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CRAMÉR DISTANCE AND DISCRETIZATIONS OF CIRCLE

EXPANDING MAPS II: SIMULATIONS

PIERRE-ANTOINE GUIHÉNEUF AND MAURIZIO MONGE

Abstract. This paper presents some numerical experiments in relation with the the-
oretical study of the ergodic short-term behaviour of discretizations of expanding maps
done in [GM22].

Our aim is to identify the phenomena driving the evolution of the distance between
the t-th iterate of Lebesgue measure by the dynamics f and the t-th iterate of the
uniform measure on the grid of order N by the discretization on this grid. Based
on numerical simulations we propose some conjectures on the effects of numerical
truncation from the ergodic viewpoint.
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1. Introduction

This article is the experimental part of a series of two papers aiming to understand
the ergodic behaviour of discretizations of circle expanding maps (see [GM22]). By
expanding map of the circle S1 = R/Z we mean a Cr map f : S1 → S1 (r > 1) such
that f ′(x) > 1 for any x ∈ S1 (see Figure 1 for an example of such a map, described in
Subsection 2.2). Note that these assumptions force the map to be of degree d ≥ 2.

We identify the circle S1 ' R/Z with its fundamental domain [0, 1], and endow it
with discretization grids, of parameter N > 0

EN =

{
i

N
| 0 ≤ i < N

}
,

and discretization projections PN : S1 → EN defined by

PN (x) =
i

N
⇐⇒ x ∈

[
i− 1

2

N
,
i+ 1

2

N

)
.

This allow to define the discretizations fN : PN → PN of the map f by fN = PN ◦f |EN
.

In other words, fN (x) is obtained from f(x) by projecting on the closest point of the
grid EN . Of course, this models what happens when the computer iterates a map using
a fixed number of digits — when N = 2k, the set EN represents the set of points with
at most k binary places. We also set LebN the uniform probability measure on EN .
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Figure 1. Graph of the studied expand-
ing map (see Subsection 2.2).

Figure 2. Density of the SRB measure
associated to the map of Figure 1.

The basic example of expanding map f : x 7→ 2x shows that in some cases the
discretizations dynamics does not reflect the chaotic properties of the map: if N = 2k,
then fN = f |EN

and fkN (x) = 0 for any x ∈ EN . In other words, any point of the grid
is mapped after a small number of iterations on the fixed point 0: the dynamics of fN
is completely trivial.

To avoid these phenomena of resonance between the dynamics and the grid — that
one can expect to be exceptional — one can consider generic dynamics. A property on
expanding maps is said to be generic if it is satisfied on at least a countable intersection
of open and dense subsets of the space of Cr expanding maps (for Cr topology). Baire’s
theorem ensures that a generic property is satisfied on a dense set of dynamics.

While some theoretical results are known about the local dynamics of discretizations
of C1 generic dynamics (e.g. [Gui15c]), i.e. the behaviour of individual discrete orbits,
to our knowledge, the only known result about their global dynamics — that is, the
properties taking into account, or averaging on, all points of the grid — deals with
the degree of recurrence (see [Vla96] and [Gui19]). Besides this local/global dichotomy,
one can classify the discretizations’ dynamics into combinatorial and ergodic proper-
ties. Whereas combinatorial properties have been the subject of numerous numerical
explorations, ergodic properties have been only little studied.

In this work (together with [GM22]), we intend to study the global ergodic behaviour
of generic circle expanding maps discretizations.

The smoothness assumption on f ensures the existence of a unique absolutly continu-
ous invariant measure, called SRB (for Sinai-Ruelle-Bowen), which is moreover ergodic,
mixing and has the property that (and this is crucial here) the measures fk∗ (Leb) con-
verge exponentially fast to it1. This measure is of great importance for the ergodic study
of expanding maps, and its counterpart for higher dimensional hyperbolic maps opened
the way to a whole branch of the ergodic theory. See Figure 2 for the graph of this
measure’s density in the case of the map of Figure 1.

1Meaning that the densities of these measures converge exponentially fast towards the density of SRB
in the Cr−1 topology
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A large part of this paper will be devoted to the numerical comparison, for some
expanding map f , of the actions of f and of its discretizations fN on uniform measures.
On the one hand, as said before, the iterates fk∗ (Leb) converge exponentially fast towards
SRB. On the other hand, what happens to the measures (fkN )∗(LebN ), where LebN
denotes the uniform measure on EN , is much more unclear, especially as k grows together
with N .

Figure 3. Graphs of k 7→ dC(fk∗ (Leb),SRB) (black) and k 7→ dC((fN )k∗(LebN ),SRB)
for various grid sizes N , uniform (left) and logarithmic (right) scales.

Figure 3 shows the evolution of dC(fk∗ (Leb),SRB) and dC((fN )k∗(LebN ),SRB) with
k, for different discretization orders N . Here, dC is a distance on the set of probability
measures, that we call Cramér distance, defined in Equation (2) page 8, and which spans
the weak-* topology. This distance il also called Cramér-von Mises distance, or “the
L2-metrics between distribution functions” [Rac91, DM07].

Figure 4. Argument of the minimum of the distance k 7→ dC((fN )k∗(LebN ), SRB) (i.e.
time tN for which this distance is minimal) depending on log10(N), and linear regression
of these values. This strongly suggests that this time tN is of the order of logN .

All the curves for the discretizations have more or less the same shape:

• They first decrease, up to a certain point, following quite well the corresponding
curve for the actual dynamics f (in black), which decreases exponentially (see
also Figure 5, left, for the plot of the densities of these measures). Figure 4
suggests a more or less linear relation between this time of minimum of the
distance and logN .
• Then they move away from the black curve and start to increase (see also Fig-

ure 5, right).
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Figure 5. Densities of the measures fTN (LebN ) for N = 105 and for different iteration
times T , together with the density of the SRB measure. Note that as the measures
fTN (LebN ) are discrete, these measures are smoothed on intervals of size 500/N (i.e.
they are convolved with the indicator function of these intervals).

• From a certain point, they seem to have a periodic behaviour (at least the ones
for small values of the order N).

Let us explain the behaviour for small times. As a consequence of Theorem 2, for any
k ≥ 0, one has:

(fN )k∗(LebN ) −→
N→+∞

fk∗ (Leb).

This is illustrated by Figure 5. See also [Gui15a, Theorem 12.17] for a proof with
effective bounds on convergence speed. Roughly speaking, the operators (fN )∗, acting
on invariant measures, converge towards f∗. Hence, the behaviour of

k 7→ dC

(
(fN )k∗(LebN ),SRB

)
is the “combination” of the behaviours of

k 7→ dC

(
(fN )k∗(LebN ), fk∗ (Leb)

)
and(1)

k 7→ dC

(
fk∗ (Leb),SRB

)
.

The second one is well understood, as dC(fk∗ (Leb),SRB) tends to 0 exponentially fast
in k (combine Lemma 1 with the fact that the densities converge exponentially to the
density of SRB in the Cr−1 topology), so we are reduced to study the first map (1).

Figure 6. Graphs of k 7→ N dC((fN )k∗(LebN ), fk∗ (Leb)) for various grid sizes N , uni-
form (left) and logarithmic (right) scales. The factor N in front of the distance dC is
added so that the curves all start at 1/

√
12 for the time k = 0 (the distance dC between

Lebesgue measure and the uniform measure on EN is 1/(N
√

12)).
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Figure 6 shows simulations of the first map (1). On these graphics there are three
distinct time regimes:

(R1) The short-term behaviour, where the curves for discretizations seem to have a
uniform behaviour: for a fixed time k and the grid parameter N going to infinity,
they seem to converge to a curve that depends more or less exponentially on k (it
is close to a line on the right graph which is in logarithmic scale). For this regime
we have a theoretical prediction given by the asymptotics (5) of Theorem 2. We
will confront this prediction with the actual simulations in the sequel.

(R2) The medium term behaviour, where the curve globally grows slowly.
(R3) The long-term or asymptotic behaviour, where the curve is periodic (at least for

small values of N).

These three different regimes will guide our study of (1). More precisely, we will study
these three regime separately and one after the other.

