We assume there is an integer r ≥ 1 such that (i) N and M/N are free of rank r over their respective scheme-theoretic supports;

(ii) M can be generated as an A-module by r elements; (iii) there is an isomorphism of A-modules Ann A (M/N )/Ann A (M ) ∼ = A/Ann A (N ).

If |J | > 2 and J has at least two distinct minimal elements J 1 , J 2 , let J i def = J \{J i }, i = 1, 2. Then by the induction hypothesis M ∞ (σ J 1 ), M ∞ (σ J 2 ) and M ∞ (σ J 1 ∩J 2 ) are all free of rank r over (respectively) R ∞ /I J 1 , R ∞ /I J 2 and R ∞ /I J 1 ∩J 2 . Hence so is the fiber product M ∞ (σ J 1 ) × M∞(σ J 1 ∩J 2 ) M ∞ (σ J 1 ) ∼ = M ∞ (σ J ) over R ∞ /I J 1 × R∞/I J 1 ∩J 2 R ∞ /I J 2 ∼ = R ∞ /I J (see the analogous case in the proof of [EGS15, Thm. 10.1.1]).

It remains to finish the proof of (ii). By the previous proof, M ∞ (σ 0 J (τ )) ∼ = M ∞ (σ W ) is free of rank r over R ∞ /I W ∼ = R

(1,0),τ ∞

. By Nakayama's lemma, we deduce a surjection of R

(1,0),τ ∞ -modules f : (R

(1,0),τ ∞ ) r
M ∞ (σ 0 J (τ )) which is an isomorphism modulo p, hence satisfies p ker(f ) = ker(f ) since M ∞ (σ 0 J (τ )) has no p-torsion. By Nakayama's lemma again we deduce ker(f ) = 0, which finishes the proof. From the Taylor-Wiles-Kisin method, we know that the action of R ∞ on M ∞ (σ 0 i ) factors through a reduced equidimensional p-torsion free quotient of R ∞ and that the support of M ∞ (σ 0 i ) is a union of irreducible components of that quotient (see e.g. [CEG + 16, Lemmas 4.17, 4.18]). Hence the scheme-theoretic support of M ∞ (σ 0 i ) is also a reduced p-torsion free quotient R ∞ /I i of R ∞ . It follows from (71) that the support of M ∞ (σ 0 )[1/p] is S[1/p] ∼ = (R ∞ / i I i )[1/p] (as there is no p-torsion). Since the Spec (R ∞ /I i )[1/p] for 1 ≤ i ≤ m correspond to disjoint closed subschemes of Spec R ∞ [1/p] (as the locally algebraic representations σ i are pairwise distinct), one has by the Chinese remainder theorem

(72) S[1/p] = (R ∞ / i I i )[1/p] ∼ = m i=1 (R ∞ /I i )[1/p],
which is thus reduced and formally smooth over E by [Kis08, Thm. (3.3.8)], hence regular by [START_REF] Matsumura | Commutative ring theory[END_REF]Thm. 28.7]. Since S has no p-torsion (as S acts faithfully on M ∞ (σ 0 ) which has no p-torsion by exactness of M ∞ ), we deduce that S is also reduced.

The module M ∞ (σ 0 )/(p) ∼ = M ∞ (σ 0 ) is a Cohen-Macaulay-module by Lemma 8.2.2, and p is a non-zero-divisor on M ∞ (σ 0 ), hence M ∞ (σ 0 ) is also Cohen-Macaulay, hence maximal CM over S. Moreover applying [Mat89, Thm. 17.3(iii)] to M ∞ (σ 0 ) we see that M ∞ (σ 0 )[1/p] is also Cohen-Macaulay as an S[1/p]-module. The Auslander-Buchsbaum formula applied to the localizations at prime ideals of S[1/p] of the Cohen-Macaulay module M ∞ (σ 0 )[1/p] over the regular ring S[1/p] implies M ∞ (σ 0 )[1/p] is locally free over S[1/p].

The following remark shows that the assumption on σ smooth i is often satisfied. Remark 8.2.5. If σ is any irreducible smooth representation of K over E that is tame (i.e. the action of K factors through K GL 2 (k)) and that is not a twist of the Steinberg representation of GL 2 (k) (equivalently, is not of dimension q v ), then σ lies in the image of the inertial local Langlands correspondence τ → σ(τ ), after extending scalars to Q p . (To see this, first note that σ is absolutely irreducible by (the proof of) [EGS15, Lemma 3.1.1]. If σ is one-dimensional, then it is clear that σ lies in the image; otherwise, σ is a principal series or cuspidal representation of GL 2 (k), and the claim follows from the case a = 1 in [BM02, Th. 2.1.1.4] or alternatively [EGH13, Prop. 2.4.1].)

For any Serre weight σ v , recall that we have defined in §7 the two GL 2 (k)-representations P σv = Proj GL 2 (k) σ v and P σv over, respectively, F and O = W (F). Proposition 8.2.6. If σ v ∈ W (r ∨ v ), then M ∞ ( P σv ) is free of rank r over R ∞ /∩ τ p τ , where τ runs over the tame inertial types such that σ v ∈ JH(σ(τ )) and p τ is the prime ideal ker(R ∞ R

(1,0),τ ∞

).

Proof. (i) We first prove that the R ∞ -module M ∞ ( P σv ) can be generated by r elements. By Nakayama's lemma, it is enough to prove the same statement with M ∞ (P σv ), or, equivalently, that dim F (M ∞ (P σv )/m ∞ ) ≤ r. By (67) it is enough to prove dim F (Hom K (P σv ,π)) = dim F (Hom GL 2 (k) (P σv ,W )) = r, where π is the admissible smooth representation of GL 2 (F v ) defined in (65) or (66) and W def = π K 1 . By Proposition 8.2.3(i) we have dim F (Hom GL 2 (k) (σ v , W )) = r. Let D 0 (r ∨ v ) be the representation of GL 2 (k) over F defined in [BP12, §13] (see also Lemma 6.4.3) and recall that by construction Hom GL 2 (k) P σv , D 0 (r ∨ v )/ soc GL 2 (k) D 0 (r ∨ v ) = 0. Hence it is enough to prove that there is a GL 2 (k)-equivariant injection W → D 0 (r ∨ v ) ⊕r (which is necessarily an isomorphism on soc GL 2 (k) W = (soc GL 2 (k) D 0 (r ∨ v )) ⊕r ), or equivalently a GL 2 (k)-equivariant surjection (D 0 (r ∨ v ) ∨ ) ⊕r W ∨ . But this follows exactly as in the proofs of [LMS22, Lemma 4.5] and [LMS22, Prop. 4.6] (plus Proposition 8.2.3). More precisely, one replaces the integer 1 by the integer r in the statements of loc. cit., and the proofs are basically the same, replacing the surjection ⊕ κ P κ D ∨ 0 by a surjection ⊕ κ P ⊕r κ D ∨ 0 (for [LMS22, Lemma 4.5], one gets at the end of the proof dim(Hom K (D ∨ 0 , σ 0 (τ ))) > r instead of dim(Hom K (D ∨ 0 , σ 0 (τ ))) > 1).

(ii) We now prove the proposition. Let S = R ∞ /Ann R∞ (M ∞ ( P σv )) be the scheme-theoretic support of M ∞ ( P σv ). The representation P σv [1/p] over E is the direct sum of the (tame smooth) representations σ(τ ) for all the tame inertial types τ such that σ v ∈ JH(σ(τ )), and each such σ(τ ) occurs only once. It follows from (71) (with all n i = 1), (72) and Proposition 8.2.3(ii) that M ∞ ( P σv )[1/p] is free of rank r over S[1/p]. By (i), we have a surjection S r M ∞ ( P σv ) which is thus an isomorphism after inverting p ([Mat89, Thm. 2.4]), hence is also injective. Finally we obtain S = R ∞ / ∩ τ p τ from (71), from M ∞ ( P σv ) → M ∞ ( P σv )[1/p] and from the fact the rings R

(1,0),τ ∞ are all domains (Proposition 8.2.3(ii)). 8.3. Freeness for projective covers. We prove that M ∞ (R) is free over its scheme-theoretic support, where R is the lattice defined in §7.3.

We keep all the notation of §8.2 and we fix a Serre weight σ v ∈ W (r ∨ v ). We start with the following lemma. Proof. Fix a decomposition of soc K (Q) as ⊕ n i=1 σ i , with σ i irreducible (with σ i ∼ = σ j allowed). For each i, Q admits a quotient, say Q σ i , with socle σ i (via

σ i → Q Q σ i ). Then the natural morphism Q → ⊕ n i=1 Q σ i is injective and (73) rad K (Q) ⊆ rad K (⊕ n i=1 Q σ i ) = ⊕ n i=1 rad K (Q σ i ).
Moreover, since taking radical preserves surjective morphisms, see [Alp86, §1, Prop. 5] (applied to a suitable finite-dimensional quotient of the ring F[K]), we have an induced surjection (74) rad

K (Q)/ soc K (Q) rad K (Q σ i )/ soc K (Q σ i ).
Assume first that Q satisfies the conditions (a), (b). To prove that rad K (Q) is fixed by K 1 , using (73) we may assume soc K (Q) is irreducible. We have two cases. Then Q fits in an exact sequence 0 → σ v → Q → Q/σ v → 0 (analogous to [HW22, (4.9)]), and the end of the proof of [START_REF]On the mod p cohomology for GL2: the non-semisimple case[END_REF]Prop. 4.18] shows that rad K (Q)/ soc K (Q) is semisimple and embeds in ⊕σ v , where the sum is taken over all Serre weights σ v such that Ext 1 K/K 1 (σ v , σ v ) = 0. Hence, rad K (Q) ⊆ Q K 1 by (the dual version of) [HW22, Cor. 2.31]. We also deduce that Q has Loewy length 3.

