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DISCREPANCY AND DISCRETIZATIONS OF CIRCLE EXPANDING
MAPS I: THEORY

PIERRE-ANTOINE GUIHÉNEUF AND MAURIZIO MONGE

Abstract. This paper is aimed to study the ergodic short-term behaviour of discretiza-
tions of circle expanding maps. More precisely, we prove some asymptotics of the distance
between the t-th iterate of Lebesgue measure by the dynamics f and the t-th iterate of
the uniform measure on the grid of order N by the discretization on this grid, when t is
fixed and the order N goes to infinity. This is done under some explicit genericity hy-
potheses on the dynamics, and the distance between measures is measured by the mean
of a distance we call discrepancy. The proof is based on a study of the corresponding
linearized problem, where the problem is translated into terms of equirepartition on tori
of dimension exponential in t.

A numerical study associated to this work is presented in [GM22].
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1. Introduction

Motivations. In one of the last papers he published [Lan98], Oscar E. Lanford was propos-
ing to study the behaviour of spatial discretizations of expanding maps of the circle in some
limiting regime. The question was to decide whether in most of cases, the middle-term er-
godic behaviour of such discretizations reflects the actual dynamics of the map.

To fix the notations, let us take f : S1 → S1 an expanding map (meaning that f ′(x) > 1
for any x ∈ S1) and consider the grid EN made of N points of S1 equally spaced. That is,
identifying S1 ' R/Z with [0, 1], one sets

EN =

{
i

N

∣∣ 0 ≤ i ≤ N − 1

}
.

To each of these grids is associated a projection PN : S1 → EN on the nearest point of EN
(for some points one has two choices for the nearest neighbour, one does a choice once for
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2 PIERRE-ANTOINE GUIHÉNEUF AND MAURIZIO MONGE

all and this choice will not play any role in the sequel). This leads to the definition of the
discretization of the map f relatively to the grid EN as

fN : EN −→ EN

x 7−→ PN (f(x)).

Remark that if N = 2n, this corresponds to a discretization realizing the rounding of f(x)
with n binary digits.

In [Lan98], Lanford asked whether the dynamics of the maps fmN looks like the one
of fm in the regime logN � m �

√
N . Here is how he justifies these bounds: “The

first � allows the computed orbit to deviate macroscopically from the true one over most
of its length; the second is in any case usually satisfied in practice and ought to mean
that the times considered are short enough so that the effects of the strict finiteness of the
space of states are not important. In fact: it might be prudent to replace the second �
by the stronger condition logm � logN .” His article includes enlightening philosophical
thoughts, supported by some numerical experiments.

This research program was tackled by Paul P. Flockermann in his unpublished PhD
thesis [Flo02] (under the supervision of Lanford). In this work he obtains partial results
towards the limiting behaviour of the “non-injectivity” of the maps fN – i.e. the quantity
Card(fkN (EN ))/Card(EN ) – when k is fixed and N goes to infinity1. These statements are
valid under genericity assumptions on the expanding map2 f : they concern either generic
Cr expanding maps, for 1 < r ≤ +∞, or any real-analytic expanding map different from
x 7→ 2x. Lanford and Flockermann were writing an article to complete these partial results
(they had an unpublished draft) which unfortunately has never been published.

These results had been obtained independently by Vladimirov in [Vla96] (further works
based on this grounding article were published in [DV98, VKD00, DV02a, DV02b]). In
this article, the author founds a solid theoretical basis about the discretizations’ behaviour:
the algebras of quasiperiodic subsets of the lattice, their statistical properties (frequency
measurability) under nonresonance conditions, their algebraic properties with respect to
discretizations of linear maps, the role of skew products of measure-preserving automor-
phisms of multidimensional tori in the asymptotic independence and uniform distribution
of quantisation errors. . . This approach reveals more powerful than Flockermann’s: in
addition to the equidistribution of roundoff errors, Vladimirov gets the fact that the as-
ymptotic rate of injectivity is 0, and some functional central limit theorem, which was
published with Vivaldi in [VV03]. Early apparitions of this kind of ideas can be found in
the work of Voevodin [Voe67].

One of these results has been re-discovered independently by the first author in [Gui19]:
it is proved that the actual limit of the non injectivity rate Card(fkN (EN ))/Card(EN )
when k is fixed and N goes to infinity is zero. The techniques used in this article are a bit
different from the ones of Flockermann and Vladimirov: they involve the notion of “model
set”, usually used in the study of quasicrystals, and some theorems from basic geometry of
numbers, and allow to get similar results in different settings. The approach of the present
article is based on these techniques.

1More precisely, he treats the corresponding linear case: he gets some local statements.
2They become false for the trivial example of x 7→ 2x.
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Main results. The aim of this article is to make a contribution in the direction of Lanford’s
program, by looking at the short-term ergodic behaviour of discretizations: we will compare
the actions of the maps f and fN on respectively Lebesgue measure Leb on S1 and the
uniform measure LebN on EN . This comparison will be made using a distance on measures
called here discrepancy3 and denoted Disc, which spans the weak-* topology (see Section 2).
Our goal will be to get an asymptotics for the quantity

(1.1) Disc
(
fk∗ (Leb), (fkN )∗(LebN )

)
when k is fixed and N goes to infinity.

As for the previous works already described, we will need genericity assumptions to
ensure that there is no phenomenon of resonance between the dynamics and the grid. For
example, if f(x) = 2x mod 1 and N = 2n, then the orbit of any point of EN under fN
eventually falls in the fixed point 0; this is a very specific phenomenon that one wants
to avoid to understand what happens “in most cases”4. Hence, we will consider generic
properties on the spaces of Cr expanding maps: a property will be called generic if satisfied
on at least a countable intersection of open and dense sets of Cr expanding maps. As these
sets of maps are Baire, genericity has some nice natural properties: a generic property is
satisfied on a dense set of maps, the fact of satisfying two generic properties is generic, etc.
In fact, genericity properties needed to get our results is very weak, so our theorems are
also valid under some different genericity assumptions (see [Gui19] for a discussion).

Our main theorem is the following.

Theorem A. Let r ≥ 1, f a generic Cr expanding map of the circle S1, and k ∈ N. Then

(1.2) lim
N→+∞

N2 Disc
(
fk∗ (Leb), (fkN )∗(LebN )

)2
=

1

12
+

1

12

k−1∑
m=0

〈
D(fk−m), (Lmf 1)2

〉
,

where 〈·, ·〉 stands for the L2 scalar product, Lf is the RPF transfer operator defined by
(1.3), and fk−m is the (k −m)-th iterate of f .

This asymptotics tells us at which speed the measures fk∗ (Leb) and (fkN )∗(LebN ) move
apart one from the other. More precisely, from this theorem and an estimation of the terms
in Lasota-Yorke inequality (see [EG13] or [Gui15a, Theorem 12.17]), one can easily deduce
the following.

Corollary 1.1. Let r > 1, and f a generic Cr expanding map of S1. Then there exist two
constants 1 < c < C, depending only on inf f ′ and the Cr−1 norm of f ′, such that for any
K ∈ N, there is N0 ∈ N such that for any N ≥ N0 and any k ≤ K, one has

N2 Disc
(
fk∗ (Leb), (fkN )∗(LebN )

)2
∈ [ck, Ck].

In other words, for K fixed, if N is large enough, then the behaviour of the discrepancy
will be typically exponential for times smaller than K.

3Called “the Lp-metrics between distribution functions” in [Rac91].
4Following Lanford in [Lan98], it is interesting to note that this hypothesis of genericity, which ensures

some uniform repartition properties at a mesoscopic scale (e.g. Proposition 3.7), is also a classical assump-
tion for the problem of deriving fluid mechanics laws from a microscopical deterministic model. See for
example [BGSR16].
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Let us describe a bit the term fk∗ (Leb). As realized quite a long time ago by physicists,
and then in the 70’s by mathematicians including David Ruelle, the action of a hyperbolic
map on measures can be discribed with the help of the Ruelle-Perron-Frobenius operator
Lf , defined by (in the case of the circle)

(1.3) Lfφ : y 7→
∑

f(x)=y

φ(x)

f ′(x)
.

The crucial remark is that if φ is the density of some measure µ on S1, then Lfφ is the
density of the measure f∗µ. A now quite large literature is devoted to link the spectral
properties of this operator Lf on suitable Banach spaces and the ergodic behaviour of
the dynamics f . In particular, Ruelle proved that if f is a C1+α expanding map of the
circle, then the functions Lkf (1) converge exponentially fast – for the Cα topology – towards
the density of a measure called SRB (for Sinaï-Ruelle-Bowen). This measure is moreover
the unique absolutely continuous f -invariant probability measure, and the unique physical
measure5 [Via97]. In summary, the measures fk∗ (Leb) will converge “exponentially” towards
SRB. Together with Theorem A, this implies that there is some regime k � N in which
the measures (fkN )∗(LebN ) converge towards SRB.

Corollary 1.2. Let r > 1, and f a generic Cr expanding map of S1. Then there exists a
constant C > 1, depending only on inf f ′ and the Cr−1 norm of f ′, such that for any ε > 0
and any k ≥ −C log ε, there is N0 ∈ N such that for any N ≥ N0, one has

Disc
(
SRB, (fkN )∗(LebN )

)
≤ ε.

This corollary is in fact quite trivial and can be obtained from a direct computation
without genericity assumption (see [Gui15a, Theorem 12.19] for an explicit statement).
Theorem A specifies this convergence by estimating the discrepancy between continuous
and discretized dynamics.