As proved independently in [DV98] and [Flo02], for a generic map of Dr(S1), the
roundoff errors equidistribute: for a fixed time k, and the order N going to infinity, the
sequence of roundoff errors in time k equidistributes in [−1/(2N), 1/(2N)]k. See also
[GM22, Proposition 3.2] for a more precise statement, which is obtained as a byproduct
of the proofs.

So at first sight, one could expect the discretizations to behave very similarly to
random perturbations. More precisely, the discretization fN ’s global dynamics may
be thought as the typical global dynamics of the random map ft, acting on N -tuples
of points of S1 such that each point x of this tuple is randomly drawn uniformly in
[f(x)− 1/(2N), f(x) + 1/(2N)].

In fact, things are a bit more subtle, and one quickly realizes that the fact that orbits
of fN can merge (i.e. that there exists distinct grid points that are eventually mapped
to the same point under fN ) — and hence will stay together forever — must be an
important parameter influencing the evolution of (fN )k∗(LebN ). With this in mind, one
can isolate (at least) four phenomena that make the action of discretizations different
from that of a random map.

(P1) The iterates of points always belong to EN .
(P2) Two points of EN having the same image by fN will have identical positive

orbits.
(P3) The local shape around y ∈ S1 of the image fN (EN ) is very similar to the one of

a linearization of f around the points f−1(y), which is a model set (see [GM22]).
(P4) Any point eventually falls in a periodic cycle.

Part of the paper will be devoted to the understanding of the relative effects of these
phenomena on the action of discretizations on measures.

Conclusions. For each of the three different temporal regimes, we propose a model to
describe it, accordingly to what numerical simulations suggest.

• The first one, (R1), studied in Section 3, is the short term. It occurs for times
t � logN . In this regime, iterates of points that are initially microscopically
close stay at a microscopical distance one from the others. The evolution of (1)
is well described by Theorem 2 proved in the first paper of this series [GM22].
• The second one, (R2), is the middle term, studied in Section 4. It seems to occur

for times logN � t and log t� logN . In this regime, orbits of points that were
neighbours at time 0 are typically at a macroscopic distance one from the other.
Our simulations suggest that the main phenomena governing the evolution of
(1) in this regime is (P2): two points of the grid EN having the same image
by fN will have identical positive orbits. On our simulations, the behaviour
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of (1) looks a lot like the one of a random process described in Paragraph 4.2
(see (11)). This is a point process made of points with different weights, the
local density of the points with weight p ∈ N being equal to the predicted local
density of points with p preimages under the discretization f tN , this prediction
being made by Proposition 6 (which reflects Phenomenon (P2)). The expected
Cramér distance dC between the point process and the SRB measure is given by
Theorem 9.
• The third one, (R3), the long term, is studied in Section 5. It should happen for

log t � logN (or maybe t �
√
N , or t � N). What is the right model for this

regime is more unclear than for the two other ones. It seems like that, as observed
in the litterature (e.g. [Flo02, Lan98, ERDF83, Mie05, DKKP96, Bin92, Lev82]),
the combinatorial behaviour is well described by the one of a random map on
a set with N elements. Note that for some classes of interval maps having
0 as a fixed point, the combinatorial behaviour seem to be well described by
a specific type of random maps called random maps with a single attractive
centre [DKPV95, DSKP96]. Even if our simulations suggest that the asymptotic
measures µN may converge towards SRB when N goes to +∞, this conclusion is
not so clear in view of phenomena such as rare orders N for which the measure
µN is for away from SRB [Gui15b, Gui15a].

Some open problems. Of course, it is natural to ask whether such numerical phe-
nomena hold in higher dimensions for systems with some hyperbolic properties (Anosov
or Axiom A systems, systems with dominated splittings, etc.).

It is indeed a real challenge to tackle a theoretical validation of the numerical obser-
vations we outlined in this paper. As written by Lanford in [Lan98], “[. . . ] this problem
may be as hard of that of non-equilibrium statistical mechanics.”

We would like to put forward some research tracks that may be the first ones to
address. First, one could try to get explicit times of convergence in Theorems 2 and 3
for some specific examples of piecewise real-analytic maps. Going a bit further, under-
standing why the first one is valid only in the short term and the second one remains
true in the medium term would be an exceptional progress.

Also, adapting the proofs of [GM22] to the case of infinite branches circle expanding
maps (e.g. Gauss map) may suggest other research directions. The program of pre-
vious paragraph may also be addressed in the case of the β-shift (x 7→ βx mod 1):
the constant slope of the map may allow to undestand completely the discretizations’
behaviours.

Bibliographical remarks. There are numerous numerical studies of the spatial dis-
cretization effects, but strangely only few works about these effects on ergodic properties.

A lot of these works focus on specific families of low-dimensional dynamics: [Bla98]
for rotations and twist maps, [SB86] and [KMP99] for the tent map of slope ±2, [Boy86]
for a piecewise expanding map of slope ±3, [DKP94] for 2x mod 1 (but for a random
roundoff error model), [DKKP97, DKKP96, KMP99] for 1− |1− 2x|`, [Cor92, CFM90]
for the Gauss map. . . These articles mainly focus on combinatorial properties of dis-
cretizations: such discretizations are finite maps, hence their combinatorial properties
are roughly determined by the family of lenghts of periodic orbits and the size of their
basins of attraction. This focus on combinatorial properties seems to have been initiated
in [Lev82].

In [Lan98], after some illuminating general remarks, Lanford carries numerical sim-
ulations of the expanding map x 7→ 2x + x(1 − x)/2. Although mainly combinatorial,
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one of them computes the measure carried by the longest detected cycle. On these sim-
ulations, these measures seem close to the SRB measure (the discretization is taken in
the sense of the double precision).

More recently, Galatolo, Nisoli and Rojas [GNR14, Sections 6, 7 and 8] conducted
numerical experiments on circle piecewise expanding maps (one example of which with
a point with derivative 1) from an ergodic viewpoint. The difference with our study is
that they consider Birkhoff averages of Dirac measures instead of the Lebesgue measure;
their study is less extensive than ours but they still observe interesting behaviours of
artefacts generated by roundoff errors. Their conclusion is that “These experiments
show that, in general, using floating point arithmetics to compute Birkhoff averages
and invariant measures should not be considered reliable, not because of truncation and
rounding errors, but rather because the dynamics of the discretised map does not mirror
the generic dynamic of the real map.”

There are few theoretical nontrivial results about the relations between discretizations
and ergodic properties. In [GB88], Góra and Boyarsky get some theoretical results of
convergence of the discretizations’ asymptotic measures µN (see (12)) towards SRB,
under the hypothesis that there exists large orbits for the discretization (of size ≥ αN for
a fixed α > 0 and any N large enough). They check that this hypothesis holds for some
piecewise linear maps of slope that are power of 3. However, [Gui19, Theorem 33] (see
Theorem 3) shows that this hypothesis is not satisfied for generic dynamics. . . The two
papers [Mie06] and [GS22] also focus on the effect of discretization on ergodic properties,
in the case of circle homeomorphisms; these results emphasize some statistical stability
of these particular systems under discretization.

In his PhD thesis [Flo02], Flockermann carries numerical simulations of maps which
are similar to those considered in the present paper. However, these are mainly com-
binatorial: as in [Lan98], the only ergodic properties considered deal with the measure
carried by some periodic orbits of the discretization. In this thesis the author also
proves theoretical results about distribution of roundoff errors for generic circle expand-
ing maps.

These results were obtained independently by Vladimirov in [Vla96] (further works
based on this grounding article were published in [DV98, VKD00, DV02a, DV02b]).
In this article, the author founds a solid theoretical basis about the discretizations’
behaviour, which revals more powerful than Flockermann’s approach: in addition to
the equidistribution of roundoff errors, Vladimirov gets Theorem 3, and some functional
central limit theorem, which was published with Vivaldi in [VV03]. Early apparitions
of this kind of ideas can be found in the work of Voevodin [Voe67].

Part of these results were rediscovered independently (a second time!) by the first
author in [Gui19]; this work also contains the case of diffeomorphisms and measure-
preserving diffeomorphisms, it is based on an approach which, although a bit different,
is quite similar to the one of [Vla96].

