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Abstract

The origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis,

in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses

and was already present in the last eukaryotic common ancestor (LECA). However, since

RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and wide-

spread phenomena, the origin of defensive RNAi should have occurred in parallel with its

regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evo-

lutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic

antisense RNA gene regulation mechanism leads to the formation of RNAi through con-

structive neutral evolution (CNE). We argue that RNAi was already present in the ancestor

of LECA before the need for a new defense system arose and that its presence helped to

shape eukaryotic genomic architecture and stability.

Introduction

“The immediate utility of an organic structure often says nothing at all about the reason for its

being.”—Richard Lewontin and Stephen Jay Gould [1]

The term RNA interference (RNAi) refers to a range of molecular processes that use a small

RNA fragment as a guide to target specific nucleic acid sequences and regulate gene expression

[2]. In animals, these processes are grouped into 3 major categories, depending on the origin

of the small RNA: the microRNA (miRNA) pathway, the small interfering RNA (siRNA) path-

way, and the Piwi-interacting RNA (piRNA) pathway [3]. However, these categories are often

blurred, owing to a high degree of cross-talk between the 3 pathways [4–6]. Of the categories

of RNAi processes, it is generally agreed that the siRNA pathway is the most ancient [7,8]. The

prevailing view is that RNAi evolved as a defense response against transposable elements (TEs)

and RNA viruses in eukaryotes [2,7–9]. An alternative view has been proposed, in which the

basic RNAi machinery may have evolved to favor heterochromatin formation and centromeric

assembly in eukaryotic chromosomes [10]. However, despite the extensive conservation of

these chromosomal functions among eukaryotes, the defense-based hypothesis is still favored

by most [11].
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Integrating a range of viewpoints is becoming increasingly viewed as necessary to under-

stand complex biological phenomena [12,13]. Although the siRNA pathway often has a role in

defense, it cannot be reduced conceptually to performing only that function. Viewing RNAi sys-

tems as having roles in both defense and regulation can reveal new avenues through which to

understand their evolutionary origins. Furthermore, considering the evolutionary genesis of

defense-related processes as mechanisms for regulation can lead to substantially different inter-

pretations and distinct testable hypotheses [14]. In this Essay, by combining perspectives from

different fields of research, we propose a new nonadaptive hypothesis on the origin of RNAi

that helps to explain the connections between regulatory and defense functions, and supports

the idea that the presence of RNAi in the last eukaryotic common ancestor (LECA) may have

been the cause, not a consequence, of the invasion of early eukaryotes by TEs [15]. Central to

our hypothesis is that RNAi originated from an ancient and widespread prokaryotic RNA regu-

latory system by qualitative system drift through constructive neutral evolution (CNE). Our

hypothesis is based on 2 main pillars: first, that process homology, rather than gene or protein

homology, explains how different molecular machineries produced by qualitative system drift

in different organisms deliver the same biological process [16–18] and second, that CNE theory,

which explains how preexisting “presuppressive” activities on deleterious mutations (e.g., that

buffer the harm to the cell without removing the cause) may lead to an irreversible ratchet-like

cascade of events that give rise to biological complexity [19–23] (Fig 1).

We begin by discussing some shortcomings of the defense-based hypothesis. To avoid con-

fusion, we refer to the RNAi “defensive role” as its direct effect on viruses and TEs, and to the

RNAi “regulatory role” as its general activities on the host genome. However, it is worth noting

that a defensive role may be a mixture of different virus-specific or TE-specific processes

depending on the species, whereas the regulatory role may also have important immunological

functions, such as those related with tissue repair or inflammation. This section will highlight

the close interaction between genomic defense and genomic regulation.

Shortcomings of the defense-based hypothesis

Based on phylogenetic evidence, it is generally accepted that LECA had a functional RNAi

pathway composed of the core components: Dicer, an RNase III-like endonuclease that

Fig 1. Evolution from prokaryotic RNA-mediated gene regulation to eukaryotic RNAi. We propose that the evolutionary journey from prokaryotic RNA-

mediated gene regulation to eukaryotic RNAi comprised 2 distinct evolutionary process. The first involved changes in the molecular machinery without

changes in the final outcomes of the process (qualitative system drift). The second involved a ratcheting cascade caused by the suppressive role of RNAi on the

deleterious effects of TEs, as postulated by CNE. asRNA, antisense RNA; CNE, constructive neutral evolution; LECA, last common eukaryotic ancestor; RNAi,

RNA interference; sRNA, small RNA; TE, transposable element.

https://doi.org/10.1371/journal.pbio.3001715.g001
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processes double-stranded RNAs (dsRNAs); Argonaute and PIWI, 2 classes of the same family

of endonucleases that use sRNAs as guides; and the RNA-dependent RNA polymerase

(RdRP), which catalyzes the synthesis of the dsRNA [2,7,8]. The defense-based hypothesis pro-

poses that this ancestral RNAi system was primarily a form of defense against viruses and

transposons, rather than a regulatory process. We assert that there are 4 main shortcomings

on this defense-centered view, as discussed below.

