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Abstract—Existing multimodal stress/pain recognition ap-
proaches generally extract features from different modalities
independently and thus ignore cross-modality correlations. This
paper proposes a novel geometric framework for multimodal
stress/pain detection utilizing Symmetric Positive Definite (SPD)
matrices as a representation that incorporates the correlation
relationship of physiological and behavioural signals from co-
variance and cross-covariance. Considering the non-linearity of
the Riemannian manifold of SPD matrices, well-known machine
learning techniques are not suited to classify these matrices.
Therefore, a tangent space mapping method is adopted to map
the derived SPD matrix sequences to the vector sequences in the
tangent space where the LSTM-based network can be applied
for classification. The proposed framework has been evaluated
on two public multimodal datasets, achieving both the state-of-
the-art results for stress and pain detection tasks.

Index Terms—stress detection, pain detection, multimodal
fusion, covariance matrix, symmetric positive definite manifold.

I. INTRODUCTION

Among a wide range of applications for monitoring and
controlling human physical and mental health, stress/pain
detection has drawn massive attention. Stress is a set of
complex physiological, cognitive, and behavioral responses
that are triggered by a challenging condition. When exposed
to several stressors over a long period of time, a person’s
mental and physical state can be negatively influenced, which
can further result in chronic health problems [1]. In order
to detect stress at an early stage to reduce its impact on
health conditions, stress detection has been widely used in
many fields such as automated driver assistance [2], academic
environment [3], social communication [4], etc. On the
other hand, pain is another unpleasant sensation that we
may encounter in our daily lives. Its accurate assessment
plays a key role in diagnosing the condition, monitoring
post-operative progress and optimising treatment options
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[5]. Thus, automated pain detection is another emerging
area of healthcare applications designed to precisely assess
pain to mitigate subject errors associated with patient self-
reporting. A variety of sensors can be applied to collect
stress/pain indicators from different perspectives, whereby
the corresponding approaches for stress/pain detection can
be mainly divided into three categories: 1) physiologi-
cal based methods via bio-signals (e.g., electroencephalo-
gram (EEG), electrocardiogram (ECG), electrodermal activ-
ity (EDA), etc.); 2) behavioural-based methods via physical
signals (e.g., facial expressions, speech, body movements,
etc.); 3) multimodal-based methods via a combination of
physiological and behavioural signals. As complementary
information between multimodalities contributes more to the
robustness and reliability of the system, therefore, stress/pain
detection combining physiological and behavioural indicators
has become more attractive. However, how to effectively
fuse multimodal data remains an important challenge for
such systems. Most existing multimodal-based approaches
learn features independently in each modality and eventu-
ally integrate them at the feature level or decision level.
Thus underlying correlations between multiple modalities are
ignored. In this study, we address the above problem by
introducing a geometric framework that employs symmetric
positive definite (SPD) matrices extracted from physiolog-
ical and behavioural signals as a joint multimodal feature
representation on SPD manifold for stress/pain detection.
Continuous multimodal data recording can first be converted
into SPD matrix sequences. The tangent space mapping
method is then applied to locally flatten the manifold and
approximate the SPD matrix sequences by tangent space vec-
tor sequences, where an LSTM-based deep neural network
can be implemented to learn the context correlations of input
sequences for classification. The overview of the proposed
method is illustrated in Fig. 1. To the best of our knowledge,
this is the first exploration of applying the SPD matrix to fuse
behavioural signals and physiological signals for stress/pain



detection.

II. RELATED WORK

The multimodal framework is promising to improve the
performance of stress/pain detection. However, few studies
can be found using combined data from different fields (i.e.
physiological and behavioural).

Multimodal data fusion: The multimodal fusion tech-
niques can be divided into three categories: early, interme-
diate and late fusion. In an early fusion, features acquired
by different sensors were fused into a unique representation
before performing a learning task. Compared with the other
two fusions, early fusion is widely explored in literature.
Aigrain et al. [6] captured body video, high-resolution facial
images and physiological signals from 25 subjects during a
mental arithmetic test for stress detection, where 101 features
from behavioural and physiological signals were extracted
to train an SVM classifier. Rastgoo et al. [7] proposed
a multimodal fusion framework for driver stress detection
where the ECG signal, vehicle data, and contextual data
were each entered into separate CNNs to extract modality-
specific features. The LSTM-based network was trained on
the concatenated multimodal feature embeddings to detect
stress levels. Werner et al. [8] collected facial distances and
gradient-based features from video frames which were com-
bined with the statistical features calculated from biological
signals. The resulting multimodal vectors were employed
to train a random forest model for pain assessment. The
multimodal fusion approaches described above show promis-
ing results for stress/pain detection. However, when simply
splicing features from each modality for classification, only
correlations within individual modalities were considered and
the potential of applying inter-modal interactions to further
boost performance is neglected.