Of course, the discretization procedure studied in this paper is very primitive and in-
efficient to actually compute SRB measures for circle expanding maps, compared to some
other algorithms like the Ulam approximation (see [GHR12] for a survey about this sub-
ject, and our second paper [GM22]). Our aim here is to describe to what extent the very
naive algorithm for computing SRB measures actually computes an approximation of this
measure or not.

Overview of the paper. The proof of Theorem A follows the strategy of [Gui19]: as
pointed out by Lanford in [Lan98], it is very fruitful to mimic the proof strategy for the
problem consisting in deducing the laws of fluid dynamics from a microscopic model of a
gas (hydrodynamic limit), by introducing an intermediate mesoscopic space scale between
the microscopic scale 1/N of the grid and the macroscopic scale.

So we will start with the study of the corresponding local problem, i.e. the linear case
(Sections 3 and 4). First, we will define the corresponding notion of discretization for
sequences of linear maps of R. The first step is to link the discrepancy with the roundoff

5A measure µ is called physical if there is a positive Lebesgue measure set of points x ∈ S1 whose
Birkhoff sums 1

n

∑n−1
k=0 δfk(x) converge weakly towards µ.
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errors made at each iteration (Proposition 3.5). It turns out that under generic conditions,
these roundoff errors are statistically uniformly distributed (Proposition 3.2), fact which
had previously been obtained by Flockermann in his thesis [Flo02, Theorem 10 page 44]; we
will here give two new proofs of this result in Subsections 3.4 and 3.5. As in [Gui19], both
are based on ideas from the theory of quasicrystals; the first one follows a direct approach6,
while the second one gives more precise results that allow to get a formula for the cumulated
difference (3.3) for time k at some point x ∈ Z (which is used to define the discrepancy).
This formula involves the value of a piecewise linear functional on a k-dimensional torus at
some point depending explicitly on x (Proposition 3.9). This proposition is somehow the
heart of the paper, as the first approach fails when one tries to pass to the more complicated
framework of the tree linear case.

The set of time-k preimages of a point x ∈ S1 by an expanding map f has a structure
of complete d-ary tree of height k, where d is the degree of f . So the next step is to study
a model of discretizations of linear maps that decorate such a complete d-ary tree (where
the coefficients of the linear maps correspond to the derivatives of the expanding map).
This is done in Section 4, where we will deduce the behaviour of the discrepancy in this
framework from the study conducted in the previous section.

Finally, in Section 5, we will use these results to prove Theorem A. It will be done in
two steps. First, we will get a formula involving the derivatives of f along paths of the
preimage tree. It will be achieved by combining Thom’s transversality theorem for generic
maps with the study of the linear case and some suitable application of Taylor’s formula.
This third tool is elementary but rather technical, and will be obtained by applying a result
of [Gui19]. The second step is quite elementary and will allow us to write the formula of
Theorem 5.1 in the nicer way of Theorem A.

Numerical experiments. In [GM22] we conduct some numerical experiments relative
to the present article. Our aim is twofold: establish the time scale where Theorem A
stays valid on some actual examples, and for bigger times try to determine numerically the
phenomena underlying the behaviour of (1.1).

It turns out that on the examples we tested, Theorem A stays valid until times k typically
logarithmic in N , and that in the regime where k ≥ logN the evolution of (1.1) is not
satisfyingly described by some model involving only random perturbations of the dynamics:
the fact (involved in the prof of Theorem A) that orbits that merge stay together forever
thereafter has a significant impact on the discrepancy (1.1). In [GM22] we propose a model
taking this phenomenon into account. We conjecture that this model captures sufficiently
well the relevant features of discretizations in the middle-term range to approximate well
the evolution of (1.1).

Context. To our knowledge, the first attempt of numerical approximation of physical
measures of some Anosov diffeomorphisms dates back to le late 70’s, with the works
[BCG+79, BCG+78] where the authors study among others the Arnold cat map and some
of its perturbations.

The idea of O.E. Lanford consisting in adjusting the length of orbit segments to the
discretization order had already been developed in the late 80’s by Abraham Boyarsky. In

6This direct approach was already presented in the thesis [Gui15a, Chapter 9].
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[Boy86], he explains heuristically why one usually finds absolutely continuous measures on
simulations. His arguments are based on the tracking of long segments of orbits; the only
obstacle for the obtaining of a rigorous proof is the lack of uniformity in Birkhoff ’s ergodic
theorem7.

In [GB88], Boyarsky together with Pawel Góra establish the following result, which also
relates to the obtaining of absolutely continuous measures from discretizations. Suppose
that f has a unique absolutely continuous invariant measure µ, and that there exists α > 0
such that there is a subsequence of fN admitting a segment of orbit of length bigger than
αCard(EN ). If we denote νN the uniform measure on this segment of orbit, then νN ⇀ µ.

The existence of an orbit segment of length proportional to that of the grid seems to be
rarely verified (for example it is not true for a generic circle expanding map, simply because
the degree of recurrence is zero). Despite this, this seems to be one of the first theoretical
results about discretizations of dynamical systems.

The rigourous study of discretizations of generic dynamics has first been proposed by
Étienne Ghys in the large audience article [Ghy94]. From this viewpoint, the case of circle
homeomorphisms is now quite well understood, due to the work of Tomasz Miernowski
[Mie06], whose conclusion is essentially that the discretizations’ dynamics resemble the
homeomorphism’s one (see also the recent preprint [GS21]). The higher dimensional case
has been tackled by the first author in his thesis [Gui15a], which includes the case of
generic homeomorphisms [Gui15b], C1 diffeomorphisms [Gui18] and Cr diffeomorphisms
and expanding maps8 [Gui19]. In particular, the article [Gui18] exhibits the following quite
unexpected phenomenon9.

Theorem. Take a point x ∈ S1, and a generic C1 circle expanding map f . The orbit of
x under fN is finite thus eventually periodic; denote µxN the uniform measure on the limit
periodic orbit. Then the sequence (µxN )N≥0 accumulates on the whole set of f -invariant
probability measures.

Hence, the ergodic behaviour under the discretization fN of a (Baire) typical point of
the circle does not converge towards the unique physical measure (which exists and is
singular, see [CQ01, Qua99]). However, one can expect some more convergent behaviour
by averaging over x ∈ S1. This leads to the following question.

Question. For r > 1 and a generic Cr expanding map of S1, do the measures10

lim
k→+∞

1

k

k−1∑
i=0

(f iN )∗(LebN )

converge, when the parameter N goes to infinity, towards the SRB measure of f?

This question seems out of reach with only the techniques used in this paper. In the
second article of this series [GM22], we show numerical simulations that suggest that the
answer to this question may be yes in general.

7In fact, the intuition of Boyarsky works for a uniquely ergodic homeomorphism, as proved by Miernowski
in [Mie06]. Unfortunately, his result is false in general (see [Gui18]).

8As already explained, the proofs of the present article are based on the strategy of this paper.
9A similar statement holds for generic measure-preserving C1-diffeomorphisms.
10The convergence of these measures in k is ensured by the finiteness of the map fN .
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2. Preliminaries: distances on measures

Let µ and ν be two probability measures defined on S1 = R/Z, identified with [0, 1[.
Let F and G be their respective cumulative distribution functions, and H = F −G

Definition 2.1. The L1 Wasserstein distance between µ and ν can be defined by the
formula11

W1(µ, ν) = min
c∈R

∫ 1

0
|H − c|,

and the minimum is realized by the median of F −G, i.e.

c0 =
1

2

(
sup

{
c | Leb(H < c) < Leb(H > c)

}
+ inf

{
c | Leb(H < c) > Leb(H > c)

})
.

Similarly we define another distance on the set of probability measures on S1, which we
call discrepancy :

(2.1) Disc(µ, ν) =

(
min
c∈R

∫ 1

0
(H − c)2

)1/2

,

and the minimum is realized by the mean of F −G, i.e. by the number c1 =
∫ 1

0 H:

Disc(µ, ν) =

(∫ 1

0

(
H(x)−

(∫ 1

0
H
))2

dx

)1/2

.

Remark that this last expression looks like a variance, and this fact will be useful in the
sequel. The proofs of the statements about the numbers c realizing the minima are simple
and left to the reader.

Lemma 2.2. The discrepancy Disc is a distance which is invariant under translation.
Moreover,

W1(µ, ν) ≤ Disc(µ, ν)

and
Disc(µ, ν) ≤

√
2W1(µ, ν)1/2.

Thus W1 and Disc span the same topology (the weak-*).

Proof of Lemma 2.2. First we prove that Disc is invariant under translation. More pre-
cisely, for any a ∈ [0, 1], we let Fa and Ga be the cumulative distribution functions of µ
and ν seen as measures on [a, a+ 1], and set Ha = Fa−Ga : [a, a+ 1]→ R. What we want
to prove is that for any a ∈ [0, 1], one has

Disc(µ, ν)2 =

∫ a+1

a

(
Ha(x)−

(∫ a+1

a
Ha

))2

dx.

11In [CM95] it is explained why this formula coincides with the classical definition of the Wasserstein
distance.
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One has Ha(u) =
∫ u
a d(µ− ν), thus, using the fact that

∫ 1
0 d(µ− ν) = 0,

Ha(u) =

{ ∫ u
0 d(µ− ν)−

∫ a
0 d(µ− ν) = H(u)−H(a) if u ≤ 1∫ u

1 d(µ− ν) +
∫ 1
a d(µ− ν) = H(u− 1)−H(a) if u ≥ 1

Hence,
∫ a+1
a Ha =

∫ 1
0 (H −H(a)), which implies that

Ha(u)−
∫ a+1

a
Ha = H(u mod 1)−

∫ 1

0
H,

and thus ∫ a+1

a

(
Ha(x)−

(∫ a+1

a
Ha

))2

dx =

∫ 1

0

(
H(x)−

(∫ 1

0
H
))2

dx.

