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____________________________________________________________________________ 26 

SUBTITLE 27 

Humans and their tumors are not aseptic, and the multispecies nature of cancer modulates clinical 28 

care and clonal evolution. 29 

____________________________________________________________________________ 30 

ABSTRACT 31 

The presence and role of microbes in human cancers has come full circle in the last century. 32 

Tumors are no longer considered aseptic, but implications for cancer biology and oncology remain 33 

underappreciated. Opportunities to identify and build translational diagnostics, prognostics, and 34 

therapeutics that exploit cancer’s second genome—the metagenome—are manifold, but require 35 

careful consideration of microbial experimental idiosyncrasies that are distinct from host-centric 36 

methods. Furthermore, the discoveries of intracellular and intra-metastatic cancer bacteria 37 

necessitate fundamental changes in describing clonal evolution and selection, reflecting 38 

bidirectional interactions with non-human residents. Reconsidering cancer clonality as a 39 

multispecies process similarly holds key implications for understanding metastasis and 40 

prognosing therapeutic resistance while providing rational guidance for the next generation of 41 

bacterial cancer therapies. Guided by the above opportunities and challenges, this Review 42 

describes opportunities to exploit cancer’s metagenome in oncology and proposes an 43 

evolutionary framework as a first step towards modeling multispecies cancer clonality. 44 

_________________________________________________________________________ 45 

 46 

  47 
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INTRODUCTION 48 

 49 

A long and rich history exists between microbes and cancer. As early as 1550 BCE, Egyptian 50 

writings suggested a crude therapy for tumors through incision and application of a poultice, 51 

thereby inciting an infection.[1–3] Nearly three millennia later, Saint Peregrine Laziosi (c. 1265–52 

1345) documented spontaneous regression of a septic sarcoma on his leg large enough to pierce 53 

through skin.[2] Although these accounts predated modern germ theory, they presciently 54 

associated acute infections and the retrogression of cancer, which would be independently re-55 

discovered by three physicians between 1868-1893: Wilhelm Busch, Friedrich Fehleisen, and 56 

William Coley.[4–6]  57 

 58 

Many spontaneous tumor regressions described by these three physicians were tied to the skin 59 

pathogen Streptococcus pyogenes, and its concomitant infectious syndrome, erysipelas. 60 

However, only Coley seriously considered treating new patients—usually with late-stage or 61 

inoperable cancers—by administering live bacteria (which carried serious clinical sequelae), and, 62 

later, heat-killed microbial (Streptococcus and Serratia) toxins. These clinical experiments 63 

revealed >10-year disease-free survival in 60 of 210 patients across multiple cancer types, 64 

roughly one-third of all patients treated—a statistic only matched by modern immunotherapy.[7] 65 

Nonetheless, an unknown mechanism and severe flu-like side effects made ‘Coley’s toxins’ 66 

unpalatable to oncology, especially when compared to the burgeoning radiotherapy and 67 

chemotherapy fields.[8,9] It would take another century for scientists to realize that Coley’s 68 

approach comprised the first intentional application of immunotherapy, and accurately predicted 69 

a causal relationship between immunotherapy efficacy and an individual’s endogenous or 70 

exogenously-administered microbiome.[10–16] 71 

 72 
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Viruses have also been crucial for understanding cancer and its genetic material. Peyton Rous’s 73 

seminal 1911 discovery of his eponymous, transmissible, oncogenic, RNA virus galvanized 74 

investigation of the viral origins of cancer, leading to key links between Epstein-Barr, human 75 

papilloma (HPV), hepatitis, and most recently Merkel cell polyomavirus and carcinogenesis.[17–19] 76 

Although several decades of laborious research led to the conclusion that viruses cause only a 77 

minority of cancers, the pursuit of oncogenic viruses indirectly led to the definition of and search 78 

for ‘oncogenes’ capable of transforming benign tissue into malignant tissue.[19] One particularly 79 

important oncogene was src, a protein kinase identified in transforming-only strains of Rous’s 80 

Sarcoma Virus (RSV), but found by Michael Bishop and Harold Varmus to exist in cells of non-81 

infected, phylogenetically-divergent birds.[20] Their data suggested a non-viral, cellular origin of 82 

src: hosts normally contain oncogenes, and transforming strains of RSV had acquired one. This 83 

discovery earned them the 1989 Nobel Prize in Medicine.[19,20] Realizing oncogenes were internal 84 

to cancer motivated characterization of all possible oncogenes in the human cancer genome by 85 

sequencing the normal human genome as a reference.[21] Modern cancer genomics thus had its 86 

roots in tumor virology. 87 

 88 

The story of RSV and its hijacking of src showed how genetic information could transfer between 89 

tumors, microbes, and their hosts over evolutionary time and under various selection pressures. 90 

After Rous’s initial discovery, successive passaging of RSV enabled researchers to evolve the 91 

chicken-specific virus to induce tumors in ducks and pigeons, then rats, rabbits, and mice, 92 

presumably by activating similar kinase-related oncogenic pathways.[19,22,23] This process 93 

represented early examples of intentional transfection and directed evolution, whereby recipient 94 

cells received potent genetic cargo capable of being expressed to change cellular fitness. 95 

Decades later, a similar ability of bacteria to transfect genetic material, either microbial or human 96 

in origin,[24–28] to cells—including cancer cells[29]—with subsequent protein expression would be 97 
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demonstrated and coined “bactofection.”[30] Bactofection was primarily sought after as an 98 

alternative to conventional gene therapy or vaccination, but has received little attention.[27,30,31] 99 

 100 

Since Bishop and Varmus’s discovery shifted attention to factors internal to the cancer cell, the 101 

last 30 years of cancer research has primarily focused on characterizing all major coding, 102 

noncoding, structural, and copy number aberrations in the cancer genome.[32–36] Substantial study 103 

of the tumor microenvironment (TME) has further elucidated the impacts of heterogeneous tumor 104 

architecture, spatial organization, and multifaceted cellular agents (e.g., immune and stromal 105 

cells) on cancer evolution, clonality, antitumor immunity, and metastasis.[37–39] Further work has 106 

revealed similarities between microbial and cancer evolution. For example, the ubiquitous 107 

presence of plasmid-like, extrachromosomal DNA (ecDNA) segments and their unequal 108 

segregation during cancer cell division is analogous to unequal segregation of high copy plasmids 109 

during bacterial replication.[40–44] Hybrid viral-human sequences on ecDNA segments in HPV-110 

infected cancers even contribute to immune evasion and carcinogenesis.[45,46] Nonetheless, most 111 

cancer ‘omic’ studies have portrayed tumors as sterile entities, and microbial constituents as 112 

being unrelated to tumor evolution or clinical care. 113 

 114 

The last five years have persuasively unveiled metabolically-active, immunoreactive, intracellular, 115 

cancer type-specific communities of bacteria (and viruses) living within tumor tissues, several of 116 

which modulate cancer therapies.[47–60] These microbes may move during metastasis from one 117 

bodily location to another and facilitate leaving and/or seeding of metastatic cancer cells.[53,54,61–118 

63] Critically, intratumoral and gut microbes can create chemo-, radio-, and hormonal therapeutic 119 

resistance without any genetic or non-genetic changes within the cancer genome.[47,64,65] 120 