Symmetric Positive Definite (SPD) matrices: Recently,
covariance-based representations have gained great popular-
ity in computer vision and machine learning. This success
can be explained by three major advantages. Firstly, several
characteristics can be fused into a single tensor and deliver
higher-order statistical information. Secondly, the covariance
matrices are symmetric positive definite (SPD) matrices
with well-established mathematical theoretical properties [9],
[10]. In addition, the SPD matrices have shown impressive
accomplishments in many real-world applications such as
pedestrian detection [11], facial expression recognition [12],
brain-computer interfaces [13], etc. However, all of these
applications concentrate solely on behavioural perspectives
or physiological perspectives. Liu et al. [14] proposed a
multimodal emotion recognition approach using video and
audio modalities. Covariance matrix, linear subspace, and
Gaussian distribution were built from facial video frames and
regarded as points on Riemannian manifolds. Subsequently,
the similarity matrix calculated using different Riemann
kernels is fed into multiple classifiers (i.e., SVM, partial
least squares, and logistic regression). However, they only
constructed the SPD matrix for the video modality, the audio
features were extracted using an existing toolkit, and fed
into the same type of classifier as the video modality. In the
end, the final fusion of the two modalities was established
on the decision level. Thus, the exploration of inter-modal

correlations using SPD matrix is still missing here. In the
work of [10], they presented a more general covariance-based
SPD representation, containing additional cross-covariance
information from different time steps for action recognition.
Inspired by [10], we migrate this new type of tensor repre-
sentation to the scenario of multimodal stress/pain detection
and show its effectiveness in this paper. Different from
the previous work, we fuse behavioural and physiological
information into one single SPD matrix-based representation,
which not only incorporates intra-modal correlations, but also
allows for exchanges across two modalities. To the best of
our knowledge, this is the first use of the geometry of SPD
manifold matrices to merge physiological and behavioural
signals.

III. PROPOSED METHOD

A. Symmetric positive definite (SPD) matrix for multimodal
signal

Let xi = [v1, ..., vD]
T ∈ RD, D ≥ 2 represent a

multimodal signal vector comprising the behavioural and
physiological signals at the i-th timestamp, where the number
of signals is denoted by D. A short-segment can be extracted
from the continuous signal recordings of a trial, resulting in
a centered matrix X = [x1, ...,xi...,xN] ∈ RD×N , where
N is the number of time instants for each segment. The
outer product operation (denoted by the symbol ⊗) is then
performed on all signal column vector pairs (xi,xj) for i
and j = 1, ..., N in X and consequently produces a partition
matrix :

Ω =


x1 ⊗ x1 · · · x1 ⊗ xN

x2 ⊗ x1 · · · x2 ⊗ xN

...
. . .

...
xN ⊗ x1 ... xN ⊗ xN

 ∈ RDN×DN (1)

where the element of Ω at position (i, j) is given by:

Ω(i, j) = xi ⊗ xj = xixj
T ∈ RD×D (2)

The sample covariance matrix S which is a SPD matrix can
be derived from the diagonal elements of Ω:

S =
1

N − 1

N∑
i=1

Ω(i, i) =
1

N − 1

N∑
i=1

xixi
T ∈ RD×D (3)

The second SPD matrix defined as cross-covariance can
be extracted from the off-diagonal elements of Ω, which
contains the correlation information of the signal vectors at
different timestamps and is denoted by C:

C =
1

N2 −N

N,N∑
i=1,j=1,i̸=j

Ω(i, j)

=
1

N2 −N

N,N∑
i=1,j=1,i̸=j

xixj
T ∈ RD×D

(4)

The covariance S and cross-covariance C, are then com-
bined in a symmetric manner to form a new block matrix
which remains a SPD matrix and is denoted by P:

P =


S C · · · C
C S · · · C
...