We now come to the proof of the inequalities. The first one is simply Cauchy-Schwarz
inequality applied to the map H − c1.

For the second one, remark that H ∈ [−1, 1], so that c0 ∈ [−1, 1] and |H − c0| ≤ 2.
Hence, (H − c0)2 ≤ 2|H − c0| and

Disc(µ, ν)2 ≤
∫ 1

0
(H − c0)2 ≤ 2

∫ 1

0
|H − c0| = 2W1(µ, ν)

�

3. The simple linear case

Recall that the goal of this section is to treat the corresponding problem of discrep-
ancy between actual and discretized systems, for sequences of linear maps. We first set
definitions, which are made to mimic the ones on the circle for the case of linear maps of
R.

3.1. Definitions. We denote N = {0, 1, 2, . . . }.

Discretizations of linear maps. Let (`m)m≥1 be a sequence of homotheties of R, of param-
eters λm > 1, i.e. ∀y ∈ R, `m(y) = λmy. We fix k ∈ N∗.

Definition 3.1. The discretization of a linear map ` : R→ R is the map ̂̀ : Z→ Z such
that for any x ∈ Z, ̂̀(x) is the integer closest to `(x). More precisely, ̂̀(x) is the unique
integer such that ̂̀(x)− `(x) ∈

]
−1

2
,
1

2

]
.

We will denote

(3.1) `k = `k ◦ · · · ◦ `1, ̂̀k = ̂̀
k ◦ · · · ◦ ̂̀1 and λ̃m =

k∏
i=m+1

λi

(with the convention that λ̃k = 1).
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Expectation, covariance. The expectation E and the covariance Var of a map E : N → R
are defined by (whenever the limits make sense)

(3.2) E[E ] = lim
R→+∞

1

R

R−1∑
x=0

Ex and Var(E) = lim
R→+∞

1

R

R−1∑
x=0

(
Ex − E[E ]

)2
.

Cumulated difference and discrepancy on R. Let µ and ν be two measures on R. Their
cumulated difference at y > 0 is the number

(3.3) cδy(µ, ν) = µ
(
]0, y]

)
+

1

2
µ
(
{0}
)
− ν
(
]0, y]

)
− 1

2
ν
(
{0}
)
.

We define the (L2-) discrepancy Disc as the L2-average of the cumulated difference cδ
(3.3) (when the limit exists):

Disc(µ, ν) = lim
R→+∞

DiscR(µ, ν) where DiscR(µ, ν) =

(
1

R

∫ R

0
cδy(µ, ν)2

)1/2

.

We will be interested in the case where the measures µ and ν are respectively:
• the (correctly normalized) Lebesgue measure λ̃−1

0 Leb;

• the uniform measure on the image set ̂̀k(Z), that is
∑

n∈Z δ̂̀k(n)

In the sequel we will denote, when no confusion is possible,

cδy
def.
= cδy

(
λ̃−1

0 Leb,
∑
n∈Z

δ̂̀k(n)

)

=
y

λ̃0

− Card
{
x ∈ N | ̂̀k(x) ≤ y

}
+

1

2
,

and the same for the discrepancies DiscR and Disc.
The half weight given to the singleton {0} restores symmetry and ensures that the map

cδ has zero mean (see Remark 3.10).

3.2. Roundoff errors. The roundoff error made at the m-th iteration is defined as the
difference between the images of `m−1(x) by the discretization ̂̀m and the initial map `m,
that is

emx =
(̂̀
m − `m

)(̂̀m−1
(x)
)
∈]− 1/2, 1/2].

The distribution of the vectors

εkx
def.
= (e1

x, . . . , e
k
x)

when x ranges over Z is given by the following proposition due to P. P. Flockermann
(see the thesis [Flo02], Theorem 10 page 44). We will give two alternative proofs of this
proposition, both based on linear algebra (contrary to the original proof of Flockermann).

Proposition 3.2 (Flockermann). If the family (λ̃−1
m )0≤m≤k is Q-free (which is a generic

condition on the λi’s), then the roundoff error vectors (εkx)x∈Z are equidistributed in ] −
1/2, 1/2]k.
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We postpone the proof of this proposition to Sections 3.4 and 3.5.
From the roundoff errors εkx it is possible to deduce the global error

Ekx = ̂̀k(x)− `k(x)

made after k iterations. Indeed, we have

Ek+1
x =

(̂̀
k+1 − `k+1

)(̂̀k(x)
)

+ `k+1

(̂̀k(x)− `k(x)
)

=ek+1
x + `k+1(Ekx ).

From this recurrence relation, we deduce that

(3.4) Ekx =
k∑

m=1

λ̃me
m
x .

Recall that Proposition 3.2 ensures that when the family (λ̃−1
m )1≤m≤k is Q-free, then the

errors emx are independent and identically distributed in [−1/2, 1/2] (because εkx is equidis-
tributed on the product space [−1/2, 1/2]k). From that we deduce the law of the global
error Ek, and in particular its covariance

(3.5) Var(Ek) =

k∑
m=1

λ̃2
m Var(em) =

1

12

k∑
m=1

λ̃2
m.

In particular, if there exists α > 1 such that λm ≥ α for every m, then

Var(Ek) ≥ 1

12

k∑
m=1

α2m =
α2(α2k − 1)

12(α2 − 1)
.

3.3. Discrepancy and roundoff errors. In this subsection, we link the asymptotic be-
haviours of the discrepancy Disc with that of the roundoff errors. We state all properties
before proving them. Note that some of these proofs will use Proposition 3.2, which will
be proved later on without using the results of this subsection.

The first lemma says that the mean of the map cδ is zero.

Lemma 3.3.

E[cδx+1/2] = lim
R→+∞

1

R

∫ R

0
cδy dy = 0.

Remark that we have two different notions of means: one continuous (with an integral)
and one discrete (with a sum). Both can be easily related: the following lemma links the
discrepancy Disc which is obtained as a continuous average of the cumulated difference cδ,
with the variance of the map cδ taken on half integers.

Lemma 3.4. Whenever the discrepancy and the variance make sense,

(3.6) Disc2 =
1

12λ̃2
0

+ Varx∈Z

(
cδx+ 1

2

)
.

Finally, the following proposition deals with the covariance: it links the average discrep-
ancy Disc with the covariance of E .
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Proposition 3.5. Let k ∈ N, and a family (`m)1≤m≤k of of R of parameters (λm)1≤m≤k
strictly bigger than 1. Whenever the discrepancy and the variance make sense,

Disc2 =
1

12
+

1

λ̃2
0

Var(Ek).

Note that the factor 1/12 corresponds to the covariance of the uniform distribution on
the interval [−1/2, 1/2].

Combined with Proposition 3.2 (more precisely, Equation (3.5)), this immediately gives
the following corollary.

Corollary 3.6. If the family (λ̃m)0≤m≤k is Q-free, then

Disc2 =
1

12λ̃2
0

k∑
m=0

λ̃2
m.

Proof of Lemma 3.3. The first equality comes from the fact that the map cδ is affine with
slope λ̃−1

0 in restriction to any interval which contains no integer. We will see a more
detailed proof of a very similar fact during the proof of Lemma 3.4.

We are left to prove the second equality. Let

E ′x = λ̃−1
0 E

k
x .

Fix R > 0, set R′ = λ̃0R, and denote x0 = x0(R) the biggest integer x such that x+E ′x ≤ R.
A linear change of variables leads to

1

R′

∫ R′

0
cδy′ dy

′ =
1

R′

∫ R′

0

y′

λ̃0

+
1

2
−

x0∑
x=0

1`k(x)+Ex≤y′ dy
′

=
1

R

∫ R

0

(
y +

1

2
−

x0∑
x=0

1x+E ′x≤y

)
dy.

Hence,

1

R′

∫ R′

0
cδy′ dy

′ =
1

R

(
R2

2
+
R

2
−

x0∑
x=0

∫ R

0
1y≥x+E ′x dy

)

=
R

2
+

1

2
− 1

R

x0∑
x=0

(R− x− E ′x)

=
R

2
+

1

2
− (x0 + 1) +

x0(x0 + 1)

2R
+

1

R

x0∑
x=0

E ′x

=
(R− x0)2 − (R− x0)

2R
+
x0

R

1

x0

x0∑
x=0

E ′x

But |R − x0| is uniformly bounded on R (because E ′x is uniformly bounded on R), so the
first term tends to 0 when R′ goes to infinity. The second term, for itself, tends to the
mean of x 7→ E ′x, which is zero by Proposition 3.2. �
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Proof of Lemma 3.4. The proof simply consists in remarking that the map cδ is affine with
slope λ̃−1

0 in restriction to any interval that contains no integer. When R ∈ N, one has

1

R

∫ R

0
cδ2
y dy =

1

R

R−1∑
x=0

∫ 1/2

−1/2

(
cδx+ 1

2
+

y

λ̃0

)2

dy

=
1

R

R−1∑
x=0

cδ2
x+ 1

2

+
1

12λ̃2
0

But by Proposition 3.3], one has E
[
cδk+ 1

2

]
= 0; this gives directly the lemma. �

Proof of Proposition 3.5. We reuse the notations of proof of Lemma 3.3: we set E ′x = λ̃−1
0 Ex,

R′ = λ̃0R, and denote x0 the biggest integer x such that x+ E ′x ≤ R.
We will prove that

Disc2
R

(̂̀k(Z) , λ̃−1
0 Leb

)
−→

R→+∞

1

12
+ Var(E ′).

