
HAL Id: hal-03883727
https://hal.science/hal-03883727v1

Submitted on 4 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Function Placement and Acceleration for In-Network
Federated Learning Services

Nour-El-Houda Yellas, Bernardetta Addis, Roberto Riggio, Stefano Secci

To cite this version:
Nour-El-Houda Yellas, Bernardetta Addis, Roberto Riggio, Stefano Secci. Function Placement
and Acceleration for In-Network Federated Learning Services. 2022 18th International Confer-
ence on Network and Service Management (CNSM), Oct 2022, Thessaloniki, Greece. pp.212-218,
�10.23919/CNSM55787.2022.9964625�. �hal-03883727�

https://hal.science/hal-03883727v1
https://hal.archives-ouvertes.fr

Function Placement and Acceleration for
In-Network Federated Learning Services

Nour-El-Houda Yellas, Bernardetta Addis∗, Roberto Riggio‡, Stefano Secci
Cnam, 292 rue St. Martin, 75003, Paris, France. Email: firstname.lastname@cnam.fr

∗ Université de Lorraine, CNRS, LORIA, 54000 Nancy, France. Email: bernardetta.addis@loria.fr
‡ Polytechnic University of Marche, Ancona, Italy. Email: r.riggio@univpm.it

Abstract—Edge intelligence combined with federated learning
is considered as a way to distributed learning and inference
tasks in a scalable way, by analyzing data close to where it
is generated, unlike traditional cloud computing where data
is offloaded to remote servers. In this paper, we address the
placement of Artificial Intelligence Functions (AIF) making use
of federated learning and hardware acceleration. We model the
behavior of federated learning and related inference point to
guide the placement decision, taking into consideration the specific
constraint and the empirical behavior of a virtualized infrastruc-
ture anomaly detection use-case. Besides hardware acceleration,
we consider the specific training time trend when distributing
training over a network, by using empirical piece-wise linear
distributions. We model the placement problem as a MILP and
we propose a variant of the problem. Simulation results show the
impact that hardware acceleration can have in the decision of
the number of AIF to enable, while dividing by a relevant factor
the distributed training time. We also show how our approach
exacerbates the importance of monitoring an end-to-end learning
system delay budget composed of link propagation delay and
distributed training time in the location of AIFs.

Index Terms—Artificial intelligence function, network manage-
ment, federated learning.

I. INTRODUCTION

Closed-loop network automation systems are being defined
to support autonomous reconfiguration of current and future
converged connect-compute infrastructure stacks. By actively
monitoring the software and hardware components of a network
service infrastructure, network automation systems can support
routing optimization, network functions (NF) auto-scaling, fault
recovery, and anomaly detection.

Indeed, anomaly detection is a fundamental brick of a
general purpose automation system. Many frameworks exist,
such as the one presented in [1], taking into consideration
a potentially large size (e.g. thousands) and heterogeneous
set of monitoring time-series. In order to make their deploy-
ment feasible in access networks, we consider the usage of
distributed learning, as presented in [2] and [3]. Here, we
introduce the novel concept of Artificial Intelligence Functions
(AIFs) to refer to the AI-enabled end-to-end applications sub-
components that can be deployed across edge-enabled B5G and
6G networks. In such a distributed learning setting, multiple
AIFs need to be distributed close to, or at the place where
monitoring data is generated, to run distributed continuous
learning in support of low latency runtime inference.

Fig. 1: FL-based anomaly detection AIF systems.

In this paper, we address the problem of placing AIFs
running federated learning against connect-compute network
infrastructure monitoring data, for environments where the in-
troduction of edge computing comes with a heterogeneous and
large set of computing and networking elements, requiring low
latency performance. Among the multiple distributed learning
techniques proposed in the literature, federated learning [4]
represents a good compromise between the need to distribute
the learning and to guarantee a centralized view in support
of efficient inference, and receives large industry support and
integration, including in the 3GPP standards [5].

In particular, we use as reference use-case the federated
learning anomaly detection AIF proposed in [2]; it is a dis-
tributed variant of the framework proposed in [6], adapted for
the 5G infrastructure. This federated learning framework makes
use of a federated learning server AIF, and a variable number
of edge AIFs: the learning task is distributed to edge AIFs
by load-balancing monitoring data among them, where edge
AIFs interact via the server for learning model updates. We
present the reference distributed anomaly detection AIF system
in Figure 1.