...
. . .

...
C C · · · S

 ∈ R(m×D)×(m×D) (5)
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Fig. 1. Overview of the proposed framework. First, the SPD matrix sequences that incorporate the correlation information between multimodal data (i.e.
physiological and behavioural signals) can be extracted from the segmented data records. Subsequently, the tangent space mapping projects the SPD matrix
sequences to the vector sequences in the tangent space. Finally, these vectors can be used as input to the LSTM-based classification network for stress/pain
recognition.

where m is the dimension of the new SPD matrix P, in other
words, P is composed of m blocks of S and m(m−1) blocks
of C. A larger m corresponds to a higher computational cost,
while the information ratio of the covariance to the cross-
covariance decreases [10].

B. Riemannian Geometry of symmetric positive definite
(SPD) Matrices

Tangent Space Mapping: A number of metrics have
been proposed for SPD matrices. In this study, we consider
one of the most popular metrics, the log-Euclidean met-
ric [15], for its simplicity to compute. Let Pi and Pj be
any two points on the SPD manifold then the log-Euclidean
metric is defined as:

δR(Pi,Pj) = ∥log(Pi
−1Pj)∥F (6)

where ∥·∥F is the Frobenius norm operator, and log(., .) is
the matrix log operateur. The geometric mean [16], [17] of
a set of SPD matrices {P1,P2, . . . ,PI}, I ≥ 1, Pi ∈ P(n)
can be derived using the Riemannian geodesic distance (6):

ψ(P1,P2, . . . ,PI) = argmin
P∈P (n)

I∑
i=1

δR(P,Pi)
2 (7)

The tangent space at P ∈ M, denoted by TpM, is a real
vector space containing all tangent vectors to M at P. The
exponential map ExpP(·) : TPM → M and its inverse,
the logarithm map, LogP(·) : M → TPM are defined over
Riemannian manifolds for exchanging between the manifold
and its tangent space at P. A tangent vector can be mapped
to a point on the manifold through the exponential operator.
The logarithm operator can project a point on the manifold
to the tangent space [18]. In the work of [16], tangent space
mapping was introduced which employs the tangent space
that lies at the geometric mean (7) of the entire set of SPD
matrices: Pψ = ψ(Pi, i = 1, . . . , I). Each SPD matrix Pi

can be projected into the tangent space as a vector si with a
dimension of n(n+1)

2 :

si = vec(Pψ
− 1

2LogPψ (Pi)Pψ
− 1

2 ) ∈ R
n(n+1)

2 (8)

where the vector operator of one SPD matrix P is defined
as

vec(P) = [p1,1,
√
2p1,2,

√
2p1,3, · · · , p2,2,

√
2p2,3, · · · , pn,n] (9)

pi,j ∈ P is the element of P. This operation is designed to
achieve vectorization by weighting the upper triangular part
of the matrix, where the diagonal elements and off-diagonal
elements are multiplied by the unit weights and weights of√
2, respectively [19].

C. Classification of SPD matrix sequences

Let us consider a set L =
Q⋃
q=1

Lq consisting of data

from Q subjects. The qth subset Lq is represented by
Lq = {([Pi, ...,Pi+T], yi),Pi ∈ P(n), i ∈ [1, |Lq|]}, which
is the set of SPD matrix sequences, where T is the length of
the sequence and yi is the corresponding stress/pain labels,
such that yi = f ([Pi, ...,Pi+T]). In current literature, few
approaches have been suggested to tackle the non-linearity
of the SPD manifold. A common method of dealing with
the non-linearity is to estimate the manifold-value data by
projecting them into the tangent space of a specific point on
the manifold (e.g., the geometric mean of the data) [20]. In
this work, we will adopt this approach to solve our problem.
For each subset, its corresponding geometric mean Pψ

q can
be obtained with the equation (7). Then each SPD matrix in
the qth subset Lq is mapped into the tangent space and the
derived corresponding subset of vector sequences is denoted
by sq =

{
([si, ..., si+T ], yi), si ∈ R

n(n+1)
2 , i ∈ [1, |sq|]

}
us-

ing the equation (8). The above process will be repeated for

each subject’s data. In the end, L∗ =
Q⋃
q=1

sq is considered as

the input of the LSTM-based deep neural network in Fig. 1.
During training, the temporal contextual relationships in the
tangent space vector sequence are explored by the 2-layer
LSTM network, and the output features are then fed into the
fully connected layer, followed by the sigmoid function to
obtain the predicted probabilities.