Conversely, microbiota may render other chemo-, radio-, hormonal, and immunotherapies 121 

possible and/or effective without any intervention from cancer cells.[12–14,64,66–68] Trace amounts of 122 

cancer type-specific bacterial DNA have also been identified in the circulation of cancer patients, 123 
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suggesting a novel class of microbial cancer diagnostics.[58,69] Most, if not all, human cancers lack 124 

sterility, and their microbes are clinically relevant. 125 

 126 

Towards building a microbially-conscious framework of cancer, we posit cancer-bearing humans 127 

as meta-organisms colonized by numerous and diverse microbial constituents (see Box 1—128 

“Quantifying the cancer microbiome”).[70,71] We propose the clinical utility of microbial information 129 

as cancer diagnostics, prognostics, and therapeutics and consider (intracellular) microbes as live, 130 

mobile agents within tumors that encounter selection pressures alongside/within cancer cells. 131 

Finally, we hypothesize that fundamental ecological rules governing microbial activity and spatial 132 

placement (e.g., redox, chemotactic, oxygen gradients)[72] outside tumors also govern them inside 133 

tumors. This Review details the study of cancer’s “second genome” and its use to advance patient 134 

care and models of cancer clonal evolution. 135 

 136 
 137 
 138 

BOX 1—Quantifying the cancer microbiome 
 
Broadly speaking, the human body microbiota include ~4×103 species accounting for ~4×1013 

total microorganisms, with ~97% of those cells comprising colonic bacteria and ~2-3% 

comprising extra-colonic bacteria while archaea and eukarya—including fungi—comprise 

smaller populations around ~0.1-1% of the total microbial abundance.[70,73] Human virus and 

phage abundance estimates remain undercharacterized but likely have even greater diversity 

than bacteria.[74] The human gut microbiome contains the largest bodily microbial biomass by 

far—roughly 0.2 kilograms[70,75]—with substantial effects on host antitumor immunity.[3] Biomass 

estimates of other body sites or tissues remain unknown. 

 

Intratumoral microbiome diversity estimates with stringent decontamination controls (~1:2 
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control to sample ratio) suggest that at least 500 distinct bacterial species inhabit tumors.[57] 

Intratumoral microbiome abundance estimates have been inferred using shotgun read 

quantification and quantitative polymerase chain reaction (qPCR) of 16S rRNA.[57,58] Microbial 

profiling of all whole genome and transcriptome studies from The Cancer Genome Atlas (TCGA) 

revealed an average of 2.5% of total sequencing reads to be microbial and an average of 0.9% 

of total reads that were resolvable at the genus-level.[58] Given the difference between typical 

microbial and human genome sizes—often 103-fold smaller—it is possible that these 

percentages underestimate true microbial density. To quantitate abundance, bootstrapping 16S 

rRNA qPCR data by Nejman et al. revealed a heterogeneous average number of bacteria per 

cancer type, ranging from ~13 to ~70 per 40 nanograms (ng) of DNA, among seven major 

human cancers (Table 1).[57] The pan-cancer average was 34.19 bacteria per 40 ng of DNA 

(Table 1). To translate these values to percent tumor composition, it is necessary to first 

estimate the number of tumor cells per 40 ng of DNA. One way to estimate this for haploid cells 

is as follows: 

 

𝐷𝑁𝐴	𝑚𝑎𝑠𝑠	(ℎ𝑎𝑝𝑙𝑜𝑖𝑑) ≈ (3.2 × 10!𝑏𝑝/𝑐𝑒𝑙𝑙) ;
1	𝑚𝑜𝑙𝑒

6.022 × 10"#𝑏𝑝= ;
660	𝑔

1	𝑚𝑜𝑙𝑒	𝑏𝑎𝑠𝑒	𝑝𝑎𝑖𝑟=

≈ 3.5	𝑝𝑖𝑐𝑜𝑔𝑟𝑎𝑚𝑠	/	ℎ𝑎𝑝𝑙𝑜𝑖𝑑	𝑐𝑒𝑙𝑙 

 

To translate from haploid cell to tumor cell, an estimate of ploidy is needed, which can be 

derived from the most recent Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset.[32] 

The mean estimated ploidy in PCAWG across all human cancers is 2.36 and ranges from a low 

of 1.28 to a high of 6.22. If we assume average cancer ploidy, the average DNA mass per 

cancer cell is thus: 
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𝐷𝑁𝐴	𝑚𝑎𝑠𝑠	(𝑐𝑎𝑛𝑐𝑒𝑟	𝑐𝑒𝑙𝑙) ≈ (3.5	𝑝𝑖𝑐𝑜𝑔𝑟𝑎𝑚𝑠	/	ℎ𝑎𝑝𝑙𝑜𝑖𝑑	𝑐𝑒𝑙𝑙) × (2.36	𝑎𝑣𝑔. 𝑝𝑙𝑜𝑖𝑑𝑦)

≈ 𝟖. 𝟐𝟔	𝒑𝒈	/	𝒄𝒂𝒏𝒄𝒆𝒓	𝒄𝒆𝒍𝒍 

 

Similarly, the range of DNA masses per cancer cell based on ploidy would be 4.48 pg to 21.77 

pg. For simplicity, one can round the average mass value to 8 pg/cancer cell. Assuming that 

the DNA mass of microbes is negligible compared to that of the host, since its genome is roughly 

103-fold smaller and there are fewer of them expected, then the estimated percent composition 

is as follows: 

 

𝑃𝑢𝑟𝑒	𝑡𝑢𝑚𝑜𝑟	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙	𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ≈ ;
34.19	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎
40	𝑛𝑔	𝐷𝑁𝐴 = ;

0.008	𝑛𝑔
1	𝑐𝑎𝑛𝑐𝑒𝑟	𝑐𝑒𝑙𝑙=

(100%)

= 0.68%	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 

 

This estimate, however, assumes 100% tumor purity. Fortunately, PCAWG estimated tumor 

purity across the same samples, showing an average tumor purity of 63.8%.[32] Instead of 5000 

cancer cells per 40 ng of DNA, assuming 8 pg per cancer cell, average tumor purity suggests 

3190 cancer cells with the remaining cells comprising the TME. While this does not change the 

percent bacterial composition of the tumor, it does change the ratio of bacteria to cancer cells 

to approximately ~1:100 or ~1% (i.e. 34.19 bacteria:3190 cancer cells; Table 1). Using the 95% 

confidence interval bounds of the pan-cancer mean number of bacteria per tumor (Table 1) 

gives a range of 0.75% to 1.46% bacterial. 

 

In the case of high tumor ploidy and low tumor purity, it may become important to weigh the 

contributions between tumor (aneuploid) and stroma (diploid) to the number of cells within 40 
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ng of DNA. This may be done as follows, for example using a tumor ploidy of 6.0 and 20% 

purity: 

 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ≈ ;
34.19	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎
40	𝑛𝑔	𝐷𝑁𝐴 = X

20
100 ;

0.02177	𝑛𝑔	𝐷𝑁𝐴
1	𝑐𝑎𝑛𝑐𝑒𝑟	𝑐𝑒𝑙𝑙 = +

80
100;

0.007	𝑛𝑔	𝐷𝑁𝐴
1	𝑠𝑡𝑟𝑜𝑚𝑎𝑙	𝑐𝑒𝑙𝑙=

[ (100%)

= 0.85%	𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 

 

whereas a tumor of 100% purity at a ploidy of 6.0 would provide an average tumor bacterial 

composition of 1.86%. It is noted that cases with high ploidy and high purity will maximize this 

percentage value, in addition to when there is more observed bacteria.  

