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Abstract. Deep neural networks have become the gold-standard ap-
proach for the automated segmentation of 3D medical images. Their full
acceptance by clinicians remains however hampered by the lack of intel-
ligible uncertainty assessment of the provided results. Most approaches
to quantify their uncertainty, such as the popular Monte Carlo dropout,
restrict to some measure of uncertainty in prediction at the voxel level. In
addition not to be clearly related to genuine medical uncertainty, this is
not clinically satisfying as most objects of interest (e.g. brain lesions) are
made of groups of voxels whose overall relevance may not simply reduce
to the sum or mean of their individual uncertainties. In this work, we
propose to go beyond voxel-wise assessment using an innovative Graph
Neural Network approach, trained from the outputs of a Monte Carlo
dropout model. This network allows the fusion of three estimators of
voxel uncertainty: entropy, variance, and model’s confidence; and can be
applied to any lesion, regardless of its shape or size. We demonstrate the
superiority of our approach for uncertainty estimate on a task of Multiple
Sclerosis lesions segmentation.

Keywords: MS lesion · Detection · Deep Learning· Interpretabilty ·
Prediction

1 Introduction

Magnetic Resonance Imaging (MRI) is the standard imaging modality for the
diagnosis and follow-up of Multiple Sclerosis (MS). It allows a direct observa-
tion of brain lesions produced by the disease and provides information about the
pathology stage or treatment efficiency. Deep Learning (DL) approaches, based
on a trained U-Net-like neural network, are invaluable tools to automatically
delineate MS lesions [18]. Although powerful and versatile, these models pro-
vide segmentation maps that are typically opaque, with no indication regarding
their certainty. This hinders full acceptance of DL models in clinical routine,
for which uncertainty attached to the computerized results is essential for their
interpretation and to avoid misleading predictions.

A variety of methods have been proposed to quantify the uncertainty attached
to deep neural networks [1]. Among them, the Monte Carlo (MC) dropout stands
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out as one of the simplest approach, as it can be applied to any model trained
with the dropout technique [20]. Such a model can be interpreted as a Bayesian
neural network, giving access to the interesting properties of these probabilis-
tic models regarding quantification of their uncertainty [4]. More particularly
at inference, for a given input, multiple stochastic forward passes are computed
by keeping dropout activated, corresponding to empirical samples from the ap-
proximated predictive distribution. This produces a set of softmax probabilities
that can further be used to compute uncertainty estimates. Applied to MRI
segmentation, the MC dropout method produces uncertainty metrics for each
voxel in the volume, resulting in so-called voxel-wise uncertainty maps [17, 6, 12].
The clinically-relevant information, however, is at a higher level, typically at the
instance (lesion, tissue) level.

Natural ways to obtain such instance-wise uncertainties, meaning the uncer-
tainties attached to each connected component within the output segmentation,
are through a post hoc aggregation of voxel-wise uncertainty estimations. Exist-
ing approaches include computing the mean uncertainty of voxels belonging to
the same class in the segmentation [16] (thus producing one uncertainty estimate
per class, rather than per connected component). In the context of MS, lesion-
wise uncertainty was also estimated using the logsum of the connected voxels
uncertainties [12]. Using the mean implies that each component uncertainty con-
tributes equally to the overall instance score, while the use of the logsum assumes
that connected voxels are conditionally independent, given that they belong to
the same instance. These highly simplified assumptions may degrade the quality
of instance uncertainty computation. To go further, a side-learner called MetaSeg
has been proposed to predict the Intersection Over Unions (IoU) of each indi-
vidual segmented instance with the ground truth [15]. For this task, a Linear
Regression Model is trained based on a series of features derived from a standard
segmentation model’s output probabilities. The predicted score is then used as
a marker of instance uncertainty. Yet, the input features of MetaSeg consist in
averaged voxel-wise metrics, leading to the same restrictions than the previously-
described post hoc aggregation methods. Additionally, it has been proposed to
train an auxiliary Graph (Convolutional) Neural Network (GCNN) using the
outputs of a MC dropout U-Net (i.e. voxel-wise segmentation and uncertainty
maps) to refine the predicted masks [19]. This approach, however, remains at
the voxel level and focuses on 2D segmentation tasks.