Shortcoming 1. As several unicellular eukaryotes have lost the ancestral RNAi system, it

has been proposed that it must have been dispensable for LECA. This would be incompatible

with RNAi performing essential functions in LECA, including defense [7,8].

If RNAi is dispensable, why would a defensive function be more likely than a regulatory

one? Furthermore, dispensability also casts questions on whether RNAi arose through an

“adaptive” evolutionary process or not. Regulatory networks in eukaryotes are often redundant

and prone to experience shifts [16,24] and may have originated mainly by neutral evolution

[24,25]. In general, only a minority of genes are deemed essential under laboratory conditions

[26]. Therefore, it is perhaps not surprising that after almost 2 billion years of evolution since

LECA, several unicellular eukaryotes have dispensed with RNAi. In the case of the yeast Sac-
charomyces cerevisiae, one explanation for the loss of RNAi is that the evolution of pointed

centromeres (centromeres determined by a genetic signature) made RNAi-dependent centro-

mere formation obsolete [10,27]. Despite the presence of retrotransposons in the genome of S.

cerevisiae [28], this event may have enabled loss of the RNAi core proteins. That said, the loss

of RNAi in some eukaryotes does not necessarily mean that it was nonessential for LECA or its

ancestors.

Shortcoming 2. Plasmids are generally considered parasitic elements [29,30]. Therefore,

the fact that prokaryotic Argonaute (pAgo) can control their presence and replication suggests

a defense-related function [2,31].

Despite some questions about whether plasmids should be thought of as “parasites” per se

[32], pAgo can clearly decrease plasmid transformation efficiency, modify plasmid content,

and protect against phages [33,34]. However, this primarily defense-based view of the role of

pAgo has been questioned as putative regulatory roles have been uncovered in a range of bac-

teria [34]. For example, Synechoccus elongatus pAgo shows no preference for targeting plasmid

versus chromosomal DNA, has no effect on plasmid maintenance, and may instead participate

in the process of chromosome replication, targeting the origin and terminus of replication

[35]. The principal role of pAgo in Thermus thermophilus also seems to be related to DNA rep-

lication, helping to disentangle the concatenated circular chromosomes in the absence of topo-

isomerases [36]. Furthermore, in Clostridium butyricum, pAgo has a defensive role against

phages and plasmids, yet also targets multicopy genetic elements (ribosomal DNA operons

and transposons), sites of double-strand breaks, and the region of the replication terminus,

displaying a broad variety of genomic regulatory activities [33]. The fact that most pAgo

homologs are predicted to be catalytically inactive [31] may be associated with their roles in

the recruitment of a range of different binding partners through site-specific genome targeting

by pAgo [37]. In support of this idea, it is worth noting that several eukaryotic Argonaute

(eAgo) activities during transcriptional and posttranscriptional gene silencing are independent

from its slicer action and that different eAgo proteins are enzymatically inactive [11,38–41]. In

addition, modifying the copy number of plasmids in the cell is not just a defense process but

also a form of regulation. Rapid coevolution between bacteria and hosts can depend on the

modulation of plasmid copy numbers to allow bacteria to respond more quickly to environ-

mental changes [42]. Finally, there is a positive correlation between the presence of pAgo and

the number of TEs [37], suggesting that that pAgo may actually favor the colonization of pro-

karyotes by TEs through reducing their fitness cost.
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Shortcoming 3. Regulatory functions of RNAi specifically rely on the presence of miR-

NAs that are likely to have originated independently after the divergence of animals and plants.

Therefore, it is likely that the siRNA pathway, which is mainly dependent on RdRP, would

originally have had a defense-based function [7,8].