 

To compare these bacterial abundances to intratumor immune cell populations, which are 

usually reported as densities of immune cell counts per square millimeter, it is necessary to first 

estimate the total number of cells per square millimeter in a tumor. While a handful of density 

estimates exist in the literature, such as a mean of 5,558 cells (SD 1,980) per mm2 in metastatic 

melanoma,[76] it can be inferred directly from circle packing theory.[77] Specifically, given the 

average diameter of cells in a tissue, then the number of possible cells within the 1 mm2 square 

can be calculated. In one way, this can be interpreted as a conservative estimate since cells 

are often compressed and non-circular in real tissues; conversely, it may overestimate cell 

density in regions with dense blood or lymphatic vessels. The typical diameter of lymphocytes 

approximates 6-7 μm in diameter[78] while the diameter of cancer cells vary by type and are 

approximately ~20 μm in diameter across many cancer cell lines.[79] Using average cell 

diameters of 12 μm, 15 μm, and 18 μm, circle packing theory predicts the following total cell 

abundances per 1 mm2: 8213 cells, 5208 cells, and 3589 cells.  
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Then, using the previously calculated average pan-cancer tumor bacterial composition of 0.68% 

(assuming tumor homogeneity), the estimated number of bacteria inferred as the following: 56, 

35, 24 bacteria/mm2 (assuming 12 μm, 15 μm, and 18 μm average diameter cells, respectively). 

Notably, these bacterial abundance estimates are similar to the proportion of PD1+ cells 

identified in a recent pan-cancer imaging dataset (~22 PD1+ cells/mm2) and roughly one-tenth 

of CD8+ T-cell density (~385 cells/mm2).[80] Overall, the values reflected in this analysis may 

vary from tumor to tumor, depending on the assumptions made above—tumor ploidy, purity, 

homogeneity—but the analysis provides a rough approximation and analogy of intratumor 

bacterial abundances to immune cell abundances. 

 

To summarize, these calculations estimate an average pan-cancer bacterial composition of 

~0.68% with two- and three-dimensional estimates of ~35 bacteria/mm2 (assuming 5200 

cells/mm2) and approximately 6×105 to 6×106 bacteria per palpable 1 cm3 tumor (assuming 108-

109 cells/cm3).[81] Notably, these estimates can vary between patients by three orders of 

magnitude and require further examination in additional cohorts. 

 139 
 140 
 141 
 142 
TABLE 1. Abundance estimates of intratumoral bacteria among seven major human cancers 143 

profiled by Nejman et al. (data shared via private communication with Ravid Straussman).[57] One 144 

thousand iteration-bootstraps of the mean approximated the average number of bacteria per 40 145 

nanograms of DNA on a per-cancer and pan-cancer basis. Conversions and assumptions of 146 

tumor ploidy, purity, and homogeneity are detailed in Box 1. Area density estimates assume 5200 147 

total cells/mm2 and volume density estimates assume 109 total cells/cm3. 148 

Cancer 
type in 

Nejman et 

qPCR 
sample 
size (n) 

Absolute range  
(bacteria/40ng) 

(min, max) 

Bootstrapped 
estimate of average 
bacteria per 40 ng 

Area 
density 
estimate 

Volume 
density 
estimate 
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al. 2020[57] DNA (mean, 95% CI) 
(1000 iterations) 

(bacteria
/mm2) 

(bacteria/
cm3) 

Melanoma 200 (0.85, 3023) 31.69 (9.71, 71.20) ~33 ~6.3×106 

Lung 274 (1.2, 3663) 22.50 (7.90, 50.35) ~23 ~4.5×106 

Ovarian 57 (1.84, 73.2) 12.72 (10.25, 16.00) ~13 ~2.5×106 

GBM 37 (3.41, 77.4) 15.55 (10.89, 20.85) ~16 ~3.1×106 

Pancreatic 66 (3.82, 2147) 70.43 (26.19, 147.78) ~73 ~14×106 

Bone 30 (1.62, 76.4) 19.33 (13.97, 25.51) ~20 ~3.9×106 

Breast 352 (0.765, 1723) 44.63 (31.41, 59.83) ~46 ~8.9×106 

Pan-cancer 1016 (0.765, 3663) 34.19 (24.04, 46.56) ~35 ~6.8×106 
 149 
 150 
 151 
 152 
 153 
CANCER MICROBIOME DIAGNOSTICS AND PROGNOSTICS 154 

 155 

The concept of “strength in numbers” applies to cancer diagnostics, especially for low-biomass 156 

material. For instance, liquid biopsies in cancer rely on detecting minute quantities of analytes 157 

(DNA, RNA, proteins, or modifications thereof) shed from the tumor to diagnose the presence 158 

and/or type of cancer.[82] The low-biomass, limited unique number, and limits of detection of these 159 

analytes usually restricts utility of liquid biopsies to tumors on the scale of multiple cubic 160 

centimeters, corresponding to later stage cancers.[82,83] Critically, more analytes or modifications, 161 

even if rare, increase the overall sensitivity of the test sigmoidally.[84] Cristiano et al!"#$%&'()*+)$#"162 

),-(".*-'/-.0$"1(-'2"3&')$"4+*0&"(-%10+)-&'("&5"0-61-#"7-&.(-$(8"(,&9-'2"),+)"+")$()"$:+%-'-'2";<="163 

%&#-5-/+)-&'("/&%.*-(-'2">?!??@A"&5")&)+0".0+(%+"%+)$*-+0"/&10#"()-00",+B$"'$+*C.$*5$/)"($'(-)-B-)D"164 

-5"+)"0$+()"EFG"+0)$*+)-&'("9$*$"-')$**&2+)$#![84]  165 
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 166 

H,$($"/&'/01(-&'("5*&%"/+'/$*"2$'&%-/("(122$()"),+)"),$"-',$*$')"#-B$*(-)D"&5"),$"-')*+)1%&*+0"167 

%-/*&7-&%$" IJF??" 1'-61$" 7+/)$*-+0" (.$/-$(K[57] and the gut microbiome (~4×103 bacterial 168 

species)[73] provide strong rationale for creating microbiome-focused cancer diagnostics, even if 169 

any individual microbe is rare or lowly abundant. Two alternative ways of phrasing this idea is that 170 

(i) high microbial diversity provides “many shots on goal” for making a single diagnosis and (ii), 171 

using machine learning syntax, interrogating the microbiome is analogous to employing an 172 

ensemble of many weak learners that collectively provide strong prediction performance (i.e., the 173 

conceptual basis of boosting). We further note that for diagnostic purposes detected microbes do 174 

not need to be causally associated with carcinogenesis but only consistently correlated with 175 

cancer presence, absence, and/or growth. These microbial-informed or augmented diagnostics 176 

and prognostics hold much potential to improve clinical cancer care (Figure 1). 177 

 178 
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 179 

FIGURE 1. Illustration of opportunities to enhance clinical cancer diagnostics and prognostics 180 

using the cancer microbiome. Relevant references are listed in the title of each quadrant. 181 