By Equation (3.3), we have

Disc2
R′ =

1

R′

∫ R′

0

(
y′λ̃−1

0 −
x0∑
x=0

1
λ̃0x+Ex≤y′ +

1

2

)2

dy′

A linear change of variables leads to

Disc2
R′ =

1

R

∫ R

0

(
y +

1

2
−

x0∑
x=0

1x+E ′x≤y

)2

dy

=
1

R

∫ R

0

(y +
1

2

)2

− 2

(
y +

1

2

) x0∑
x=0

1x+E ′x≤y +

x0∑
x,x′=0

1x+E ′x≤y1x′+E ′x′≤y

 dy

=
1

R

[∫ R

0

(
y +

1

2

)2

dy − 2

x0∑
x=0

∫ R

0

(
y +

1

2

)
1x+E ′x≤y dy

+

x0∑
x,x′=0

∫ R

0
1x+E ′x≤y1x′+E ′x′≤y

dy

]

=
1

R

∫ R

0

(
y +

1

2

)2

dy − 2

x0∑
x=0

∫ R

x+E ′x

(
y +

1

2

)
dy +

x0∑
x,x′=0

∫ R

max
(
x+E ′x,x′+E ′x′

) 1 dy


=

1

R

[(
R+ 1

2

)3
3

−
(

1
2

)3
3
−

x0∑
x=0

((
R+

1

2

)2

−
(
x+ E ′x +

1

2

)2
)

+

x0∑
x,x′=0

(
R−max

(
x+ E ′x, x′ + E ′x′

))]
.
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But by construction, the map x 7→ x+ E ′x is increasing, so the last sum can be reindexed:
x0∑

x,x′=0

(
R−max

(
x+ E ′x, x′ + E ′x′

))
=

x0∑
m=0

∑
max(x,x′)=m

x,x′≥0

(
R−m− E ′m

)

=

x0∑
m=0

(2m+ 1)
(
R−m− E ′m

)
,

so one gets:

Disc2
R′ =

1

R

[
R3

3
+
R2

2
+
R

4
−

x0∑
x=0

(
R2 +R+

1

4
−
(
x2 + E ′x

2
+

1

4
+ 2xE ′x + x+ E ′x

))

+

x0∑
x=0

(2x+ 1)
(
R− (x+ E ′x)

)]

=
1

R

[
R3

3
+
R2

2
+
R

4
+

x0∑
x=0

(
−R2 − x2 + 2xR+ E ′x

2
)]

=
1

R

[
R3

3
+
R2

2
+
R

4
−R2(x0 + 1)−

(
x3

0

3
+
x2

0

2
+
x0

6

)
+ 2R

x0(x0 + 1)

2
+

x0∑
x=0

E ′x
2

]

=
1

R

[
(R− x0)3

3
− (R− x0)2

2
+
R− x0

6

]
+

1

12
+

1

R

x0∑
x=0

E ′x
2

As in the proof of Lemma 3.3, we have that |R − x0| is uniformly bounded in R, so that
the first term tends to 0 as R′ goes to infinity. As the mean of x 7→ E ′x is 0 (see Proposition
3.7), we get finally that

lim
R′→+∞

Disc2
R′ =

1

12
+ Var(E ′).

�

3.4. Uniform distribution of errors: first proof. This subsection presents the first
proof of uniform distribution of errors. It is easier than the one we will see in the next
section, and consists in computing projections on k-dimensional tori of vectors depending
on the initial condition x.

Fix k ≥ 0. Recall that we have εkx =
(
e1
x, · · · , ekx

)
. Moreover, we set ̂̀x =

(̂̀1
(x), · · · , ̂̀k(x)

)
the vectors made of the k firsts iterates of x under the discretizations, and denote ux =
(λ1x, 0

k−1) ∈ Rk, uZ = (λ1Z, 0
k−1) ⊂ Rk, W k =]− 1/2, 1/2]k and

Nλ1,··· ,λk =


−1
λ2 −1

λ3
. . .
. . . −1

λk −1

 ∈Mk(R).
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Finally, we denote prWk the projection from Rk onto the fundamental domain W k of the
quotient space Rk/Nλ1,··· ,λkZ

k (this is indeed a fundamental domain because the matrix
Nλ1,··· ,λk is lower triangular with −1 on the diagonal; remark that in this case the matrix
satisfies the conclusion of Hajós theorem [Haj41]).

The following proposition expresses the roundoff error vector εkx in terms of the projection
of the vector ux on the fundamental domain W k of Rk/N`1,··· ,`kZ

k.

Proposition 3.7.
εkx = prWk(ux).

Thus, when x ranges over Z, the roundoff error vectors εkx equidistribute on the set prWk(uZ).
In particular, as this set is symmetric with respect to 0, the means of each function

x 7→ emx , and of x 7→ Ex, is zero.

Proof of Proposition 3.7. As

Nλ1,··· ,λk
̂̀
x =



−̂̀1
(x)

λ2
̂̀1

(x)− ̂̀2
(x)

λ3
̂̀2

(x)− ̂̀3
(x)

...
λk̂̀k−1

(x)− ̂̀k(x)


=


λ1x− e1

x

−e2
x

−e3
x

...
−ekx

 = ux − εkx,

the vector ux can be decomposed into

(3.7) ux = Nλ1,··· ,λk
̂̀
x + εkx,

with ̂̀x ∈ Zk and εkx ∈ W k (recall that W k =] − 1/2, 1/2]k). As W k is a fundamental
domain of Nλ1,··· ,λkZ

k, this is a decomposition of ux into the sum of an element of the
lattice Nλ1,··· ,λkZ

k and an element of a fundamental domain of this lattice.
The vector ux being fixed, this condition characterizes completely εkx and ̂̀x. In partic-

ular, εkx is equal to the projection of ux on W k modulo Nλ1,··· ,λkZ
k. This implies that the

roundoff error vectors εkx equidistribute on the set prWk(uZ) when x ranges over Z. �

Let us explain how this proposition implies Proposition 3.2.

Proof of Proposition 3.2. We begin by remarking that by (3.7), N−1
λ1,··· ,λkε

k
x is equal to

the projection of N−1
λ1,··· ,λkux on N−1

λ1,··· ,λkW
k modulo Zk (remark that N−1

λ1,··· ,λkW
k is a

fundamental domain of Zk). This implies that the sequence of errors εkx is equidistributed
in Rk/Zk if and only if the vectors N−1

λ1,··· ,λkux are equidistributed modulo Zk when x

ranges over Z. For this purpose, the matrix N−1
λ1,··· ,λk can be easily computed:

N−1
λ1,··· ,λk =


−1
−λ2 −1

−λ3λ2 −λ3
. . .

...
...

. . . −1
− λk · · ·λ2 − λk · · ·λ3 · · · −λk −1

 ,
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thus

N−1
λ1,··· ,λkux = −


λ1

λ2λ1

λ3λ2λ1
...

λk · · ·λ1

x = −λ̃0


λ̃−1

1

λ̃−1
2
...

λ̃−1
k

x.

As a consequence, by Weyl’s criterion, the sequences of errors εkx is equidistributed in W k

if and only if the family (λ̃−1
m )0≤m≤k is Q-free. �

3.5. Discrepancy: a direct approach. In the last subsection, we were given x ∈ Z and
computed the roundoff errors along the positive orbit of x. Now, we adopt a different
viewpoint: we are given n ∈ Z and want to determine whether n belongs to ̂̀k(Z) or not;
in the latter case we also want to determine the sequence of roundoff errors in the backward
orbit of n. As in the previous section, we will see that these quantities only depend on the
projection on some torus of a vector depending only on n. This will allow to compute the
cumulated difference cδn from this projection.

Notations. Recall that W k =]− 1/2, 1/2]k. We denote Λk = Mλ1,··· ,λkZ
k+1, with

Mλ1,··· ,λk =


λ1 −1

λ2 −1
. . . . . .

λk −1
1

 ∈Mk+1(R),

and Λ̃k = M̃λ1,··· ,λkZ
k, with

(3.8) M̃λ1,··· ,λk =


λ1 −1

λ2 −1
. . . . . .

λk−1 −1
λk

 ∈Mk(R).

(see Figure 1). Finally, we denote Xk = Rk/Λ̃k the quotient space and prXk
the projection

from Rk onto Xk. Remark that Xk is a k-dimensional flat torus.

We begin by giving an alternative construction of the image sets ̂̀k(Z) in terms of model
sets (see [Gui19]). Indeed, denoting p1 the projection on the k first coordinates and p2 the
projection on the last coordinatềk(Z) =

{
p2(λ) | λ ∈ Λk, p1(λ) ∈W k

}
= p2

(
Λk ∩

(
p−1

1 (W k)
))
.(3.9)
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Figure 1. The green dots are the points of Λ̃k = M̃λ1,··· ,λkZ
k, the gray

squares are W k + Λ̃k and the blue parallelogram is a fundamental domain
of Xk = Rk/Λ̃k.

Let us explain this construction. Fix a linear map ` : R → R associated to λ > 1. An
integer y ∈ Z belongs to ̂̀(Z) iff there exists x ∈ Z such that |`(x) − y| ≤ 1/2. The last
condition can be rephrased as p1(v) ∈ [−1/2, 1/2], with

v =

(
λ −1
0 1

)(
x
y

)
.