Acknowledgements. This project was partially supported by a PEPS/CNRS project
and the ANR CODYS. The authors warmly thank Nina Heloin for his careful reading of
a first version of this text, Djalil Chafai for the references about the name of our distance
dC, and the anonymous referees for their very careful reading and unseful suggestions.

2. Preliminaries

2.1. Distance on measures. We will denote by Dr(S1) the set of maps f : S1 → S1

that are Cr and expanding (meaning that f ′(x) > 1 for any x ∈ S1).
In the first paper of this series [GM22], we give an asymptotics of the distance between

the measures fk∗ (Leb) and (fN )k∗(Leb), for k fixed and N going to infinity. This distance
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is measured by what we call the Cramér distance: if µ and ν are two probability measures
on S1, and F and G are their respective cumulative distribution functions defined from
the starting point 0, we set H = F −G and

(2) dC(µ, ν) =

(
min
c∈R

∫ 1

0
(H − c)2

)1/2

=

(∫ 1

0

(
H(x)−

(∫ 1

0
H
))2

dx

)1/2

.

This is a distance spanning the weak-* topology on measures. For more details, see
[GM22]. In particular, note that

dC(µ, ν)2 = var
(
H(ξ)

)
= E

((
H(ξ)−EH(ξ)

)2)
,

where ξ is an auxiliary random variable with the uniform distribution on the unit interval
[0, 1], and E(·) is the expectation.

The following lemma is straightforward.

Lemma 1. If µ and ν are two absolutely continuous probability measures on S1 with
respective densities with respect to Lebesgue measure f and g, then

dC(µ, ν) ≤ ‖f − g‖1 ≤ ‖f − g‖2 ≤ ‖f − g‖∞.

Proof. In this case we have, for any x ∈ [0, 1],

F (x) =

∫ x

0
f(t) dt

and the same for G, so

|H(x)| ≤
∫ 1

0
|f − g|(t) dt = ‖f − g‖1,

and

dC(µ, ν) ≤
(∫ 1

0
H2

)1/2

≤ ‖f − g‖1 ≤ ‖f − g‖2 ≤ ‖f − g‖∞.

�

We will also use the Ruelle-Perron-Frobenius (RPF) operator, defined on observables
φ : S1 → C by

(3) Lfφ : y 7→
∑

f(x)=y

φ(x)

f ′(x)
.

Note that if φ is the density of an absolutely continuous measure µ, then Lfφ is the
density of f∗µ. Here, the denominator in the definition of the RPF operator is f ′(x)
instead of the classical modulus of the Jacobian determinant |f ′(x)| because f ′ is positive.

2.2. The maps used in the simulations. In our numerical studies, we will consider
the following maps:

fc1,c2,k : S1 −→ S1(4)

x 7−→ 2x+ c1 sin(2πx) + c2 sin(4πx) + k,

with c1, c2, k ∈ R three parameters, with c1, c2 chosen such that the map f is expanding
(which is true if 2π|c1|+ 4π|c2| < 1).

In most of the simulations, we will take c1 = c0
1 = 0.0531647, c2 = c0

2 = 0.03932758
and k = 0.347 (and in this case the minimum of f ′c1,c2,k is bigger than 1.17). See Figure 1
for a graph of this map.
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For some simulations, we will consider small perturbations of this system, by choosing
c1 = c0

1 + 0.001p1 and c2 = c0
2 + 0.001p2, for

p1, p2 ∈
{
−1,−1

2
, 0,

1

2
, 1

}
.

2.3. The code for the experiments. The code we used for experiment is based on the
Python project CompInvMeas-Python [MNP15] developed as an initiative to unify the
approach to the computation of invariant measures explained in [GN14] using SageMath
[The22], the framework and related further developments will be fully described in the
article in preparation [GMNP23]. The code used from the project was forked from
an older version and contains facilities to work with dynamical systems, to compute
the Perron-Frobenius operator of an expanding dynamical system and to retrieve the
corresponding numeric fixed point.

When the dynamics is expanding with a factor ≥ 2 it is possible to certify the error in
the approximation of the SRB measure, estimating independently the numerical error
which occurred while computing the numeric fixed point, and the mathematical error
occurring representing the transfer operator with a finite-dimensional linear operator.
While relevant, this estimation is very pessimistic therefore we used the result of the SRB
measure in our experiments without adding the error coming from the rigorous error
estimation, as it would have hidden the error coming from the spatial discretization.

Our experiments have been conducted in a notebook using the above facilities as a
Python library, plus additionally a few support Python files offering facilities of our
experiments. Such facilities are to compute different spatial discretizations of a dy-
namical system, to compute measure distances (Cramér and Wasserstein distance), and
convenience functions to save intermediate results to a database in order to be able to
interrupt experiments and resume them later. An end-to-end run of all the experiments
takes several days and will create temporary files of roughly 500Gb.

The notebook with all the support file and the instructions to repeat the experiments
is available on the url: https://github.com/maurimo/DiscretizedDynSys

3. Short term behaviour

3.1. Theoretical result for Cramér distance. In [GM22], we get an asymptotics for
the map (1) for a generic expanding map.

Theorem 2 ([GM22]). Let r ≥ 1, f a generic Cr expanding map of the circle S1, and
k ∈ N. Then

(5) lim
N→+∞

N2 dC

(
(fkN )∗(LebN ), fk∗ (Leb)

)2
=

1

12
+

1

12

k−1∑
m=0

〈
D(fk−m), (Lmf 1)2

〉
,

where 〈·, ·〉 stands for the L2 scalar product, Lf is the RPF transfer operator defined by

(3), D is the derivative and fk−m is the (k −m)-th iterate of f .

The aim of this section is to explore numerically the validity in practice of such results:
the speed of convergence cannot be specified in the proof of Theorem 2 (it is hidden in
the “generic” term).

As can be seen on Figure 7, the theoretical prediction is quite good up to time 20 for
N = 223. More precisely, as can be seen on the left of Figure 8, the theoretical prediction
stops being relevant from time ' 18. Note that for N = 223, one has log2(N) = 23; this
behaviour of the time until when the theoretical prediction is accurate typically loga-
rithmic in N is strongly suggested by Figure 8, right. In can be explained heuristically
in the following way: for N = 223, as the derivative of the map f is everywhere close to

https://github.com/maurimo/DiscretizedDynSys
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Figure 7. Distance (1) depending on time k, for N = 223, and for 25 perturbations of
the map (4) described in Section 2.2 (in logarithmic vertical scale). The different curves
for the different perturbations are in light blue, the blue curve represents the mean and
the dashed curves the mean ± the standard deviation. The red curve is the theoretical
prediction given by Theorem 2, and computed with the help of the RPF operator (3)
for which we have a fast approximation algorithm.

Figure 8. Left: relative difference between the theoretical prediction of Theorem 2
and the actual distances dC on the examples for N = 223. Right: the x-axis represents
k = log2(N), the y-axis represents the first time for which the mean of the relative
difference ± standard deviation is bigger than 5% (i.e. the first time one of the left blue
dashed curves meets one of the green dotted lines) depending on k = log2(N).

2, 20 is more or less the time needed for the iterations of a grid domain [i/N, (i+ 1)/N ]
to become macroscopically visible.

Moral. In practice, Theorem 2 is valid until times logarithmic in N .

3.2. Rate of injectivity. Another quantity for which we have theoretical results is the
rate of injectivity. It is defined as

τk(fN ) =
Card

(
(fN )k(EN )

)
Card(EN )

.

This quantity (and the one studied in the next subsection) will be used in the study of
the medium term behaviour of discretizations. In this subsection and the next one, we
will:
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• state theoretical results for these quantities, which will be proved for generic
maps and small number of iterations;
• observe experimentally whether these theoretical results stay true in the short

or medium term.