 182 

 183 

Pre-cancer and cancer microbiome diagnostics 184 

 185 

Pre-cancer diagnostics identify lesions that are likely to progress to cancer but otherwise do not 186 

meet the criteria for malignant tissue, most commonly including cervical and colorectal cancer 187 

(CRC) precursors. With a focus on the gut microbiota, metagenomic studies have identified 188 

distinct fecal microbial compositions between colonic adenoma-bearing hosts and healthy 189 

individuals, often but not always with increases in Proteobacteria abundance.[85–88] Yachida et al. 190 

further characterized shotgun metagenomic and metabolomic shifts in the guts of healthy 191 

individuals, those with polypoid adenomas, and those with stage 0 to stage IV CRCs, revealing 192 
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distinct stage-wise microbial and metabolic compositions sufficient to build fecal stage-specific 193 

classifiers.[85] Other studies of the vaginal microbiome have revealed distinguishable microbial 194 

compositions and functions between healthy patients, those with cervical intraepithelial neoplasia 195 

or cervical cancer, and modifying effects of HPV or HIV status.[89–91] In a longitudinal trial, Usyk et 196 

al. found that women presenting for high-risk HPV infection with abundant vaginal Lactobacillus 197 

were more likely to clear the infection by their second visit (average 1.5 years later); conversely, 198 

those with abundant vaginal Gardnerella upon presentation were much more likely to show 199 

disease progression by the second visit.[89] These studies suggest the opportunity for minimally-200 

invasive, swab-based stool and vaginal microbiome diagnostics that detect precursor cancer 201 

lesions and/or forecast risk of cancer conversion. 202 

 203 

Pre-cancerous syndromes are also pertinent for microbiome diagnostics, such as genetically-204 

driven familial adenomatous polyposis (FAP), pre-leukaemic myeloproliferation (PMP), and 205 

BRCA1 status, for they augur subsequent carcinogenesis in ways not fully predicted by host 206 

genomics. For example, PMP is highly associated with Tet2 mutations, but only a fraction of 207 

people with germline Tet2 mutations develop PMP or bona fide myeloid malignancies.[92] 208 

Comparing gut microbiota from patients with and without FAP, Dejea et al. elucidated that FAP 209 

encourages biofilm formation comprising genotoxic strains of Escherichia coli and Bacteroides 210 

fragilis with greater expression of their colibactin and B. fragilis toxins, thereby increasing IL-17-211 

dependent inflammation, DNA damage, and faster cancer conversion.[93] Meisel and colleagues 212 

then demonstrated that microbial translocation from the gut to systemic circulation with resultant 213 

IL-6 production mechanistically drives conversion from predisposing Tet2 germline mutations to 214 

PMP.[94] Nené et al. also reported significant cervicovaginal microbiome changes—absence of 215 

Lactobacillus spp.—among BRCA1-positive, non-cancer-carrying women that were shared 216 

among women with ovarian cancer, suggesting that germline mutations can affect microbial 217 

composition and may show continuity with subsequent cancer conversion.[95] Collectively, these 218 
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studies argue that pre-cancerous syndromes indeed modify and interact with microbiota, 219 

suggesting an opportunity to develop diagnostic tools tracking their presence, and interventions 220 

that reduce cancer conversion rates. 221 

 222 

For solid tumor and blood microbiome diagnostics, Nejman et al. and Poore et al. provide the 223 

most comprehensive analyses to date, demonstrating cancer type-specific microbial signatures 224 

among >30 cancer types, showing their diagnostic applicability to human plasma samples, and 225 

providing evidence of intracellular microbial localization in tumors.[57,58] Nejman and colleagues 226 

combined imaging, cultivation, qPCR, and a multi-region 16S rRNA sequencing strategy to 227 

thoroughly characterize intratumoral bacteria among breast, bone, pancreas, brain, ovarian, lung, 228 

melanoma, and colon cancers. Inclusion of 811 experimental contamination controls (i.e., DNA 229 

extraction controls, no-template PCR controls, paraffin controls) for 1010 tumor samples enabled 230 

stringent decontamination that removed 94.5% of detected bacterial species, leaving 528 231 

confident species-level calls. Poore and colleagues used an alternative approach by mining all 232 

whole genome and transcriptome sequencing data in TCGA (n=18,116 samples) and using 233 

shotgun metagenomic strategies to derive ~2000 genus-level calls.[58] In silico decontamination 234 

based on sample DNA or RNA concentrations[96] removed up to 92.3% of microbial information, 235 

but machine learning performance to distinguish between cancer types and tumor versus adjacent 236 

normal tissue remained strong. Based on historical and epidemiological data associating 237 

bacteremias with subsequent CRC diagnosis,[69,97] they then tested whether blood-derived, 238 

genus-level microbes in TCGA were capable of distinguishing CRC from other cancer types. 239 

Finding this to be true, they next tested whether blood-derived microbiomes could  discriminate 240 

between ~20 other cancer types, as well as when restricting samples to early cancer stages 241 

(stages 1-2) and tumors without any canonical mutations on two commercial cell-free tumor DNA 242 

(ctDNA) panels. Application of the same approach to 100 plasma samples from three cancer 243 

types (lung, prostate, melanoma) and 69 HIV-negative, non-cancer controls suggested that cell-244 
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free microbial DNA (cf-mbDNA) was capable of distinguishing between healthy and cancer 245 

patients and between cancer types.[58] Although the origin of cf-mbDNA remains unknown, we 246 

speculate based on the literature a multiplicity of sources including the oral, gut, and intratumoral 247 

microbiomes.[53,61,62,98,99] We also speculate that the strength of the cf-mbDNA test derives from 248 

the quantity of microbial biomarkers assayed rather than the absolute amount of microbial DNA 249 

present in plasma, as analogously shown in fragmentomic-based liquid biopsies.[84] Both of these 250 

studies lay the foundation for multiple cancer detection tests using the cancer microbiome. 251 

 252 

Prognostics and companion diagnostics 253 

 254 

The impact of gut and intratumoral microbiomes on local and systemic immune tone and host 255 

metabolites makes them versatile prognostics and companion diagnostics.[3] Higher alpha 256 

diversity of intratumoral or gut microbiomes prognoses long-term survivors in pancreatic and 257 

cervical cancers, as well as in patients undergoing hematopoietic stem cell transplantation for 258 

cancer therapy.[52,100,101] Additionally, colorectal cancer stages reflect successive microbial 259 

changes in the fecal microbiome,[85,88] and early versus late stage lung cancer can be 260 

distinguished through lower airway microbiota compositions.[51] Intratumoral microbiomes can 261 

similarly distinguish stage I from stage IV tumors in multiple gastrointestinal cancers (stomach, 262 

colon, rectal) and renal cell cancer.[58] 263 

 264 

Therapeutically, numerous studies demonstrate how the efficacies of anti-CTLA-4 and anti-PD-265 

(L)1 immune checkpoint blockade (ICB) are predicted by and mechanistically tied to gut 266 

microbiome composition and function,[12–14,67,102–106] and recently the intratumoral microbiome has 267 

shown a similar capacity.[49,57] Similarly, the efficacy and host toxicity of cyclophosphamide,[66,107] 268 

gemcitabine[47], and platinum-based[67,108] chemotherapy depend on the composition and 269 

metabolic capacity of gut and intratumoral microbiota.[109] In specific cases, bacterial enzymes 270 