The common view on the origin of miRNAs has been recently challenged and may actually

predate the plant–animal divergence [43–45], and the regulatory role of siRNAs could also be

older than we think. Numerous studies support a regulatory role of siRNAs during develop-

ment in fruit flies, mice, nematodes, and plants [46–56]. Furthermore, the extent of regulatory

roles for RNAi may be underestimated given that in several basal metazoans, endogenous siR-

NAs frequently map to coding genes [5,57,58]. In many unicellular fungi, the siRNA pathway

regulates the expression of endogenous genes, participates in stress responses, and is important

in the formation of heterochromatin (reviewed in [59]). For example, in Schizosaccharomyces
pombe, the primary role of the siRNA pathway is the formation of heterochromatin for centro-

mere determination and gene regulation, whereas TEs are mainly eliminated through an

RNAi-independent process [60,61]. In 2 phylogenetically distant protists [62], the canonical

siRNA pathway regulates phenotypic variation, through posttranscriptional gene silencing in

Giardia lamblia [63] and transcriptional gene silencing in Paramecium tetraurelia [64,65]. In

Paramecium bursaria, the siRNA pathway is also important for the maintenance of a symbiotic

relationship with the green algae Chlorella, through a process called RNA collision, which may

have profound implications for the evolution of endosymbiosis, predatory behavior, and

avoidance of cannibalism in early eukaryotes [66]. In the ciliate Oxytricha trifallax, a special

Dicer-dependent siRNA pathway has a pivotal role in dosage compensation and the mainte-

nance of chromosome copy number [67]. In ciliates such as Paramecium and Tetrahymena
there is an additional, ciliate-specific, RNAi pathway that physically removes TEs during the

formation of the macronucleus [68]. However, this activity is not strictly associated with the

elimination of active TEs, as the system targets all forms of repetitive DNA and, in some cases,

even genes [68–70]. Similarly, in the nematode Caenorhabditis elegans, WAGO-dependent

22G-siRNAs indiscriminately silence TEs, pseudogenes, certain genes, and other aberrant

transcripts [71]. Curiously, in the ciliates Oxytricha and Stylonychia, the RNAi system uses a

special group of 27-nucleotide-long small RNAs to select and protect the coding regions of the

genome during the formation of the macronucleus [69,72], reminiscent of Argonaute CSR-

1-dependent 22G-siRNAs in C. elegans that indirectly favor the holocentromere organization

by targeting euchromatin [73,74]. Thus, many RNAi systems are apparently only indirectly

involved in the suppression of parasitic elements and instead have a primary role in the main-

tenance of genome architecture and stability, an activity important for phenotypic plasticity

and evolution in protists [15,75]. While a role for RNAi in repressing parasitic elements is not

in dispute, we stress that the activities of these systems should not be viewed simply as a

defense system that has evolved to discern elements of self from nonself. Indeed, sometimes

the difference between genome defense and gene regulation is purely semantic, especially in

the case of domesticated TEs [76–78].

Shortcoming 4. The patterns of RNAi-mediated gene regulation are so diversified and

poorly conserved among eukaryotes that they are probably lineage-specific. By contrast, the

defense function of RNAi against TEs and viruses is broadly conserved and constitutes strong

evidence to infer its evolutionary origin [2,7,8,10,57].

Identifying the most conserved role of a given process among a range of taxa may suggest

the most parsimonious hypothesis about its origin and function, but not necessarily the correct

one, as can occur with exaptation, when a trait’s function switches through evolution [79].

Moreover, the proposed antiviral defensive role of RNAi seems poorly conserved across

taxa. Recent studies failed to find evidence of an antiviral effect of RNAi in several basal
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metazoans, suggesting that it was potentially absent in the common ancestor of earthworms,

sponges, and sea anemones and might be a later acquisition in metazoa [80]. Interestingly, the

most conserved role of the RNAi system among eukaryotes is in the control of heterochroma-

tin formation, modeling genome architecture, maintaining genomic stability, and enabling

centromere determination [10,11,15,27,54,73,81–88].

Could the loss of RNAi in several unicellular eukaryotes relate to their small genome size

and low complexity, meaning that the RNAi-dependent mechanisms were redundant [7]? In

the next section, we look at how this might also have been the case with LECA.

Transposable elements and the last eukaryotic common ancestor

Compared with prokaryotic genomes, the genomes of eukaryotes contain many more TEs

[88,89]. Therefore, the idea that eukaryotes experienced a massive TE invasion and developed

RNAi as a defense process to control them is appealing [15,88,90,91]. According to the

defense-based hypothesis, this evolutionary event should have occurred in the ancestor of

LECA, as RNAi was likely already present in LECA [7,8]. However, given that the hypothesis

also notes that RNAi is dispensable in LECA and other unicellular organisms [7,8], by defini-

tion any defensive role cannot have been essential for survival. We may resolve this shortcom-

ing by assuming that RNAi was present and functional in LECA but become fundamental only

later in evolution. However, this assumption raises some questions. For example, why should

the origin of RNAi have been “adaptive” if it was dispensable at the beginning, and why did

TEs proliferate despite the presence of RNAi? In this section, we aim to answer these questions

and explore the causal connection between RNAi and TEs.