Before recalling the result of [Gui19], let us introduce some notations. Given an
expanding map f of S1 of degree d, the set of time-k preimages of a point y ∈ S1

has a structure of complete d-ary tree, whose vertices are the points x ∈ f−m(y) for
0 ≤ m ≤ k, and the edges are of the form (x, f(x)). One labels each edge (x, f(x)) of
this tree by the number 1/f ′(x), and denote by Tk(y) the resulting labelled graph (see
Figure 9).

y

x(1)

x(2)

x(1,1)

x(1,2)

x(2,1)

x(2,2)

1/f
′ (x(1))

1/f
′(x(1,1))

1/f ′(x(1,2))

1/f ′(x
(2))

1/f
′(x(2,1))

1/f ′(x(2,2))

Figure 9. The probability tree Tk(y) associated to the preimages of y, for k = 2 and
d = 2. We have f(x(1,1)) = f(x(1,2)) = x(1), etc.

We call random graph associated to f at y the random subgraph Gk(y) of Tk(y), such
that the laws of appearance of the edges (x, f(x)) in Gk(y) are independent Bernoulli
laws of parameter 1/f ′(x). In other words, Gk(y) is obtained from Tk(y) by erasing
independently each vertex of Tk(y) with probability 1− 1/f ′(x).

We define the mean density Dk(y) as the probability that in Gk(y), there is at least
one path linking the root to a leaf.

The following is a restatement of [Gui19, Theorem 33] (see also [Vla96]).

Theorem 3. Let r ≥ 1, f a generic element of Dr(S1) and k ∈ N. Then,

(6) lim
N→+∞

τk(fN ) =

∫
S1

Dk(y) d Leb(y).

As a byproduct of the proof of this theorem (and in particular Lemma 34 of [Gui19]),
we get the following local convergence result (see also [Vla96]).

Proposition 4. For any r ≥ 1, for a generic expanding map f ∈ Dr(S1) and for almost
every point y, one has

Dk(y) = lim
N,R→+∞
R/N→0

1

2R
Card

{ i

N
∈ [y −R/N, y +R/N ]

∣∣ i

N
∈ fkN (EN )

}
.

Note that a first step towards the proof of this theorem was realized in the unpublished
thesis [Flo02].

The idea behind this theorem is the following. Assume for simplicity that d = 2,
take some point y ∈ S1, and denote its preimages by f by x0 and x1. Then, in the
neighbourhood of y, the set fN (EN ) looks like the discretization2 of the set f ′(x0)Z ∪

2Here, “discretization” stands for the projection on the nearest element of Z, i.e. the image under
the projection R → Z on the nearest integer.
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f ′(x1)Z. But, still in the neighbourhood of y, the “probability” for a point z ∈ EN to
be in the discretization of the set f ′(x0)Z is equal to 1/f ′(x0). One of the steps in the
proof of Theorem 3 is to show that the probabilities coming from the different branches
are independent: the probabilities for a point z ∈ EN to be in the discretizations of the
sets f ′(xi)Z are independent.

The following lemma gives a practical way to compute the percolation probability
Dk(y), in terms of the transfer operator Lf associated to f (for which we have a fast
and reliable algorithm).

Lemma 5. For any y ∈ S1,

Dk+1(y) = 1−
∏

x∈f−1(y)

(
1− Dk(x)

f ′(x)

)
.

In particular, if the degree of f satisfies d = 2, denoting f−1(y) = {x0, x1}, one has

Dk+1(y) =
Dk(x0)

f ′(x0)
+
Dk(x1)

f ′(x1)
− Dk(x0)Dk(x1)

f ′(x0)f ′(x1)

= Lf (Dk)−
1

2

((
Lf (Dk)

)2 − Lf(D2
k/f

′
))

.

It is possible to get similar formulae for bigger d by using Vieta’s formulas.

Proof. The first formula comes directly from the definition. The second one is a simple
computation. �

Figure 10. Left: rate of injectivity of τk(fN ) (the coloured curves) depending on
k, for 6 different values of N : 101, 102, 103, 104, 105 and 106. We also represent the
theoretical value (given by Theorem 3, black curve) depending on k in logaritmic scale.
Right: relative difference between these two quantities depending on k, for the biggest
N (N = 106).

Figure 10 compares the theoretical rate of injectivity (the one given by Theorem 3 and
computed with the help of Lemma 5) with the actual rate of injectivity of a discretization
fN , depending on the time k.

Moral. The predictions of Theorem 3 are really good during a quite long time (less than
5% up to time 200).

This contrasts with what happens for predictions of Theorem 2 (see Figure 7), that
become inaccurate in times typically logarithmic in N . We do not have any clue why
these predictions stay accurate for such a long time.
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3.3. Local distribution of preimages. We pursue the study of the rate of injectivity
by focusing on more precise quantities. We will look at the distribution of the number
of preimages of a point of the grid. To do that, we set am (which depends on the point
y and the time k) the probability that in Gk(y), there are exactly m paths linking the
root with the leaves. Denote by

(7) P k(y) =
∑
m≥0

amX
m

the associated generating series.
Of course, the polynomial P k(y) is of degree at most dk and satisfies P k(y)(1) = 1

and P k(y)(0) = 1−Dk(y).
The proof of Theorem 3 links the limiting behaviour, for N → +∞, of the number

of preimages of points of the grid EN , with the random behaviour of the tree Gk(y).
Hence, as a byproduct of this proof, one gets the following result (see also [Vla96]).

Proposition 6. For any r ≥ 1, for a generic expanding map f ∈ Dr(S1) and for almost
every point y, one has

am = lim
N,R→+∞
R/N→0

1

2R
Card

{
i/N ∈ [y −R/N, y +R/N ]

∣∣ Card
(
f−kN (i/N)

)
= m

}
.

Figure 11. These curves represent the local densities of the number of preimages. The
expected theoretical values given by Proposition 6 — and computed with the help of
Proposition 7 — are represented in full colors. The actual values for the map are in light
colours, they represent the quantity (8) for R = 40 and N = 106. The different graphs
correspond to different times: from left to right and top to bottom, k = 1, 2, 4 and 10.

In this case, the generating series formalism gives the following nice formula, that al-
lows to compute the distributions am by an iterating process involving the RPF operator
Lf .
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Proposition 7. If d = 2, then, denoting f−1(y) = {x0, x1},

P k+1(y) =
1

f ′(x0)

(
1− 1

f ′(x1)

)
P k(x0) +

1

f ′(x1)

(
1− 1

f ′(x0)

)
P k(x1)

+
1

f ′(x0)f ′(x1)
P k(x0)P k(x1)

+

(
1− 1

f ′(x0)

)(
1− 1

f ′(x1)

)
Hence, denoting Qk = P k − 1,

Qk+1 =
1

2

(
Lf (Qk)

)2
+ Lf

(
Qk −

1

2

Q
2
k

f ′

)
.

Figure 12. Proportion of points of EN with one preimage under fkN (the coloured
curves) depending on k, for 6 different values of N : 101, 102, 103, 104, 105 and 106. We
also represent the theoretical value (given by Proposition 6, black curve) depending on
k in logaritmic scale.

Proof. Direct computation of the probabilities. �

This proposition gives a fast algorithm to compute the distributions am, as it allows
to get it from iterations of Lf for which we have a fast algorithm.

Figure 11 gathers both theoretical and real values of the local densities of preimages.
For the actual values, we represent the quantities, for different integers m, for a fixed
discretization size N and a fixed time k,

(8)
1

2R
Card

{
y ∈ EN ∩ [x−R/N, x+R/N ]

∣∣∣ Card f−kN (y) = m
}
.

As can be seen on this figure, the predictions of Proposition 6 are quite accurate: the
theoretical and actual curves match very well, up to time 10, for N = 106. In fact, these
predictions stay accurate during quite a long time, as can be observed on Figure 12: for
N = 105 or N = 106, there is no big difference between the observed values and the
prediction up to time 200. In fact, it seems that the theoretical predictions of Figures 10
and 12 stay accurate until a time comparable to

√
N .

Moral. The predictions of Theorem 3 and Propositions 4 and 6 stay accurate until a time
proportional to

√
N .
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This suggests that the discretizations begin to deviate from these theoretical predic-
tions when there is a significant proportion of points of EN that have fallen in a periodic
orbit of fN .