We prove that Q/S is fixed by K 1 . Using the exact sequence 0 → S → Q → Q/S → 0, we deduce that if Hom K (σ, Q/S) = 0 for some Serre weight σ, then either σ ∈ soc K (Q), or Ext 1 K/Z 1 (σ, σ v ) = 0. In either case, we have σ ∈ JH(Proj K/K 1 (σ v )) (use [HW22, Lemma 2.10(ii)] in the second case). Noting that [Q/S : σ v ] = 1 by the construction of S, the conclusion follows from [HW22, Cor. 2.31].

Assume now that Q also satisfies condition (c). Again using (73) and (74), we may assume soc K (Q) is irreducible. The case soc K (Q) ∼ = σ v is treated above. Assume soc K (Q) ∼ = σ v . As seen above, Q = I(soc K (Q), σ v ). Since soc K (Q) ∈ W (r ∨ v ), it follows from [HW18, Prop. 2.24] that any Jordan-Hölder factor of Q lies in W (r ∨ v ). Hence, we must have rad K (Q)/ soc K (Q) = 0 by (c), and Q has Loewy length 2. This finishes the proof.

For j ∈ {0, . . . , f -1} let V (α j ) def = V ((1, -1)) (j) /W (F) ∼ = (Sym 2 (W (F) 2 ) ⊗ det -1 ) (j) be the algebraic representation of K over W (F) as defined in §2.1. As in §7.3 we define the locally algebraic representation R 2,j def = V (α j ) ⊗ W (F) P σv of K over W (F) (so R 2 = ⊕ j R 2,j ). We set R 2,j def = {x ∈ R 2,j : (x mod pR 2,j ) ∈ P σv } using the fixed embedding ι j : P σv → R 2,j /pR 2,j from §7.3. This is a K-invariant W (F)-lattice in R 2,j [1/p] such that pR 2,j ⊆ R 2,j ⊆ R 2,j and R 2,j /pR 2,j ∼ -→ P σv . Comparing the constructions of R 2,j and of R 2 (in §7.3), it is direct to see that the natural map R 2 → R 2,j (induced by the projection R 2 ∼ = ⊕ i R 2,i R 2,j ) is surjective, hence R 2 /pR 2 → R 2,j /pR 2,j is also surjective. By Proposition 7.3.1, we deduce (R 2,j /pR 2,j ) K 1 = P σv (hence cosoc K (R 2,j /pR 2,j ) = σ v ) and a K-equivariant short exact sequence (75) 0 -→ P σ 1,j ⊕ P σ 2,j -→ R 2,j /pR 2,j -→ P σv -→ 0.

Lemma 8.3.2. For all j ∈ {0, . . . , f -1} the R ∞ -module M ∞ (R 2,j ) is generated by r elements.

Proof. We prove by induction on the length of Q (as a representation of K) that if Q is a nonzero quotient of R 2,j /pR 2,j , then M ∞ (Q) is minimally generated by r elements. If lg(Q) = 1, then Q = σ v (as (R 2,j /pR 2,j ) K 1 = P σv ) and M ∞ (σ v ) is minimally generated by r elements by Proposition 8.2.3(i). Now assume that the result is proved for all quotients of R 2,j /pR 2,j of length ≤ n. Returning to our fixed σ v ∈ W (r ∨ v ), let Q be a quotient of R 2,j /pR 2,j of length n + 1. If the socle of Q contains a Serre weight σ which is not in W (r ∨ v ), then M ∞ (Q) = M ∞ (Q/σ) and M ∞ (Q/σ) is minimally generated by r elements by induction. Hence we can assume that all the Serre weights in the socle of Q are in W (r ∨ v ).

Assume first that [rad K (Q)/ soc K (Q) : σ v ] = 0 (in particular [Q : σ v ] ≥ 2 as cosoc K (Q) = σ v ). Then we may find a submodule Q Q such that cosoc K (Q ) ∼ = σ v and Q is not contained in soc K Q. By Proposition 7.4.3, Q is isomorphic to a (proper) quotient of Q, so M ∞ (Q ) is minimally generated by r elements by induction. On the other hand, let σ be a Serre weight in soc K (Q ). Then M ∞ (Q /σ ) and M ∞ (Q/σ ) are also minimally generated by r elements by induction. The conclusion follows from [Le19, Lemma 4.5] with M , M and M taken to be M ∞ (Q), M ∞ (Q ) and M ∞ (σ ) respectively. Assume now that [rad K (Q)/ soc K (Q) : σ v ] = 0, so that [Q/ soc K (Q) : σ v ] = 1. Moreover, if S denotes the largest submodule of soc K (Q) which is σ v -isotypic, then Q/S is a quotient of P σ = (R 2,j /pR 2,j ) K 1 by the first part of Lemma 8.3.1; here condition (a) holds by our assumption on soc K (Q) above and the fact W (r ∨ v ) ⊆ JH(Proj K/K 1 σ v ) (see [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]§11]). Using (75), this means that the composite morphism P σ 1,j ⊕ P σ 2,j → R 2,j /pR 2,j Q has image contained in S. Since S is σ v -isotypic (and σ v σ 1,j , σ 2,j ), this image must be zero and Q is a quotient of P σv . As M ∞ (P σv ) is generated by r elements by Proposition 8.2.6, it follows that M ∞ (Q) is also generated by r elements. As M ∞ (σ v ) is minimally generated by r elements by Proposition 8.2.3(i) and M ∞ (σ v ) is a quotient of M ∞ (Q), we finally have that M ∞ (Q) is minimally generated by r elements.

We conclude that the R ∞ -module M ∞ (R 2,j /pR 2,j ) is generated by r elements, from which the result follows by Nakayama's lemma. Proposition 8.3.3. Suppose that τ 0 is a representation of K/K 1 = GL 2 (k) on a finite free W (F)-module such that τ 0 [1/p] is irreducible and cosoc K τ 0 ∼ = σ v . Fix j ∈ {0, . . . , f -1}. If L is any K-stable lattice of finite index in V (α j ) ⊗ W (F) τ 0 such that cosoc K L ∼ = σ v , then M ∞ (L) is free of rank r over its schematic support, which is a domain.

The proof shows that such a lattice L exists and is unique up to homothety.

Proof. As cosoc K τ 0 ∼ = σ v we have a surjection pr : P σv τ 0 , and we let L 0 denote the image of R 2,j ⊆ V (α j ) ⊗ W (F) P σv in V (α j ) ⊗ W (F) τ 0 under the projection id ⊗ pr. By the paragraph before Lemma 8.3.2 we see that L 0 is a lattice as in the statement of the proposition, and that it moreover contains p(V (α j )⊗ W (F) τ 0 ). If L is any K-stable lattice of finite index in V (α j )⊗ W (F) τ 0 such that cosoc K L ∼ = σ v , then after scaling we may assume that L is not contained in p(V (α j )⊗ W (F) τ 0 ). As the reduction F (α j ) ⊗ F τ 0 of V (α j ) ⊗ W (F) τ 0 is multiplicity-free by Proposition 6.3.10 it contains a unique subrepresentation with cosocle σ v , and as L 0 contains p(V (α j ) ⊗ W (F) τ 0 ), we see that L is contained in L 0 . On the other hand, the inclusion L ⊆ L 0 induces an isomorphism on cosocles and hence L = L 0 . Now take the lattice L def = L 0 constructed in the previous paragraph. We first show that M ∞ (L/pL) is free of rank r over its schematic support. We have a short exact sequence

0 → W 1 p -→ L/pL → W 2 → 0,
where W 1 def = (V (α j ) ⊗ W (F) τ 0 )/L and W 2 def = L/p(V (α j ) ⊗ W (F) τ 0 ). We will show that (i) M ∞ (W 1 ) = 0 and (ii) there exists a lattice τ 0 in a tame type with cosocle σ v and a surjection W 2 τ 0 such that M ∞ (W 2 ) = M ∞ (τ 0 ). We then conclude by Proposition 8.2.3 that M ∞ (L/pL) = M ∞ (τ 0 ) can be generated by r elements.

We will use repeatedly in this proof that if V 1 and V 2 are multiplicity-free representations of GL 2 (k) over F having cosocle σ v , then JH(V 1 ) ⊆ JH(V 2 ) implies that V 1 is a quotient of V 2 . (The reason is that the V i are quotients of P σv , hence factor through the largest quotient of P σv that is multiplicity-free [BP12, Prop. 3.6, Thm. 4.7].) Using notation as in §2 locally at the place v we will also use that if a weight λ is 7-deep in C 0 and ε ∈ {±1} J , then the submodule structure of D λ,ε is known by Theorem 6.3.11, parts (i) and (v) (where the integers a i are now restricted by 0 ≤ a i ≤ 1). (It is also known by [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]Thm. 4.7], but using different notation.)

We write σ v ∼ = F (λ) for some λ ∈ X 1 (T ) that is 8-deep in C 0 by Proposition 2.4.2 and our genericity assumption. By Remark 8.2.5 and Proposition 2.4.3 (and Lemma 2.4.4) there exist µ ∈ X 1 (T ) and signs ε ∈ {±1} J such that JH(τ 0 ) = JH(D µ,ε ), where F (t µ ( ε i η i )) ∼ = σ v and D µ,ε is defined in (48). By the previous paragraph we have τ 0 ∼ = D µ,ε . As λ is 8-deep in C 0 we know that µ and µ + ε j α j are 7-deep in C 0 . By Proposition 6.3.10 we know that F (α j ) ⊗ F D µ,ε is multiplicity-free, hence W 2 is (by its definition) the unique subrepresentation of F (α j ) ⊗ F D µ,ε with cosocle σ v ∼ = F (t µ ( ε i η i )). By Proposition 6.3.10, Lemma 2.4.6, and the submodule structure of D µ+ε j α j ,ε we see that each irreducible constituent of W 2 is of the form F (t µ ( ε i a i η i )), where 0 ≤ a i ≤ 1 for all i = j and 0 ≤ a j ≤ 2. Conversely we claim that all of these Serre weights occur in W 2 . By the submodule structures of D µ+ε j α j ,ε and D µ,ε it suffices to show that F (t µ (ε j η j + ε i η i )) occurs in W 2 . This is true, as D µ,ε surjects onto the nonsplit [Q / soc K (Q ) : σ v ] = 1, so there exists a morphism L j → π with image Q by Proposition 7.4.3, hence contradicts the choice of h. By the proof of Proposition 8.2.6 we have π K 1 = D 0 (r ∨ v ) ⊕r . It in particular implies soc K (Q) ⊆ soc K (D 0 (r ∨ v ) ⊕r ) = ⊕ σ∈W (r ∨ v ) σ ⊕r . Note that W (r ∨ v ) ⊆ JH(Proj K/K 1 σ v ) (see [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]§11]), so Q satisfies the conditions (a), (b) in Lemma 8.3.1. Thus, by the (first) part of loc. cit. we have rad K (Q) ⊆ Q K 1 ⊆ π K 1 . Since soc K (Q) = Q ∩ soc K (π), we also have rad K (Q)/ soc K (Q) → π K 1 / soc K (π) which implies that Q satisfies (c) of Lemma 8.3.1, and hence Q has Loewy length ≤ 3. Lemma 8.3.6 then shows that h : L j → Q factors through N j , hence gives a contradiction to (ii).