An increase in genome size in eukaryotes with a small effective population size is predicted

by the laws of population genetics [25,88]. Decreasing effective population size, and thus

decreasing the power of natural selection to maintain an optimized genome, renders genetic

drift the predominant evolutionary process driving genome evolution. Known as a “drift bar-

rier,” this phenomenon generally results in a performance reduction of biological traits [92].

For eukaryotes with a small effective population size, unless there are constraints that favor the

selection for small genomes [93,94], it is not possible to maintain the same low genome size

found in ancestors with larger effective population sizes [25,88]. For this reason, there is a

trend toward accumulation of TEs in eukaryotic genomes (especially in metazoans). There is

also a concomitant increase in the number of introns, pseudogenes, and repetitive elements

[89,95]. However, this trend is likely the result of an “insertion bias” (i.e., a trend toward accu-

mulation of genomic sequences like pseudogenes and TEs) in eukaryotes, whereas the effect of

genetic drift in prokaryotes is a reduction in genome size [96]. In summary, the amount of TEs

integrated into a genome is the result of a combination of natural selection, genetic drift, and

insertion and/or deletion biases [96].

There is a threshold in genome size (and an inversely correlated effective population size)

that allows TE persistence. Near or below this threshold, TEs struggle to maintain themselves

in a population [88,97]. Unfortunately, determining whether LECA had a small or large popu-

lation size is problematic [98]. Based on comparative genome analyses of several eukaryotic

supergroups, we can infer that LECA’s genome complexity should have been more or less

comparable with that of an extant free-living unicellular eukaryote [99], which lies near or

below this TE persistence threshold [88,97]. Therefore, LECA should not have struggled with

TEs and, consequently, should not have been subjected to selective pressure to evolve or main-

tain a new defensive system. This is exemplified by unicellular eukaryotes that lack RNAi [7].

It is possible that the effective population size of LECA or its ancestor was smaller than

anticipated. Or that physiological conditions changed such that LECA needed to evolve a
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defensive RNAi system. For example, selfish elements such as plasmids in prokaryotes are

often self-regulated. For their maintenance, it is important to support a rate of replication that

does not compromise survival of the host but is also not so low as to risk extinction [100,101].

For the same reasons, prokaryotic TEs are often self-regulated [101–103]. Whereas population

genetics studies predict that self-regulated TEs are likely to emerge in bacteria, conditions in

organisms with relatively free recombination, such as LECA, are more restrictive [104]. In dip-

loid eukaryotes, only dominant lethal or sterile mutations associated with transposition count

as a driving force for selection of a repressor [104]. These conditions may have favored the evo-

lution of RNAi for defense in the ancestor of LECA. Although we cannot formally exclude this

possibility, we think it is unlikely for 4 reasons. First, ectopic recombination and purifying

selection are the main factors in controlling TEs [15,105,106] and should have maintained TE

copy number in the ancestor of LECA. By comparison, RNAi-deficient fungi of the Cryptococ-

cus genus have shorter centromeres and a concomitant loss of full-length retroelements [82].

Second, tolerance toward TEs may be selected in the absence of RNAi silencing, as was

reported for the case of p-elements (a class of TEs) in Drosophila [107]. Third, if the ancestor

of LECA had no defense against selfish elements or RNA viruses, it is not clear how it survived

in a bacteria-dominated world [98,108] before evolving an entirely new and complex molecu-

lar process. And fourth, although not as common as in prokaryotes, the conditions for the

selection of self-regulated TE can also occur in eukaryotes [104,109,110]. In short, the ancestor

of LECA did not need to evolve a new molecular process to control TEs; natural selection,

ectopic recombination, molecular machineries inherited from prokaryotes, and the presence

of self-regulated TEs should have been sufficient.

As there was potentially no strong selective pressure to maintain a new defensive system

(i.e., it was dispensable) [7], it is possible that the RNAi defense function, and possibly even the

regulatory one, may have originated through neutral events. For example, the presence of

RNAi would likely have reduced ectopic recombination [15,105], favoring TE integrity and

accumulation in centromeric regions that are protected by heterochromatin-mediated silenc-

ing [15,105,106,111]. It would also have attenuated the deleterious effect of TEs, increasing the

probability of their fixation in the population [112]. Therefore, rather than a defense against

TE invasion, RNAi may actually be one of the causes of TE proliferation in eukaryotes [15].