For two linear maps `1, `2 : R → R associated to λ1, λ2 > 1, a number y ∈ Z belongs to
(̂̀2 ◦ ̂̀1)(Z) iff there exist x1, x2 ∈ Z such that |`2(x2) − y| ≤ 1/2 and |`1(x1) − x2| ≤ 1/2

(and in this case (̂̀2 ◦ ̂̀1)(x1) = ̂̀
2(x2) = y). These conditions can be rephrased as

p1(v) ∈ [−1/2, 1/2]2, with

v =

λ1 −1 0
0 λ2 −1
0 0 1

x1

x2

y

 .

remark that in this case, the roundoff error is given by

ε2
x =

(
x2 − λ1x1

y − λ2x2

)
= −p1(v),

and that p2(v) = y. The same reasoning in arbitrary time k leads to Equation (3.9).

Taking advantage from this viewpoint, we get the following proposition.

Proposition 3.8.

y ∈ ̂̀k(Z) ⇐⇒ y ∈ Z and prXk
(0k−1, y) ∈ prXk

(−W k).

In this case, if we denote by w ∈W k the unique point satisfying prXk
(0k−1, y) = prXk

(w),

and x ∈ Z the unique integer such that ̂̀k(x) = y, then the roundoff errors satisfy εkx = −w.
As a corollary we get Proposition 3.2.

Proof of Proposition 3.8. By Equation (3.9), we have

y ∈ ̂̀k(Z) ⇐⇒ y ∈ Z and ∃v ∈ Λk : y = p2(v), p1(v) ∈W k.
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But if y = p2(v), then by the form of the matrix Mλ1,··· ,λk we can write v = (ṽ, 0) +

(0k−1,−y, y) with ṽ ∈ Λ̃k. Hence,

y ∈ ̂̀k(Z) ⇐⇒ y ∈ Z and ∃ṽ ∈ Λ̃k : (0k−1,−y) + ṽ ∈W k

⇐⇒ y ∈ Z and (0k−1, y) ∈
⋃
ṽ∈Λ̃k

ṽ −W k.

Thus, y ∈ ̂̀k(Z) if and only if y ∈ Z and prXk
(0k−1, y) ∈ prXk

(−W k). Moreover, by
construction, εky = −w.

Then, Proposition 3.2 follows directly from the fact that the points of the form (0k−1, y),
with y ∈ Z, are equidistributed in Xk. To prove this equidistribution, we compute the
inverse matrix of M̃λ1,··· ,λk :

M̃−1
λ1,··· ,λk =


λ−1

1 λ−1
1 λ−1

2 λ−1
1 λ−1

2 λ−1
3 · · · λ−1

1 · · ·λ
−1
k

λ−1
2 λ−1

2 λ−1
3 · · · λ−1

2 · · ·λ
−1
k

. . . . . .
...

λ−1
k−1 λ−1

k−1λ
−1
k

λ−1
k

 .

Thus, the set of points of the form (0k−1, y) in Xk corresponds to the image of the map

Z 3 y 7−→ M̃−1
λ1,··· ,λk

(
0k−1

y

)
=


λ̃−1

0

λ̃−1
1
...

λ̃−1
k−1

 y

in the canonical torus Rk/Zk. But this map is ergodic when the family (λ̃−1
m )0≤m≤k is

Q-free. �

From Proposition 3.8 it is possible to deduce an expression of the difference cδ(y) in terms
of projections on a fundamental domain of Xk, as explained by the following proposition.

Proposition 3.9. The cumulated difference cδ(y) only depends on the projection of (0k−1, y)
on Xk. Moreover, the induced map cδ : Xk → R is affine when restricted to the fundamental
domain

D =
k∏
i=1

[1/2− λi, 1/2]

of Xk, and if (x1, . . . , xk) ∈ D is the projection of (0k−1, y) on D modulo Λ̃k, we have

cδ(y) = −1

2
−

k∑
m=1

xm
λ̃m

λ̃0

.



18 PIERRE-ANTOINE GUIHÉNEUF AND MAURIZIO MONGE

Remark 3.10. From this proposition one can explain the appearance of normalisation con-
stant in the definition of cδ. Indeed, the mean of the affine map cδ on D is equal to its
value in the centre of the parallelepiped D:

1

λ̃0

∫
Xk

cδ(x1, . . . , xk) dx1 · · · dxk = cδ

(
1

2
− λ1

2
, · · · , 1

2
− λk

2

)

= −1

2
−

k∑
m=1

λ̃m
1− λm

2λ̃0

= − 1

2λ̃0

.

In particular, for R ∈ N, one has

1

R

∫ R

0
cδ(y) dy =

1

R

R−1∑
n=0

cδ(n+ 1/2)

=
1

R

R−1∑
n=0

(
cδ(n) +

1

2λ̃0

)
−→

R→+∞
0,

in other words the map cδ has zero mean.

Proof of Proposition 3.9. Given n ∈ N, we want to compute the cumulated difference (3.3):

cδ(n) =
n

λ̃0

− Card
{
x ∈ N | ̂̀k(x) ≤ n

}
+

1

2

In other words (as x 7→ ̂̀k(x) is increasing) we search for the biggest x ∈ N such that̂̀k(x) ≤ n. Let x be such a number, we have

(3.10) cδ(n) =
n

λ̃0

− x− 1

2

(remark that this formula allows us to read this discrepancy on the “time 0” set Z – see
Figure 2 –, this is possible by the preservation of order of the maps `i and ̂̀i). We are
reduced to compute this integer x.

We denote y = ̂̀k(x) and j = n−y ∈ N. In this case, the definition of global error leads
to

Ekx = ̂̀k(x)− `k(x) = y − λ̃0x ⇐⇒ x =
1

λ̃0

(
y − Ekx

)
.

Thus, applying this to (3.10),

cδ(n) =
n

λ̃0

− y − Ekx
λ̃0

− 1

2
=
j + Ekx
λ̃0

− 1

2
.
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time 0

time 1

| | | | | | | time 2

|

× |

× | |

|

|
x

e1
x

ˆ̀
1(x)

`1 `1

`2 `2

e2
ˆ̀
1(x)

j

y ∈ ̂̀2
(Z)

n

n/λ̃0cδ

Figure 2. Computation of the cumulated difference cδ in the case k = 2.
The point y is the biggest point of `2(Z) smaller than n.

But, combining Formula (3.4) page 10 linking the global error Ex with the roundoff error
vector εkx with the fact that εkx = −w (Proposition 3.8), one has

Ekx = −
k∑

m=1

λ̃mwm,

so that

cδ(n) =
1

λ̃0

(
j −

k∑
m=1

λ̃mwm

)
− 1

2

with w depending only on the projection of (0k−1, y) = (0k−1, n− j) on Xk.
We have reduced to find, given n ∈ Z, the smallest j ∈ N such that n − j ∈ ̂̀k(Z).

First remark that W k projects injectively (but not surjectively) on the torus Xk = Rk/Λ̃k.
So we define a partition of Xk into first visit sets Wj in W k under the iterates of the
translation (0k−1, 1) (see Figure 3). More precisely, v ∈ Xk belongs to Wj iff j is the
smallest nonegative integer such that v + (0k−1, j) ∈W k mod Λ̃k.

Thus, if (0k−1,−n) ∈ Wj , then j is the smallest integer such that (0k−1,−(n − j)) ∈
W0 = W k. In this case, j is the smallest nonnegative integer such that n − j ∈ ̂̀k(Z),
moreover

Wi = prXk

(
W k − (0k−1, i)

)
\
i−1⋃
j=0

Wj .

For v ∈ Xk, this allows to define

cδ(v) =
1

λ̃0

(
j −

k∑
m=1

λ̃mwm

)
− 1

2
,

where w = v + (0k−1, j) ∈W k (and hence v ∈Wj).
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W0

W0 W0

W0

W1

W2

W2

W3

W4

W5

W1
W5

W4

••

W0

W1

W1

W2

W3

W3

W4

W5

λ

µ

z

Figure 3. The sets Wi for λ = 2.4 and µ = 1.8 on a canonical funda-
mental domain (left) and a rectangular fundamental domain D (right). We
recognize a suspension of the rotation x 7→ x− 1 modulo λ.

We just have proved that the map cδ is piecewise affine on Xk (more precisely, affine in
restriction to each set Wi). Let us analyse the partition into the sets Wj a bit further by
looking at its projection on the fundamental domain D =

∏k
i=1[1/2, 1/2 − λi] (see Figure

3). In Xk, the set Wj+1 is simply obtained by a translation of Wj by (0,−1), removing the
intersections with the Wi for i ≤ j if necessary. In D, the gluings of opposite faces made
to recover Xk correspond to suspensions of rotations x 7→ x+ ei where ei is the i-th vector
of the canonical basis of Rk. In particular, one sees that all the Wi, except from the dλke
last, are simply translates of W0.

It remains to prove that the map v 7→ cδ(v) is continuous on D. First remark that it is
continuous (because linear) on every set Wj , so we just have to prove the continuity at the
boundaries of the Wi’s. To do it we reason by recurrence on the dimension.

As a first step, we prove that cδ is continuous in restriction to the union of two cubes
having a face in common orthogonal to the last canonical coordinate vector. In this case,
they are two cubes with consecutive indices, say j and j+1. Let us take a point v belonging
to their common face (the blue point of Figure 3, right). On the one hand, v ∈ Wj , so we
can write v = (w1, · · · , wk), where the wi’s are the coordinates of v with respect to the
centre of the set Wi. This leads to

cδ(v) =
1

λ̃0

(
j −

k−1∑
m=1

λ̃mwm − λ̃kwk
)
− 1

2

But wk = −1/2 and λ̃k = 1, so

cδ(v) =
1

λ̃0

(
j −

k−1∑
m=1

λ̃mwm +
1

2

)
− 1

2
.