Lemma 8.3.8. Suppose that R is a commutative noetherian local ring. Suppose that M 1 , M 2 , M are nonzero R-modules that are free of rank r over their respective schematic support and that we are given surjections M i M for i = 1, 2. Then the following are equivalent:

(i) M 1 × M M 2 is free of rank r over its schematic support;

(ii) Ann R (M ) = Ann R (M 1 ) + Ann R (M 2 ); (iii) Ann R (M ) ⊆ Ann R (M 1 ) + Ann R (M 2 ).

In any case we have Ann R (M 1 × M M 2 ) = Ann R (M 1 ) ∩ Ann R (M 2 ).

Proof. By assumption we can write M i = (R/I i ) ⊕r and M = (R/I) ⊕r for (proper) ideals I i ⊆ I. Without loss of generality we may assume that the given surjections are the natural maps (R/I i ) ⊕r (R/I) ⊕r . Then M 1 × M M 2 ∼ = (R/I 1 × R/I R/I 2 ) ⊕r and by Nakayama we are reduced to the case r = 1, which is [START_REF]On the mod p cohomology for GL2: the non-semisimple case[END_REF]Lemma 8.11]. The last part is clear, since the M i surject onto M .

From now on, we choose the tame inertial type τ in the discussion above such that W (r ∨ v ) ⊆ JH(σ(τ )); this is always possible by [EGS15, Prop. 3.5.2]. Since r ∨ v is assumed to be semisimple, this forces W (r ∨ v ) = JH(σ(τ )) and τ is uniquely determined. We will denote it by τ 0 in what follows.

Theorem 8.3.9. Let j ∈ {-1, . . . , f -1}. Then M ∞ (L j ) is free of rank r over R ∞ / ∩ λ,τ p λ,τ , where p λ,τ is the prime ideal ker(R ∞ R λ,τ ∞ ) with τ running over the tame inertial types such that σ v ∈ JH(σ(τ )) and λ = (λ j ) 0≤j ≤f -1 running over the Hodge-Tate weights such that λ j ∈ {(1, 0), (2, -1)} if 0 ≤ j ≤ j and λ j = (1, 0) if j + 1 ≤ j ≤ f -1.

Proof. Twisting all the Galois deformations by ε, we can replace r ∨ v by r ∨ v (1), {(1, 0), (2, -1)} by {(2, 1), (3, 0)} and σ v ∈ JH(σ(τ )) by σ v ⊗ (N k/Fp • det -1 ) ∈ JH(σ(τ )) (all the deformations now have determinant ε 3 ψ -1 v ). Note first that all the rings R λ,τ ∞ are domains by Proposition 4.2.1 (and [GK14, Rk. 5.2.2]) applied to a suitable twist of r ∨ v to get ρ = r ∨ v as in §4.1. The proof is by induction on j ≥ -1. If j = -1, this is Proposition 8.2.6. Assume the statement is true for M ∞ (L j-1 ) and let us prove it for M ∞ (L j ).

We first prove that the R ∞ -module M ∞ (N j ) can be generated by r elements. From the exactness of M ∞ and (76) we deduce M ∞ (N j ) = M ∞ (L j-1 ) × M∞(Y j ) M ∞ (T 2,j ). is injective. This proves the first claim and the faithful flatness of Hom W (F) ( H 1 (V v ) ψ -1 r , W (F)) as a T(V v ) ψ -1 r -module. As M ∞ is a faithfully flat R ∞ and S ∞ -module, R ∞ is a faithfully flat S ∞ -module. As (x 1 , . . . , x 4|S|+q-1 ) is a regular sequence in S ∞ , it is R ∞ -regular and therefore R ∞ /(x 1 , . . . , x 4|S|+q-1 ) ∼ = R ψ r,S∪{w 1 } ∼ = T(V v ) ψ -1 r is a complete intersection.

Remark 8.5.2. We expect the statement of Corollary 8.5.1 to hold without assuming that p is inert in F : one should extend the results of §8.4 to include all places above p, or use a nonconstant coefficient system at all places w ∈ S p \{v}. This is somewhat beyond the purpose of this work, and we decided not to pursue it here.
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  2.1 is equivalent to the definition given in [LLHL19, §2.2] and invoke [LLHL19, Lemma 2.2.3].) Definition 3.2.4. ([LLHL19, Def. 3.1.1]) For w ∈ W ∨ and D ∈ T (F), let M( w, D) denote the étale ϕ-module which is free of rank n over k((v)) ⊗ Fp F and such that Mat(ϕ (j) ) = D j wj with respect to the standard basis. Definition 3.2.5. For w ∈ W ∨ and D ∈ T (F), let V ( w, D) be the unique tame representation of

  By the previous paragraph and again by the beginning of [LLHL19, §3.1] we thus have ρ ss 1

Figure 1 .

 1 Figure 1. Extension graph

  R ) to be the groupoid of triples (M, β, ), where M ∈ Y ≤(3,0),τ (R ), β is a gauge basis of M (Definition 3.1.6) and  : M⊗ R F ∼ → M sending β to β. From the definition of a gauge basis, for any lift (M, β, ) ∈ D ≤(3,0),τ M,β

  poly is the ideal of R (j) poly generated by the elements in row 6 of Tables 1-3 without their O(p N -8 ) tails.

  defined in [Elk73, §0.2] for the finitely presented algebra O → R We have p 3 ∈ H (j) + I (j) poly .

  ik ∈ p λ . Using row 4 of Tables 1-3 we can even say that (c 11 , c 12 , c 21 , c 22 , d 11 ) ⊆ p λ if wf-1-j = t (2,1) , c 11 , c 12 , c 21 , c 22 , d 11 d 22 d * 12 d * 21

4. 3 .

 3 Deformation rings II: multiple types. Inspired by the techniques of [Le19, §3.2] we now compute some multi-type deformation rings. We suppose that ρ is as in §4.1. For σ ∈ W (ρ) let R ≤(3,0),σ ρ denote the maximal reduced, O-flat quotient of R ρ that parametrizes lifts of ρ of Hodge-Tate weights ≤ (3, 0) in each embedding and tame inertial type τ for some τ such that σ ∈ JH σ(τ ) ⊗ F N k/Fp • det . Letting wσ def = θ(σ) via the bijection θ of Lemma 4.1.2 and

  all j.

Claim 2 .

 2 The map ψ 0 : R ρ| G K∞ → S Y factors through the surjection R ρ| G K∞ R ≤(3,0),σ ρ . By O-flatness it is enough to check that any closed point x of Spec S Y [1/p] is sent to the closed subscheme Spec R ≤(3,0),σ ρ [1/p] of Spec R ρ| G K∞ [1/p]. Let p x be the maximal ideal of S Y [1/p] corresponding to x. Its residue field κ(x) is a finite extension of E. By definition, w∈X(σ) j I (j) w = 0 in S, hence there exists some w ∈ X(σ) such that j I (j) w ⊆ p x .
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 2 Figure 2. Change of variables between the tables Table 1 e *

  (j),(3,0) w for readability. From

(a 1

 1 -1)c 21 c 22 -p (a 1 -3)d 21 c 22 + (a 1 + 1)c 21 d * 22 + O(p N -4 ), p (a 1 -1)c 21 c 22 + p(d 21 c 22 -c 21 d * 22 ) + O(p N -3 ), (a 1 -1)c 12 c 21 + c 11 d * 22 -p (a 1 -3)c 12 d 21 + d 11 d * 22 + O(p N -4 ), p (a 1 -1)c 12 c 21 + c 11 d * 22 + pc 12 d 21 + O(p N -3 )

a 3 c- 1 (d 12 ) 2 c 21 d * 11 e * 22 +- 1 d 12 c 21 d * 11 e * 22 -

 3122122 11 c 12 -p (a 3 + 2)c 11 d 12 + (a 3 -2)d * 11 c 12 + O(p N -4 ), p a 3 c 11 c 12 -p(c 11 d 12 -d * 11 c 12 ) + O(p N -3 ), a 3 c 12 c 21 -d * 11 c 22 -p (a 3 + 2)d 12 c 21 -d * 11 d 22 + O(p N -4 ), p a 3 c 12 c 21 -d * 11 c 22 -pd 12 c 21 + O(p N -3 )I (j) d 22 -(a 3 + 1) d 12 c 21 d * 11 + O(p N -8 ), c 11 + a 3 d 12 c 21 e * 22 + O(p N -8 ), c 12 -a 3 (a 3 + 1) a 3 O(p N -8 ), c 22 -d 12 c 21 d * 11 (a 3 ) 2 (a 3 + 1) a 3 p + O(p N -8 ), c 21 + O(p N -8 ) a 3 (a 3 + 1) d 12 c 21 d * 11 e * 22 -2p + O(p N -8 ) p (j),(2,1) I (j) + c 21 + O(p N -8 ) p (j),(3,0) I (j) + a 3 (a 3 + 1) d 12 c 21 d * 11 e * 22 -2p + O(p N -8 )Here, a3 ∈ Z (p) and a3 ≡ -s -1 j (µj) -(1, 2), α ∨ j ≡ -sgn(sj)(rj + 1) -1 (mod p). For readability we write a3, c ik , etc. instead of a

  21 -[d * 21 ], where d * 12 , d * 21 ∈ F × . Note that the constants a1, a2 and the O(p N -8 ) tails coming from Tables1-2(by the change of variables in Figure2) depend on the whole f -tuple w ∈ X(σ).