4. Medium term behaviour

In [Lan98], Oscar E. Lanford proposes to study the dynamics of the maps f tN in the
regime logN � t� N . Note that in the view of the discussion of Section 5, one might
be tempted to replace the last condition by log t� logN , as sugested by Lanford himself
(see also Figure 16 and the associated discussion). For the first condition logN � t, it
is also justified by the previous study of the short term behaviour, as well as [Gui15a,
Theorem 12.17].

For now, theoretical breakthroughs in Landford’s regime seem out of reach, which
motivates a numerical study of discretizations in this case.

Recall the different phenomena isolated in the introduction, that can explain why the
action of discretizations fN on measures differ from the one of the initial map f .

(P1) The iterates of points always belong to EN .
(P2) Two points of EN having the same image by fN will have identical positive

orbits.
(P3) The local shape around y ∈ S1 of the image fN (EN ) is very similar to the one of

a linearization of f around the points f−1(y), which is a model set (see [GM22]).
(P4) Any point eventually falls in a periodic cycle.

4.1. Different discretization schemes. To understand what influences the evolution
of the distance dC between iterates of Lebesgue measure and iterates of the uniform
measure under discretizations, we look at what happens when we change the definition
of the discretized map. We will need the following notation: for x ∈ EN , the integer
ix is chosen such that ix/N ≤ f(x) < (ix + 1)/N ; it allows to set εx ∈ [0, 1] such that
f(x) = (ix + εx)/N .

• MapToClosest: This is the already defined discretization fN of the map, where
fN (x) is defined as the point of EN closest to f(x).
• OnceDecidedRandom: Do

N (f) : EN → EN is a random map, such that for each
x ∈ EN , the point Do

N (f)(x) is chosen once for all and randomly (and indepen-
dently) to be ix/N with probability 1−εx, and to be (ix+1)/N with probability
εx. Note that the iterations of two points x, y ∈ EN under [Do

N (f)]2 are inde-
pendent iff Do

N (f)(x) 6= Do
N (f)(y).

• StepwiseRandom: Ds
N (f) : EN → EN is a random map quite similar to Do

N (f)
(OnceDecidedRandom), such that for each x ∈ EN and at each iteration, the point
Ds
N (f)(x) is chosen randomly (and independently) to be ix/N with probability

1− εx, and to be (ix + 1)/N with probability εx.
• PointsRandomOnGrid: Dg

N (f) acts independently on N -tuples of elements of EN
as Ds

N (f) (StepwiseRandom):

Dg
N (f)(x1, . . . , xN ) =

(
Ds
N (f)(x1), . . . , Ds

N (f)(xN )
)
.

Of course, this gives the measure

1

N

N−1∑
i=0

δ[Ds
N (f)]k(i/N).

• PointsPerturbed: Dp
N (f) acts on N -tuples of elements of S1 as a random per-

turbation of f : let f̃N be the random map obtained from f by post-composing
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with a uniform noise on the segment [−1/(2N), 1/(2N)] (i.e. f̃N (x) is chosen
randomly and uniformly in [f(x)− 1/(2N), f(x) + 1/(2N)]). Then

Dp
N (f)(x1, . . . , xN ) =

(
f̃N (x1), . . . , f̃N (xN )

)
.

• MapToCombination: Dc
N (f) acts only on the measures on EN . It is affine, in

the sense that for any convex combination µ =
∑

i λiδxi , one has Dc
N (f)(µ) =∑

i λiD
c
N (f)(δxi). And Dc

N (f)(δx) is defined by

Dc
N (f)(δx) = (1− εx)δix/N + εxδ(ix+1)/N .

Let us discuss the fundamental differences between these maps.
MapToClosest and OnceDecidedRandom have a quite similar definition, except that

the first one is deterministic and the second one random. More precisely, there is the
following difference between these maps: as f is almost linear at a small scale, the image
of (i+1)/N under fN will depend deterministically on f(i/N) mod N , while the image
of (i+1)/N under Do

N (f) will depend only probabilistically on f(i/N) mod N . In other
words, for N large enough, fN (EN ) is locally almost (i.e. up to a set of arbitrarily small
local density) a model set (for a definition and a study of this property, see [GM22] or
[Gui19]), a property that Do

N (f)(EN ) does not possess. This will allow us to determine
if the phenomenon (P3) has a detectable effect on the evolution of the distance dC (1)
between (fkN )∗(LebN ) and fk∗ (Leb).

The difference between OnceDecidedRandom and StepwiseRandom is that the second
one is not autonomous. Hence, almost surely, orbits for this map will not be pre-
periodic, while all orbits of MapToClosest and OnceDecidedRandom are. This will allow
us to determine if the phenomenon (P4) has an effect on the evolution of the distance
(1).

An important feature of the three previous maps (MapToClosest, OnceDecidedRandom
and StepwiseRandom) is that orbits that merge then stay together forever. The map
PointsRandomOnGrid, which besides is quite similar to StepwiseRandom, does not have
this property. A priori, Dg

N (f)(x) = Dg
N (f)(y) does not imply that [Dg

N (f)]2(x) =
[Dg

N (f)]2(y) a.s. This will allow us to determine if (P2) affects the evolution of the
distance (1).

All the four previous maps are based on the discretization grid EN . This is not the
case for PointsPerturbed, which acts on N -tuples of points of the circle. It can be seen
as a continuous counterpart of PointsRandomOnGrid. This will allow us to determine if
the phenomenon (P1) affects the evolution of (1).

Finally, MapToCombination is the only discretization type which splits measures 3.
Figure 13 shows the evolution of the distance dC between the measures fk∗ (Leb) and

the images of LebN under the iterates of the different discretization types of f : fN ,
Do
N (f), Ds

N (f), Dg
N (f), Dp

N (f) and Dc
N (f).

On the left of this figure, where N = 750, there is no intermediate regime for the
discretizations fN and Do

N (f): from time k ' 100, the distance evolution becomes
periodic. This can be explained by the fact that from this time, most of the grid’s
points have fallen in a few cycles of the discretization: one directly jumps from the small
term behaviour, which is described quite well by Theorem 2, to the periodic asymptotic
regime. Indeed, in this case the limit time of short-term behaviour should be around

3By Perron-Frobenius theorem, the measures obtained from MapToCombination tend (when the time
goes to infinity) to some measure depending on N . We do not know if these measures tend to SRB
when N goes to infinity. It may be possible to prove it using the ideas of [GN14], by checking that
the distance between both Perron-Frobenius and discretized (associated to MapToCombination) transfer
operators are close relative to BV1 distance. As this is not in the scope of this article, we do not
investigate this question.
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Figure 13. Distance dC between the measures fk∗ (Leb) and the images of LebN under
fkN and (Di

N (f))k for i ∈ {o, s, g, p, c} depending on the time k. On the left graphic,
N = 750 and on the right one, N = 50 000.

log2N ' 10, while the theoretical average time for orbits to cycle is
√
πN/2 ' 34 (see

Section 5).
For N = 50 000 (Figure 13, right), this periodic asymptotic behaviour does not appear

clearly for time k ≤ 3 000: there is an actual medium term behaviour of discretizations.
Before studying further this intermediate regime, we first examine random point pro-

cesses in the point of view of the distance dC with the initial measure.

4.2. Cramér distance between a measure and the random point process asso-
ciated to it. We have seen that on the simulations we made, the theoretical estimates
on the local distributions of preimages (Paragraphs 3.2 and 3.3) stay relevant in the
middle term. Hence, they can be used to set a conjectural behaviour of the distance dC

in the middle term. Let us first introduce some definitions.
Let µ̃1, . . . , µ̃M be probability measures on S1, with the density of µ̃m being given by

the map am/
∫
Sp1 am (recall that am was defined in (7) and described in Proposition 6).

Let K ∈ N, (mi)1≤i≤K ∈ {1, . . . ,M}K , and set N =
∑K

i=1mi. Let also νµ be the
random probability measure defined by

νµ =
1

N

K∑
i=1

miδpi ,

where each point pi is chosen independently in S1, according to the measure µ̃mi . Sup-
pose that for any m,

Card{i | mi = m} '
∫
S1

am

(meaning that we have this asymptotics when N goes to infinity).

Conjecture 8. In the regime logN � t and log t � logN , the distance(1) is close to
the expected value of the Cramér distance between the SRB measure and νµ.