Submitted Manuscript 

17 

directly degrade chemotherapy compounds into non-functional byproducts (e.g., gemcitabine 271 

degradation by cytidine deaminase),[47] suggesting colonized patients would have no drug 272 

response or quickly develop therapeutic resistance. In HER2-positive breast cancer, antibiotic 273 

administration impairs trastuzumab efficacy and fecal microbiota transplant from non-responders 274 

to responders improves outcomes, implicating gut microbiota as critical agents for therapeutic 275 

response.[68] 276 

 277 

Gut microbiota also affect hormonal therapies. Administration of abiraterone acetate (AA) in the 278 

setting of castrate-resistant prostate cancer promoted outgrowth of Akkermansia muciniphila and 279 

appeared to aid overall AA therapeutic efficacy.[110] However, androgen deprivation therapy also 280 

increases gut-residing Ruminococcus species containing CYP17A1-like enzymes that catalyze 281 

pregnenolone conversion to the sex hormone precursor dehydroepiandrosterone (DHEA) and 282 

testosterone, thereby enhancing progression to castration-resistant prostate cancer.[65] Thus, 283 

targeted longitudinal profiling of implicated gut microbes may provide an early indicator of failing 284 

androgen deprivation therapy while also substantiating their timed targeted removal. It has been 285 

speculated, albeit unproven, that estrogen-receptor-positive breast cancer may similarly be 286 

affected by microbial hormone metabolism.[111,112] It further remains unknown if or how 287 

intratumoral microbes affect hormonal metabolism. Altogether, the myriad of gut and intratumoral 288 

microbiome effects on virtually every domain of cancer therapy and predictive associations with 289 

patient survival enforce their clinical utility as prognostic indicators and companion diagnostics. 290 

 291 

Challenges for cancer microbiome diagnostics and prognostics 292 

 293 

Low-biomass microbial sampling creates analysis challenges that necessitate careful 294 

consideration and removal of contamination.[113,114] While less impactful in gut microbiome studies 295 

or large-scale meta-analyses, external (e.g., environmental) and internal (e.g., cross-seeding 296 
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between samples) contamination can skew small-to-moderate scale profiling of the cancer 297 

microbiome.[113,114] Standardized experimental contamination controls (Figure 2) alongside in 298 

silico decontamination methods[96,114] can enable more robust and reproducible results, especially 299 

for assaying intratumoral and blood-borne microbes, thereby enabling better microbiome-300 

augmented cancer diagnostics and prognostics. Notably, very few cancer genomics studies 301 

implement any of these contamination controls and basic usage thereof would allow broad 302 

utilization of “cancer-specific” data for simultaneous interrogation of microbial analytes, although 303 

this may be overcomable by integrating many thousands of samples. 304 

 305 

Other challenges with microbiome studies include (i) the degree to which results vary with sample 306 

and bioinformatics processing choices;[115] (ii) fundamental differences in data properties and 307 

appropriate statistics when using relative abundances compared to host ‘omic data;[116–118] and 308 

(iii) compositional differences as a function of geography and ethnicity, particularly when assaying 309 

gut microbiota.[119–121] One or more of these factors have, for example, resulted in three major 310 

microbiome studies[12–14] concluding that different gut microbes predict anti-PD(L)1 311 

immunotherapy response—a fact that has remained irreconcilable despite analyses that 312 

reprocessed all the data equally or instead examined their microbial functions.[104] Large meta-313 

analyses can surmount some of these problems, with two key studies identifying conserved gut 314 

microbial signatures predictive of colorectal cancer across diverse cohorts and 315 

geographies.[122,123] 316 

 317 

 318 
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 319 

FIGURE 2. Extracting and analyzing low-biomass microbiomes requires special care to control 320 

external and internal contamination.[96,113,114] (A) Collection of environmental controls ideally 321 

begins in the operating room to account for non-patient environmental sources. (B) Post-operative 322 

tissues, if paraffin embedded, can have non-tissue paraffin controls taken to ensure the 323 

embedding process is not contaminated. Whole blood should ideally be collected with a skin swab 324 

to account for peri-needle contamination. (C) Negative reagent-only ‘blank’ controls and positive 325 

titrated controls should be processed simultaneously alongside nucleic acid extraction from 326 

biological and environmental samples. (D) Plating strategies should be considered to reduce 327 

cross-contamination; controls may include up to 40% of total samples. (E) Amplification steps 328 

may include PCR no-template controls and sequencing may include correction for cross-329 

contamination or index swapping, although the latter remains challenging. 330 

 331 

 332 
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REDEFINING CANCER CLONALITY AS MULTISPECIES 333 

 334 

Redefining traditional meaning of clonal evolution and selection in cancer 335 

 336 

Cancer cells evolve through space and time. Although the traditional view of clonal evolution has 337 

historically centered on genetic alterations,[37,124,125] it is increasingly recognized that non-genetic 338 

alterations such as epimutations also contribute.[126–128] The emergence of single-cell multi-omics 339 

and longitudinal studies offers opportunities for a more inclusive, multi-analyte view of intratumor 340 

heterogeneity and clonal evolution.[129,130] Recognition of the role of multi-omics in functional clonal 341 

diversity advocates for broader definitions beyond cancer genomics.[38]  342 

 343 

Research demonstrating effects of extracellular and intracellular microbes on the cancer cell 344 

genome,[93,131] transcriptome,[48,50,51,132] proteome,[49] and metabolome[47,65] strongly justify their 345 

inclusion in any multi-omic model of clonal evolution (Figure 3). Additional microbial functions 346 

that enable or abolish chemo-, radio-, and/or immunotherapy efficacy without any interventional 347 

cancer genomic changes provide further rationale for their inclusion.[3,11,133] Intracellular 348 

localization of metabolically active, immunogenic cancer microbes that shape cancer 349 

immunoediting—evolutionary processes and selection pressures previously privileged to cancer 350 

clonal selection—also provides justification.[49,57,63] Identification of hybrid microbial-human reads 351 

involved in carcinogenesis on plasmid-like ecDNA segments intimately links cancer and microbial 352 

fitness.[45,46] Microbial mechanisms that modify immunosurveillance also impact when and where 353 

tumors grow and/or metastasize.[49,53,54,61,62,134] Negatively, ignorance of microbial information in 354 

clonal evolution precludes accurate identification of cancer dynamics, therapeutic resistance, and 355 

metastasis. However, as distinct agents from cancer cells with separate genetic material that is, 356 

at times, under discordant selection pressure(s) from the cancer genome (e.g., antibiotic therapy 357 

for bacteria, targeted kinase therapies for cancer cells), there must be nuance. Cancer microbes 358 
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cannot merely be added as another “-ome.” Simultaneously, studies examining the roles of cancer 359 

microbiota have not seriously considered the clonality of these microbes or their impacts on 360 

cancer cell clonality. Thus, there is a persisting theoretical gap between the microbiota in cancer 361 

and clonal evolution modelling that we propose bridging.  362 

 363 
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FIGURE 3. Impacts of intratumoral microbes on cancer evolution and arguments for multispecies 365 

clonal evolution modelling. Effects are summarized into three major categories: modulation 366 

ecosystem effects, mechanisms of clonal diversity, and example disjoint and joint phylogenetic 367 

clonal evolution. 368 

 369 

 370 

 371 

 372 

Key evidence that argues cancer clonality is multispecies 373 

 374 

Decoupling of therapeutic efficacy from host and cancer cell genetic changes 375 

 376 

The genetic model of clonal evolution provides explanations for relapses caused by mutagenesis. 377 