  21 -[d * 21 ], where d * 12 , d * 21 ∈ F × . Note that the constants a2, a3 and the O(p N -8

Remark 5.1. 1 .

 1 Let H be some open uniform subgroup of G. Then dim G (π) is the Gelfand-Kirillov dimension of the graded module of π ∨ for the m H -adic topology (see [AB06, §5.4]) but it does not coincide in general with the Gelfand-Kirillov dimension of π ∨ as an F H -module [loc. cit., §5.6]. However we have the following description of dim G (π) (see [EP20, Prop. 2.18]).

F

  G -regular (where gr m F G is considered as a module over its center) and such that gr m F G /I is isomorphic to a polynomial ring in dim(G) -r variables. Let M be a finitely generated F G -module such that gr m M is annihilated byI. Then dim G (M ) is equal to the dimension of the support of gr m M in Spec(gr m F G /I).Proof. For a ring A and a left A-module N , we recall the notationj A (N ) def = min{n ∈ N : Ext n A (N, A) = 0}(with the usual convention that the minimum of the empty set is +∞). LetA def = gr m F G . It follows from [LvO96, §III.2.5, Thm. 2] that j G (M ) = j A (gr m M ) if M is a finitely generated F G -module. (Note that F G isa left and right Zariski ring by [LvO96, II.2.2, Prop. 1].)As A/I is a polynomial ring in dim(G) -r variables, it follows from [LvO96, §III.4.1, Thm. 7] that j A/I (gr m M ) is equal to dim(G) -r -dim Kr Supp Spec(A/I) gr m M , where dim Kr denotes the Krull dimension.

  r ) be an A-regular generating sequence of central elements in I. For all i ∈ Z, we have Ext i A (A, A) ∼ = A if i = 0 and 0 if i = 0. By induction on r, we can use the long exact sequence of cohomology to prove that Ext i A (A/I, A) ∼ = A/I if i = r and 0 if i = r. This implies that the spectral sequence degenerates and that Ext p A/I (gr m M, A/I) ∼ = Ext p+r A (gr m M, A) for all p ∈ Z. We deduce that j A/I (gr m M ) = j A (gr m M ) -r. Consequently we havej A (gr m M ) = dim(G) -dim Kr Supp Spec(A/I) gr m M and we deduce dim G (M ) = dim(G) -j G (M ) = dim(G) -j A (gr m M ) = dim Kr Supp Spec(A/I) gr m M .5.2. Recollection of results of Lazard.Let G be a group with unit element e G . A p-valuation [Laz65, III.2.1.2] on G is a map ω : G -→ R >0 ∪ {+∞} such that, for all x, y ∈ G,

  be the completed group algebra of G. Note that when G is a compact p-adic analytic group, the topology induced by a p-valuation is the profinite topology of G [Laz65, III.3.1.4].

  The valuation w extends immediately to Q p [G] and we define D G as the completion of Q p[G] for the valuation w (or equivalently for the multiplicative norm ||•|| = p -w(•) ) which extends canonically to D G . This is the Q p -algebra named Sat Z p [G] in [Laz65, IV.1.2.7]. We deduce from the previous description that:

  of a graded algebra by an homogeneous ideal and is a graded algebra (see [Laz65, IV.2.1.4]). Let gr Z p [G] be the graded algebra of Z p [G] with respect to the valuation w which is naturally a graded F p [ε]-algebra [Laz65, I.2.3.2, I.2.3.11]. By definition of w, there is a morphism of graded F p [ε]-Lie algebras gr G → gr Z p [G] given by gr(g) → gr([g] -1) for g ∈ G [Laz65, III.2.3.2]. In particular, we have gr(g p ) → ε gr([g] -1) for g ∈ G. By the universal property of the enveloping algebra, it extends to a morphism of graded algebras U Fp[ε] (gr G) → gr Z p [G]. It follows from [Laz65, Thm. III.2.3.3] that this morphism is an isomorphism. As Z p G is the completion of Z p [G] for the valuation w, we can identify gr Z p [G] and gr Z p G .

def=

  gr g Zp . The Lie algebra L G is an O L -Lie algebra and, for a ∈ O L and x ∈ L G , we have w(ax) = v p (a) + w(x). Hence the graded F p [ε]-Lie algebra gr G ∼ = gr L G has the structure of a k[ε]-graded Lie algebra and is isomorphic to k ⊗ Fp g. Consequently the graded F p -Lie algebra gr G = gr G ⊗ Fp[ε] F p is isomorphic to k ⊗ Fp g, where g def = F p ⊗ Fp[ε] g, and has a natural structure of graded k-Lie algebra.

  we obtain precisely the formula for the composition factors listed in [Dia07, Prop. 1.1]. Part (ii) follows similarly from [BP12, Lemma 3.2], and part (iii) follows from [BP12, Cor. 4.11].

  to a subrepresentation of a direct sum σ∈W D ⊕mσ σ for some set of Serre weights W, some K-representations D σ with soc K D σ ∼ = σ, and some integers m σ ≥ 1;

  . Moreover the maps d σ,i and [-, -] are maps of G-modules. As L(λ) ∼

  1 ) of matrices that are upper-triangular unipotent mod w 1 . Remark 8.1.1. Using [Sho16, §5] one can make assumption (iii)(b) above completely explicit. For instance, if Norm(w) is not congruent to ±1 mod p, then R r ∨ w (or equivalently R rw , the two rings are isomorphic by duality) is always formally smooth, except when r w ∼ = due to Hamann [Ham75, Thm. 4] will be convenient below. Lemma 8.1.2. Suppose that R, S are local rings. If R x ∼ = S x , then R ∼ = S.

  Let σ def = ⊕ m i=1 σ n i i , where m, n i ≥ 1 and the σ i = σ smooth i ⊗ E σ alg i are pairwise nonisomorphic absolutely irreducible locally Q p -algebraic representations of K over E satisfying the following hypothesis: σ smooth i lies in the image of the inertial local Langlands correspondence τ → σ(τ ) (after extending scalars to Q p) and i JH(σ i ) ∩ W (r ∨ v ) = ∅. Let σ 0 be any W (F)-lattice in σ preserved by K. Then (i) M ∞ (σ 0 ) is maximal CM over its scheme-theoretic support S def = R ∞ /Ann R∞ (M ∞ (σ 0 )), which is reduced; (ii) M ∞ (σ 0 )⊗ W (F) E is locally free over its scheme-theoretic support S[1/p], which is formally smooth over E.Proof. For i ∈ {1, . . . , m} let σ 0 i be any K-invariant W (F)-lattice in σ i . It easily follows from the exactness of the functor M ∞ that there is an isomorphism of R ∞ [1/p]-modules (71) M ∞ (σ 0 )[1/p] ∼ = m i=1 M ∞ (σ 0 i )[1/p] ⊕n i .

  Lemma 8.3.1. If Q is a quotient of Proj K/Z 1 σ v /m 2 K 1 (Proj K/Z 1 σ v ) satisfying the following conditions (a) JH(soc K (Q)) ⊆ JH(Proj K/K 1 σ v ) up to multiplicity, (b) [Q/ soc K (Q) : σ v ] = 1, then both rad K (Q) and Q/S are fixed by K 1 , where S denotes the largest submodule of soc K (Q) which is σ v -isotypic. If furthermore Q satisfies (c) JH(rad K (Q)/ soc K (Q)) ∩ W (r ∨ v ) = ∅,then Q has Loewy length ≤ 3.

-

  If soc K (Q) ∼ = σ v , then [Q : σ v ] = 1 by (b). By [HW22, Thm. 2.30] Q is isomorphic to I(soc K (Q), σ v ), and Q is itself fixed by K 1 by (a). -If soc K (Q) ∼ = σ v , then [Q/σ v : σ v ] = 1 and Q/σ v ismultiplicity free by [HW22, Cor. 2.26].

Proposition 2.4.3. Suppose τ def

  

	From the proof of [LMS22, Prop. 2.11] we see that the right-hand side of (14) is W obv (ρ),
	which is the set of weights defined in [GHS18, Def. 7.1.3]. By [GHS18, Ex. 7.1.7] we have W obv (ρ) =
	W (ρ).

  and we thus have an R-linear isomorphism M

			∼ -→ ⊕ j ∈J M (j ) .
	(We warn the reader that, due to our choice of normalization σ j	def = σ 0 • ϕ j , we need to use the
	minus sign in the definition M (j ) def = M⊗ W (k ),σ -j	R in order to be compatible with the convention
	of [LLHL19] on Kisin modules, see Remark 2.3.2 above.)
	Recall from [LLHLM20, §3.1] that S L ,R is endowed with an action of ∆ and by letting v	def =
	(u ) e we have	
	(S L ,R	

Proposition 3.1.5. Let R be a complete noetherian local O-algebra with residue field F, and let τ be an

  

	following result, generalizing [LLHLM18, Thm. 4.1, Thm. 4.16], [LLHL19, Prop. 3.4.3], is
	a particular case of [LLHLM, Prop. 5.2.7].

Definition 3.1.6. Let

  R be a complete noetherian local O-algebra with residue field F, and let M ∈ Y [0,h],τ (R) together with an isomorphism M ⊗ R F ∼ = M. A gauge basis of M is an eigenbasis β lifting β that satisfies conditions (i) and (ii) of Proposition 3.1.5.

	3.1.2. Monodromy condition. Let R be a p-adically complete flat O-algebra that is topologically of finite type. Define O rig R as the inverse limit over n of R u , u n p [1/p], the transition maps being
	the natural inclusions. The Frobenius ϕ : u → (u ) p on R u extends naturally to O rig R . By
	letting

  and where the indices are considered modulo f ). K of an irreducible representation of G K if and only if s τ has order n and (s, µ) is good.