In this work, we propose to build from the two last methods to overcome their
respective limitations. Indeed, we implement a GCNN at the output of a trained
MC dropout U-Net model. Using the predicted 3D segmentation outputs, each
individual segmented lesion is modeled by a graph whose voxels are the inter-
connected nodes. Node features are determined by the input and output of the
U-Net, comprising the voxel image intensities, the voxel predicted label, and
voxel-wise uncertainty maps. We implement two alternative variants of the pro-
posed GCNN, either classification or regression, to quantify lesions uncertainty.
We test our framework on a task of 3D binary segmentation segmentation on MS
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data. Results demonstrate the superiority of our approach compared to known
methods.

2 Our Framework: Graph modelization for lesion
uncertainty quantification

Overview: Consider an input image X and a trained MC dropout segmentation
model N with parameters W that produces a segmentation Y = N (X,W ) and
a set of voxel-wise uncertainty maps Ui (e.g. entropy, variance, PCS, etc.). Our
objective is to quantify the uncertainty of each instance (i.e. lesion) in Y. To do
so, we propose to train an auxiliary GCNN to predict this uncertainty directly
from X, Y, and Ui (see Figure 1).

Fig. 1. Illustration of the proposed framework for learning lesion uncertainty from the
outputs of a Monte Carlo dropout model. See the text for details of each block.

2.1 Monte Carlo dropout model and voxel-wise uncertainty

We use a generic 3D U-Net [2] for its simplicity and popularity within the field,
although our method can be employed with any segmentation model trained
with dropout. We add 3D dropout [21] with a rate of p = 0.2 at the end of
each encoding and decoding block. The model is trained on annotated datasets
composed of pairs of images: (i) input T2-weighted FLAIR MRI sequences X and
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(ii) associated ground truth MS lesions segmentation Y . At inference, dropout
is kept activated and T forward passes are made for a new input volume x∗.
We chose T = 20, as it has been shown that it produces the best uncertainty
estimates [13]. From this set of predictions, several well-known voxel-related
uncertainty metrics are extracted: (see Figure 1, part A): the entropy [5], the
variance [7] and the Predicted Confidence Score (PCS) [23].

2.2 Graph dataset generation

Inference on Validation Dataset and Connected Component Analy-
sis. After training, the MC dropout U-Net is subsequently used to generate
segmentation and uncertainty maps on the set-aside validation set of images.
These predictions are used to generate training data for the auxiliary GCNN.
We use a Connected Component Analysis (CCA) to identify each lesion in the
segmentation masks using 26-connectivity — meaning that a lesion is defined by
voxels that are interconnected by their faces, edges, or corner. For each lesion
identified by CCA, we compute the Adjusted Intersection Over Union (IoUadj)
[15] with the ground truth lesions (see Figure 1, part B). This variant of the
IoU is suited for brain-abnormalities segmentation, where a connected compo-
nent in the ground truth can be divided into several pieces in the predicted
segmentation.

Identified lesions can exhibit a wide range of shape and size. To learn from
these data, we must thus design a neural network that can be employed regardless
of the shape and size of the input structure. GCNNs, which can be interpreted
as a generalization of the classic convolutional networks to non-Euclidean and
irregular data, are thus particularly suitable for this task.

From voxels to graphs We first slightly dilate each lesion mask to include
surrounding voxels at the border between classes, which typically convey useful
information about uncertainty. We then convert the dilated mask into a graph
by representing its voxels by nodes and neighborhood relationships by edges.
Each node is further defined by a set of n + 4 features: (i) the intensity of its
corresponding voxel in each of the n input MRI sequences, (ii) its binarized label
(1 for the observed lesion class and 0 for all other classes), and its 3 voxel-wise
uncertainty estimates: (iii) entropy, (iv) variance and (v) PCS (see Figure 1, part
C). In agreement with the aforementioned 26-connectivity CCA, each node (i.e.
voxel) is connected in the graph to its 26 nearest neighbors.

2.3 GCNN architecture and training

Here, we use a lightweight GCNN architecture composed of 2 consecutive Graph
Convolutional layers with a hidden dimension of h = 64, followed by a Linear
layer (see Figure 1, part D). The model is trained using the graph dataset gen-
erated from the validation images, composed of graphs (transformed connected
components obtained from the segmentation model) along with their associated
ground truth (IoUadj). As in [15], we propose two versions of our model:
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– In the classification approach (GCNNClassif), the IoUadj labels are first bi-
narized as follows: FP if IoUadj(graph) < ϵ, and TP if IoUadj(graph) ≥ ϵ.
ϵ is a hyperparameter that we set to 0.1 in our experiments, so that lesions
with an IoUadj very close to 0 are not wrongly considered as TP. The net-
work is then trained using the Cross-Entropy Loss. At inference, structural
uncertainty is quantified by the graph FP probability.