For example, mutations in cancer cell epidermal growth factor receptor (EGFR) induce resistance 378 

to various generations of EGFR tyrosine kinase inhibitors while simultaneously creating favorable 379 

selection pressures for mutated cells over non-mutated counterparts.[135,136] As a result, EGFR-380 

mutated cells outcompete their neighbors and clonally expand. 381 

 382 

However, this model fails to always explain treatment efficacy or failure, both for conventional 383 

cancer and microbial-modulated therapies. For example, isocitrate dehydrogenase (IDH1/IDH2)-384 

mutated acute myeloid leukemia patients treated with IDH1/2 inhibitors can show complete and 385 

sustainable responses to treatment without eliminating mutated cells.[137–139] The same is 386 

observed in chronic myelomonocytic leukemia treated with hypomethylating agents. Patient 387 

responses, even when complete, demonstrate no decrease in the mutational load and no specific 388 

selection events explaining secondary escape.[140] Moreover, despite a clear reduction in cancer 389 

cell burden, thereby generating a selective bottleneck, relapse can occur without genetic 390 
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selection. For example, in childhood B-cell precursor acute lymphoblastic leukemia, a recent 391 

study by Turati et al. demonstrated how treatment with vincristine and dexamethasone drastically 392 

reduced the leukemic burden but induced very little change, if any, in clonal composition.[141] 393 

Conversely, a transcriptional bottleneck was observed in single-cell RNA-Seq, with a major loss 394 

in transcriptomic intratumor heterogeneity. A similar resistant transcriptomic profile was found in 395 

the leukemic cells before treatment, suggesting positive selection of these rare pre-existing 396 

resistant cells rather than induction of that phenotype under treatment exposure. These resistant 397 

cells comprised a subfraction of low cycling cells and have been associated with a distinct 398 

metabolic program.[141,142] Several hypotheses are currently discussed with regard to this non-399 

genetic resistance to therapies,[143] which mostly focus on transcriptomic and epigenetic 400 

properties.  401 

 402 

Classic genetic clonal evolution also fails to account for microbial-mediated treatment efficacy or 403 

failure of (i) cyclophosphamide,[66,107] gemcitabine[47], and platinum-based[67,108] chemotherapy; (ii) 404 

anti-CTLA-4 and anti-PD-(L)1 ICB efficacy;[12–14,102–106] (iii) androgen deprivation therapy in 405 

prostate cancer;[65] and (iv) trastuzumab in HER-2-positive breast cancer.[68] Notably, some of 406 

these examples (e.g., gemcitabine resistance) rely on microbial genetic content (e.g., cytidine 407 

deaminase long (CDDL) isoforms),[47] which further may be shared among multiple species 408 

through conventional horizontal gene transfer and may also be intracellular. Similarly, cancer 409 

clonal selection may entirely occur on CDDL-containing microbes by providing growth advantages 410 

to those that can metabolize it as a concentrated carbon source, and cancer cell survival is tied 411 

to CDDL
+-microbe proximity. Yet, cancer genome-centric evolutionary models miss all of these 412 

effects and fail to accurately forecast evolutionary changes. 413 

 414 

Impact of intracellular bacteria on cancer cell properties and fitness 415 

 416 
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Immunohistochemistry, immunofluorescence, and electron microscopy data document the 417 

intracellular localization of intratumoral bacteria.[49,57,61,63] Bacteria inside cancer cells modify their 418 

properties—transcriptional state,[63] proteome,[49] and metabolic repertoire[47,57]—in ways that are 419 

intrinsically tied to clonal evolution. Extracellular bacteria also modulate these properties and 420 

cause cancer cell genomic mutations.[93,131,144] Key affected clonal aspects comprise cancer cell 421 

metabolism, immunoediting, clonal expansion and metastasis, and mutagenesis. 422 

 423 

First, intracellular microbes change host cell metabolism, including degradation of exogenous 424 

chemotherapy[47] and xenobiotic D-alanine.[57] Geller et al. originally identified microbial 425 

gemcitabine resistance through incidentally discovering Mycoplasma contamination of cell 426 

cultures and concomitant drug resistance.[47] Isolation of the responsible enzyme and its drug-427 

degrading isoform (CDDL) followed by bioinformatic searches revealed >300 CDDL
+ species, 428 

98.4% within Gammaproteobacteria. Imaging, sequencing, and cultivation from gemcitabine-429 

associated pancreatic cancer patient biopsies indeed revealed CDDL
+ bacteria in most samples 430 

that conferred gemcitabine resistance in subsequent co-cultures with cancer cell lines.[47] 431 

 432 

Second, intratumoral microbes modulate the immune response, favoring immune escape, or, 433 

conversely, recognition. Fusobacterium nucleatum inhibits natural killer cell (NK)-dependent 434 

tumor killing through Fap2 interaction with TIGIT, constituting a bacterium-dependent mechanism 435 

of tumor-immune evasion.[145] Pancreatic cancer bacteria also induce innate and adaptive immune 436 

suppression, including via selective Toll-like receptor ligation leading to T-cell anergy.[48] Another 437 

metastatic melanoma study elucidated immunogenic, MHC I and II-bound bacterial peptides 438 

presented on cancer and immune cells that putatively shape cancer immunoediting and posit gut-439 

tumor antigenic overlap.[49] Moreover, an uneven partitioning of microbes among cancer cells can 440 

result in the differential elimination or maintenance thereof. Such a perspective enriches the 441 
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traditional “3Es” of elimination, equilibrium, and escape[146] and documents how cancer cell fitness 442 

is decoupled from its own genome. 443 

 444 

Third, intratumoral microbes can favor cancer cell expansion and metastases. Bullman et al. 445 

demonstrated Fusobacterium persistence in colorectal cancers through successive mouse 446 

xenografts and similar bacterial compositions in matched primary-metastasis (colorectal-liver) 447 

patient samples.[61] Metronidazole treatment reduced tumor growth, implying greater fitness 448 

conferred by Fusobacterium colonization.[61] Bertocchi et al. later showed that colorectal bacteria 449 

stepwise enter tumor tissue, modify the gut vascular barrier, migrate to the liver, and foster the 450 

formation of a premetastatic niche favoring metachronous metastasis.[62] Parhi et al. noted how 451 

Fusobacterium-seeded breast cancers metastasized earlier. Hence, intratumoral bacteria 452 

enhance metastatic formation and seeding. 453 

 454 

Fourth, microbes cause genotoxin-mediated mutagenesis.[93,131] Pleguezuelos-Manzano et al. 455 

showed how pks+ E. coli generates mutational signatures in head and neck, colorectal, and 456 

urinary tract cancers. Moreover, various gut-residing Proteobacteria species produce cytolethal 457 

distending toxin (CDT) capable of inducing single- and double-stranded DNA breaks.[144] 458 

Collectively, all of these mechanisms shape cancer cell properties and fitness. 459 