On the other hand, we also have v ∈ Wj+1, and so if we write v = (w′1, · · · , w′k) in the
coordinates with respect to the centre of Wj+1,then

cδ(v) =
1

λ̃0

(
j + 1−

k−1∑
m=1

λ̃mw
′
m − λ̃kw′k

)
− 1

2
.
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But we have wi = w′i for all i ≤ k − 1 and w′k = 1/2, so

cδ(v) =
1

λ̃0

(
j + 1−

k−1∑
m=1

λ̃mwm −
1

2

)
− 1

2
.

We deduce that both values of cδ(v) coincide whether v is seen a an element of Wj or of
Wj+1.

For the induction’s heredity, we use the trivial formula
k−1∑
m=1

λ̃mwm =

k−1∑
m=1

λ̃mw
′
m,

where wm − w′m is a vector having zero coordinates but the `-th one equal to −1 and the
`+ 1-th one equal to λ`+1. For each `, using the fact that cδ is continuous with respect to
the `+ 1-th coordinate, this tells us that the map cδ is continuous with respect to the `-th
coordinate (geometrically, it consists in following the green path of Figure 3, right).

Remark that one can also prove the continuity by examinating directly what happens
on the image spaces `i(R) and performing small translations of the grids.

�

As a corollary, one can get an alternative proof of Proposition 3.5.

Second proof of Proposition 3.5. By Equation (3.6) page 10, one has

Disc2 =
1

12λ̃2
0

+ Var

(
cδ
(
n+

1

2

))
.

The second term corresponds to the variance of the map cδ + 1/(2λ̃0) on D. As this map
is affine with zero mean, and by the form of D, this variance is equal to the sum of the
variances of its coordinates, i.e.

Var

(
cδ
(
n+

1

2

))
=

k∑
m=1

Var[1/2−λm,1/2]

(
xm

λ̃m

λ̃0

)

=

k∑
m=1

λ2
mλ̃

2
m

12λ̃2
0

,

thus

Disc =
1

12λ̃2
0

k∑
m=0

λ̃2
m.

�

4. The tree linear case

In this section we adapt the study made in the previous one to stick to the shape of the
set of preimages of a point under some expanding map, which has a structure of d-ary tree.
We will get get discrepancy estimations for a complete d-ary tree with edges decorated by
linear expanding maps.

Fix r ≥ 1 and d ≥ 2. We begin by the definition of the set of expanding maps.
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Definition 4.1. We denote by Dr(S1) the set of Cr expanding maps of degree d of S1.
More precisely, Dr(S1) is the set of degree d maps f : S1 → S1 such that the derivative
f (brc) is well defined and belongs to Cr−brc(Tn) and such that for every x ∈ S1, we have
|f ′(x)| > 1.

The set of preimages of a point x ∈ S1 by an expanding map f has a natural structure of
complete d-ary tree. We now define the linear setting corresponding to the local behaviour
of f ∈ Dr(S1) using this representation.

Definition 4.2. We set (see also Figure 4)

Ik =

k⊔
m=1

J1, dKm

the set of m-tuples of integers of J1, dK, for 1 ≤ m ≤ k.
For i = (i1, · · · , im) ∈ J1, dKm, we set length(i) = m and the parent ℘(i) = (i1, · · · , im−1) ∈

J1, dKm−1 (with the convention ℘(i1) = ∅).

The set Ik is the linear counterpart of the set
⊔k
m=1 f

−m({y}). Its cardinal is equal to
d(1− dk)/(1− d).

Definition 4.3. Let k ∈ N. The complete tree of order k is the rooted d-ary tree Tk whose
vertices are the elements of Ik together with the root ∅, and whose edges are of the form
(℘(i), i)i∈Ik (see Figure 4).

We now consider a family (`i)i∈Ik of homotheties of R of parameters (λi)i∈Ik > 1. In
this new case we denote ̂̀k(Zdk) =

⋃
i∈J1,dKk

(̂̀
℘k−1(i) ◦ · · · ◦ ̂̀i)(Z),

λ̃i = λiλ℘(i) · · ·λ℘length(i)−1(i), λ̃−1
tot =

∑
i∈J1,dKk

λ̃−1
i ,

and for i ∈ J1, dKk (see also (3.3), we omit the dependance on the measures),

(4.1) cδi(y) =
y

λ̃i
− Card

{
x ∈ N | ̂̀℘k−1(i) ◦ · · · ◦ ̂̀i(x) ≤ y

}
+

1

2

∅

(1)

(2)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

Figure 4. The tree
T2 for d = 2.

y

x(1)

x(2)

x(1,1)

x(1,2)

x(2,1)

x(2,2)

Figure 5. The tree associated to the
preimages of y, for k = 2 and d = 2.
We have f(x(1,1)) = f(x(1,2)) = x(1),
etc.
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and, denoting Ekx,i the cumulative error made by iterating the point x following the path
from i during time k.

Disc2
R =

1

R

∫ R

0

λ̃−1
toty −

∑
i∈J1,dKk

(
max

{
x | λ̃ix+ Ekx,i ≤ y

}
− 1

2

)2

dy

=
1

R

∫ R

0

 ∑
i∈J1,dKk

cδi(y)

2

dy.

For i, i′ ∈ Ik of same length, we denote

k0(i, i′) = min
{
m ∈ J0, kK | ℘m(i) = ℘m(i′)

}
.

We also denote δ
Zdk =

∑
x∈Zdk δx the uniform measure on Zd

k

Proposition 4.4. Let k ∈ N, and a family (`i)i∈Ik of homotheties of R of parameters
(λi)i∈Ik strictly bigger than 1. If the family (λ̃i)i∈Ik is Q-free (which is a generic condition),
then

Disc2
(̂̀k
∗
(
δ
Zdk

)
, λ̃−1

tot Leb
)

=
1

12λ̃tot
+

1

12

∑
i,i′∈J1,dKk

k−1∑
m=k0(i,i′)

λ̃℘m(i)λ̃℘m(i′)

λ̃iλ̃i′
.

Note that for any m ≥ k0(i, i′), one has λ̃℘m(i) = λ̃℘m(i′).
To prove this proposition we will need to estimate the expectation of the following

correlations:

Corri,i′(y) = cδi

(
y +

1

2

)
cδi′

(
y +

1

2

)
.

Lemma 4.5. Under the hypotheses of Proposition 4.4, for any i 6= i′, E
[

Corri,i′
]
is well

defined (that is, the limit exists) and satisfies

E
[

Corri,i′(y)
]

=
1

12λ̃iλ̃i′

k−1∑
m=k0(i,i′)

λ̃℘m(i)λ̃℘m(i′) ≥ 0.

This lemma is the heart of the proof of Proposition 4.4. It is deduced from the study
conducted in the previous section (Proposition 3.9). We first deduce Proposition 4.4 from
it.

Proof of Proposition 4.4. By Lemma 3.4, for any R ∈ N,

Disc2
R =

1

R

R−1∑
y=0

 ∑
i∈J1,dKk

cδi

(
y +

1

2

)2

+
1

12λ̃tot
.

But ∑
i∈J1,dKk

cδi

(
y +

1

2

)2

=
∑

i∈J1,dKk
cδi

(
y +

1

2

)2

+
∑

i 6=i′∈J1,dKk
cδi

(
y +

1

2

)
cδi′

(
y +

1

2

)
.
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By Corollary 3.6, the first term has mean

1

12

∑
i∈J1,dKk

1

λ̃2
i

k−1∑
m=0

λ̃2
℘m(i),

while that of the second one is given by Lemma 4.5. �

Proof of Lemma 4.5. Let i, i′ ∈ J1, dKk such that i 6= i′. We write i = (ik, . . . , i1) and
i′ = (i′k, . . . , i

′
1) (note the fact that the indices decrease, to correspond to the order of

iterations of maps as in the previous part). We also note Λ̃i the lattice associated to the
multipliers λi1 , . . . , λik , see (3.8) page 15 (and the same for Λ̃i′).

By Proposition 3.9, we know that for y ∈ Z, the cumulated difference cδi(y) only depends
on the projection of (0k−1, y) on the torus Rk/Λ̃i and is affine when restricted to the
fundamental domain D =

∏k
j=1[1/2, 1/2 − λij ] of Λ̃i: if (0k−1, y) = (x1, . . . , xk) ∈ D

mod Λ̃i, we have

cδi(y + 1/2) = −1

2
−

k∑
m=1

xm
λ̃℘m−1(i)

λ̃i
+

1

2λ̃i
.

Thus, for any y ∈ Z (with transparent notations),

Corri,i′(y) = λ̃−1
i λ̃−1

i′

(
λ̃i − 1

2
+

k∑
m=1

xmλ̃℘m−1(i)

)(
λ̃i′ − 1

2
+

k∑
m=1

x′mλ̃℘m−1(i′)

)
.

By definition of k0
def.
= k0(i, i′), for every m ∈ Jk0 + 1, kK, we have λ̃℘m−1(i) = λ̃℘m−1(i′) and

xm = x′m; thus we can denote

t1 =
k∑

m=k0+1

xmλ̃℘m−1(i) =
k∑

m=k0+1

x′mλ̃℘m−1(i′),

t2 =
λ̃i − 1

2
+

k0∑
m=1

xmλ̃℘m−1(i) and t′2 =
λ̃i′ − 1

2
+

k0∑
m=1

x′mλ̃℘m−1(i′),

so that
λ̃iλ̃i′ Corri,i′(y) =

(
t1 + t2

)(
t1 + t′2

)
.