	Remark 3.2.2. Definition 3.2.1 generalizes [Her09, Def. 6.19]. We see that τ (s, µ) is the restric-
	tion to I Just note from Definition 2.3.1 that

Table 1 e

 1 * 11 d 11 c 11 d 21 c 12 c 21 d * 22 c 22 Table 4 d * 12 c 12 -pd * 12 b 12 -pc 12 d 22 d 11 c 22 d * 21 c 21

Table 3 d

 3 * 11 c 11 d 12 c 12 c 21 e *

	22	d 22	c 22

Table 5 d

 5 * 12 c 12 d 11 c 11 d 22 d * 21 c 21 -pd * 21 b 21 -pc 21 deformation of ρ| G K∞ . By Corollary 3.2.9, ρ x is a framed deformation of ρ, completing the proof of Claim 2. Claim 3. The ring S is reduced, O-flat, and has 4 f irreducible components, each of relative dimension 3f over O.

  at embedding j. Hence by Table4the ideal I

				(j) w + I	(j) w contains
	an element of the form			
	c 12 -pd * 12 + (a 1 -2)	d 11 d 22 d * 21	-c 12 -a 2 d * 12	d 11 d 22 d * 12 d * 21

  12 -pc 12 , c 11 , c 12 -pd * 12 , c 21 , c 22 , d 11 ), 21 -pc 21 , c 11 , c 12 , c 21 -pd * 21 , c 22 , d 22

		1)		
	1		
	q (j),(2,1) 2	def = b 12 , c 11 , c 12 , c 21 , c 22 ,	d 11 d 22 d * 21 12 d *	+ p
	and if ( wσ ) f -1-j = t (2,1) let		
	q (j),(2,1) 2	def = b 21 , c 11 , c 12 , c 21 , c 22 ,	d 11 d 22 d * 21 12 d *	+ p ,
	q	(j),(2,1) 3		

def = (b def = (b

  Table 4 note that the following elements are in p

	(3,0) 2	:						
		c 21 + (a 2 -1)d * 21	d 11 d 22 d * 21 12 d *	+ p + O(p N -8 ),	
		d 11 d 22 d * 12 d * 21	+ p	(a 2 -2)(a 2 + 1) a 2 (a 2 -1)	+ O(p N -8 ) =	d 11 d 22 d * 12 d * 21	+ p -	2p a 2 (a 2 -1)	+ O(p N -8 ).
	By eliminating d 11 d 22 d * 12 d * 21				

  d 11 , x * 11 , c 12 , c 21 , d 21 , c 22 , x *

	22
	I (j),≤(3,0)

c 11 c 22 + pc 12 c 21 , d 11 c 22 -c 12 c 21 + c 11 d * 22 + pc 12 d 21 , e * 11 c 22 + d 11 d * 22 -c 12 d 21

  d 11 , c 12 , x * 12 , c 21 , x * 21 , c 22 , d 22 I (j),≤(3,0) d 11 d 22 -(c 12 d * 21 + d * 12 c 21 ) + pd * 12 d * 21 , c 12 c 21 -d 11 c 22 -c 11 d 22 -p(c 12 d * 21 + d * 12 c 21 ), c 11 c 22 + pc 12 c 21I (j),∇ (a 2 -1)d 11 c 22 + a 2 c 11 d 22 + p(d 11 d 22 -2d * 12 c 21 + pd * 12 d * 21 ) + O(p N -4 ), a 2 c 11 c 22 + p(d 11 c 22 + pd * 12 c 21 ) + O(p N -3 ), (a 2 + 1)c 11 d * 12 + (a 2 -1)d 11 c 12 + O(p N -4 ),a 2 c 11 c 12 + p(d 11 c 12 -c 11 d * 12 ) + O(p N -3 ), (a 2 -1)c 21 c 22 -p (a 2 -3)d * 21 c 22 + (a 2 + 1)c 21 d 22 + O(p N -4 ), p (a 2 -1)c 21 c 22 + p(d * 21 c 22 -c 21 d 22 ) + O(p N -3 ), (a 2 -1)c 12 c 21 + c 11 d 22 -p (a 2 -3)c 12 d * 21 + (a 2 -1)d * 12 c 21 + d 11 d 22 + pd * 12 d * 21 + O(p N -4 ), p (a 2 -1)c 12 c 21 + c 11 d 22 + pc 12 d * 21 + O(p N -3 )

		c 21 + (a 2 -1)d * 21	d 11 d 22 d * 21 12 d *	+ p + O(p N -8 ),
		c 12 -a 2 d * 12	d 11 d 22 d * 21 12 d *	+ p + O(p N -8 ),
	I (j)	c 11 +	a 2 (a 2 -1) a 2 + 1	d 11	d 11 d 22 d * 21 12 d *	+ p + O(p N -8 ),
		c 22 -	a 2 (a 2 -1) a 2 -2	d 22	d 11 d 22 d * 21 12 d *	+ p + O(p N -8 ),
		d 11 d 22			
		d * 12 d * 21			

  x * 11 , c 12 , d 12 , c 21 , c 22 , d 22 , x * 11 c 22 + pc 12 c 21 , c 11 d 22 -c 12 c 21 + d * 11 c 22 + pd 12 c 21 , c 11 e * 22 + d * 11 d 22 -d 12 c 21

	22
	I (j),≤(3,0)

c

  d 11 , b 12 , c 12 , x * 12 , c 21 , x * 21 , c 22 , d 22

  d 11 , c 12 , x * 12 , b 21 , c 21 , x * 21 , c 22 , d 22

			b 21 ,		
			c 21 + (a 2 -1)d * 21	d 11 d 22 d * 21 12 d *	+ p + O(p N -8 ),
	I	(j) w , i( w) f -1-j = 2	c 12 -a 2 d * 12 c 11 + a 2 (a 2 -1) d 11 d 22 d * 12 d * 21 a 2 + 1 d 11	+ p + O(p N -8 ), d 11 d 22 d * 21 12 d * + p + O(p N -8 ),
			c 22 -	a 2 (a 2 -1) a 2 -2	d 22	d 11 d 22 d * 21 12 d *	+ p + O(p N -8 ),
			d 11 d 22	
			d * 12 d * 21	

  for H varying among open normal subgroups of H. If H is moreover a pro-p-group, F H is a complete noetherian local ring whose maximal ideal is denoted by m H . We let gr m F H be the graded ring of F H for the m H -adic filtration gr m F H

def = n≥0

  an open subgroup of H, the F H -module M is finitely generated and we have j

H (M ) = j H (M ), as follows from [Ven02, Prop. 2.7]; (ii) if H is p-torsion free, F H is of finite injective dimension equal to cd p (H) [Ven02, Thm. 3.30(ii)] and cd p (H) = dim(H) [Ser65, Cor. 1].

  also called the Gelfand-Kirillov dimension of π. Let G be a p-adic analytic group and N a closed normal subgroup of G. Let π be an admissible smooth F-representation of G such that N acts trivially on π. Then we have dim G (π) = dim G/N (π). Proof. By replacing G by an open subgroup and N by the intersection we may assume that G is uniform [DdSMS99, Cor. 8.34]. Then by Exercise 14 in [DdSMS99, §4] there exists an open uniform pro-p-group H ⊆ G such that H ∩ N is uniform. The result is then a direct consequence of the characterization given by (35).

	Lemma 5.1.2.

Lemma 5.1.3. Let G be an analytic pro-p-group without p-torsion. Assume that the graded ring gr m F G is Auslander-regular (see for example [LvO96, §III.2.1, Def. 7] for the precise definition). Let I be a two-sided ideal of gr m F G generated by a sequence of r central elements which is gr m

  2. Since f | soc I (W χ,3 ) is nonzero, combining with Step 1, we deduce that χ occurs in the socle of Im(f ). By (a), π[m 2 K 1 ] ⊆ σ∈W D ⊕mσ such that pr • f remains nonzero on the χ-isotypic part of soc I (W χ,3 ). By Frobenius reciprocity σ χ occurs as a subquotient in D σ [m K 1 ]. Consider the composite morphism

σ

, so there exists a projection pr : σ∈W D ⊕mσ σ D σ

  • , it is sufficient to check that the kernel of the second map coincides with the image of β V • . Let x ∈ sl 2,k and v ∈ V • /pV • and choose x ∈ sl 2,O L and ṽ ∈ V • lifting x and v. By definition we have:

  The sub-O-module sl 2,O L ⊗ Zp O is a K-stable lattice and the action of K on (sl 2,O L ⊗ Zp O)/p(sl 2,O L ⊗ Zp O) ∼ = sl 2,k ⊗ Fp F factors through GL 2 (k) so that K 1 acts trivially on this quotient. Now we compute β V • in the case where V • is the lattice sl 2,O L ⊗ Zp O in the locally algebraic representation sl 2,L ⊗ Qp E.

	Lemma 7.1.2. Assume that

  that K 1 acts trivially on R 2 /pR 2 . As the group K 1 acts trivially on P σ , Remark 7.1.3 implies that β R 2 = β sl 2,O L ⊗ Zp O ⊗ Id Pσ . From Lemma 7.1.2, we deduce that

  for w ∈ S p (see e.g. [BD14, Thm. 3.2.2] or the proof of [BD14, Cor. 3.2.3]). For Serre weights (σ w ) w∈Sp and any

  and (as in Remark 8.1.3(ii)) m is generated by T w -S w tr(r(Frob w )), Norm(w) -S w det(r(Frob w )) for w / ∈ S ∪ {w 1 } such that V w = (O D ) × w , with T w , S w acting on S(V, F) (via right translation on functions), respectively, by V , where w is any uniformizer in F w .

	w 0 0 1	V , V	w 0	0
	In the definition of M (σ v p ⊗ W (F) σ v ) in [EGS15, §6.2] one again modifies the maximal ideal m as
	in Remark 8.1.3(ii). Finally (63) becomes		
	(64)			

w V

Proof. Let x and ỹ in sl 2,O L lifting x and y. We have: exp(px)ỹ exp(px) -1 -ỹ ≡ pxỹ -pỹx (mod p 2 sl 2,O L ) so that β sl 2,O L ⊗ Zp O (x ⊗ y ⊗ 1) = [x, y] and we conclude by F-linearity.