 460 

Implications and hypotheses if cancer clonality is multispecies  461 

 462 

Imaging data portray intracellular bacteria as unevenly distributed among cancer cells and tumor 463 

regions,[57,61] suggesting differential fitness at the single cell level that may not correspond with 464 

mutational status. This challenges the definition of cancer clones as private lineages of mutated 465 

cells stemming from common ancestors and violates modelling assumptions whereby clonal 466 

lineages comprise homogeneous cell populations. Although no two cancer cells are equal in every 467 
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respect, the primary assertion of clonality is that individual differences between two cancer cells 468 

of the same clone are negligible.[147] However, if intracellular bacteria alter phenotypes, behaviors, 469 

and fitness of spatially-adjacent cancer cells, then they create major intraclonal heterogeneity, 470 

which we define as “microbial intraclonal diversity” (MIDS). MIDS questions clonal lineage 471 

homogeneity and motivates revising clonal boundaries, most simplistically through further 472 

subsetting (e.g., KRAS-mutated, Fusobacterium-infected cells versus KRAS-mutated uninfected 473 

cells) or more accurately through revised modelling approaches that account for discordant 474 

microbe-cancer selection pressures. MIDS also includes mimicry between microbial and cancer 475 

antigens.[148,149] Should genetic cargo be shared between intracellular bacteria and host cells, as 476 

biotechnology already shows is possible[24] and cancer virology affirms,[45,46] MIDS must account 477 

for DNA and RNA from multiple species.  478 

 479 

Beyond challenging clonal boundaries, intracellular bacteria may require revision of the 480 

evolutionary tree. Typical clonal evolution model depicts an evolutionary tree with one trunk and 481 

several branches, relying on the assumption of vertically transmitted traits from mother cells to 482 

daughter cells at each round of cell division. If future research affirms horizontal/lateral gene 483 

transfers between intracellular bacteria and host cancer cells, multiple tree trunks and connexions 484 

between branches would be required. A similar debate has taken place in evolutionary biology, 485 

challenging the traditional Darwinian view about “tree of life.”[150–152] Clonal evolution may then be 486 

better articulated as a case of “reticulated evolution,” wherein horizontal/lateral transfers change 487 

the fitness, function, or/or phenotype of host cancer cells. 488 

 489 

Considerations for cancer microbiome therapeutics under multispecies clonality 490 

 491 

Multispecies cancer clonality offers new therapeutic strategies that neither human nor microbial 492 

clonality alone propose. For instance, Byndloss et al. demonstrated an interplay between 493 
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fastidious anaerobic gut bacteria and butyrate-mediated, PPAR-γ-dependent host signaling that 494 

maintained low oxygen levels in the gut and prevented outgrowth of facultative pathogens.[153] 495 

Conversely, antibiotics increased gut oxygen concentration and pathogen outgrowth.[153] 496 

Analogously, there may be opportunities in cancer to target host processes that facilitate microbial 497 

homeostasis as a means to mitigate microbial-mediated carcinogenesis in favor of blunted 498 

antibiotics. Butler et al. provide another example whereby administration of a bacterial protease 499 

depleted cellular MYC in colon and bladder cancers.[154] Similarly, identification of anticancer 500 

microbial enzymes or metabolites may provide effective host-modulating cancer therapies or 501 

improve the efficacy of existing therapies—a strategy that several groups have already taken with 502 

immunotherapy.[105,106] 503 

 504 

EVOLUTIONARY MODELING OF THE CANCER MICROBIOME 505 

 506 

Example of Helicobacter pylori  507 

 508 

Incorporating intratumoral microbes into evolutionary models requires nuance because selection 509 

pressures may be discordant with those experienced by cancer cells. A long-standing and well-510 

studied example of microbes in the cancer environment is Helicobacter pylori,[155] which has 511 

adapted to thrive in more than half of the human population long enough to trace human migration 512 

events.[156] H. pylori has co-evolved protective and pathogenic roles within humans: protective in 513 

gastric cardia and esophageal adenocarcinoma[157,158] and pathogenic in noncardiac gastric 514 

cancer.[155] Most H. pylori-positive patients carry multiple strains, including at least one strain 515 

unique to their body along with more common strains such as VacA, CagA, and BabA.[156] This 516 

extreme genetic diversity stems from slipped-strand mispairing in multiple genes and H. pylori’s 517 

lack of DNA repair genes unlike most bacteria.[156] High strain diversity across individual human 518 

hosts also enhances H. pylori’s population-wide resilience, allowing it to adapt to many diverse 519 
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environments by expanding upon the strain with the highest fitness in that setting. Collectively, 520 

high diversity and concomitant mutagenesis of H. pylori combined with human immune selection 521 

pressures and pathological impacts on noncardiac gastric carcinogenesis help portray an 522 

exemplary “big picture” of multispecies cancer evolution. Building on this idea, we describe how 523 

existing clonal evolution modeling may take intratumoral microbes into account. 524 

 525 

Common constraints of the tumor microenvironment  526 

 527 

As detailed above, the TME contains intracellular and extracellular microbes that affect cancer 528 

clonality and comprise independent clonal agents. Importantly, the TME contexture applies 529 

simultaneous, shared selective pressures and environmental constraints on co-located cancer 530 

cells and microbes. Shared resources necessitate cooperative use and/or competition, which may 531 

further limit their abundance. For instance, oxygen availability drives spatial organization and 532 

metabolic capacities of cancer cells[159] and is known to similarly affect microbes in environmental 533 

contexts and model systems (e.g., Winogradsky columns).[160–162] Common selection pressures 534 

may in turn drive common evolutionary solutions, such as metabolic symbiosis between cancer 535 

cells[163] or between microbes positioned along the oxygen gradient.[162] Gradients of pH are tied 536 

to oxygen and common in tumors,[159] and they shape microbial compositions in environmental 537 

contexts.[164] Hence, multispecies evolutionary models should take into account joint 538 

environmental constraints.  539 

 540 

Anderson and colleagues have presented compatible multiscale mathematical models of cancer 541 

growth that take into account both cellular biophysical properties and TME factors.[165–167] Their 542 

model determined that aggressive cancer clones were established under the harshest TME 543 

conditions (e.g., hypoxia, heterogenous extracellular matrix) but that their impact on overall tumor 544 

invasiveness was blunted under milder TME conditions. Hence, microenvironmentally harsh 545 
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chemotherapy may worsen long-term cancer invasiveness. Incorporating microbes into their 546 

multiscale model equations—their reliance and impact on TME chemical gradients and cancer 547 

metabolism—could inform multispecies clonal dynamics and ideal TME conditions that in turn 548 

would inform multispecies therapeutic strategies. 549 

 550 

Microbes affect clonal fitness  551 

 552 

As detailed above, intratumoral microbes affect cancer cell fitness, justifying their inclusion to 553 

accurately model clonal evolution. Current models typically account for factors like probabilities 554 

of cell division and cell death alongside inferred mutation rates and human driver genes. However, 555 

intracellular microbes likely need to be included in these equations as well in certain scenarios, 556 

particularly their mutational, division, and death rates. In circumstances of microbial enzymatic 557 

degradation, such as CDDL-mediated gemcitabine metabolism,[47] transcriptional rates and 558 

enzymatic efficiencies may be useful variables to include. In circumstances of genotoxin-mediated 559 

mutagenesis, such as from pks+ E. coli,[131] the base-pair motif and rate of mutations may also be 560 