The evolution of RNAi through a CNE lens

Is it more likely that RNAi evolved as a defense against parasitic genetic elements at the cost of

disrupting or altering gene regulation, or as a multifunctional process that can regulate gene

expression, favor heterochromatin formation, and inhibit TEs and viruses? When addressing

this fundamental question, one should bear in mind that biological complexity can emerge by

neutral events and may become essential even if it is useless [19,22,113–116]; that a specific

function can originate from exaptation of a trait that was selected for a different function [79];

and that the characteristics of most biological entities may produce important physiological

and evolutionary by-products [1]. Furthermore, macromolecules are also dynamically inter-

connected inside the crowded cellular environment [21], with an incredible number of possi-

ble interactions and activities, most of which will have no effect on fitness [19,115]. This is

what Arlin Stoltzfus calls “excess capacity” [19,20]. Excess capacity suggests that it is impossible

to prestate all the possible activities of a given biological entity (such as an enzyme), as the

nature and number of these activities are heavily dependent on the specific history and context

of the entity in question [117]. Excess capacity is key to understanding how neutral evolution

can build cellular complexity, as described by the CNE theory [19], which posits that poten-

tially dangerous effects, such as a deleterious mutation, can be rendered innocuous by
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preexisting conditions owing to the excess capacity of a protein or a biological structure,

thereby allowing the mutation to accumulate and leading to an irreversible cascade of events

[21] (Fig 2).

In recent years, CNE has been used to explain the evolution of several molecular processes,

biological structures and genomic features, including scrambled genes in ciliates, RNA editing,

multimeric protein formation, the spliceosome, and the ribosome [19,21–23,118–121]. For

example, CNE can explain the presence of cryptogenes in the mitochondrial genome of Trypa-
nosoma. In the production of a functional protein, the mRNA of these cryptogenes undergoes

substantial RNA editing [122]. It is unlikely that this molecular process could have evolved to

correct dysfunctional genetic sequences [19,119]. Therefore, the predisposition for RNA edit-

ing must have been present in the cell as excess capacity before the first deletion appeared.

With a process that can tolerate and fix deleterious mutations, there is much less purifying

selection acting on the genome, producing a ratchet-like cascade of events [21]. RNA editing

was therefore not the solution, but the cause of cryptogenes [19,119].

CNE theory can be applied to the RNAi system [21]. If the ancestor of LECA experienced

an invasion of transposons and RNA viruses, it likely could not have survived until the

Fig 2. General examples of CNE. (a) Multifunctionality evolution through CNE. (1) α is a generic noncoding RNA

that mediates RNA silencing on its target mRNA (red), and β is an enzyme that participates in cellular metabolism. (2)

By chance, α and β may interact in the cellular environment creating an ephemeral complex. (3) Excess capacity in β
results in the stabilization of the α–mRNA complex and then exerts a suppressive effect on mutations in α, which are

now no longer deleterious [19,114]. (4) At this stage, α is reliant on interaction with β to exert its activity, while β has

gained a new function in becoming a chaperone for α. (b) Increasing molecular complexity by CNE. (1) Mutations

that inhibit the catalytic function of β (black arrow) or compromise α–β interactions (red arrow) are dangerous for the

organism and would be eliminated by purifying selection. (2) In the case of gene duplication of β (represented by β1

and β2), there is now an excess capacity in the system that can exert a presuppressive activity [19,113]. (3) Mutations

that compromise the stability of α–β interactions in β1 and the enzymatic activity in β2 are no longer deleterious since

that function can be carried out by the other protein. (4) β1 and β2 can now evolve as 2 different proteins, without

adaptive evolution. CNE, constructive neutral evolution.

https://doi.org/10.1371/journal.pbio.3001715.g002
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evolution of an entire new molecular process occurred. Therefore, the ancestor of LECA must

already have had systems in place to control transposons and viruses [10], and the presence of an

RNAi system that promoted tolerance toward TEs and RNA viruses, by reducing their fitness cost

[112], may actually be the cause, rather than a consequence, of the transposon invasion [15].

In the rest of this section, we propose a step-by-step route by which molecular system drift

from prokaryotic RNA antisense regulation could have led to eukaryotic RNAi through CNE,

and how this affected genome evolution.