Thus

λ̃iλ̃i′E
[

Corri,i′(y)
]

=E[t21] + E[t1t
′
2] + E[t1t2] + E[t2t

′
2]

=E[(t1 − E[t1])2] + E[t1]2 + E[t1t
′
2] + E[t1t2] + E[t2t

′
2].

The hypothesis of independence over Q of the family (λ̃i)i∈Ik implies that the events t1, t2
and t′2 are “independent”. To see it, consider the (big) matrix

Mk+k0(R) 3 M̃i,i′ =
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λi −1
. . . . . .

λ℘k0−2(i) −1

λ℘k0−1(i) 0 −1

λi′ −1
. . . . . .

λ℘k0−2(i′) −1

λ℘k0−1(i′) −1

λ℘k0 (i)

. . .

. . . −1
λ℘k−1(i)



,

remark that the quotient space Rk+k0/M̃i,i′Z
k+k0 is obtained from the product space

Rk/M̃λi1 ,··· ,λikZ
k ×Rk/M̃λi′1

,··· ,λi′
k

Zk by quotienting by the k− k0 last coordinates, which

corresponds to identical multipliers λ℘j(i) = λ℘j(i′), thus to identical projections of (0k−1, y)

on the fundamental domains D and D′. A simple computation of M̃−1
i,i′

, similar to that of

the proof of Proposition 3.8, leads to the fact that when the family (λ̃i)i∈Ik is Q-free, then

y 7→ M̃−1
i,i′

(0, y) = y
(
λ̃−1
i , λ̃−1

℘(i), · · · , λ̃
−1
℘k0−1(i)

,

λ̃−1
i′
, λ̃−1

℘(i′)
, · · · , λ̃−1

℘k0−1(i′)
,

λ̃−1
℘k0 (i)

, λ̃−1
℘k0+1(i)

, · · · , λ̃−1
℘k−1(i)

)
is an ergodic Z-action on the torus Rk+k0/Zk+k0 . In particular,

E[t1t2] = E[t1]E[t2], E[t1t
′
2] = E[t1]E[t′2] and E[t2t

′
2] = E[t2]E[t′2].

We deduce that

λ̃iλ̃i′E
[

Corri,i′(y)
]

=E
[
(t1 − E[t1])2

]
+ E[t1]2 + E[t1]E[t′2] + E[t1]E[t2] + E[t2]E[t′2]

=E
[
(t1 − E[t1])2

]
+ E

[
t1 + t2

]
E
[
t1 + t′2

]
.

But by Remark 3.10, E[t1 + t2]E[t1 + t′2] = 0, so

λ̃iλ̃i′E
[

Corri,i′(y)
]

= Var(t1).

The computation of the variance of t1 is obtained by a computation similar to that in
second proof of Proposition 3.5 (page 21); we get

Var(t1) =

k∑
m=k0+1

Varxm∈[1/2−λ℘m−1(i),1/2]

(
xmλ̃℘m(i)

)

=
1

12

k∑
m=k0+1

λ̃2
℘m(i)λ

2
℘m−1(i) =

1

12

k−1∑
m=k0

λ̃2
℘m(i).
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Finally,

E
[
Corri,i′(y)

]
=

1

12

k−1∑
m=k0

λ̃2
℘m(i)

λ̃iλ̃i′
.

�

Remark 4.6. If in the formula we replace all the λi’s by d, we get

Disc2 =
dk+1 − 1

12(d− 1)
.

Without the correlations, it gives

D̃isc
2

=
dk+1 − d−k−1

12(d− d−1)
.

the ratio between both tends to 1 + 1/d when k goes to +∞.
We end this section by a quantitative version of Proposition 4.4. For E ⊂ Z, we will

denote

D+
R(E) = sup

x∈R

Card
(
E ∩ [x−R, x+R]

)
Card

(
Z ∩ [x−R, x+R]

) .
Addendum 4.7. For every `′, c ∈ N, there exists a locally finite union of positive codi-
mension submanifolds Vq of ]1,+∞[Card Ik such that for every η′ > 0, there exists a radius
R0 > 0 such that if (λ̃i)i∈Ik satisfies d

(
(λ̃i)i∈Ik , Vq

)
> η′ for every q, then for every R ≥ R0,

and every family v = (vi)i∈Ik of real numbers, we have12

(i) there is a subset of Z with bounded gaps, made of points which are images of exactly
dk points, each of them having all its roundoff errors close to 0: for every y ∈ Z, there
exists y′ ∈ Z with |y − y′| ≤ R0 and for every i ∈ J1, dKk, a point xi such that

`̂+ v
k(

(xi)i∈J1,dKk
)

= {y′}

and for every i ∈ J1, dKk and every m ≤ k, we have

|emxi,i| ≤
1

`′
,

where emx,i is the the error made at the m-th iteration of the point x, applying the
discretizations of the maps `℘j(i) + v℘j(i).

(ii) for any y′ like in item (i), the mean of the cumulated difference starting from y′ is
almost zero (for a set A ⊂ R, we denote A− y′ the translation of A of −y′):∣∣∣∣ 1

R

∫ R

0
cδx

(
`̂+ v

k(
Zd

k)− y′ , λ̃−1
tot Leb

)
dx

∣∣∣∣ ≤ 1

`′
.

(iii) for any y′ like in item (i), the discrepancy starting from y′ is almost the same as the
one starting from 0:∣∣∣∣∣∣Disc2
R

(
`̂+ v

k(
Zd

k)− y′ , λ̃−1
tot Leb

)
− 1

12λ̃tot
− 1

12

∑
i,i′∈J1,dKk

k−1∑
m=k0(i,i′)

λ̃℘m(i)λ̃℘m(i′)

λ̃iλ̃i′

∣∣∣∣∣∣ < 1

`′
;

12The map `̂+ v is the discretization of the affine map `+ v.
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(iv) there is only a small proportion of the points of the image sets which are obtained by
discretizing points close to Z + 1/2: for every m ≤ k and every i ∈ J1, dKk, we have

D+
R

{
x ∈

(
`℘m(i) + v℘m(i)

)
(Z)

∣∣∣∣ d(x,Z +
1

2

)
<

1

3c`′

}
<

1

c`′
;

Sketch of proof of Addendum 4.7. The moral of this addendum is that if a collection of
numbers x1, . . . , xk is “almost Q-independent”, then the rotation of vector x1, . . . , xk in Tk

is “ergodic up to ε”.
In our particular case, if the collection (λ̃i)i∈Ik does not satisfy any linear dependence

relation with small integer coefficients, then for any i, i′, the image of the action of Z by
y 7→ (0k+k0−1, y) on Rk+k0/M̃i,i′Z

k+k0 is “uniformly distributed up to ε”. This implies that
the events t1, t2 and t′2 are “almost independent” and that the variance of t1 is almost equal
to the formula of the proof of Proposition 4.4.

These arguments are formalized by the following improvement of Weyl’s criterion:

Lemma 4.8 (Weyl). Let dist be a distance generating the weak-* topology on P the space
of Borel probability measures on Tn. Then, for every ε > 0, there exists a locally finite
family of affine hyperplanes Hi ⊂ Rn, such that for every η > 0, there exists M0 ∈ N, such
that for every λ ∈ Rn satisfying d(λ, Hq) > η for every q, and for every M ≥M0, we have

dist

(
1

M

M−1∑
m=0

δ̄mλ , LebRn/Zn

)
< ε,

where δ̄x is the Dirac measure of the projection of x on Rn/Zn.

For a proof of this lemma, see [Gui19]. �

5. A formula for the discrepancy of Cr-generic expanding maps

In this section we prove Theorem A, by starting with the more explicit statement The-
orem 5.1.

5.1. First formula. As a first step towards the proof of Theorem A, one gets a first
formula for the discrepancy. Recall that for any 1 ≤ r ≤ +∞, we denote Dr(S1) the set of
Cr expanding maps, and that we denote d ≥ 2 the degree of f ∈ Dr(S1).

Theorem 5.1. For any 1 ≤ r ≤ +∞, if f is a generic element of Dr(S1), then for any
k ∈ N, one has

(5.1) lim
N→+∞

N Disc
(
fkN (EN ), Lkf (Leb)

)
=

 1

12
+

1

12

∫
S1

∑
x,x′∈f−k(y)

k−1∑
m=k0(x,x′)

1

(fm)′(x)(fm)′(x′)
dy

1/2

.

Before coming to the proof, let us first make a few comments. First, note that when
f(x) = 2x, the right part of (5.1) becomes 2(k−3)/2. It gives an explicit approximation of
the asymptotics for generic maps very close to x 7→ 2x.

For y ∈ S1, let Hy be the difference between the cumulative distribution functions of
respectively:
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• The uniform measure on fkN (EN ), and
• Lkf (Leb),

seen as measures on the fundamental domain [y, y + 1] of S1. By the definition of the
discrepancy (Equation (2.1)),

(5.2) Disc
(
fkN (EN ), Lkf (Leb)

)2
=

∫ 1

0

(
Hy(x)−

(∫ 1

0
Hy

))2

dx

Lemma 5.2. There exists a constant B = B(f, k) > 0 such that for any y, one has
‖Hy‖∞ ≤ B/N .

Proof of Lemma 5.2. The global roundoff error of each point x ∈ EN satisfies∣∣∣fkN (x)− fk(x)
∣∣∣ ≤ A

N
where A =

‖f ′‖k∞
2(‖f ′‖∞ − 1)

.