Remark 7.1.3. By construction of β V • we can check that

We leave to the reader the task to verify the following lemma along the lines of the proof of Lemma 7.1.1. Lemma 7.1.4. Let W ⊆ V • /pV • be a sub-F-vector space stable under K and let V • 1 ⊆ V • be the inverse image of W in V • . We have a commutative diagram with exact rows:

7.2. Preliminary computations. In this technical subsection, we make some explicit computations with sl 2,F -representations and deduce that a certain endomorphism of a direct sum of Serre weights is actually an automorphism.

If G is an algebraic group over F, we use the notion of G-module M as defined in [Jan03, I.2.7]. Such an object has an underlying structure of an F-vector space. It has moreover a natural structure of a module over the Lie algebra Lie(G) such that the structure map Lie(G) ⊗ F M → M is a morphism of G-modules, where Lie(G) is considered as a G-module for the adjoint action ([Jan03, I.7.11 & I.7.18.(1)]).

Given λ ∈ X * (T ) (resp. λ ∈ X * (T )), as in §2.2 we let L(λ) /F be the irreducible algebraic representation of GL 2/F (resp. of G) of highest weight λ. We write L(λ) instead of L(λ) /F in order not to overload notation. If λ = (λ i ) 0≤i≤f -1 with λ i ∈ X 1 (T ), we have

where L(λ i ) (i) is the inflation of the GL 2/F -module L(λ i ) to G via the map G ∼ = J GL 2 π i GL 2 corresponding to the i-th projection.

Moreover L(λ) inherits an action of the group G(F) = GL 2 (k ⊗ Fp F) and

We fix the following F-basis (e, h, f ) of sl 2,F : e = 0 1 0 0 , h = 1 0 0 -1 , f = 0 0 1 0 .

Recall that the space sl 2,F is a GL 2/F -module for the adjoint action and if p > 2 we have α ∈ X 1 (T ) and sl 2,F is isomorphic to L(α).

Here q is an integer ≥ [F : Q] and

where the exponent ψ w means framed deformations of r w with fixed determinant ε -1 ψ w and where R (0,-1),τw,ψw rw is the reduced p-torsion free quotient of R ψw rw parametrizing those deformations which have parallel Hodge-Tate weights (0, -1) and inertial type τ w (by local-global compatibility and the inertial Langlands correspondence, for w ∈ S p \{v} the action of R ψw rw on M ∞ (σ v p ⊗ W (F) σ v ) factors through this quotient). By assumption (iii)(b) above (with [GK14, Rk. 5.2.2] and Lemma 8.1.2) we have R ψw rw ∼ = W (F) X 1 , X 2 , X 3 for w ∈ S\S p , and by genericity of r v we have R ψv rv ∼ = W (F) X 1 , . . . , X 3+3[Fv:Qp] . Taking the duals of representations induces a canonical isomorphism R (0,-1),τw,ψw rw

, where the ring on the right-hand side is the more familiar quotient of R r ∨ w parametrizing potentially Barsotti-Tate deformations of r ∨ w with inertial type τ ∨ w and determinant εψ -1 w . By [EGS15, Thm. 7.2.1(2)] (with [GK14, Rk. 5.2.2] and Lemma 8.1.2) we have R

Remark 8.1.3. Here are several remarks on the definition of

Note that we believe this action of (A ∞ F ) × in [EGS15, §6.2] should also be via ψ -1 , not ψ (as it is there), otherwise there is a contradiction with (at least) det τ = ψ| I Fv in [EGS15, §7.1], since the normalization of σ(τ ) in [EGS15, §1.9] is dual to the one in [BM02, §2.1.1]. (See also [CEGS, Rk. A.1], as was pointed out to us by David Savitt.) (ii) Accordingly, we need to modify the maximal ideal m associated to r in [START_REF] Emerton | Lattices in the cohomology of Shimura curves[END_REF]§6.2] as follows: m is the maximal ideal generated by T w -S w tr(r(Frob w )), Norm(w) -S w det(r(Frob w )) for w / ∈ S ∪ {w 1 } (this is the maximal ideal of [START_REF] Buzzard | On Serre's conjecture for mod Galois representations over totally real fields[END_REF]§4]). (iii) For any V ⊆ U the finite group V (A ∞ F ) × /V F × acts on X V without fixing any geometric point (see e.g. part (iv) of the proof of [BD14, Lemme 3.6.2], replacing w 0 there by w 1 ). In the definition of S(σ) in [EGS15, §6.2] in the indefinite case, one should replace the Shimura curve by its quotient by this finite action (which is still a smooth projective curve over F ), analogously to the definite case of loc. cit., where S(σ) is defined as functions f :

Denote by m ∞ the maximal ideal of R ∞ and for w ∈ S p \{v} let σ w be the unique Serre weight in W (r ∨ w ) that appears in JH(σ(τ ∨ w )). By a standard Hochschild-Serre spectral sequence (see e.g. the proof of [START_REF] Buzzard | On Serre's conjecture for mod Galois representations over totally real fields[END_REF]Lemma 4.11] or of [BD14, Lemme 3.6.2]) we have isomorphisms of finitedimensional F-vector spaces for any representation σ v of GL 2 (O Fv ) over W (F) as above such that Then M is free of rank r over its scheme-theoretic support. Recall that a finite type module M over a noetherian local ring A is called maximal CM over A if it is Cohen-Macaulay and if its Krull dimension (which is the Krull dimension of A/Ann A (M )) is equal to the Krull dimension of A. In particular, A/Ann A (M ) has no embedded associated prime.

Proof. Replacing A by A/Ann

Lemma 8.2.2. Let σ be any smooth representation of K on a finite length W (F)-module. Then the finite type R ∞ -module M ∞ (σ) is maximal CM over its scheme-theoretic support.

Proof. We can assume M ∞ (σ) = 0. For each Serre weight σ v such that M ∞ (σ v ) = 0, it follows from [EGS15, Def. 6.1.1] that the Krull dimension of M ∞ (σ v ) does not depend on σ v , call it d, and that M ∞ (σ v ) is Cohen-Macaulay. By exactness of the functor M ∞ , the Krull dimension of M ∞ (σ) is the maximum of the Krull dimensions of the M ∞ (σ v ) for the constituents σ v of σ, hence is also d. In particular, each nonzero such M ∞ (σ v ) is maximal CM over R ∞ /Ann R∞ (M ∞ (σ)). But being maximal CM over a given noetherian local ring A of residue field F is preserved by extensions of modules (as can be checked from the characterization of Cohen-Macaulay modules using Ext i A (F, -)). Hence M ∞ (σ) is maximal Cohen-Macaulay.

If τ is a tame inertial type and λ = ((a j , b j )) j∈{0,...,f -1} , where a j > b j are integers, we set

where R λ,τ r ∨ v parametrizes (framed) deformations of r ∨ v of inertial type τ and Hodge-Tate weights (a j , b j ) in the embedding σ j : F v → E. Note that from the determinant condition (see (62)), one must have a j + b j = 1 for all j in order for R λ,τ ∞ to be nonzero. When a j = a and b j = b for all j, we write R

∞ /(p). Proposition 8.2.3. There exists an integer r ≥ 1 such that

) is free of rank r over its scheme-theoretic support, which is formally smooth over F;

(ii) for all tame inertial types τ such that JH(σ(τ )) ∩ W (r ∨ v ) = ∅ and all K-invariant W (F)lattices σ 0 (τ ) in σ(τ ) with irreducible cosocle, the module M ∞ (σ 0 (τ )) is free of rank r over its scheme-theoretic support, which is a domain.

Proof. Note first that the last assertions in (i) and (ii) are a consequence of [EGS15, Def. 6.1.1], [EGS15, Thm. 7.2.1(2), (5)], and [EGS15, Prop. 3.5.1]. The strategy of the proof is very close to the one of [EGS15, Thm. 10.1.1] (which proves the case r = 1), and we freely use some notation from loc. cit. (it would be too tedious to recall everything). By [EGS15, §5.1] there is a set P τ of subsets of {0, . . . , f -1} and a unique J ∈ P τ such that σ 0 (τ ) = σ 0 J (τ ). The constituents of JH(σ 0 J (τ )) ∩ W (r ∨ v ) are indexed by a certain subset W of P τ , and for certain subsets J ⊆ W called capped intervals (see [EGS15, Def. 10.1.4]) there exists a subquotient σ J of σ 0 J (τ ) such that the irreducible constituents of σ J are exactly the constituents of JH(σ 0 J (τ )) ∩ W (r ∨ v ) indexed by the elements of J . We first prove by induction on |J | that the module M ∞ (σ J ) is free of rank r over its scheme-theoretic support for an integer r which depends neither on τ nor on J .

By the argument in the proof of [LLHLM20, Lemma 3.6.2], the ring R ∞ /Ann R∞ (M ∞ (σ J )) is reduced. Indeed, it is generically reduced by dévissage, since the scheme-theoretic supports of M ∞ (σ v ) for Serre weights σ v ∈ W (r ∨ v ) are reduced, irreducible, and pairwise distinct (of dimension independent of σ v ) and since σ J is multiplicity-free; it also has no embedded associated prime, since

If |J | ≤ 2, then by [EGS15, Prop. 3.5.1], [EGS15, Prop. 10.1.11] and the very last paragraph in the proof of [EGS15, Lemma 10.1.12] there is a tame inertial type τ and a W (F)-lattice

is regular, and hence also R

) and M ∞ (σ 2 ) have the same rank over their schematic support (which is a power series ring over, respectively, F X 1 and F X 2 ). Using [EGS15, Prop. 10.1.11] and the fact that all Serre weights in W (r ∨ v ) can be "connected" by nonsplit extensions (as follows e.g. from [EGS15, Prop. 3.5.2] applied to a semisimple ρ), we obtain (i) for a certain integer r ≥ 1.