The origins of RNAi

Although it is generally assumed that dsRNA is a hallmark of nonself, antisense transcription

and dsRNAs are widespread in prokaryotes [123–126]. As such, dsRNA cannot be associated

exclusively with nonself, and proteins or processes acting on dsRNAs are not necessarily enti-

ties responding to a foreign pathogen; they may alternatively carry out functions of physiologi-

cal importance for the host, and/or respond to improper transcription. Why then is the

accumulation of dsRNA sometimes perceived as a pathogen-associated molecular pattern in

prokaryotes and eukaryotes? One possible answer comes from the discontinuity theory of

immunity [127]. Biological systems react to sudden abnormal changes in their intracellular

and extracellular context [127]. Consequently, when viral replication produces a rapid increase

in the amount of dsRNA, it activates an immune response. This phenomenon can be under-

stood as the response to an anomaly, independently of its origin (i.e., self or nonself). The

focus here is on the rapid accumulation of dsRNAs or RNAs without proper chemical second-

ary modification, not on the source that produces them.

Long before the discovery of RNAi, antisense RNA regulation was considered an ancient

and widespread form of gene regulation in prokaryotes [100,101,128]. These antisense RNAs

are classified as cis-acting antisense RNAs (asRNAs) when they are produced close to the gene

or the structure that they regulate (they are natural antisense transcripts) and when they work

with perfect complementarity or as trans-acting small RNAs (sRNAs) when they do not need

perfect complementarity and can work in trans, often in association with chaperones that

increase the affinity for their target [123,124,129]. This form of regulation promotes the degra-

dation of dsRNA by the action of RNase III (a dsRNA-specific endonuclease) and the produc-

tion of small dsRNAs [130], or by blocking or inducing translation [131]. This kind of RNA

regulation controls a wide range of activities inside cells, such as riboswitch elements, toxin–

antitoxin modules, mobility, DNA repair, metabolism, gene regulation, cell shape, and biofilm

formation [101,123–125,129,132]. It is also used by plasmids, TEs, and phages for self-regula-

tion [100,101,128]. It has been calculated that the action of RNase III alone may regulate

approximately 10% of protein expression levels in Escherichia coli [133]. Thus, the use of

dsRNA may well be an ancestral regulatory process.

Qualitative system drift. Despite its analogies with RNAi, it was assumed that it is

unlikely that the siRNA pathway could have evolved from the prokaryotic antisense regulatory

process owing to the lack of homology between the protein machineries [8]. However, a lack

of homology between the components of 2 processes does not necessary imply a lack of homol-

ogy between the 2 processes themselves [16,17]. One notable example is the phenomenon of

prokaryotic cell division by binary fission. Several cellular processes and proteins participate in

cytokinesis, among them the tubulin homolog FtsZ has a crucial role [134]. Mitochondria

(which are organelles derived from α-proteobacteria endosymbionts) in some protists retain

an FtsZ homolog, together with the eukaryotic dynamin family protein Drp1, whereas mito-

chondria in animals, land plants and fungi rely solely on Drp1 [134–136]. As such, during evo-

lution there has been a shift in the molecular effector for binary fission (Fig 3).
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Selection acts at the level of the phenotype, not the genotype, and these 2 hierarchical levels

are evolutionarily dissociable [16,17,137–139]. Therefore, molecular processes can undergo

dramatic shifts in their qualitative (and quantitative) composition, without necessarily altering

the phenotypic outcome, an event also predicted by population genetic studies

[24,137,138,140,141]. Various names have been coined to address this phenomenon, the most

common terminologies being “developmental system drift” [142,143], “phenogenetic drift”

[137], or “qualitative and quantitative system drift” [138,140].

Qualitative system drift through CNE. How may such qualitative system drift have

occurred to move from prokaryotic RNA regulation to eukaryotic RNAi? Although it is impos-

sible to know the correct answer, we can hypothesize on the basis of studies of gene regulation

in extant organisms. For example, in organisms that lack an RdRp, such as fruit flies and mice,

regulatory siRNA can originate from naturally occurring dsRNAs [49,51,52]. Consequently,

the generation of the first proto-siRNAs may have derived from the degradation of naturally

occurring dsRNAs. In prokaryotes, pervasive transcription and gene regulation by asRNA

result in the accumulation of short dsRNAs through the activity of RNAse III [123,130]. In the

overcrowded cellular milieu, these short RNAs would be likely to interact with a range of com-

ponents in stable and unstable ways [21]. One of these components could have been a pAgo,

which are present in about one-third of sequenced archaeal genomes and in 10% of bacterial

genomes [2,31] and represent a class of extremely versatile proteins that can bind 50-phosphor-

lylated short RNAs and DNAs or 50-hydroxyl RNAs and use them to target both DNA or RNA

[144–146].