– In the regression approach (GCNNReg), the model is directly trained to
predict the graph ÎoUadj , using the MSE loss. At inference, we use 1−ÎoUadj

as the structural uncertainty score.

3 Material and Method

3.1 Data

We combine two open-source MS datasets: from the University Hospital of Ljubl-
jana (MSLUB) [10] and from the MICCAI 2016 MS segmentation challenge
(MSSEG 2016) [3]. We thus use 83 manually-annotated 3D T2-FLAIR sequences.
Images are resampled to a 1 mm isotropic resolution of 160× 192× 160 to focus
on brain tissues, and intensities are normalized to zero mean and unit variance.
We opt for a 4-fold cross-validation scheme due to the limited number of images.
In each fold, we put aside 25% of the images for testing. From the remaining
images, we use 20% for validation and 80% to train the model. During evalua-
tion, results are averaged over the 4 folds. Due to the limited number of images,
we extensively use Data Augmentation to train our models, comprising flipping,
rotation, contrast alteration, gaussian noise and blurring.

3.2 Comparison with known approaches

To evaluate the relevance of our proposed GCNNClassif and GCNNReg approaches,
we implement in parallel known approaches to obtain instance uncertainty from
the U-Net. We use the mean and logsum of the voxel-wise uncertainty of each le-
sions, with the 3 different types of uncertainty. We name these methods Entropymean,
Variancemean, PCSmean, Entropylogsum, Variancelogsum, and PCSlogsum.

As pointed out in [12], using the logsum assigns a higher uncertainty to small-
size lesions. This appears sub-optimal as small lesions could be segmented with
high confidence, especially in the case of MS lesions. To verify this point, we
implement a naive approach, named Size, which attributes a lesion uncertainty
inversely proportional to its size. The lesion size (number of voxels composing
it) being S, its uncertainty is computed as 1/S.

Lastly, we implement an approach inspired from the MetaSeg framework [15].
We extract a series of features from each connected component in the validation
dataset, consisting in the mean entropy, variance and PCS, as well as the size
of the lesion. We then train a Logistic Regression classifier from these 4 fea-
tures to distinguish between True Positive (TP) and FP lesions (MetaSegClassif).
Alternatively, we train a Linear Regression model to directly predict ÎoUadj
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(MetaSegReg). We use the outputs of these models to obtain lesion uncertainty
as described for the GCNN approach.

3.3 Evaluation Setting

For medical applications, the ideal uncertainty quantification should attribute a
higher uncertainty to FP lesions than TP, to allow for proper interpretation and
evaluation of the results. To evaluate this properly, we use Accuracy-Confidence
curves [9]. Briefly, the principle is to set aside the τ% of the most uncertain
predicted lesions among the test dataset, and measure the performance of the
model on the remaining lesions by counting the number of FP and TP lesions.
The threshold τ fluctuates between 0 (all lesions are kept) and 100 (all lesions are
removed). By plotting the couples (FP, TP) at different thresholds, we obtain an
Accuracy-Confidence curve and compute the AUC (Area Under the Curve) score
reflecting the quality of the estimated lesion uncertainty. FP and TP counts are
normalized in the range [0, 1] by dividing by the counts obtained without filtering
(at τ = 0). This metric only depends on the ranking of uncertainties, thus is
independent of the uncertainty ranges of each method ensuring a fair comparison.
We additionally evaluate the segmentation performance of the U-Net on the
test datasets using the Dice coefficient, as well as the total number of TP and
FP lesions. Finally, for each method, we control the correlation between the
estimated uncertainty and the lesion size using the Spearman’s rank correlation
coefficient (ρ).

Table 1. U-Net segmentation performance on the MS dataset and number of TP and
FP lesions for each fold.