Our contributions are as follows:
• We propose a MILP (Mixed-integer linear programming)

formulation for the placement of AIFs using a federated
learning setting. The proposed model takes into consid-

eration (i) the FL server location, (ii) the latency budget
covering training and communication delay components,
and (iii) the respect of a target learning time;

• We assess the impact of using hardware accelerators on
a subset of edge nodes in order to reduce the training
time, and how the deriving latency unbalance can be
compensated in the placement outcome;

• We compare the proposed approach to a variant of the AIF
placement model in terms of achievable learning time and
number of deployed AIFs.

The paper is organized as follows. We give an overview
about existing works in Section II. We present the AIF
placement model and its variant in Sections III and IV. Our
experimental results are presented in Section V. We draw
conclusions in Section VI.

II. RELATED WORK

Network softwarization technologies made their way into
access networks in such a way that not only nowadays network
functions are already mostly deployed as virtualized nodes, but
also hardware components, for radio and computing systems,
are redesigned to be re-programmable by external software and
dynamically allocated and shared. The derived landscape is
therefore a natural application domain for artificial intelligence,
because many new decision making points appear and many
monitoring probes are made available to network and service
management systems. In the following, we review recent works
in the area of AI integration to networks, with a particular focus
on federated learning applications.

A. Integration of AI in Edge Networks

Incorporating artificial intelligence and machine learning
(AIML) techniques in networks is beneficial for a high number
of applications, as presented in [7].

About AIML application in anomaly detection and fault
management, it commonly consists in detecting abnormal net-
work states and then localizing the root cause. When integrated
in closed loop automation framework, an orchestrator can then
run a remediation action to come back to a normal working
condition. In [6], the authors proposed an AIML framework
making use of autoencoders to detect anomalies at different
infrastructure levels; the ML model learns the normal state
of a given system, then an anomalous state fingerprinting
methodology is proposed for state qualification, meant to guide
a tailored remediation action.

Network management tasks have this potential to take advan-
tage from AIML frameworks. On the other side, Multi-access
Edge Computing (MEC) allows to bring resources for AIML
computing to the edge network where data to be processed is
located.

In [8], the authors comprehensively investigate how AI and
edge computing can interwork. Often, AIML is used in edge
network resource allocation problems that make surface at
different layers and for different resources, such as CPU, radio
and link resources. On the other hand, edge computing provides
AI with a convenient platform for models training and inferring,

with a potential solution on accelerating computations on
hardware [9]; hardware acceleration features can be made
available pervasively in edge networks, start from radio access
and edge computing nodes.

This coupling between AIML and networking is being facil-
itated by edge computing and network virtualization, standard-
ization bodies are integrating AIML application requirements in
system specifications. Namely, the Network and Data Analytics
Function [5] (NWDAF) has been proposed by 3GPP to support
AIML in 5G core networks. However, many challenges are
being discussed regarding the ML training and inferring tasks,
such as the input data, the placement of the training and
inference models, and if these two operations should be run
inside the same nodes.

B. Federated Learning Applications

A largely adopted strategy for performing the distribution of
AIML models geographically at the edge network is Federated
Learning (FL) [4]. Federated learning aims to prevent data
collection aggregation at the central cloud, either for privacy
issues or for latency constraints, or even both. FL consists
of collaboratively training ML models at edge nodes. Two
main steps are to be considered: (i) the local training of the
ML model at the FL clients and (ii) the global aggregation
of the updated parameters at the FL server. The FL process,
if adequately configured and designed, can result in high
efficiency in terms of network bandwidth and low latency,
besides increased data privacy thanks to data locality; the FL
process itself can be repeated several rounds until the model
achieves a given accuracy.

The breakthrough of FL paradigm gave birth to its applica-
tion in many fields. For standard systems, in [10], the authors
proposed a tailored structure for NWDAF function based on FL
paradigm w.r.t 3GPP standards: each 5G core NF has its own
NWDAF function called the NWDAF leaf, collecting data from
its corresponding NF and then training the ML model locally.
The root NWDAF in their architecture refers to the FL server
and ensures the aggregation of the local model parameters.

In [2], the authors proposed a distributed version of the
anomaly detection framework developed in [6] using FL
paradigm. The main goal is to cope with a set of challenges,
mainly to scale with the increasing amounts of collected data
and to reduce the training time for allowing a near-real time
re-orchestration decision.