IV. EXPERIMENTS AND RESULTS

To evaluate the validity of the proposed method, we con-
ducted multimodal stress detection experiments on WESAD
dataset while multimodal pain detection experiments were
carried out on BP4D+ dataset.
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Fig. 2. The multimodal SPD representation generated by a pain sample in the BP4D+ dataset, where correlations within and across two modalities (i.e.,
vision and physiology) can be observed. (D1-D10: 10 distances automatically selected based on Anova F-value, BP: raw blood pressure, BPDia: diastolic
blood pressure, LAS: systolic blood pressure, LAM: mean blood pressure, EDA: electrodermal activity, HR: heart rate, RR: respiration rate, and RV:
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A. Datasets

The WESAD dataset [21] is one of the most widely
used public datasets for stress and affect recognition. In
a restricted laboratory setting, multimodal data consisting
of motion and physiological signals from 15 subjects were
captured by two wearable devices, a wrist sensor and a
chest sensor, respectively, and the experimental protocol
was designed to stimulate three different emotional states
(baseline, stress, amusement) in the participants. Based on
previous work [21]–[23], a binary stress detection problem
(stress vs. non-stress) can be formulated on the WESAD
dataset by fusing baseline class and amusement class to form
the non-stress class.

The BP4D+ dataset [24] is a large-scale multimodal
spontaneous emotion database. 140 subjects were required
to complete 10 tasks to elicit 10 different emotions, during
which 2D RGB images, 3D model sequences, thermal videos
and 8 physiological signal sequences with 1.5 million frames
were captured by different sensors. In addition, the metadata
are also provided, including 2D/3D/thermal facial landmarks,
hand-labelled FACS codes and auto-tracked head poses. In
this work, we focus on the identification of pain. As the
dataset only provides the most facially-expressive segments
for four emotions: happy, embarrassment, fear and pain, we
therefore performed a pain detection task (pain vs. non-
pain) by combining happy, embarrassment, fear as the non-
pain class as proposed in [25]. An example of 2D texture
images/3D model sequences/thermal images from the Pain
class and their corresponding facial landmarks is shown in
Fig. 3.

a) 2D b) 3D c) Thermal

Fig. 3. An example of 2D texture images/3D model sequences/thermal
images from the Pain class and their corresponding facial landmarks
provided in BP4D+ dataset.

B. Data Preprocessing and SPD matrix construction

For WESAD dataset, physiological and motion signals
captured by the two sensors are filtered and downsam-
pled to the same frequency, followed by a 10-second non-
overlapping segmentation as proposed by [26]. Finally, the
SPD matrix series can be calculated from multimodal data
segments. For BP4D+ dataset, we first calculated the Eu-
clidean distance between each of the two facial landmarks
for each video frame using the provided 2D/3D/thermal facial
landmarks, and automatically selected the 10 most discrimi-
native distances by feature selection based on Anova F-value.
Then the distance vector and the synchronized physiological
signal vector were concatenated together to form a new
augmented vector. Subsequently, all the augmented vectors
are sliced into 1-second non-overlapping data segments. In
the end, the obtained SPD matrix sequences can be extracted
from prepared data segments. Fig. 2 shows an SPD matrix
of a pain class sample in BP4D+ dataset that generated
from the 10 facial distances between 2D landmarks and
8 physiological signals. During the pain task, the subject
was asked to immerse hands in ice water, and her mouth
was involuntarily opened, hence the distances automatically
selected were all based on the landmarks in the lip region,
which is consistent with findings in the literature that lip
movements such as oblique lip raising [27], horizontal lip
stretching [28], etc. are related to pain. Both intra-modal
and inter-modal correlations can be observed from the SPD
matrix. Among all physiological signals, there was a strong
correlation between electrodermal activity (EDA) and res-
piration signal (respiration rate (RR) and respiration volt
(RV)) when the subject was suffering from pain. Among
the selected distances, the 2nd, 3rd and 6th distances were
more correlated with each other. Furthermore, the association
between physiological and facial indicators can be explored,
i.e. EDA, RR and RV were also positively correlated with
the 9th and 10th distances.

