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Abstract

In this paper, we obtain Hölder stability estimates for the inverse Steklov problem for Schrödinger
operators corresponding to a special class of L

2 radial potentials on the unit ball. These results
provide an improvement on earlier logarithmic stability estimates obtained in [8] in the case of the
the Schrödinger operators related to deformations of the closed unit ball. The main tools involve
a formula relating the difference of the Steklov spectra of the Schrödinger operators associated to
the original and perturbed potential to the Laplace transform of the difference of the corresponding
amplitude functions introduced in [17] and a key moment stability estimate due to Still [18]. It is
noteworthy that with respect to the original Schrödinger operator, the type of perturbation being
considered for the amplitude function amounts to the introduction of a finite number of negative
eigenvalues and of a countable set of negative resonances which are quantified explicitly in terms of
the eigenvalues of the Laplace-Beltrami operator on the boundary sphere.
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1 Introduction

In a recent paper, [8], we have obtained a set of logarithmic stability estimates in the inverse Steklov
problem for the Laplace-Beltrami operator on a class of warped product Riemannian manifolds defined on
a d-dimensional closed ball. These manifolds can be thought of as deformations of the closed Euclidean d-
ball in which the deformation is parametrized by the choice of radial warping function. The deformations
considered in [8] include both the regular and singular cases of warped product metrics [15].

The approach taken in [8] was based on expressing the warped product metric in a coordinate system in
which the metric takes the form of a conformal rescaling of the flat Euclidean metric. This enabled us by
using the transformation law of the Laplace-Beltrami operator under conformal changes of the metric to
reformulate the inverse Steklov problem for the Laplace-Beltrami operator on the original deformed closed
ball as the inverse Steklov problem for a Schrödinger operator on the Euclidean ball, with a potential
determined by the warping function of the original deformed ball and its derivatives. The logarithmic
stability estimates that we obtained were thus of the nature of the estimates obtained by Alessandrini [1]
and Novikov [14].

Our goal in the present paper is to improve the logarithmic stability results of [8] in a significant way
by obtaining instead a set of Hölder stability estimates and by highlighting the role of the resonances.
In the approach we will take in the current paper, instead of starting from a deformed closed d-ball, we
will reverse the initial step taken in [8] and start with a Schrödinger operator on the Euclidean d-ball,
endowed with a radial potential. One reason for doing so is that the set of warped product metrics for
which Hölder stability estimates can be obtained for the inverse Steklov problem will be significantly
more restricted than the ones for which logarithmic stability estimates were obtained in [8]. Thus by
considering Schrödinger operators, we will be broadening the range of inverse Steklov problems to which
our Hölder stability results will apply. We emphasize nevertheless that the class of potentials for which
we are able to establish Hölder stability for the inverse Steklov problem is still rather special and that
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any extension of our results to more general potentials may require stronger techniques than the ones we
are using the present paper. We now proceed to describe the main results of our paper.

More precisely, on the d-dimensional closed Euclidean ball

M = (0, 1]× Sd−1 , (1.1)

where d ≥ 3, we consider the Dirichlet problem for the Schrödinger operator with a potential q, given by

{ −△u+ q u = 0, on M ,

u = ψ ∈ H
1
2 (∂M), on ∂M ,

(1.2)

When q ∈ L∞(M) and λ = 0 is not a Dirichlet eigenvalue of the above Schrödinger operator, the
Dirichlet problem (1.2) has a unique solution u ∈ H1(M). The Dirichlet-to-Neumann (DN) map Λq is
then (formally) defined as an operator from H1/2(∂M) to H−1/2(∂M) by

Λqψ = (∂νu)|∂M , (1.3)

where u is the unique solution of (1.2) and (∂νu)|∂M is the normal derivative of u with respect to the
outer unit normal vector ν on ∂M .

The DN map thus defined is a self-adjoint operator on L2(∂M, dSg) where dSg denotes the metric induced
by the Euclidean metric on the boundary sphere ∂M = Sd−1. Its spectrum (the so-called Steklov
spectrum) is discrete and accumulates at infinity We shall thus denote the Steklov eigenvalues (counted
with multiplicity)

0 = σ0 < σ1 ≤ σ2 ≤ · · · ≤ σk → ∞ . (1.4)

The Steklov spectrum will be the central object of study in this paper.