instructive to include.  561 

 562 

Likelihood of clone development, treatment resistance, and fitness are all major parts of clonal 563 

evolution models and are related to extracellular and intracellular microbes, but these have not 564 

been typically considered in models of cancer evolution thus far. In common population genetics 565 

models of clonal evolution, including Wright-Fisher diffusion type models[168] and Moran type 566 

models,[169] it may be helpful to consider clonal fitness as a function of time-dependent fluctuations 567 

in microbial abundances or presence/absence of particular species. Additionally, branching 568 

process stochastic models of tumor growth that parameterize evolution in terms of proliferation 569 

and mutation rates[170–172] may also benefit from considering microbial colonization rates and 570 

species-specific transcriptional effects. Furthermore, cancer microbes individually (and likely 571 
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jointly) undergo somatic clonal evolution, as described in the case of H. pylori. Phylogenetic tree 572 

reconstructions of clonal evolution[173] may thus need to include multispecies lineages, but 573 

specialized methods likely need to be created for this purpose. To summarize, we have created 574 

a table of major clonal evolution models and suggested strategies for incorporating microbial 575 

information into them (Table 2). 576 

 577 

CONCLUSIONS 578 

 579 

Rigorous studies provide extensive evidence for the existence and functionality of cancer-580 

associated gut and intratumoral microbes while echoing ancient historical narratives of microbial-581 

mediated recovery. Drawing from cancer genomics, the inherently high diversity of the cancer 582 

microbiome substantiates its strong predictive power, even when any individual microbe is rare 583 

or lowly abundant. Cancer microbiota can distinguish healthy, pre-cancer, and cancerous tissues 584 

across multiple cancer and sample types, although most diagnostics remain unvalidated in large, 585 

multi-national, prospective cohorts. Cancer microbiota also demonstrate stage-specific 586 

differences that may enable simultaneous identification and prognostication of tumors. 587 

Nonetheless, contamination challenges in low-biomass settings and analytic idiosyncrasies of 588 

microbiomic data have hitherto complicated routine clinical application of cancer microbial 589 

diagnostics or prognostics. 590 

 591 

Numerous microbial mechanisms affect the cancer genome, transcriptome, proteome, and 592 

metabolome, advocating for their inclusion in models of cancer evolution. Extracellular and 593 

intracellular microbes affect virtually every cancer medication class and may drive therapeutic 594 

efficacy or resistance without any cancer cell(s) interventions. Negatively, it is not possible to 595 

accurately model cancer-drug dynamics, clonality, or fitness without accounting for microbes. 596 

Serious consideration of multispecies clonality, however, is complex and necessitates reworking 597 
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cancer evolution models since microbes carry distinct, although plausibly shareable, genetic 598 

cargo that may undergo discordant selection pressures from the cancer genome. Flexible 599 

evolutionary models treating intratumoral microbes as independent, albeit rule-abiding agents 600 

within the TME may be appropriate. Multispecies clonality also informs treatments, such that 601 

intentional modifications of cancer pathways may comprise more effective ways to restore healthy 602 

microbial ecologies than targeted antimicrobials, and vice versa. Multispecies treatment 603 

strategies may further benefit from target selectivity, for targeting microbial genes generally 604 

carries fewer side effects than targeting the host’s. Altogether, understanding cancer’s 605 

metagenome carries key ramifications for cancer care and clonal evolution for the benefit of 606 

patients worldwide. 607 

 608 

 609 

TABLE 2. Microbial integration into mathematical models of evolution. Overview of each 610 

model’s characteristics and references provided with modeling examples, as well as suggested 611 

ways that microbes could be potentially incorporated into model structure. Hybrid models that 612 

include aspects of more than one model type are also utilized in practice. 613 

 614 
Model Type Overview of Model Examples of Potential  

Incorporation of Microbes 
Literature 

Agent-based model ● Define ‘agents’ : individuals or 
members of the 
microenvironment with specific 
properties and actions on a 
structured grid or  3-D space 

● Can have stochastic and 
deterministic components with 
spatial constraints 

● Define environmental rules and 
presence of factors in space 
such as signalling proteins like 
VEGF 

● Define agent-agent interaction 
rules  

● Create microbe as one agent type 
and cancer cell as another agent 
type 

● Allow clonal evolution of cancer 
cells and separate evolution of 
microbes in equations  

● Create biophysical rules 
accounting for spatial movement  
of microbes and effect of 
microbes on evolutionary rates 
such as proliferation and survival 
of cancer cells 

● Introduce complexity with 
microbes as agents within the 

 [174,175]  
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microenvironment  

Wright-Fisher type 
model 

● Population size remains 
constant over time (can be 
extended to growing 
populations) 

● Considers finite number of 
population species/k-alleles  

● To create the next non-
overlapping generation, alleles 
are randomly sampled with 
replacement 

● Allele frequency in new 
generation is combination of 
random sampling of population 
and the fitness of alleles 

● Captures genetic drift and 
natural selection if included 

● Microbes will likely not be directly 
considered in the population 
species, but instead the effects of 
microbes will be interwoven into 
fitness  

● Fitness parameter of certain 
genotypes may depend on 
metabolites, proteins, and 
antigens from intracellular 
bacteria, which in certain cases 
may drive differential 
immunoediting between cancer 
cell-bearing bacteria 

[168,176] 
 

Moran-type model ● Two or more species 
considered in a population 

● Asexual reproduction, 
overlapping generations 

● Simultaneous birth and death 
events occur  

● As in the Wright-Fisher model, 
can be formulated as a diffusion 
approximation 

● Similar to the Wright-Fisher type 
model, microbes will likely not be 
directly considered in the 
population species, but instead 
the effects of microbes will be 
interwoven into fitness  

● Fitness parameter of certain 
genotypes may depend on 
metabolites, proteins, and 
antigens from intracellular 
bacteria, which in certain cases 
may drive differential 
immunoediting between cancer 
cell-bearing bacteria 

[169,177] 
 
 

Birth-death 
stochastic process 

● Continuous time Markov model 
(branching process) where 
‘birth’ or ‘death’ events can 
change the state/population size 

● A ‘birth’ increases the state by 
one 

● A ‘death’ decreases the state by 
one 

● Allows for multiple cell types 
(e.g., with/without driver 
mutations), fluctuations in total 
population size, stochastic 
extinction of cells, and mutation 
to other types  

● Option 1 
○ Birth and death defined in 

terms of human cancer 
cells with: 

■ Probability of birth 
and/or death 
affected by 
microenvironment 

■ Probability of birth 
and/or death 
dependent on a 
function of the 
population of 
intratumoral 
microbes present  

● Option 2 

[178,179] 
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○ Birth and death events 
defined in terms of both 
human cancer cells and 
microbial populations  

Evolutionary game 
theory model 

● Includes density-dependent 
fitness with cell-cell interactions 

● Models cooperation, e.g., 
between tumor and stromal cells 

● Fitness landscapes in non-
cancer models have been 
central to understanding 
microbial evolution such as E. 
coli  

● Include microbes as a type of 
“player” in the modeled 
ecosystem including tumor cells 
for limited chemicals and 
nutrients (e.g., oxygen, sugars, 
etc.) 

● “Public good” produced by tumor 
cells, such as glycolytic acid and 
vascular endothelial growth 
factor, included in a game as 
competing resources with 
microbial populations 

[180–183] 
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