Therefore, a number of AIFs making use of FL primitives
are expected to make their way into edge network architecture,
and standards are already preparing to this integration. Our
work considers the FL clients selection w.r.t a given target
learning time while including the hardware acceleration at the
training phase. We introduce the AIFs and their placement
while considering jointly their processing (training) time and
the communication delays with the FL server. We also consider
the activation of the hardware accelerators in support of the
training effort.

III. ARTIFICIAL INTELLIGENCE FUNCTION PLACEMENT

We define the AIF placement as the problem of finding the
optimal number of AIFs and their location on a given net-
work graph, taking into account the inter-AIF communication
patterns, the target learning loop time performance and the
presence of hardware acceleration.

The functional architecture of an AIF is given in Figure 2.
To support its operation, we identify five interfaces:

• if1: used by the orchestration platform for the communi-
cation with the AIF, including its configuration (e.g. for
dynamic update of federated learning hyper-parameters)
and the retrieval of inference results (e.g., inference run-
ning at the server AIF and/or edge AIFs);

• if2: used for AI model parameter exchange among AIFs
(AIF control plane interface), e.g., the communication
between edge AIFs and server AIF in federated learning;

• if3: used for data exchange among different AIFs (AIF
data-plane interface) - which may be used for generic
distributed learning, in the case of an AIF forwarding
graph. if3 is not used in the case of FL;

• if4: hardware acceleration interface with components as
GPU and Smart-NICs, for training and inference tasks;

• if5: for data collection and streaming, to interface with
a data-pipe-lining system. In this work, data pipelining
delay is negligible.

Fig. 2: AIF reference representation.

Moreover, the propagation delays over the link between
candidate edge AIF locations and server AIF are not negligible
with respect to the training time, and the servers hosting AIFs
offer them the same computing capacity.

A. Empirical federated learning time distributions

In order to build a purpose-built model of the training time
as a function of the number of federated learning nodes that
are used, we run the FL-based anomaly detection framework
proposed in [2] which consists of training LSTM (Long-Short
Term Memory) autoencoders in a distributed manner, to learn
and reconstruct the normal working conditions of a given
system. To do so, we run a set of AIFs on a Kubernetes
infrastructure [11] where the placement is done automatically
using a kubernetes scheduler. In fact, each AIF is an imple-
mentation of a LSTM model. The model is composed of a
set of autoencoders that allow to detect anomalies at different
system levels, i.e., physical level, virtual level and access level,

using different groups of metrics, e.g. CPU, memory and radio
metrics.

We use the 5G3E dataset from [12], providing few dozens of
feature time-series for each resource group, where groups are
CPU, RAM, network link state, storage resources, and RAN
and UE nodes. We train the ML model using data batches of
800 samples each, corresponding to 2 minutes of collected data
for each data batch: this is the assumed retraining time of the
system, which could vary in general depending on the sampling
rate. The batch size is set to the data size, hence considering
all the samples. The number of epochs is 10 and the model
is trained for one round. The rest of the FL-based anomaly
detection AIF hyper-parameters are the same as in [2].

In Figure 3, we present the corresponding training time
distribution as a function of the number of active AIFs based
on CPU resources (collected at the container level).

100

150

200

250

300

350

400

1 2 4 8 16

Tr
a
in

in
g

 t
im

e
 (

m
s)

Number of AIFs

Fig. 3: Training time vs number of AIFs. Number of rounds
R = 1, number of epochs E = 10.

We can remark that the training time decreases with the
increase of the number of AIFs up to a certain threshold value.
A certain variance exists, due to CPU scheduling and storage
system systemic variations at the operating system level. We
employ in the AIF placement model the piece-wise linear
function obtained using the first quartile values, indicated in
red in Figure 3. In the following, we show how we rely on the
obtained results to build the AIF placement model.

B. Problem formulation

We consider a set N of physical servers with the same
computing capacity, each server can host at most one AIF. The
communication latency between edge AIFs and the FL-server
depends on the placement decision. Whereas, the distributed
training time t is a decreasing function of the number of AIFs,
and does not depend on the AIF location. The main goal is to
minimize the number of active AIFs used for training, while
guarantying that the overall learning loop time is at most T , or
equivalently, that the time of a single FL round is not longer
than T

R , where R is the total number of rounds.
The time of a single round depends on the distributed training

time and the transmission latency of the ”slowest” AIF and
can be calculated as follows (if no hardware acceleration is
considered):

pk +max
i∈N
{dij}

where dij is the transmission latency of an AIF hosted by
the node i ∈ N when the FL server is hosted by node j,
and pk represents the distributed processing time when k AIFs
are installed. The parameter pk is defined using the linear
approximation on the values given by Figure 3.