For the remainder of this paper, we shall assume that the potential is radial and we write q = q(r), where
r denotes the Euclidean distance to the origin. It will be convenient to replace the radial coordinate
r ∈ (0, 1] by a new radial coordinate x ∈ (0,∞) defined by x = − log r, in which case the the boundary
of M now corresponds to x = 0. The Euclidean metric then takes the form

g = f(x)4(dx2 + dΩ2) ,

where f(x) = exp(−x/2) and dΩ2 denotes the round metric on the unit sphere Sd−1. The Dirichlet
problem (1.2) gets transformed into

{

[−∂2x −△S +Q(x)]v = − (d−2)2

4 v, on M ,
v = fd−2ψ, on ∂M ,

(1.5)

where △S denotes the Laplacian on the boundary sphere Sd−1 and Q(x) := e−2xq(e−x).

Thanks to the spherical symmetry of the potential Q, we can use separation of variables and reduce
(1.5) to an infinite sequence of radial ordinary differential equations. We thus let {Yk, k ≥ 0} denote an
orthonormal Hilbert basis of L2(Sd−1) consisting of eigenfunctions of △S ,

−△SYk = αkYk , αk = k(k + d− 2) .
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Writing

v =
∑

k≥0

vk(x) Yk , (1.6)

we obtain an infinite sequence of ordinary differential equations on (0,∞) given by

−v′′k +Qvk = −(αk +
(d− 2)2

4
)vk = −κ2kvk , (1.7)

where

κk := k +
d− 2

2
, k ≥ 0 .

As in [8], we introduce the Weyl-Titchmarsh (WT) function M(z) associated to the Sturm-Liouville
operator L on (0,+∞) given by

L = − d2

dx2
+Q . (1.8)

This function will play a central role in our subsequent analysis of the stability problem of the Steklov
spectrum for our Schrödinger operator. We assume in this paper that

Q ∈ L2(0,∞) . (1.9)

Under this assumption, it is well-known that L is of limit point-type at infinity, which means that for all
z ∈ C \ [−β,∞) with β >> 1, there exists, up to a zon-zero multiplicative constant, a unique solution
u(x, z) of

−u′′ +Qu = zu z ∈ C , (1.10)

which is L2 at ∞. The Weyl-Titchmarsh function M(z) is then defined by

M(z) :=
u′(0, z)

u(0, z)
for all z ∈ C \ [−β,∞) . (1.11)

Of course, the square-integrability hypothesis (1.9) we made on the potential Q does not necessarily
imply that the initial potential q ∈ L∞(M). Thus, the previous definition we gave for the DN map is not
directly applicable in this L2 setting. We overcome this difficulty by exploiting the separation of variables
and follow the procedure used in Section 2 of [8] to define the DN map; namely we expand the boundary
data ψ in the Hilbert basis {Yk}k≥0 of L2(Sd−1) as

ψ =
∑

k≥0

ψkYk ,

and define the DN map Λq as a sum of operators Λk
q by

Λqψ =

∞
∑

k=0

(Λk
qψk)Yk . (1.12)

The "diagonalized" DN operators Λk
q are then computed using the separation of variables to give

Λk
qψk = − (d− 2)

2
vk(0)− v′k(0) , (1.13)
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where
−v′′k +Qvk = −κ2kvk vk(0) = ψk, vk ∈ L2 at +∞ .

As was proved in [8], the operators Λk
q , k ≥ 0 can be further simplified to take the form of multiplication

operators by making use of the Weyl-Titchmarsh function M evaluated at the points −κ2k:

Λk
qψk =

(

− (d− 2)

2
−M(−κ2k)

)

ψk , (1.14)

and the Steklov spectrum {σk, k ≥ 0} is given in terms of the Weyl-Titchmarsh function M as

σk = − (d− 2)

4
−M(−κ2k) . (1.15)

There is an important representation formula first obtained in [17] for the Weyl-Titchmarsh function
in terms of a the Laplace transform of a unique amplitude function A, under the hypothesis that Q ∈
L1(0,∞):

M(−κ2) = −κ−
∫ ∞

0

A(α)e−2καdα , ∀κ > 1

2
||Q||1 . (1.16)

We shall use a slightly refined version of this formula which applies in our L2-setting and which will serve
as the starting point of our formulation of the stability problem for the Steklov spectrum.

Let us now explain what we mean precisely by local stability estimates. The starting point is a fixed
potential Q ∈ L2(0,∞) which we perturb through the addition of a certain exponential series to its
corresponding amplitude A. The set of admissible exponential series parametrizing the perturbations
lies in an infinite-dimensional space. Using powerful results of Killip -Simon [13] we then show that
Q̃ ∈ L2(0,∞).