As a first step, before getting to the numerical study, we compute the expected value
of the square of distance dC between the SRB measure and νµ.

Let µ be a probability measure on S1. We identify S1 with [0, 1], and define f as4 the

cumulative distribution function of µ minus its average (so that
∫ 1

0 f = 0). Let also F

4There is a conflict of notations with the dynamics f , we hope that which one is used is clear from
the context.
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be the antiderivative of f such that:

F (x) =

∫ x

0
f(t) dt.

Remark that F (0) = F (1) = 0, and that F ≤ 0. Finally, given p ∈ S1, one defines
gp(x) = χ[p,1](x) − (1 − p) to be the cumulative-minus-average distribution function of
δp

The following theorem gives the expectation of the (square of the) distance dC between
a measure µ and a point process associated to it.

Theorem 9. Let µ and µ̃1, . . . , µ̃M be probability measures on S1 with respective cumu-
lative distribution functions f and f̃1, . . . , f̃M .

Let (mi)1≤i≤K ∈ {1, . . . ,M}K , and set N =
∑K

i=1mi. Let also νµ be the random
probability measure defined by

νµ =
1

N

K∑
i=1

miδpi ,

where the points pi are chosen independently in S1, each one with distribution µ̃mi. Then

E
[
dC(µ, νµ)2

]
=

∫ 1

0

(
f −

K∑
i=1

mi

N
f̃mi

)2

−
K∑
i=1

m2
i

N2

∫ 1

0

(
f̃2
mi

+ 2F̃mi

)

= dC

(
f,

K∑
i=1

mi

N
f̃mi

)2

+
K∑
i=1

m2
i

N2

(
1

12
− dC

(
f̃mi , Leb

)2
)
.(9)

The proof of this theorem can be found in appendix.
The setting of this theorem will be applied in the case where µ can be written as

µ =
∑M

m=0miµi (hence the µi are not probability measures), and the measures µ̃i are
the normalizations of the µi, with the mi being chosen such that the normalization
factors are close to mi/N (see Remark 10).

Some similar estimations were obtained for the Wasserstein distance W1 in [BL19],
but the authors only manage to get bounds ant not exact values for the expected value.

Remark 10. Note that N being fixed, one can choose the family mi such that the first
term is of order C/N2, while the second one is typically of order 1/N .

Indeed, suppose that the cumulative distribution function f of µ satisfies f =
∑K

m=1 λmf̃m,
and for p ∈ N, let (mi) such that

Card{i | mi = m} = bpλmc.
Note that

pλm − 1∑K
n=1(pλn + 1)

≤ bpλmc∑K
n=1bpλnc

≤ pλm + 1∑K
n=1(pλn − 1)

,

so

−1 +K

p+K
≤ bpλmc∑K

n=1bpλnc
− λm ≤

1 +K

p−K
,

and ∥∥∥∥∥f −
K∑
m=1

bpλmc∑K
n=1bpλnc

f̃m

∥∥∥∥∥
2

≤
K∑
m=1

∣∣∣∣∣ bpλmc∑K
n=1bpλnc

− λm

∣∣∣∣∣ ‖f̃m‖2 ≤ K 1 +K

p−K
.

Hence, ∥∥∥∥∥f −
K∑
m=1

bpλmc∑K
n=1bpλnc

f̃m

∥∥∥∥∥
2

2

= O

(
1

p2

)
,
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which gives a distance of the order of 1/p2 by Lemma 1.
On the other hand,∑

mi=m

m2
i

N2
= m2 bpλmc∑K

n=1bpλnc
1∑K

n=1bpλnc
≥ m2λm
p+K

for any p large enough. Hence, in this case, the dominating term in (9) is the second
one.

The equality between the two lines of the theorem’s equation (9) comes from the
following elementary lemma.

Lemma 11. Let µ be a probability measure on S1, with distribution function minus
average f . Let F be an antiderivative of f such that F (0) = F (1) = 0. Then∫ 1

0
(f2 + 2F ) = dC

(
µ,Leb)2 − 1

12
≤ 0.

A proof of this lemma can be found in appendix.
By taking mi = 1 for any i, one gets the following corollary about point precesses

with points of uniform weights.

Corollary 12. Let µ be a probability measure on S1, N ∈ N, and νµ be the random
measure defined by

νµ =
1

N

N∑
k=1

δpk ,

where the pk’s are iid points with distribution µ. Then

(10) E
[

dC(µ, νµ)2
]

=
1

N

(
1

12
− dC

(
µ,Leb)2

)
.

Remark 13. A simple computation shows that the square of the distance dC between
N equispaced points and Lebesgue measure, is equal to 1/(12N2). On the other hand,
one has E

[
dC(Leb, νLeb)2

]
= 1/(12N).

Hence, the expectation of the square of the Cramér distance of the uniform point
process (with all weights equal to 1) is 1/(12N). In this case, the squared distance dC

2

for a typical point process is way bigger than the minimal squared distance dC
2 for the

same number of points (it is of the order of its square).

4.3. Comparison between the random point process and the discretization.
Now we have defined different discretization types in Paragraph 4.1 and got a theoretical
estimate of the distance dC between a measure and the random point process associated
to it paragraph 4.2, we can compare them numerically.

Figure 14 displays the mean values as well as the mean values ± standard deviation
of the Cramér distance between the iterates of the discrete measure by the discretization
type and the iterate of Lebesgue measure by RPF operator, for all the discretization
types defined in Paragraph 4.1.

It also shows the the theoretical prediction for small times given by Theorem 2, and
the curves of two expected values of the distance dC between SRB measure and a point
process. The first one, in violet, is obtained from Corollary 12 ; it is square root of the
expected value of the square of the distance between the SRB measure and the measure
made of N independent random points with respect to this SRB measure. The second
one, in pink, is cooked from Theorem 9 and the local distribution of preimages given
by Proposition 6 in the following way: for each time k, we compute the theoretical
local distribution of preimages ai = ai(y, k) by the algorithm given by Proposition 7.
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Figure 14. The bottom graphic is a zoom of the top one for small times. In these
simulations, N = 105. Each trio of curves of the same color (one in plain line and
two dashed) is similar to the curves of Figure 7: it represents the mean (plain) and
the mean ± standard deviation (dashed) of the distance dC between the iterates of the
discrete measure by the discretization type and the iterate of Lebesgue measure by RPF
operator. The black curve is, as the red curve of Figure 7, the theoretical prediction
given by Theorem 2. The violet curve ”disc to m-random for SRB” is the expected value
of the distance between the SRB measure and N random points with respect to this
SRB measure, it is given by Corollary 12. The pink curve ”disc to m-random for lebit”
is obtained from Theorem 9 (see the map p(k) defined in Equation (11)).
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To each of these functions ai(y, k), which represent local densities of measures (which
we normalize to get probability measures), are associated a cumulative distribution

functions f̃ki . This allows to get an estimation by means of (9) (see also Remark 10)

(11) p(k) =
K∑
i=1

(∫
S1

ai(y, k) dy

)2( 1

12
− dC

(
f̃ki , Leb

)2
)
.

At first glance, we can group the discretization types in three different clusters.

(C1) A first one containing only MapToCombination, whose asymptotic behaviour
looks stationary, the asymptotic average distance is smaller than the estimation
disc to m-random for SRB.

(C2) A second one containing PointsRandomOnGrid and PointsPerturbed. These
two types of discretization give asymptotic behaviours similar to the estimation
disc to m-random for SRB.

(C3) A third one containing MapToClosest, OnceDecidedRandom and StepwiseRandom.
These three types of discretization behave asymptotically more or less as disc

to m-random for lebit given by the map p(k).

However, a closer look at each cluster reveals small differences.
For (C2), while the average value for PointsPerturbed follows asymptotically very

well the curve of disc to m-random for SRB, the discretization type PointsRandomOnGrid
has a significantly greater average asymptotic value. This is quite unexpected, as the
difference induced by replacing the SRB measure by the projection of it on EN (by
mean of EN ) in Corollary 12 is of order 1/N2, and hence is negligible with respect to
the orders of the computed distances, which are of order 1/N . We have no explanation
to this phenomenon.