In some eukaryotes ancestors of LECA, the interaction between Argonaute and these short

RNAs derived from the degradation of dsRNAs may have led to an amplification of the inter-

ference phenomenon carried out by asRNAs or sRNAs (Fig 4A). During this stage, this excess

capacity was likely to be redundant in the best case scenario, and detrimental for the cell in the

worst. However, intracellular processes do not work in isolation [21,147,148], hence, gene

down-regulation and related phenomena of dosage compensation are likely to arise [147].

Therefore, the amplification of the signal due to Argonaute might have induced the down-reg-

ulation of the sRNAs (Fig 4B). At this point, mutations that permanently reduce the expression

of these genes are no longer dangerous, and they become more likely to appear and get fixed in

Fig 3. An example of qualitative system drift during binary fission. Mitochondria in the protistDictyostelium, retain

the bacterial protein FtsZ together with the eukaryotic Drp1, whereas in mitochondria in higher eukaryotes, only Drp1

is present, indicating a shift in the molecular effector for binary fission during evolution.

https://doi.org/10.1371/journal.pbio.3001715.g003
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a population. Therefore, the action of Argonaute on the interference signal becomes essential

to maintain an appropriate level of regulation and can no longer be reverted (Fig 4C). In addi-

tion, mutations in the RNA loop that affect the functionality of the sRNA are likely to accumu-

late, as the silencing effect is now mediated by Argonaute. For example, in some cases,

translational repression induced by sRNAs is sufficient for gene silencing [149], and the sRNA

decay can be mediated by RNase III producing short RNAs [150]. The interaction of Argo-

naute with these short RNAs can amplify the interference signal and, consequently, decrease

the importance of translational repression. This would lead to the accumulation of mutations

in the sequence of the sRNA involved in inhibiting translation, as now they are no more harm-

ful, making the presence of Argonaute essential and irreversible. These are some examples of

suppressive effects on deleterious mutations and the consequent ratcheting cascade that char-

acterize CNE [19,21,119,121]. The evolution of Dicer, and the acquisition of RdRp respec-

tively, may have further expanded the specificity and possibility of the ancestral RNAi system.

For example, with RdRp, it is possible to produce dsRNA that acts directly on mRNAs that

must be controlled without natural antisense transcripts, as observed for the regulated pheno-

typic variation in the protists G. lamblia and P. tetraurelia [63–65].

Through such a transition, the eukaryotic RNAi system would have been able to take over

the physiological effects of prokaryotic interference, including the ability to control TE and

virus replication. In this scenario, no specific function was selected. Instead, qualitative system

drift occurred that changed the molecular components and processes without changing the

Fig 4. Hypothetical transition from bacterial asRNA gene regulation to eukaryotic RNAi due to CNE. (a) asRNAs (not in figure) or sRNAs

may lead to the production of short dsRNAs. (b) Prior to degradation, the short dsRNAs may interact with cellular proteins such as Ago and

become guide RNAs. The slicer activity of Ago may cause an amplification of the interference effect that triggers the down-regulation of the

asRNA or sRNA by dosage compensation. (c) Mutations that reduce the expression or functionality of the asRNA or sRNA are now likely to

appear and accumulate owing to the suppressive effect of Ago, causing irreversibility to this process. Ago, Argonaute; asRNA, antisense RNA;

CNE, constructive neutral evolution; dsRNA, double-stranded RNA; RNAi, RNA interference; sRNA, small RNA.

https://doi.org/10.1371/journal.pbio.3001715.g004
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regulatory outcomes of the process. This transition may have been neutral, but the long-term

evolutionary consequences would not have been. As with all processes originated by CNE,

RNAi systems forced eukaryotes on an irreversible evolutionary trajectory that has shaped

their genome architecture ever since [15,82] (Fig 1) and engendered a tight relationship

between genome regulation and genome defense.