C. Implementation and evaluation

All the classification models were implemented using Py-
torch. To avoid overfitting, dropout operation was employed
after the LSTM layers with a hidden state dimension of



TABLE I
STRESS DETECTION PERFORMANCE ON WESAD DATASET USING THE SAMPLE COVARIANCE MATRIX S, THE CROSS-COVARIANCE MATRIX C AND

THE PROPOSED SPD REPRESENTATION P.

Wrist Sensor Chest Sensor Wrist+Chest Sensors

Modalities Physio + Motion Only Physio Physio + Motion Only Physio Physio + Motion Only Physio

Features Accuracy F1score Accuracy F1score Accuracy F1score Accuracy F1score Accuracy F1score Accuracy F1score

with S (baseline) 89.23 88.07 90.13 89.73 90.64 90.49 90.66 89.02 92.88 92.78 93.06 93.00
with C (baseline) 90.91 90.04 88.07 87.28 91.30 90.94 89.42 88.44 93.12 92.73 93.08 91.84

with P (m = 2) 94.08 93.81 92.15 92.20 94.55 94.53 92.76 92.61 94.19 94.23 95.29 95.33
with P (m = 3) 93.00 92.38 93.10 92.78 95.54 94.76 92.96 92.64 94.71 93.81 95.09 94.15
with P (m = 4) 94.65 93.99 93.47 93.25 94.25 93.97 92.12 91.75 96.35 95.76 96.88 96.44

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON WESAD

DATASET (Stress VS. Non-stress)

Modality Methods Accuracy F1score

Wrist

Schmidt et al. [21] 87.12 84.11
Samyoun et al. [29] 92.1 89.7

Gil-Martin et al. [30] 92.7 92.55
Huynh et al. [22] 93.14 -

Lai et al. [23] 94.16 93.62
Proposed Method 94.65 93.99

Chest

Samyoun et al. [29] 91.1 90.2
Schmidt et al. [21] 92.83 91.07

Gil-Martin et al. [30] 93.10 93.01
Lai et al. [23] 96.69 96.61

Proposed Method 95.54 94.76

Wrist + Chest

Schmidt et al. [21] 92.28 90.74
Samyoun et al. [29] 94.7 93.4

Gil-Martin et al. [30] 96.62 96.63
Lai et al. [23] 97.75 97.74

Proposed Method 96.88 96.44

128. The Adam optimizer with a learning rate lr=0.001 was
selected to minimize the binary cross-entropy loss function
during model training of 50 epoch. Decay coefficients of the
first and second moment estimation β1 and β2 were set to 0.9
and 0.999, respectively. In the end, the proposed framework
is evaluated using Leave-One-Subject-Out cross validation
(LOSO-CV) on WESAD dataset followed by [21]–[23] and
Subject independent 10-fold cross validation on BP4D+
dataset followed by [25] with two selected metrics: Accuracy
and F1score. Both experimental protocols assess the model’s
capacity to generalize across previously unseen subject data.

D. Stress detection results on WESAD

Binary stress detection experiments were performed using
the wrist/chest-based data of all subjects in WESAD dataset.
The evaluation results of different modality combinations
are reported in Table I. We first verify the necessity of
fusing the sample covariance matrix S and cross-covariance
matrix C to form the proposed representation P. From the
experimental results, it can be observed that the proposed
SPD matrix optimizes the detection performance for all
modality combinations, compared to those using only matrix
S and matrix C. Secondly, to investigate the impact of
increasing the dimensionality of the SPD matrix defined
in the equation (5) on the detection results, we performed
experiments using representations with different numbers of
blocks of S and C (e.g., m=2 meaning that P consists of 2
blocks of S and 2 blocks of C). We found that using more

blocks of S and C to compose the proposed representation
P slightly enhanced the classification performance. This can
be attributed to the increased proportion of cross-covariance
information in the high-dimensional SPD matrix, further
demonstrating the benefit of correlations between multiple
modalities at different instants for the classification task.
Besides, we only test up to m=4, since we noticed that
sometimes the m=3 case performs best, following the trade-
off between classification performance and computational
cost. Finally, we also explored whether fusing data from
different modalities, i.e., motion signals and physiological
signals, could lead to a performance gain. For experiments
based on wrist/chest sensor data, combining these two types
of data for detection yielded better performance, compared to
results based on physiological signals only. When fusing data
from both devices (wrist + chest), results using all modalities
were not improved, which can be attributed to the redundant
information generated by the same motion signals from both
devices. When combining all physiological-based modalities,
the highest performance (96.88% accuracy and 96.44% F1
score) was obtained with P (m = 4).