Furthermore, we introduce the possibility of using a limited
number of hardware accelerators; each one can reduce the
distributed training time of an AIF of a factor α.

1) Mathematical model: We need to determine the AIFs
location (edge and FL server) and the placement of hardware
accelerators to calculate the distributed learning time and the
latency associated to each AIF. We introduce these elements
gradually in the model presentation.

For the placement, we introduce binary variables yj , j ∈ N ,
that take value 1 if the FL server is installed on node j and 0
otherwise, and binary variables xi that take value 1 if an AIF is
activated on node i and 0 otherwise. The objective function (1)
minimizes the number of activated AIFs. Constraints (2) im-
pose that one FL server is installed, and Constraints (3) that
the same node does not host both the FL server and an edge
AIF. Constraints (4) impose that at least two AIFs are installed
to ensure the training task in a federated manner.

Constraints (5) guarantee that the time of a single round for
each AIF is below T

R . The constraint involves the following
variables and parameters:
• variable t that represents the training time before hardware

acceleration
• variable δti that represents the gain in processing time

due to the hardware accelerator (δt is zero if no hardware
accelerator is used on node i)

• binary variable ξij , i ∈ N, j ∈ N that takes value 1 if an
AIF is installed on node i and the FL server is installed
on node j, and 0 otherwise; it allows to calculate the
transmission latency;

• parameter D that represent the maximum accepted latency
between the FL server and any AIF.

If the AIF is not activated, i.e. xi = 0, the constraint is always
valid, as the right-hand side of the constraint reduces to T

R +
p1 +D1

Constraints (7) allow to calculate the distributed learning
time without acceleration2 using:
• an auxiliary parameter p̃k representing the gain in process-

ing time passing from k − 1 to k AIFs: p̃k = pk − pk−1.
If, by convention, we set p̃1 = p1, the processing time
when k AIFs are active can be calculated as follows:
pk =

∑k
i=1 p̃i.

• the counting variable zk, with k = 1..n. Variable zk
assumes value 1 if at least k AIFs are activated (or
equivalently if the k-th AIF is activated). Note that there

1by definition t ≤ p1 and dij ≤ D.
2t can be removed by substitution, but we kept it for the sake of clarity

is no correspondence with the indexing of the variables z
and x.

Constraint (8) allows to count the number of active AIFs,
linking z and x variables; constraints (9) impose consistency
on the values of zk.

min
∑
i∈N

xi (1)∑
j∈N

yj = 1 (2)

yi + xi ≤ 1 ∀i ∈ N (3)∑
i∈N

xi ≥ 2 (4)

t− δti +
∑
j∈N

dijξij ≤ (5)

T

R
+ (1− xi)(p1 +D) ∀i ∈ N

δti ≤ (1− α)t ∀i ∈ N (6)

t =

n∑
k=1

p̃kzk (7)

n∑
k=1

zk =
∑
i∈N

xi (8)

zk ≥ zk+1 ∀k = 1..n− 1 (9)
ξij ≤ yj ∀i ∈ N, j ∈ N (10)∑
j∈N

ξij = xi ∀i ∈ N (11)

δti ≥ (1− α)t− (1− wi)(1− α)p1 ∀i ∈ N (12)
δti ≤ wi(1− α)p1 ∀i ∈ N (13)
wi ≤ hi ∀i ∈ N (14)∑
i∈N

wi ≤ H (15)

t ≥ 0 (16)
δti ≥ 0 ∀i ∈ N (17)
xi, yi, wi ∈ {0, 1} ∀i ∈ N (18)
xi ∈ {0, 1} ∀i ∈ N (19)
zk ∈ {0, 1} ∀ k = 1..n (20)
ξij ∈ {0, 1} ∀i ∈ N, j ∈ N (21)

Constraints (10) ensures that for each node i, the only ξ that
can be activated is the one corresponding to the node of the
installed server. Finally, coherence between ξ and x variables
is enforced by Constraints (11)3.