If |J | > 2 and J has a unique minimal element J 0 (for inclusion inside {0, . . . , f -1}), then exactly as in the analogous case of the proof of [EGS15, Thm. 10.1.1] but using [Le19, Lemma 4.5] instead of [EGS15, Lemma 10.1.13], we deduce that the R ∞ -module M ∞ (σ J ) is generated by r elements. Then one applies Lemma 8.2.

) by Lemma 6.3.9 (and Lemma 2.4.4).

By above, the constituents of W 1 have the form

is modular, we see by Proposition 2.4.2 that any other modular Serre weight is of the form

For short let ν def = ε i η i . Using again Proposition 2.4.2 we write the modular Serre weights as

for some signs ε ∈ {±1} J and integers 0 ≤ b i ≤ 1 (with b = 0 corresponding to σ v ) and note that the constituents of W 2 are given by

By Proposition 2.4.3 (and Lemma 2.4.4) we can find a representation τ 0 of GL 2 (k) on a finite free W (F)-module such that τ 0 [1/p] is irreducible and such that

We may assume that τ 0 has cosocle σ v . As τ 0 and W 2 are multiplicity-free, have cosocle σ v , and

We have shown that M ∞ (L/pL) is free of rank r over its schematic support. To deduce that M ∞ (L) is free of rank r over its schematic support S, we first observe that S = R (2,-1) j ,τ ∞ , where (2, -1) j is (2, -1) in the embedding σ j : F v → E and (1, 0) elsewhere, as R (2,-1) j ,τ ∞ is a domain (apply Proposition 4.2.1 and [GK14, Rk. 5.2.2] to ρ = r ∨ v after a suitable twist). Therefore, M ∞ (L/pL) is an S/pS = R (2,-1) j ,τ ∞ -module that is (set-theoretically) supported on all of Spec(S/pS). By Corollary 4.2.6, S/pS is reduced. Hence S/pS is the schematic support of M ∞ (L/pL). By the argument in the last paragraph of the proof of Proposition 8.2.3 we deduce that M ∞ (L) is free of rank r over its schematic support S.

where τ runs over the tame inertial types such that σ v ∈ JH(σ(τ )) and p τ is the prime ideal ker(R ∞ R

(2,-1) j ,τ ∞

), where (2, -1) j is (2, -1) in the embedding σ j :

) is generated by r elements, i.e. there is a

for all the tame inertial types τ such that σ v ∈ JH(σ(τ )), and each such σ(τ ) occurs only once. In particular, it is as in Corollary 8.2.4, where for all i we have n i = 1. Arguing as in the last sentence of the proof of Proposition 8.2.6, it follows from (71) and the fact that all the rings R (2,-1) j ,τ ∞ for τ such that σ v ∈ JH(σ(τ )) are domains (apply Proposition 4.2.1 and [GK14, Rk. 5.2.2] to ρ = r ∨ v after a suitable twist) that S = R ∞ / ∩ τ p τ for p τ as in the statement.

By Proposition 8.3.3, for each type τ as in the previous paragraph the module

Thus by ( 71) and (72) the S[1/p]-module M ∞ (R 2,j )[1/p] is locally free of rank r by Proposition 8.3.3, i.e. the localization of M ∞ (R 2,j )[1/p] at each prime ideal of S[1/p] is free of rank r. Hence (using again [Mat89, Thm. 2.4]), we see that (ker(f )[1/p]) p = 0 for all prime ideals p of S[1/p], which implies ker(f )[1/p] = 0, and hence ker(f ) = 0 since S has no p-torsion. This finishes the proof.

Set L -1 def = P σv and for j ∈ {0, . . . , f -1} define a K-stable W (F)-lattice L j in

or equivalently

Let τ be a tame inertial type such that σ v ∈ JH(τ ). Then σ(τ ) is a quotient of P σv [1/p], and the image of P σv is a W (F)-lattice in σ(τ ) which we denote by σ(τ ) 0 . Let

and let T 2,j ⊆ T 2,j be the sublattice constructed in the proof of Proposition 8.3.3, which satisfies cosoc K T 2,j ∼ = σ v . Then by the proof of loc. cit., T 2,j is identified with the image of the composite morphism R 2,j → R 2,j T 2,j .

In particular, we have pT 2,j ⊆ T 2,j (as pR 2,j ⊆ R 2,j ). Set Y j def = T 2,j /pT 2,j , so Y j is a quotient of P σv and hence of L j-1 . For 0 ≤ j ≤ f -1, define

Lemma 8.3.5. With the above notation, the surjection T 2,j /pT 2,j Y j induces an isomorphism

Proof. Note that the representations T 2,j /pT 2,j and Y j are exactly the representations denoted by L/pL and W 2 respectively in the proof of Proposition 8.3.3, and that M ∞ (L/pL) = M ∞ (W 2 ) follows from M ∞ (W 1 ) = 0, see the second paragraph of this proof.

For a smooth K-representation V over F of finite dimension, we denote by (rad i K (V )) i≥0 its radical filtration: rad 0 K (V ) = V and inductively rad i K (V ) = rad K (rad i-1 K (V )) for i ≥ 1. As remarked in the proof of Lemma 8.3.1, taking rad i K (-) preserves surjective morphisms (see [Alp86, §1, Prop. 5]). Lemma 8.3.6. The surjection R 2,j T 2,j induces a surjection L j N j , which induces an isomorphism (L j /pL j )/ rad 3 K (L j /pL j ) ∼ = (N j /pN j )/ rad 3 K (N j /pN j ).

Proof. As seen above, we have ker(T 2,j Y j ) = pT 2,j , which implies a short exact sequence 0 → T 2,j ×p -→ N j → L j-1 → 0 and consequently 0 → T 2,j /pT 2,j ×p -→ N j /pN j → L j-1 /pL j-1 → 0. Since ker(R 2,j P σv ) = pR 2,j , we have a similar exact sequence for L j which fits in the following commutative diagram (77)

It is direct to check that the morphism γ is identified with

and is induced from the quotient morphism P σv σ(τ ) 0 . In particular, γ is surjective, hence so is β from which the first claim follows.

To prove the second claim, it is enough to show ker(β)

which admits P σv as a quotient, then the induced morphism M/ rad i K (M ) P σv / rad i K (P σv ) is an isomorphism for i = 1, 2. Indeed, this is clear for i = 1, and can be deduced using [HW22, Lemma 2.10(ii)] for i = 2. Thus, noting that both L j /pL j and N j /pN j admit P σv as a quotient, we get ker(β) = ker(rad 2 K (β)), and hence it is enough to prove ker(rad 2 K (β)) ⊆ rad K (rad 2 K (L j /pL j )). Since L j-1 /pL j-1 also admits P σ as a quotient, we again obtain from the observation above a commutative diagram as in (77), but with L j /pL j , N j /pN j and L j-1 /pL j-1 replaced by their rad 2 K (-), from which we obtain ker(rad 2 K (β)) = ker(γ). Hence it is enough to prove ker(γ) ⊆ rad K (R 2,j /pR 2,j ), equivalently γ induces an isomorphism on cosocles. But this follows from the proof of Lemma 6.3.8.

The reason for introducing N j is as follows.

Proposition 8.3.7. For j ∈ {0, . . . , f -1}, the following statements are equivalent:

Proof. Let π be the admissible smooth representation of GL 2 (F v ) over F defined in (65) or (66). Then by (67) we see that (i) (resp. (ii)) is equivalent to saying that dim F Hom K (L j , π) = r (resp. dim F Hom K (N j , π) = r). Moreover, since N j is a quotient of L j , we clearly have (i)⇒(ii).

The proof of (ii)⇒(i) is motivated by that of [START_REF]On the mod p cohomology for GL2: the non-semisimple case[END_REF]Prop. 4.18]. Assume dim F Hom K (L j , π) > r. Then there exists a nonzero morphism h : L j → π which does not factor through cosoc K L j . We choose h such that [Im(h) :

are surjective. These three modules are free of rank r over their schematic supports by induction hypothesis, Proposition 8.3.3, and Lemma 8.3.5. By Lemma 8.3.8 it is enough to prove

By Lemma 8.3.5 we have M ∞ (Y j ) = M ∞ (T 2,j /pT 2,j ), so

where the second equality holds because M ∞ (T 2,j ) is free of rank r over its schematic support. Hence, to prove (78) it is enough to prove

Consider the ring

where R

is as in Proposition 4.3.1 and where p λ,τ = ker(R ∞ R λ,τ ∞ ) with τ running over the tame inertial types such that σ v ⊗ (N k/Fp • det -1 ) ∈ JH(σ(τ )) and λ = (λ j ) 0≤j ≤f -1 running over {(2, 1), (3, 0)} f . By Proposition 4.3.1 and (62), and increasing q if necessary, we have for some integer h ≥ 1 and a certain explicit ring S = O,0≤j≤f -1 S (j) /J that R ≤(3,0),σv ∞ ∼ = S X 1 , . . . , X h (using again [GK14, Rk. 5.2.2] and Lemma 8.1.2, as we have conditions on the determinant here). For each λ ∈ {(2, 1), (3, 0)} f and k ∈ {1, 2} f in Proposition 4.3.1 an "explicit" prime ideal of S is defined that we denote here simply by p λ k = j p (j),λ j k and that we consider as ideals of R

. In other words, the ideals p (j),λ j w from Proposition 4.3.1 are relabeled as p (j),λ j i( w)

and any value of i( w) j equal to 3 is changed to 1 here, to simplify notation. Moreover there is a bijection

. From Lemma 4.3.2 we also have prime ideals of S (j) that we relabel here as q (j),(2,1) 1 , q (j),(2,1) 2 such that q (j),(2,1) k j ⊆ p λ k whenever λ j = (2, 1) and such that j q (j),(2,1)

We note that by Lemma 4.1.2 we have τ 0 ∼ = τ w, where wj = wt (2,1) for each 0 ≤ j ≤ f -1, so p λ,τ 0 = p λ 2 . Then by Proposition 8.3.3 and Proposition 8.3.4 we deduce

where λ(j ) j def = (2, 1) if j = j and λ(j ) j def = (3, 0). From the definition of L j-1 as an iterated fiber product we have using the last part of Lemma 8.3.8 and Proposition 8.2.6 that

By above we get that q (j),(2,1) 1 ∩ q (j),(2,1) 2 ⊆ Ann R∞ (M ∞ (L j-1 )) (note that λ(j ) j = (2, 1) for 0 ≤ j ≤ j -1) and p (j),(3,0) 2 ⊆ Ann R∞ (M ∞ (T 2,j )). Hence to prove (79) it is enough to prove that

, which is a special case of Proposition 4.3.3.