For (C3), the curves associated to MapToClosest and OnceDecidedRandom are very
similar (see also Figure 15). Hence, the already discussed difference between microscopic
behaviours of these discretizations, the first one having deterministic local correlations
and the second one random local correlations, seems to have no impact on the asymp-
totics of the distance dC between measures. Moreover, the curves corresponding to
StepwiseRandom, although also following quite well the curve of p(k), behaves a bit
more erratically than the two other ones (this is even more blatent on Figure 13).

Simulations over a larger time range show that the average distance for StepwiseRandom,
form a certain point, gets bigger than the one for MapToClosest and OnceDecidedRandom.
More precisely, Figure 15 shows this distance for times t ≤ 2000 and N = 120 000. On
this simulation, we can see that this time where the mean distances start to be different
is more or less 1000. This time is to be compared with the mean time necessary for
an orbit to cycle for a typical map of 120 000 elements, which is

√
πN/2 ' 137: from

this time 137, a significant part of orbits have cycled, which perturbs the process of
injectivity loss. Note that on Figure 15 we have not represented the prediction that we
discussed in the beginning of this paragraph, as in this time range accurate computations
are out of our machine capacities: in the simulations we have to truncate the series ai
up to some i ≤ i0 to avoid exponential explosion of data depending on simulation time;
we checked empirically that this truncation does not affect the prediction by verifying
that the predictions are the same weather we truncate up to i0 or 2i0. The threshold we
chose for the simulations (i0 = 256) gives similar results to 2i0 = 512 for times ≤ 250
(as in Figure 14) but not ≤ 2 000 (as in Figure 15); a larger threshold for time 2 000
would make the computations extremely long and memory costing.

From these observations, one can conclude the following moral.
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Figure 15. This figure shows the same curves as Figure 14 for N = 120 000 but only
for MapToClosest, OnceDecidedRandom and StepwiseRandom.

Moral. The main phenomenon influencing the middle term behaviour of (fkN )∗(LebN ) is
the fact that orbits under fN merge. More precisely, the distance dC between (fk)∗(Leb)
and (fkN )∗(LebN ) is rather well described by the distance dC between the SRB measure and
the point process described by p(k) (see (11)): locally around y ∈ S1, the proportion of
points with weight i of this process is equal to ai(y, k), where ai(y, k) represents the local
proportion of points around y that have i preimages under fkN .

Note that in the simulations we performed the “middle term” is not that long and
it may be that the phenomena specific to the short and long term still interfere in the
time range and the discretization orders we chose: as noticed in Figure 13, left, for
smaller orders N there is even no middle term transitory behaviour. We would need
more computing power to test the validity of the prediction (11) on bigger orders N
(typically close to 107).

5. Long term behaviour

From Figure 3, one can wonder whether the quantity

lim sup
k→+∞

dC

(
(fN )k∗(LebN ), SRB

)
,

which depends on N , tends to 0 when the discretization parameter N goes to infinity or
not. According to the simulations (see Figure 17), it seems that yes, but unfortunately
the proof of this result seems unreachable for now.

Let us first recall the fact that the maps fN are finite, so that every orbit eventually
falls in a periodic cycle. Hence, one can characterize the expression “asymptotic regime”
by the fact that all points have already browsed a whole periodic orbit5. Figure 16 shows
the average of this time over points of E2k depending on k.

5In practical, we will see the asymptotic regime’s behaviour as soon as most of points of EN already
have browsed a whole cycle.
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Figure 16. log2 of the average time needed for an orbit of f2k to cycle (i.e. average
cardinality of an orbit) depending on k (blue points). This behaves quite the same as
the same quantity for a typical random map on a set of 2k elements (black line).

One can observe that this quantity behaves more or less as the same quantity for
a typical random map on a set of N elements, which is equivalent to

√
πN/2 (see

[Bol01]); this equivalent is represented in black in Figure 16. This quantity is around
108 for N = 256 (which is the classical precision used by computers). Hence, in practical,
one usually does not reach the asymptotic regime when iterating a map.

There is a canonical measure associated to the asymptotic regime in the following
way. Fix N > 0, and let LebN be the uniform measure on the grid EN . The measures
(fN )n∗ (LebN ) converge in the Cesàro mean towards a measure

(12) µN = lim
k→+∞

1

k

k−1∑
n=0

(fN )n∗ (LebN ).

This measure is supported in the union of the periodic cycles of fN , the total weight of
each of them being proportional to the size of its basin of attraction.

Question 14. Do we have µN →N→+∞ SRB (in the weak-* topology) for a generic Cr

expanding map f?

Figure 17. Left: Cramér distance between the measures SRB and µ2k depending on
k. We do not have any explanation for the threshold k = 15. Right: densities of the
measures µ2k , for k = 13, 16, 19, 22, 25, versus density of the SRB measure.

Numerical experiments suggest that the answer to this question might be yes, as
shown by Figure 17. Note that the convergence, if happens, is extremely slow: it would
give a terrible algorithm to compute an approximation of the SRB measure.
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However, it is possible that these simulations are misleading. As observed in [Gui15a]
(see Figures 12.14 and 12.17), for some C1 area-preserving diffeomorphisms of the torus,
the measures µN seem to converge to the area for a set of N of density 1, but there are
still rare values of N for which the distance between µN and the area stay at positive
distance. Such a behaviour can be observed on Figure 18: while for most of the 100
discretization orders N between 220 and 220 +99, the distance between the SRB measure
and µN is around 0.01, for two of these discretization orders, the distance is bigger than
0.05 (a distance that is no longer attained after 215 on Figure 17).

Moral. Our simulations do not suggest a clear conjecture about the convergence or not
of µN towards SRB, but it seems that this convergence holds for a subsequence of N of
density 1.

Figure 18. Cramér distance between the measures SRB and µ220+i, depending on
0 ≤ i ≤ 99.

Appendix A. Proof of Theorem 9 and Lemma 11

We start with the proof of Lemma 11, some facts of it being used in the one of Theorem 9.

Proof of Lemma 11. One has

dC

(
µ,Leb)2 =

∫ 1

0

(
f(x) +

1

2
− x
)2

dx

=

∫ 1

0

f2 + 2

∫ 1

0

(
1

2
− x
)
f(x) dx+

∫ 1

0

(
1

2
− x
)2

dx

=

∫ 1

0

f2 − 2

∫ 1

0

xf(x) +
1

12

=

∫ 1

0

(f2 + 2F ) +
1

12
(by parts),

so ∫ 1

0

(f2 + 2F ) = dC

(
µ,Leb)2 − 1

12
.

This proves the equality of the lemma.
We now prove the inequality. We first suppose that f is a convex combination of maps gp,

where gp(x) = χ[p,1](x)− (1−p) is the cumulative-minus-average distribution function of δp. For
gp we have the equality

〈gp, gp〉 = p(1− p) = −2

∫
Gp.
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If f =
∑
i λigpi , with pi ∈ S1 and λi ≥ 0,

∑
i λi = 1, then∫

(f2 + 2F ) =
〈∑

i

λigpi ,
∑
j

λjgpj
〉

+ 2
∑
i

λi

∫
Gpi

=
∑
i,j

λiλj〈gpi , gpj 〉 −
∑
i

λi〈gpi , gpi〉

=
∑
i,j

λiλj
〈
gpi , gpj − gpi

〉
.

Notice that fixing p ≤ q, we have

〈gp, gq〉 =

∫ p

0

(p− 1)(q − 1) dx+

∫ q

p

p(q − 1) +

∫ 1

q

pq

= p(p− 1)(q − 1) + (q − p)p(q − 1) + (1− q)pq
= p(1− q),(13)

so for any p, q we have 〈gp, gq〉 ≥ 〈gp, gp〉. This proves that
∫

(f2 + 2F ) ≤ 0 in the case f is a
convex combination of maps gp. The general case comes from the density (in L2 norm) of such
convex combinations among zero-average maps.