Thus, for any y, one has ‖Hy‖∞ ≤ 2AN ·
d

minS1 f ′
. �

Hence, the good scale for the discrepancy Disc
(
fkN (EN ), Lkf (Leb)

)
is at most 1/N . The-

orem 5.1 ensures that this is exactly 1/N , as it shows that N Disc
(
fkN (EN ), Lkf (Leb)

)
converges towards a positive number when N goes to infinity.

The proof of Theorem 5.1 is mainly based on Proposition 4.4 (more precisely, Addendum
4.7), which treats the linear corresponding case. By applying arguments of [Gui19], one
gets the following property:

Proposition 5.3. Let r ≥ 1 and f a generic element of Dr(Tn). Then for any k ∈ N,
any ε > 0, and any N ∈ N large enough, there exists a finite collection Ip ⊂ S1 of pairwise
disjoint segments such that:
1) each segment Ip has length smaller than ε, and the union of the segments Ip has Lebesgue

measure bigger than 1− ε;
2) the left endpoint yp of each segment Ip is an element of EN ;
3) each point yp is the image of dk points xi,p ∈ EN (the maximal possible number) by fkN ,

and the roundoff error vector in time k of each point xi,p is ε-small;
4) for each p, the discrepancy distribution restricted to the segment Ip and starting from

the point yp is ε-close to the discrepancy distribution associated to the preimage tree of
yp.

In particular, point (4) ensures that on each segment [yp, yp + R/N ] ⊂ Ip such that
R ≥ R0, the mean of the map cδ is ε-close to 0, and its variance (which corresponds to the
L2 discrepancy Disc associated to the map f) is ε-close to the discrepancy Disc associated
to the preimage tree of yp.

Proof of Proposition 5.3. We simply apply the arguments of the proof of Theorem 33 of
[Gui19], by replacing Lemma 34 of [Gui19] by Addendum 4.7. In particular, this proof tells
us that Thom’s transversality theorem implies the existence of a family [y′p, zp] of segments
of length � R0N (where R0 is given by Addendum 4.7), with y′p, zp ∈ 1/NZ. For any p,
we apply Addendum 4.7 to the point y = y′p, the derivatives given by the preimage tree
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starting from y′p, and the preimage set of yp as the vector v. This gives us a point y′ = yp
(by item (i)), and allows to define the segments Ip = [yp, zp].

Point (1) comes from the proof of Theorem 33 of [Gui19] and Points (2) and (3) come
from point (i) of Addendum 4.7. For itself, point (4) comes from an application of Taylor
formula, the linear formulation of items item (ii) and item (iii) of Addendum 4.7, and the
error estimate for nonlinearities of item (iv) of Addendum 4.7 (see the proof of Theorem
33 of [Gui19] for more details). �

Proof of Theorem 5.1. In this proof we denote Hp = Hyp , where the yp are given by Propo-
sition 5.3.

Points (2) and (3) of Proposition 5.3 ensure that for p 6= p′, the cumulative distribution
functions Hp and Hp′ (seen as functions of S1) are close: reasoning as in Lemma 5.2, one
gets

(5.3) ‖Hp −Hp′‖∞ ≤ ε
B

N
.

By Taylor formula, if ε is small enough, in restriction to the interval Ip, the measure
Lkf (Leb) is close to λ̃−1

tot Leb, where λ̃tot denotes the multiplier associated to the preimage
tree at yp. Combined with point (4), this fact implies that the mean of Hp restricted to Ip
is small: ∣∣∣∣∣ 1

|Ip|

∫
Ip

Hp

∣∣∣∣∣ ≤ ε

N
.

Hence, fixing p = 0, and using the fact that all the Hp’s are close, one gets that the mean
of NH0 is small in restriction to the union of the Ip.

Then, using point (1) together with Lemma 5.2, we deduce that the mean of NH0 is
small: there is a constant C = C(f, k) > 0 such that∣∣∣∣∫

S1

H0

∣∣∣∣ ≤ εCN .

This fact, together with Equation (5.2), implies that∣∣∣∣Disc
(
fkN (EN ), Lkf (Leb)

)2 − ∫
S1

H2
0

∣∣∣∣ ≤ ε

N2
.

Using Equation (5.3) and Lemma 5.2 again, we deduce that∣∣∣∣∣Disc
(
fkN (EN ), Lkf (Leb)

)2 −∑
p

∫
Ip

H2
p

∣∣∣∣∣ ≤ ε

N2
.

We now use point (4), which ensures that for any p,∣∣∣∣∣∣N2

∫
Ip

H2
p −

 1

12
+

1

12

∫
Ip

∑
x,x′∈f−k(y)

k−1∑
m=k0(x,x′)

1

(fm)′(x)(fm)′(x′)
dy

∣∣∣∣∣∣ ≤ ε|Ip|.
Combined with the previous estimation, this gives the theorem. �
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5.2. Proof of theorem A.

Proof of Theorem A. Recall that in Theorem 5.1 we have, for any x0 that is an f r-preimage
of y for some r:

λ̃x0 = f ′(x0) · f ′(f(x0)) · · · · · f ′(f r−1(x0)) =
d

dx
(f r(x))|x=x0 = Df r(x0),

and for each x, x′ ∈ f−k(y) we have k0(x, x′) defined to be the smallest m such that
fm(x) = fm(x′).

Therefore the integral of Theorem 5.1 can also be written as

(5.4)
∫ 1

0

∑
x,x′∈f−k(y)

k−1∑
m=k0(x,x′)

1

Dfm(x) ·Dfm(x′)
dy.

Putting n+ e = k (for each pair x, x′, being the f -images not equal for n steps, then equal
for e steps), we can split this integral in sums of the form∑

n+e=k
n,e≥0

∫ 1

0

∑
z∈f−e(y)

∑
x,x′∈f−n(z)

fn−1(x)6=fn−1(x′)

k−1∑
m=n

1

Dfm(x)Dfm(x′)
dy.

When we fix a certain 0 ≤ m ≤ k − 1, the integral is∫ 1

0

∑
n≤m
e=k−n

∑
z∈f−e(y)

∑
x,x′∈f−n(z)

fn−1(x)6=fn−1(x′)

1

Dfm(x)Dfm(x′)
dy

=

∫ 1

0

∑
w∈f−(k−m)(y)

∑
x,x′∈f−m(w)

1

Dfm(x)Dfm(x′)
dy

as it could be also deduced directly from Equation (5.4) fixing m.
Since y = fk−m(w) and therefore dy = Dfk−m(w) dw, dividing the domain into the

intervals where fk−m is injective, and then putting again everything together, we can
change variable and obtain

(5.5)
∫ 1

0

∑
x,x′∈f−m(w)

Dfk−m(w)

Dfm(x)Dfm(x′)
dw.

Let us consider now the map f×f : [0, 1]2 → [0, 1]2, and let Lf×f be its transfer operator.
Given an observable H(w,w′) : [0, 1] → R, the m-th power of Lf×f can be computed on
H as (

Lmf×fH
)
(w,w′) =

∑
fm(x)=w
fm(x′)=w′

H(x, x′)

Dfm(x)Dfm(x′)
,

considering that the Jacobian determinant of (f×f)m at (x, x′) is Dfm(x)Dfm(x′). Notice
also that if H(x, x′) = h1(x) · h2(x′) we have that(

Lmf×fH
)
(w,w′) = (Lmf h1)(w) · (Lmf h2)(w′).
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Therefore, the integral of (5.5) is also the integral on the diagonal

∆ = {(w,w) : w ∈ [0, 1]}

of Lmf×fH for any observable H such that H(x, x′) = Dfk−m(w) whenever fm(x) = w =

fm(x′). In our case can take for instance

H(x, x′) =
√
Dfk−m(fmx) ·Dfk−m(fmx′),

and in the end the integral amounts to the integral Lmf×f (H) along ∆.
Taking h(w) =

√
Dfk−m(fmw) we have H(w,w′) = h(w) · h(w′), therefore∫ 1

0

∑
x,x′∈f−m(w)

Dfk−m(w)

Dfm(x)Dfm(x′)
dw =

∫ 1

0
(Lmf×fH)(w,w) dw

=

∫ 1

0
(Lmf h)(w) (Lmf h)(w) dw

=

∫ 1

0
(Lmf h)(w)2 dw.

Let g(x) =
√
Dfk−m(x), so that h(x) = g(fm(x)) for short. Let us recall the formula

for the transfer operator applied to g(fm(x)):

(Lmf h)(w) =
∑

x∈f−m(w)

g(fm(x))

Dfm(x)

=
∑

x∈f−m(w)

g(w)

Dfm(x)

=g(w)
∑

x∈f−m(w)

1

Dfm(x)

=g(w) (Lf1)(w).

Therefore, our integral can be written as∫ 1

0
(Lmf h)(w)2 dw =

∫ 1

0

[
g(w) (Lmf 1)(w)

]2
dw

=

∫ 1

0
Dfk−m(w) (Lmf 1)(w)2 dw

=
〈
Dfk−m, (Lmf 1)2

〉
.

Taking the sum over m = 0, 1, 2, . . . , k − 1, we have proved Theorem A. �

Remark 5.4. Stating from Equation (5.5), we can evaluate the case where the sum is
restricted to x = x′. Changing variable w = fm(x) have∫ 1

0

∑
x∈f−m(w)

Dfk−m(w)

[Dfm(x)]2
dw =

∫ 1

0

Dfk−m(fm(x))

[Dfm(x)]2
Dfm(x) dx
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=

∫ 1

0

Dfk−m(fm(x))

Dfm(x)
dx

=

∫ 1

0

Dfk(x)

[Dfm(x)]2
dx.
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