The possibility of using a hardware accelerator is represented
by binary variable wi that assumes value 1 if the hardware
accelerator on node i is used, 0 otherwise. The time reduction
δti is determined by Constraints (12) and (13) as a function
of the learning time t and the accelerator factor 0 < α < 1. If

3using these constraints, variables x can be removed, but we kept for the
sake of clarity

wi = 1 the time reduction δti = (1 − α)t, otherwise is equal
to 0.

We assume that only a set of physical nodes are provided
with hardware accelerator, represented by the indicator param-
eter hi, its value is 1 if a hardware accelerator is available on
node i, and 0 otherwise: constraints(14) enforce this condition.
Furthermore, a maximum number of hardware accelerator H
can be installed, as imposed by Constraint (15).

IV. VARIANT OF THE AIF PLACEMENT PROBLEM

We propose a variant of the placement model that considers
the FL update arrival time variance in the objective. We
calculate the difference between the highest and the lowest
learning loop times4, where a learning loop encompasses edge
AIF training and the transmission of the new learning metrics to
the FL server. The main objective of this model is to reduce the
straggler effects [13], where the aggregation after each round
of training depends on the slowest AIF: data coming too late
at the FL server due to an excessive propagation delay, a too
long edge AIF training time, or the combination of the two,
is not counted at a given round, hence decreasing the training
quality.

We add two variables maxT and minT , representing respec-
tively the highest and the lowest learning time produced during
the training taking into account the communication delay with
the FL server. This relationship is enforced by the the following
constraints:

maxT ≥ t− δti +
∑
j∈N

dijξij ∀i ∈ N (22)

minT ≤ t− δti +
∑
j∈N

dijξij ∀i ∈ N (23)

Then, we introduce a new term in the objective function
which represents the difference between the maximum and
the minimum training time. The new objective function is
presented by equation (24), where parameters A and B are
non-negative reals.

min A ·
∑
i∈N

xi +B · (maxT −minT) (24)

V. EXPERIMENTAL RESULTS

In the following, we detail the experimental setting, then we
provide a preliminary evaluation of our placement model along
with a comparison with the model variant.

A. Simulation setting

We use the Mandala topology proposed in [14] to simulate a
real access network topology: it consists of connecting access
nodes through three tiers, i.e., aggregation, core and application
nodes. In our setting, the edge servers represents the MEC hosts
in a MEC system and it corresponds to a MAN (Metropolitan
Area Networks) topology or a near edge AIF deployment (see
figure 4).

4here the learning time refers to the duration needed before inference and
it includes both the training time and communication delays.

We solve the AIF placement problem using the following
formulations:
• Baseline: simplified case where no hardware acceleration

is considered;
• AIF-P: placement MILP formulation presented in Equa-

tions (1) (21);
• AIF-P-var: MILP variant presented in Section IV. After

several preliminary tests with different values of A and B,
we opted for A = 1 and B = 103. These values allows
the variance to have an impact on the solutions and, thus,
to differentiate the behaviour of the two formulations.

Fig. 4: Mandala topology [14].

We analyze the impact of the following parameters on the
behavior of the three aforementioned formulations:
• Number of rounds: we test different rounds of FL training,

i.e., 1, 5, 10 and 15 before the inference step. In fact,
increasing the number of rounds helps increase the quality
of the learning.

• Target learning time: we evaluate the proposed algorithm
for different target times, i.e., 2 s, 1.6 s and 1.2 s. This
parameter specifies the time during which we train the
model, before its exploitation for inference.

In order to evaluate the proposed solutions, we generate 15
different configurations for both the placement and the number
of hardware accelerators. The number of available accelerators
is randomly generated within the interval [10%, 60%] of the
total number of nodes, in order to analyze the impact of their
availability on the proposed solution.
The latency on the links is randomly chosen such that the
highest round-trip time for the shortest path between the most
distant nodes is equal to 7% of the lowest training time, with a
small part of communication delay with respect to the training
time. The acceleration factor α is set to 0.5, so that the training
time reduction is not too large nor too small.