Link between sRNAs and RNAi. The connection between sRNAs in prokaryotes and

organelles on the one hand, and eukaryotic RNAi on the other, may provide support for this

hypothesis. In the thale cress Arabidopsis thaliana, 25% of the transfer RNA (tRNA)-derived

sRNAs that immunoprecipitate with Argonaute-1 come from plastid tRNAs, suggesting the

presence of a retrograde signaling pathway [151]. In humans, a mitochondrial sRNA derived

from the polycistronic mitochondrial RNA can interact with Argonaute-2 and possibly target

the 30-UTR region of CFLAR [152]. The intracellular pathogenMycobacterium marinum pro-

duces an sRNA where the secondary structure is processed like an miRNA by the host cells,

and which interacts with the RNA-induced silencing complex [153]. Notably, bacterial sRNAs

and asRNAs are characterized by a complex secondary structure with several loops [100,101].

These structures may have been the source of small dsRNAs for a proto-RNAi pathway, in

which siRNAs or miRNA-like RNAs were produced using a similar mechanism to Drosophila,

where hairpin RNAs are processed to produce siRNAs [50].

Another example of the connection between prokaryotic sRNA and RNAi is given by

small nucleolar RNAs (snoRNAs). snoRNAs are a widespread class of eukaryotic small RNA

with an archaeal origin and can carry out a broad variety of functions, including posttran-

scriptional RNA modification [154–156]. Owing to the fact that some snoRNAs can interact

with the core proteins of the RNAi system and give rise to miRNA-like RNAs in animals,

plants, protists, and yeasts, they have been proposed to have an ancient link with RNAi [154,

155]. Interestingly, in Drosophila melanogaster, there is evidence of cross-talk between the

miRNA and siRNA pathways during biogenesis of snoRNA-derived small RNAs [154]. Fur-

thermore, another class of ancient small RNAs has been recently proposed as a link between

prokaryotic antisense RNA regulation and eukaryotic RNAi: the tRNA-derived sRNAs

[157,158]. The evolutionary model proposed in this Essay is also compatible with this new

hypothesis.

Crucially, as an evolutionary process, molecular system drift of RNAi is still in action. For

example, in budding yeast (which did not lose its RNAi system), Dicer is replaced by another

enzyme that evolved from the RNAse III RNT1 (confusingly named DCR1) [159]. Other simi-

lar examples are the noncanonical Dicer of the protist Entamoeba hystolytica [160] and Dicer-

independent siRNAs in the fungus Neurospora crassa [161].

Conclusions

Gene regulation based on noncoding RNA is ancient and might even precede the origin of cel-

lular life [2,162,163]. It was proposed by François Jacob and Jacques Monod decades before it

could be conclusively demonstrated [164] and subsequently became well studied during the

1980s [101]. The discovery of eukaryotic RNAi at the end of the 1990s represented a biotech-

nological revolution [165]. However, it did not revolutionize our understanding of gene regu-

lation or genomic defense since it represented only a variant (albeit a new and fascinating one)

of an ancient and successful regulatory process: the use of antisense RNAs to regulate gene

expression and parasitic element replication. Importantly, RNAi is not the only process that

straddles regulatory and defensive roles; DNA methylation shows the same characteristic

[15,166]. Indeed, it has been debated whether DNA methylation evolved as a genome defense

process or as a regulatory process in invertebrates [167]. Another example is the CRISPR/Cas

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001715 June 29, 2022 11 / 20

https://doi.org/10.1371/journal.pbio.3001715


system in prokaryotes, which is generally considered a defense system but can have also

important genome repair and regulatory functions [168].

These examples highlight the complexity of biological processes and the importance of

combining different perspectives to apply the best research methodology to understand them

[12,13,114].

Eukaryotic regulatory processes have indeed complex architectures, to the point that they

have been described as “baroque structures” [24] or “Rube Goldberg machines” in comparison

with the prokaryotic ones [169]. To understand this complexity, we do not necessarily need to

search for adaptive explanations as the effect of neutral evolution can be sufficient

[19,24,25,113,114]. On the same basis, regardless of any selective advantage, we should also

expect a progressive increase in complexity for antisense RNA regulation in eukaryotes com-

pared with prokaryotes, with the evolution of new regulatory elements and protein duplication

and subfunctionalization (Fig 2B). In support of this idea, it is difficult to envisage an adaptive

explanation for the origins of the 19 different functional Argonaute proteins reported by [170]

in C. elegans, an organism composed of 959 cells (1,031 in males) and with a genome size 30

times smaller than that of humans.

In this Essay, we propose a step-by-step route which explains “how” RNAi could have

emerged, without adaptive driving forces, from the molecular machineries present in the

ancestor of the LECA through a qualitative system drift caused by CNE. We expect that our

model can help to understand eukaryotic genome architecture evolution and the relationship

between genome regulation and genome defense.
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