Comparison with State-of-the-art: To validate the ef-
fectiveness of the proposed method for fusing motion and
physiological information, Table II shows the comparison
results with 5 state-of-the-art methods using multimodal
features. For a fair comparison, only methods that use
the same experimental protocol were considered. In the
work of Schmidt et al. [21], features from the time and
frequency domains are used to train a variety of traditional
machine learning classifiers, among which the LDA (Linear
discriminant analysis) model achieved the best performance.
Samyoun et al. [29] presented GAN/RNN/MLP-based deep
model to generate gold standard chest sensor features from
wrist data, and classified emulated features with various
machine learning algorithms (e.g., Extra Trees, Random
Forest, etc.). Gil-Martin et al. [30] proposed a CNN-MLP
architecture to extract meaningful features from the Fourier
transform (FFT), cube root (CR) and constant q spectral
transform (CQT) of signal sub-window. Huynh et al. [22]
used filter bank as model input and automatically selected
the optimal model for each modality from 10,000 deep neural
networks for training. Finally, features of all modalities were
concatenated for classification. Lai et al. [23] employed
residual-temporal convolution network to process the filtered
multimodal signals and proposed various fusion strategies.
The above work for comparison simply spliced features



TABLE III
UNIMODAL AND MULTIMODAL PAIN DETECTION PERFORMANCE ON BP4D+ DATASET USING THE SAMPLE COVARIANCE MATRIX S, THE

CROSS-COVARIANCE MATRIX C AND THE PROPOSED SPD REPRESENTATION P. (2D/3D/THERMAL: 2D/3D/THERMAL FACIAL LANDMARKS; PHYSIO:
ALL PHYSIOLOGICAL SIGNALS).

Uni-modality Multi-modality

Modalities 2D 3D Thermal Physio 2D + Physio 3D + Physio Thermal + Physio

Features Accuracy F1score Accuracy F1score Accuracy F1score Accuracy F1score Accuracy F1score Accuracy F1score Accuracy F1score

with S (baseline) 88.76 85.58 86.47 85.83 81.46 80.10 77.53 72.84 91.29 90.16 87.07 86.18 82.28 80.38
with C (baseline) 86.96 86.43 88.84 85.85 82.60 82.11 76.70 72.41 90.49 87.72 90.26 87.36 84.24 78.56

with P(m = 2) 91.44 89.24 91.01 88.84 82.82 82.70 81.82 81.72 92.86 90.03 92.53 90.20 89.04 88.73
with P(m = 3) 91.59 89.46 91.13 89.04 83.18 82.93 83.24 82.42 93.04 90.85 92.66 90.47 88.82 88.69
with P(m = 4) 90.94 88.56 91.27 89.30 83.53 83.37 82.81 81.42 93.45 91.37 92.54 90.25 89.07 88.96

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON BP4D+ DATASET

(pain VS. non-pain).

Modality Methods Accuracy F1score

Physiology Hinduja et al. [25] 77.7 30.0
Proposed Method 81.82 81.72

Vision

Szczapa et al. [31] 81.86 77.34
Choo et al. [32] 84.03 83.98
Huang et al. [33] 86.43 85.71
Proposed Method 91.59 89.46

Vision + Physiology

(D)Szczapa et al. [31] 82.77 76.32
(F )Szczapa et al. [31] 84.32 78.83
(F )Huang et al. [33] 87.94 87.16
(D)Choo et al. [32] 89.08 88.68
(D)Huang et al. [33] 89.36 89.13
(F )Choo et al. [32] 89.80 89.46
Proposed Method 93.45 91.37

(D): Decision level fusion, (F ): Feature level fusion.

from different modalities for prediction and thus ignored the
cross-modality correlations. Overall, our proposed method
using the joint SPD representation achieves the state-of-the-
art results on wrist sensor data and competitive results on
chest/wrist+chest sensor data, respectively, demonstrating its
efficiency for integrating multimodal data.