Note that a simple additional argument shows that we have equality
∫

(f2+2F ) = 0 iff f = gp
for some p ∈ S1. �

Proof of Theorem 9. Given two probability measures µ and ν, the square dC
2 of their Cramér

distance is obtained as ∫ 1

0

(f(x)− g(x))2 dx

where f, g are the cumulative distribution function minus their average (as defined before The-
orem 9). In our case we want to compute the expectation of the square dC

2 of the Cramér
distance between the measure µ and the random measure νµ (which depends on the random
points pi). In this case, the (random) function g is given by

g(x) =
1

N

K∑
i=1

migpi(x) =

K∑
i=1

λigpi(x),

where gp(x) = χ[p,1](x) − (1 − p) is the cumulative-minus-average distribution function of δp,
and λi = mi

N (note that they satisfy
∑
i λi = 1). Each point pi will be chosen randomly and

independently with distribution µ̃mi

First, suppose that the distribution functions f̃m of µ̃m are differentiable; in this case f̃ ′m is

equal to the density of µ̃m. Note that in this case f̃ ′m ∈ L1(S1), so that all further applications
of Fubini’s theorem will be valid.

Keeping implicit that we will be averaging over p1, . . . , pn chosen at random in [0, 1]n with dis-

tribution f̃ ′m1
(p1) dp1 · · · f̃ ′mn

(pn) dpn, the square D of the Cramér distance dC
2 can be computed

as

D =

∫ 1

0

(
f(x)−

K∑
i=1

λigpi(x)

)2

dx

=

∫ 1

0

f(x)2 dx− 2

∫ 1

0

K∑
i=1

f(x)λigpi(x) dx

+

∫ 1

0

K∑
i=1

λ2i gpi(x)2 dx+

∫ 1

0

K∑
i,j=1
i 6=j

λigpi(x)λjgpj (x) dx

=

∫ 1

0

f(x)2 dx− 2

K∑
i=1

λi

∫ 1

0

f(x)gpi(x) dx
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+

K∑
i=1

λ2i

∫ 1

0

gpi(x)2 dx+

K∑
i,j=1
i 6=j

λiλj

∫ 1

0

gpi(x)gpj (x) dx.

In each integral the average will only be over pi (or pi, pj in the last one), as the integrand does

not depend on pk, for k 6= i, j. Each pi follows the distribution f̃ ′mi
(p) dp. Therefore we can

simplify the sums of equal values and see the integrals as integral in just p (or p, q in the last
integral). We can write:

D =

∫ 1

0

f(x)2 dx− 2
∑
i

λi

∫ 1

p=0

∫ 1

x=0

f(x)gp(x)f̃ ′mi
(p) dx dp

+
∑
i

λ2i

∫ 1

p=0

∫ 1

x=0

gp(x)2f̃ ′mi
(p) dxdp

+
∑
i 6=j

λiλj

∫ 1

p=0

∫ 1

q=0

∫ 1

x=0

gp(x)gq(x)f̃ ′mi
(p)f̃ ′mj

(p) dxdp dq

=I1 − 2I2 +
∑
i

λ2i I3 +
∑
i 6=j

λiλjI4(14)

Before deducing a general formula we well state two trivial lemmas.

Lemma 15. For all a ≤ b we have:∫ b

a

pf ′(p) dp =
[
pf(p)

]b
a
−
∫ b

a

f(p) dp

= bf(b)− af(a)− F (b) + F (a).

In particular, we get
∫ b
0
pf ′(p) = bf(b)− F (b).

Lemma 16. ∫ b

a

f ′(p)F (p) dp =
[
f(p)F (p)

]b
a
−
∫ b

a

f(p)2 dp.

In particular we get
∫ 1

0
f ′(p)F (p) = −

∫ 1

0
f(p)2.

The expression (13) is valid on the half of the square (p, q) ∈ [0, 1]2 where p ≤ q, therefore we
have (applying the above lemmas and the fact that F (0) = F (1) = 0)

I4 =

∫ 1

p=0

∫ 1

q=0

∫ 1

x=0

gp(x)gq(x)f̃ ′mi
(p)f̃ ′mj

(q) dxdq dp

=

∫ 1

q=0

∫ q

p=0

p(1− q)f̃ ′mi
(p)f̃ ′mj

(q) dp dq +

∫ 1

q=0

∫ 1

p=q

q(1− p)f̃ ′mi
(p)f̃ ′mj

(q) dp dq (by (13))

=−
∫ 1

q=0

∫ 1

p=0

pqf̃ ′mi
(p)f̃ ′mj

(q) dp dq

+

∫ 1

q=0

∫ q

p=0

pf̃ ′mi
(p)f̃ ′mj

(q) dp dq +

∫ 1

p=0

∫ p

q=0

qf̃ ′mi
(p)f̃ ′mj

(q) dq dp

=−
(∫ 1

p=0

pf̃ ′mi
(p)

)(∫ 1

q=0

qf̃ ′mj
(q)

)
+

∫ 1

q=0

(
qf̃mi

(q)− F̃mi
(q)
)
f̃ ′mj

(q) dq +

∫ 1

p=0

(
pf̃mj

(p)− F̃mj
(p)
)
f̃ ′mi

(p) dp

=− f̃mi
(1)f̃mj

(1)

+

∫ 1

q=0

q
(
f̃mi

(q)f̃ ′mj
(q) + f̃mj

(q)f̃ ′mi
(q)
)

dq −
∫ 1

q=0

(
F̃mi

(q)f̃ ′mj
(q) + F̃mj

(q)f̃ ′mi
(q)
)

dq

=− f̃mi
(1)f̃mj

(1) (by parts, for both integrals)
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+
[
qf̃mi(q)f̃mj (q)

]1
0
−
∫ 1

0

f̃mi f̃mj −
[
F̃mi f̃mj + F̃mj f̃mi

]1
0

+

∫ 1

0

(
f̃mi f̃mj + f̃mj f̃mi

)

=

∫ 1

0

f̃mi f̃mj

(15)

For I3 of (14) we have

I3 =

∫ 1

p=0

∫ 1

x=0

gp(x)2f̃ ′mi
(p) dxdp

=

∫ 1

p=0

p(1− p)f̃ ′mi
(p) dp

=
[
p(1− p)f̃mi(p)

]1
0

+

∫ 1

0

2pf̃mi(p) dp−
∫ 1

0

f̃mi(p) dp (by parts)

=
[
2pF̃mi(p)

]1
0
−
∫ 1

0

2F̃mi(p) dp (by parts)

= −
∫ 1

0

2F̃mi ,(16)

while for the second integral

I2 =

∫ 1

p=0

∫ 1

x=0

f(x)gp(x)f̃ ′mi
(p) dxdp

=

∫ 1

p=0

∫ 1

x=0

f(x)χ[p,1](x)f̃ ′mi
(p) dxdp−

∫ 1

p=0

∫ 1

x=0

f(x)(1− p)f̃ ′mi
(p) dxdp

=

∫ 1

x=0

f(x)

∫ x

p=0

f̃ ′mi
(p) dp dx−

∫ 1

p=0

(∫ 1

0

f(x) dx

)
(1− p)f̃ ′mi

(p) dp

=

∫ 1

x=0

(
f(x)f̃mi(x)− f(x)f̃mi(0)

)
dx− 0 (because f is zero-average)

=

∫ 1

0

ff̃mi(17)

Joining all simplified expressions (17), (16) and (15), we deduce that (14) can be rewritten as

D =

∫ 1

0

f2 − 2
∑
i

mi

n

∫ 1

0

ff̃mi
− 2

∑
i

(mi

n

)2 ∫ 1

0

F̃mi
+
∑
i 6=j

mimj

n2

∫ 1

0

f̃mi
f̃mj

=

∫ 1

0

(
f −

∑
i

mi

n
f̃mi

)2

−
∑
i

m2
i

n2

∫ (
f̃2mi

+ 2F̃mi

)
,

which gives the first formula of the theorem. The second one is a consequence of Lemma 11

We now treat the general case for f̃m. The cadlag map f̃m can be approached in uniform
topology by a smooth cumulative distribution function of a measure µm, which is close to µ̃m
in weak-* topology. It then suffices to remark that in (10), the left side is continuous in µ̃m for

weak-* topology, and right side is continuous in f̃m for the uniform topology. �
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