We have shown that M ∞ (N j ) can be generated by r elements, so the same is true for M ∞ (L j ) by Proposition 8.3.7. Let S = R ∞ /Ann R∞ (M ∞ (L j )). Now we can argue just as in part (ii) of the proof of Proposition 8.2.6 to see first that M ∞ (L j )[1/p] is free of rank r over S[1/p] and then deduce that any surjection S r M ∞ (L j ) has to be an isomorphism. This completes the proof.

Corollary 8.3.10. The module M ∞ (R) is free of rank r over R ∞ / ∩ λ,τ p λ,τ , where p λ,τ is the prime ideal ker(R ∞ R λ,τ ∞ ) with τ running over the tame inertial types such that σ v ∈ JH(σ(τ )) and λ = (λ j ) 0≤j≤f -1 running over the Hodge-Tate weights such that λ j ∈ {(1, 0), (2, -1)} for all j. In particular, dim

Recall that we have defined the K-representation 

induces an isomorphism of (nonzero finite-dimensional) F-vector spaces

Remark 8.3.12. The exactness of the functor M ∞ shows that the isomorphism in Theorem 8.3.11 is of course totally wrong without quotienting by m ∞ .

8.4. Gelfand-Kirillov dimensions. We prove our main global results.

We keep all our previous notation. We recall our assumptions: F is a totally real number field unramified at p, D is a quaternion algebra of center F split above p and at not more than one infinite place, v is a fixed place of F above p and r : G F → GL 2 (F) is a continuous representation satisfying the following conditions: r| G F ( p √ 1) is absolutely irreducible, r w is generic in the sense of [START_REF] Breuil | Towards a modulo p Langlands correspondence for GL2[END_REF]Def. 11.7] if w|p, w = v, r v is semisimple generic in the sense of §8.1 (the latter implies p > 23) and R rw is formally smooth over W (F) if w ∈ (S D ∪ S r )\S p .

We choose w 1 , S and U = U w as in §8.1, and consider the admissible smooth representation π of GL 2 (F v ) defined in (65) or (66). Recall we defined the Gelfand-Kirillov dimension dim GL 2 (Fv) (π) in §5.1.

Proof. (i) By [GK14, §5.5] π satisfies assumption (i) in Theorem 6.4.7 (for ρ = r ∨ v ). It follows from (67) and Theorem 8.3.11 (choosing

, so that π satisfies also assumption (ii) in Theorem 6.4.7. Finally, we prove that JH(π I 1 ) = JH(D 1 (r ∨ v )) (up to multiplicity), and so by Lemma 6.4.3 π satisfies assumption (iii) in Theorem 6.4.7. We only give the proof in the definite case, the indefinite case can be treated similarly (see e.g. ( 82) below). The K-equivariant

which is injective because ⊗ w∈Sp\{v} σ w is irreducible. By [Bre14, Lemma 9.2], the last embedding extends to an embedding

and gives in turn an embedding

In particular, we have JH(D 1 (r ∨ v )) ⊆ JH(π I 1 ). But using [BP12, Lemma 14.1], we actually have JH(D 1 (r ∨ v )) = JH(π I 1 ) (up to multiplicity), and so π satisfies assumption (iii) in Theorem 6.4.7. We can thus apply Theorem 6.4.7 which gives dim

(ii) By the arguments of [DL21, §6], replacing K v in [DL21, §6.1] by U v , the representation V = ⊗ w∈S,w =v V w of K v in loc. cit. by the representation σ v p of U v in (61) and forgetting the Hecke operators T w at places w ∈ S (since we do not care about multiplicity 1), the same patching process as in [DL21, §6.2] (which is a variant/special case of the main construction of [CEG + 16] and [Sch18, §9]) produces a "big" patched module M ∞ over R ∞ GL 2 (O Fv ) (with a compatible action of GL 2 (F v )) which is finitely generated free over the local ring S ∞ K 1 /Z 1 , where S ∞ def = W (F) x 1 , . . . , x 4|S|+q-1 (see (62) for q). Moreover we have M ∞ /m ∞ ∼ = π ∨ and for any continuous representation σ v of GL 2 (O Fv ) over a finite type W (F)-module with central character ψ| -1

) and M ∞ is endowed with its natural profinite topology. It follows from [GN22, Lemma A.16], Lemma 5.1.2 and (62) that we have (where the grade j A is as in §5.1)

where the last equality follows from (62) and the definition of S ∞ . Combining (80) and (81), we deduce 2

Recall that for any Serre weight σ v we have defined in §6 the injective envelope Inj K/Z 1 σ v with socle σ v .

Theorem 8.4.2. There is an integer

Proof. The existence of D σv is proven in Corollary 6.3.13(i). It follows from its construction in [DL21, §6.2] and [CEG + 16] that M ∞ (see part (ii) of the proof of Theorem 8.4.1) is projective of finite type over S ∞ K Z , where S ∞ K Z is the largest quotient of S ∞ K on which the center of K = GL 2 (O Fv ) acts by ψ| I Fv . In particular, M ∞ /(p, x 1 , . . . , x 4|S|+q-1 ) is finite projective over

and hence taking on both sides the subspaces where m ∞ acts by 0 (m ∞ acts through the action of R ∞ on M ∞ /(p, x 1 , . . . , x 4|S|+q-1 )) we get

Using M ∞ /m ∞ ∼ = π ∨ this last isomorphism can be rewritten

. But it follows from Corollary 6.3.13(i) and Theorem 8.3.11 that π[m 2

K 1 ] cannot be (strictly) larger, whence the isomorphism of the statement. The last sentence in the statement then follows from Corollary 6.3.13(ii) and (iii).

module. By Theorem 8.4.1, (80), and (81) we have

and it then follows from [GN22, Cor. A.30] ("Miracle Flatness") that M ∞ is flat over R ∞ . As R ∞ is a local and M ∞ /m ∞ = 0, it follows that M ∞ is faithfully flat over R ∞ .

Corollary 8.4.4. Let x : R ∞ → O be any homomorphism of local W (F)-algebras, where O is the ring of integers of a finite extension E of E, and set

Proof. The fact that V (x) is an admissible unitary Banach representation of GL 2 (F v ) follows from [CEG + 16, Prop. 2.13]. We need to prove V (x) = 0 (note that we know M ∞ ⊗ R∞,x O = 0, as M ∞ /m ∞ = 0, but it could be p-power torsion). By Theorem 8. 

for w ∈ S p \{v} and such that π = 0, where

Proof. Note that the ideal m in the definite case is as in Remark 8.1.3(ii) for S big enough (the resulting eigenspace does not depend on S by [BDJ10, Lemma 4.6(a)]). We prove the indefinite case only, the definite case being similar. We can and do choose a place w 1 as in §8.1.

Since the Gelfand-Kirillov dimension of a subspace is at most as big as the one of the space, it is enough to prove this upper bound for a smaller V . In particular, we can assume that V w 1 is a subgroup of the group of matrices that are uppertriangular unipotent mod w 1 and that V w is a subgroup of 1

, then S and U satisfy all the conditions in §8.1 and we have

where (Ind 

But this follows from (60) and Theorem 8.4.1. In fact, using

for at least one tuple (σ w ) w∈Sp\{v} with σ w ∈ W (r ∨ w ) for all w ∈ S p \{v} (since π = 0). (We also use that Hom

w 1 of matrices that are upper-triangular unipotent mod w 1 . By Ihara's Lemma at the place w 1 , which is easy here thanks to all the assumptions on w 1 , we have for sufficiently small V v that

In particular, dim GL 2 (Fv) (π) = dim GL 2 (Fv) (π ). Replacing V by V , we can thus assume that V w 1 is the subgroup of (O D ) × w 1 of matrices that are upper-triangular unipotent mod w

But this follows from the last assertion in part (i) above.

Remark 8.4.7.

8.5. Flatness for the dual of completed cohomology. We give an application to the flatness of the dual of completed cohomology.

In this section we assume moreover that p is inert, so that v is the unique place dividing p. Let V v be as in the beginning of §8.4, i.e.

For each compact open subgroup V v ⊆ 1 + pM 2 (O Fv ) and for each n ≥ 1 we define the ψ -1isotypic subspaces

, where ψ -1 is viewed as a character of (A ∞ F ) × via the global Artin map (sending uniformizers to geometric Frobenius elements). Let T(V v V v , W (F)/p n ) ψ -1 be the W (F)-subalgebra of End W (F) (H 1 ét (X V v Vv × F F , W (F)/p n ) ψ -1 ) (respectively End W (F) (S(V v V v , W (F)/p n ) ψ -1 )) generated by the endomorphisms T w and S w for w / ∈ S ∪ {w 1 } and T(V v V v , W (F)/p n ) ψ -1 r its localization at the maximal ideal generated by the elements T w -S w tr(r(Frob w )), Norm(w) -S w det(r(Frob w )) for w / ∈ S ∪ {w 1 }. Let T(V v ) ψ -1 r be the "big Hecke algebra"

We define respectively Proof. This is [GN22, Prop. 4.3.1]. However, since our setup is slightly different, we reproduce the proof in our case. We only prove the case of Shimura curves, the definite case being identical.

We first notice that Hom W (F) ( H 1 (V v ) ψ -1 r , W (F)) ∼ = M ∞ /(x 1 , . . . , x 4|S|+q-1 ) is a faithfully flat R ∞ /(x 1 , . . . , x 4|S|+q-1 )-module, since M ∞ is a faithfully flat R ∞ -module by Theorem 8.4.3. As a consequence, the composite of the maps R ∞ /(x 1 , . . . , x 4|S|+q-1 ) Email address: benjamin.schraen@universite-paris-saclay.fr