B. Results analysis

In the following, we present the numerical results.
1) Edge AIF learning time: In Figure 5, we present the

average of the maximum edge AIF distributed training time
(maximum among all the feasible solutions) for the 15 different
hardware accelerator configurations, for different target times
(see Figures 5a, 5b and 5c) and using different numbers of
rounds. The error bars represent the standard deviation. We
observe that:

0 2 4 6 8 10 12 14 16

50

100

150

200

250

of rounds

M
ax

di
st

ri
bu

te
d

le
ar

ni
ng

tim
e

(m
s)

(a) Target learning time=2 s

0 2 4 6 8 10 12 14 16

50

100

150

200

250

of rounds

M
ax

di
st

ri
bu

te
d

le
ar

ni
ng

tim
e

(m
s)

(b) Target learning time=1.6 s

0 2 4 6 8 10

50

100

150

200

250

300

of rounds

M
ax

di
st

ri
bu

te
d

le
ar

ni
ng

tim
e

(m
s)

(c) Target learning time=1.2 s

Fig. 5: Max learning time vs number of rounds.

0 2 4 6 8 10 12 14 16

0

2

4

6

of rounds

#
of

ac
tiv

e
A

IF
s

(a) Target learning time=2 s

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

of rounds

#
of

ac
tiv

e
A

IF
s

(b) Target learning time=1.6 s

0 2 4 6 8 10

2

4

6

8

of rounds

#
of

ac
tiv

e
A

IF
s

(c) Target learning time=1.2 s

Fig. 6: Number of active AIFs vs number of rounds.

• The distributed processing time decreases with the in-
crease of the number of rounds for all target times. In
fact, increasing the number of rounds requires a higher
number of active AIFs at each round since the increase of
this latter decreases the training time (as already discussed
in Section III-A).

• In Figure 5a, we can notice that with 15 rounds, and unlike
all the other cases, AIF-P suffers a slight increase in the
training time when compared to 10 rounds. This apparent
contradiction is due to the fact that we consider only the
maximum distributed processing time over all the feasible
solutions. Some instances that yield solutions with high
learning times using 10 rounds are not accounted in the
case of 15 rounds since no feasible solution exists for
them.

• We can also observe that AIF-P and AIF-P-var have sim-
ilar behaviors: they can produce a placement solution for
all the proposed numbers of rounds for a target learning
time equal to 2 s. On the other side, both models are not
able to find any feasible solution for some stringent time
constraint cases; these unfeasible solutions correspond to
a number of rounds higher than 10 for a target learning
time equal to 1.2 s. Moreover, AIF-P produces a lower
distributed training time than AIF-P-var when R = 10

for T = 2s (R = 5 for T = 1.2 s respectively). However,
this is not the case anymore when R increases. Differently
than AIF-P-var, AIF-P tends to use hardware accelerators
instead of increasing the number of deployed AIFs in
order to respect the learning time threshold.

• The baseline solution shows a worst performance when
compared to the other methods: any feasible solution is
found for a number of rounds that surpasses 10 and 5
when the target time is equal to 2 s (5a), and 1.6 s and
1.2 s respectively (5b and 5c).

These results confirm the usefulness of hardware acceler-
ators during the training phase. In fact, the reduction in the
distributed training time is between 50% and 59% for the two
approaches using hardware acceleration.

2) Number of active AIFs: In Figure 6, we present the aver-
age number of active AIFs chosen by the different formulations,
while varying both the number of rounds and the target learning
time. The length of the error bars represents the variation in the
number of AIFs produced by the different 15 instances for the
same setting, i.e, same number of rounds and the same target
learning time.

• As expected, the plots show an inverse relationship be-
tween the distributed processing time and the number of
deployed AIFs (Figures 5 and 6). All the strategies show

an increase in the number of AIFs with the increase of
the time constraints, except for the case of 15 rounds
with a target time equal to 2 s using AIF-P and AIF-
P-var, as shown in Figure 6a. As mentioned before, we
consider the average of the obtained values only for the
feasible solutions. For some settings, no feasible solution
was found with 15 rounds. When T =2 s and T = 1.6 s
(respectively T = 1.2 s) for a number of rounds equal
to 10 (respectively 5), AIF-P deploys a lower number of
AIFs than AIF-P-var, however the distributed training time
is lower with AIF-P. This can be explained by the fact that
this latter uses (more) hardware accelerators to reduce the
distributed learning time instead of increasing the number
of AIFs.

• Figures 6b and 6c show that the baseline algorithm cannot
find any feasible placement solution when the number of
rounds exceed 5. This can be explained by the increased
number of exchanges between the AIFs and the FL server
which has a direct impact on the overall learning time. In
this case, finding a feasible solution with respect to the
imposed target times is not possible. On the other hand,
AIF-P and AIF-P-var show higher performance in placing
the AIFs with stringent time constraints thanks to the use
of hardware accelerators.