E. Pain detection results on BP4D+

To further assess the validity of the proposed method, we
conducted unimodal and multimodal pain detection exper-
iments on the BP4D+ dataset. The evaluation results are
summarised in Table III. Similar to the process performed
on WESAD, we first consider the results obtained using
S or C alone as baseline to explore the importance of
combining them in the proposed representation. Based on
the results in Table III, we reach the same conclusion
that the joint SPD representation can improve classification
performance. In addition, we can infer that increasing the
dimension of P can further boost performance for all modal-
ities. In the end, we also noticed that all the multimodal
settings exhibit performance gains compared to unimodal
detection results. Among four unimodality (i.e. physiological
signal, 2D/3D/thermal facial landmarks), the trained model
has the best performance using 2D facial landmarks where
recognition accuracy and F1score achieved 91.59%, 89.46%
respectively. In the multimodal experiments, the best results
with accuracy and F1score of 93.45% and 91.37% can be
observed with 2D + Physio setting.

Comparison with State-of-the-art: Table IV shows the
comparison results with 4 state-of-the-art methods using
2D facial landmarks and physiological signals. Due to the
diversity of problem formulations and experimental settings,
only a few pain detection efforts can be directly compared
to our framework. In the work of [25], a random forest
classifier was trained on features consisting of physiological
signals and face action units for pain detection. Here we
only presented the comparison results based on physiological
signals with them, as we did not use AUs for the detection.
Our proposed method improves the accuracy by about 4%.
Moreover, our framework achieved a more balanced pain
detection with an F1score of 81.72%. Since most pain
detection datasets contain only vision-related information,
very little pain recognition work has been carried out
based on data from two different domains, i.e. vision and
physiology. Therefore, to validate the effectiveness of our
proposed approach on fused multimodal data, state-of-the-art
pain recognition methods that accept only visual data were
implemented and combined with our physiological signal-
based model for comparison. For a fair comparison, only the
facial landmark-based methods were considered. We used
the code provided by the authors, and if the code was
not available, we followed the parameters provided in their
article. Szczapa et al. [31] represented the facial landmark
sequences as trajectories on the Riemannian manifold. Each
point of the trajectory is a Gram matrix computed from
the 2D facial landmarks. Then the Global Alignment Kernel
(GAK) was used to calculate the similarity matrix between
the trajectories, which was used as feature for SVR-based
(Support Vector Regression) pain estimation. To compare
the classification performance, we replaced the SVR with
an SVM (Support Vector Machine). Huang et al. [33] used a
1D CNN based architecture to extract discriminate features
from the normalized distance between 2D facial landmarks
for pain recognition. Choo et al. [32] employed a dual-
layer 3D CNN for capturing the spatial-temporal features
of the 2D facial landmark sequences. When comparing the
performance of pain recognition based on solely visual infor-
mation, our model performs better as shown in Table IV. To
compare the performance based on multimodal information,
we used two fusion techniques that are commonly used in
the literature, feature level fusion and decision level fusion,
respectively. We first note that the performance of all the
vision-based models used for comparison is improved when



combined with our physiology-based model, providing side
evidence that our model learns discriminative physiological
features. Secondly, our model outperforms other multimodal
approaches, both in terms of feature level fusion and decision
level fusion, which confirms that the correlation between
two modalities is well captured by the proposed method and
that inter-modal communication can further contribute to the
classification performance. Overall, our method achieves the
state-of-the-art results on both unimodal data and multimodal
data, validating again its effectiveness.

V. CONCLUSION

In this work, we explore for the first time the feasibility
of SPD matrix-based representations for efficiently fusing
physiological and behavioural signals, which can capture
simultaneously correlation information within and across
modalities. Tangent space mapping converts the generated
SPD matrix time series into linear vectors for its application
to the LSTM-based classification. The effectiveness of the
proposed method was evaluated on public stress and pain
detection datasets. In the end, the proposed framework shows
the state-of-the-art results on both stress and pain detection
tasks, respectively.
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