Fold 0 1 2 3
Dice 0.672 0.645 0.705 0.693

# TP lesions 829 597 715 871
# FP lesions 525 294 353 454

3.4 Implementation Details

3D Segmentation U-Net Our segmentation framework was implemented us-
ing PyTorch [14]. We opt for a patch approach to train the segmentation U-Net,
meaning that the 160 × 192 × 160 MRI volumes are split into 3d patches of
160× 192 × 32, decreasing the memory cost of training. We use a batch size of
5. The U-Net is trained with a combination of the Dice [11] and Cross-Entropy
loss, using the ADAM optimizer [8] with a learning rate of 1e−4 until conver-
gence. For the training of the segmentation models, a single NVIDIA T4 GPU
was used.
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Graph Neural Networks We use the Deep Graph Library [22] to implement
and train the GCNN models. The training procedure of our GCNN is standard:
we use the ADAM optimizer with a learning rate of 1e−2 at the start of train-
ing, and progressively decreasing to 1e−5. Graphs are presented to the network
in the form of batches, composed of 10 graphs. Due to the small size of the
GCNN models, they were trained on CPU, which took a couple of minutes in
our experiments.

Fig. 2. Accuracy-Confidence curves for the different methods. The associated AUC
scores are indicated in brackets in the graphs legends.

4 Results and Discussion

Accuracy-Confidence curves are presented in Figure 2 along with the correspond-
ing AUC values. Segmentation performance and correlation coefficients are pre-
sented in Tables 1 and 2. Experimental results show that both models of the
proposed framework outperform the classical methods by a significant margin,
and that their performances are similar with a very small advantage for the
classification version. The naive Size approach achieves the lowest performance.
Similarly, the logsum approaches, also strongly correlated with the lesion size,
have poorer performance than the mean counterparts. Not surprisingly, in the
context of MS lesions, the lesion size is not a satisfying proxy for uncertainty as
small lesions can be segmented with high confidence. In our experimental set-
ting, MetaSeg models do not outperform simpler methods. This is probably due
to the overall simplicity of these models, failing to fully learn the relationships
between the different input features.
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Results show that our graph-based framework can be efficiently used to flag
uncertain lesions, that are more likely to result in False Positives. The classifi-
cation variant slightly outperforms regression. We hypothesize that this is due
to the increased difficulty of predicting the exact IoUadj , compared to the bi-
nary classification setting. One drawback of our approach is that it requires an
additional validation set containing enough lesions (typically a few hundreds) to
allow GCNN training. However, as most DL pipelines rely on a set-aside val-
idation set to control overfitting during training, these data can then be used
for this purpose (as it was the case in this work). The requirement is thus not
prohibitive and only necessitates a sufficiently large validation set.

Overall, our framework is computationally light as CCA is computed only
once per MRI, followed by the graph generation step that can be parallelized
among the lesions. Additionally, in the context of MS, most brain lesions are
relatively small (less than 1000 voxels), which results in small graphs that are
fast to generate. Finally we use 26-connectivity, meaning that a voxel is only
connected to its closest neighbors, which reduces the computational burden.

Our approach enhances the binary voxel-wise predictions of the segmenta-
tion model with reliable and readable lesion-wise uncertainty estimates. In the
classification setting, uncertainty is casted as the probability of a lesion being
a false positive, which is a straightforward and intelligible definition. In a real
world clinical application, this may help the clinician examine the automated
segmentation in the light of the model’s confidence, hence allowing a better
interpretability of the results and a more trustable usage of the algorithm.

Future work will study the extension to multi-class segmentation, and inclu-
sion of additional features such as the global location of the lesion within the
MRI volume. Indeed, for brain disorders such as MS, the location of the lesion
within the brain conveys information concerning uncertainty, as FP tend to be
concentrated in specific brain regions.

Table 2. Evaluation of uncertainty estimates (AUC values). ρ represents Spearman’s
rank correlation coefficient ρ.

AUC (%) Spearman’s ρ

GCNNClassif 87.32 -0.78
GCNNReg 87.10 -0.77
Entropymean 83.80 -0.42
Entropylogsum 83.72 -0.97
Variancemean 83.14 -0.44
Variancelogsum 82.99 -0.99
PCSmean 83.79 -0.44
PCSlogsum 83.88 -0.98
Size 80.30 -1.00
MetaSegClassif 83.10 -0.76
MetaSegReg 83.42 -0.77
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5 Conclusion

This paper presents an innovative graph-based framework to quantify lesion-wise
uncertainty. We demonstrate, with our approach, improvement of the predicted
uncertainty, when compared to various known methods. The strength of our
solution is its generic nature, making it compatible with any segmentation model
trained with dropout.
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