• It is worth mentioning that there exist some settings where
AIF-P and AIF-P-var do not provide feasible solutions.
This happens when we have strict time constraints. For
instance, through the 15 instances, both algorithms provide
30% of unfeasible solution with T = 2 s and R = 15. This
is related to the placement and the number of hardware
accelerators on network nodes provided for each instance.

The possibility to use hardware accelerators reduces the
per-round learning time, hence offering more flexibility in
placing and activating AIFs and consequently training the
model for a higher number of rounds. Also, the use of advanced
formulations may have less benefit if the baseline strategy
achieves a feasible solution. Their benefit can be shown when
the constraints on target time are more stringent or the number
of rounds is increased.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we tackled the problem of artificial intelligence
function placement in a federated learning environment where
hardware accelerators can be used.

We proposed a MILP formulation that takes into consider-
ation several challenges, mainly the location of FL nodes and
the communication and processing delays. We then proposed
a variant of the model and presented preliminary results on
the performance evaluation of the proposed solutions while
comparing them to a baseline placement solution.

We have shown that the baseline solution has inferior perfor-
mance in finding feasible placement solutions when compared
to the two more flexible models. On the other hand, our strate-
gies show similar performance in finding feasible solutions but
with different behaviors, i.e., one reduces the learning time and

increases the number of active AIFs while the other behaves
in the opposite.

The choice between these two strategies can be based on time
constraints and the overall quality of learning, which decreases
if data is highly distributed, preventing the local model from
having a sufficient view of the system.

The obtained results shows that the proposed models allow
to increase the number of rounds from 150% up to 300% when
compared to the baseline placement solution thanks to hardware
acceleration.

Future works may investigate including multiple objectives
in a Pareto efficient way. We also plan to apply other dis-
tributed learning behavior than federated learning for artificial
intelligence functions.

VII. ACKNOWLEDGMENT

This work was funded by the H2020 AI@EDGE (https:
//aiatedge.eu; grant nb. 101015922) and the PIA/AMI-5G IN-
FLUENCE projects.

REFERENCES

[1] A. Diamanti, J. M. S. Vilchez and S. Secci, ”The SYRROCA AI-
empowered network automation platform”, ICIN, 2021.

[2] S. Bin Ruba, N-E-H. Yellas and S. Secci, ”Anomaly Detection for 5G
Softwarized Infrastructures with Federated Learning”, 6GNet 2022.

[3] Y. Liu et al., ”Deep Anomaly Detection for Time-Series Data in In-
dustrial IoT: A Communication-Efficient On-Device Federated Learning
Approach”, IEEE Internet of Things Journal, 2021.

[4] Mcmahan et al. Communication-efficient learning of deep networks from
decentralized data. In : Artificial intelligence and statistics. PMLR, 2017.

[5] 3GPP TS 23.288, Architecture enhancements for 5G System to support
network data analytics services, v. 17.1.0, Jun. 2021.

[6] Diamanti Alessio, Vilechez Jos Manuel Snchez, et SECCI, Stefano. ”An
AI-empowered framework for cross-layer softwarized infrastructure state
assessment” IEEE TNSM, 2022.

[7] R. Boutaba et al., A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities. Journal
of Internet Services and Applications, 2018.

[8] S. Deng et al., ”Edge Intelligence: The Confluence of Edge Computing
and Artificial Intelligence”, in IEEE Internet of Things Journal, 2020.

[9] J. Lee et al., Adaptive precision CNN accelerator using radix-X
parallel connected memristor crossbars, 2019. [Online]. Available:
arXiv.abs/1906.09395.

[10] Y. Jeon et al., ”A Distributed NWDAF Architecture for Federated
Learning in 5G”, ICCE, 2022.

[11] Kubernetes. URL: http://kubernetes.io.
[12] D. Chi Phung et al., ”An Open Dataset for Beyond-5G Data-driven

Network Automation Experiments”, in proc. 6GNet 2022.
[13] S. Michael et al., ”Asynchronous Federated Learning for Geospatial

Applications”, in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2019.

[14] W. da Silva Coelho et al., ”On the impact of novel function mappings,
sharing policies, and split settings in network slice design”, CNSM, 2020.