Given now such a pair of potentials Q, Q̃, we assume that the difference between their corresponding
Steklov spectra is uniformly bounded in absolute value by a small error ǫ > 0,

|σk − σ̃k| < ǫ , ∀k ≥ 0 . (1.17)

Our main goal is to estimate the difference Q− Q̃ of these potentials. Again, our result is local: for any
fixed parameter T > 0, we get stability estimates in the space L2(0, T ). Roughly speaking, this means
that

||Q̃−Q||L2(0,T ) ≤ CT g(ǫ) , (1.18)

where g(ǫ) → 0 when ǫ→ 0, and CT is a constant only depending on T .

Now, we can state our main result in this paper :

Theorem 1.1. Let Q ∈ L2(0,∞) be a square-integrable potential with amplitude function A, and let
δ ≥ 3 − d be any fixed parameter. Set µk := λk + δ where λk = 2k + d − 3 + δ and let {ck, k ≥ 0} be a
sequence of real numbers such that

• i) ck ≤ 0 for all k ≥ 0.

• ii) The power series
∑

k≥0 ckt
λk has a radius of convergence R > 1.
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Then the function Ã defined by

Ã(α) = A(α) +
∑

k≥0

cke
−µkα , α > 0 , (1.19)

is the amplitude function of a potential Q̃ ∈ L2(0,∞).

Moreover, under the hypothesis (1.17), for any fixed T > 0, there exists a positive constant CT such that

||Q̃−Q||L2(0,T ) ≤ CT ǫθ , (1.20)

where the Hölder exponent θ ∈ (0, 12 ) is independent of T and is given by

θ =
1

2
min(1,

logR

log(9M0

2 )
), M0 = max{2, 4(d− 3 + δ) + 1} . (1.21)

Note that when the radius of convergence R ≥ 9M0

2 , we can take as Hölder exponent θ = 1
2 . Note also

that when the initial potential is the trivial potential Q = 0, the perturbed potentials Q̃ can be seen as
a generalization of the so-called Bargmann potentials (see section 5 for details).

Finally, it is noteworthy that with respect to the original Schrödinger operator, the type of perturbation
being considered for the amplitude function A amounts to the introduction of a finite number of negative

eigenvalues −µ2
k

4 for k = 1, ..., N , (corresponding to the case where µk is negative), and of a countable set

of real resonances − |µk|
2 which are equally spaced on the negative real axis (for k greater than some k0).

These resonances are quantified explicitly in terms of the parameter δ and the eigenvalues of the Laplace
Beltrami operator ∆S on the boundary sphere.

2 Notation and set-up of the model

On the d-dimensional closed Euclidean ball

M = (0, 1]× Sd−1 , (2.22)

where d ≥ 3, we consider the Dirichlet problem for the Schrödinger operator with potential q ∈ L∞(M),
given by

{ −△u+ q u = 0, on M ,

u = ψ ∈ H
1
2 (∂M), on ∂M .

(2.23)

Although we shall shortly make several assumptions about the potential q (including the requirement
that it be radial), we begin by recalling a few general facts concerning the Dirichlet problem (2.23) for
a general potential q ∈ L∞(M). These will lead us to the definition of the Dirichlet-to-Neumann (DN)
map and the associated Steklov spectrum, which will be central objects of study in this paper.

We first recall (see for example Theorem 8.3 in [11]) that if q ∈ L∞(M) and zero is not a Dirichlet
eigenvalue of the above Schrödinger operator (which is the case for example if q ≥ 0), then the Dirichlet
problem (2.23) has a unique solution u ∈ H1(M). The Dirichlet-to-Neumann (DN) map Λq is then
defined as an operator from H1/2(∂M) to H−1/2(∂M) by

Λqψ = (∂νu)|∂M , (2.24)
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where u is the unique solution of (2.23) and (∂νu)|∂M is the normal derivative of u with respect to the

outer unit normal vector ν on ∂M . Here (∂νu)|∂M is generally defined in the weak sense as an element

of H−1/2(∂M) by

〈Λqψ|φ〉 =
∫

M

〈du, dv〉 dV ol ,

for any ψ ∈ H1/2(∂M) and φ ∈ H1/2(∂M) such that u is the unique solution of (2.23) and v is any
element of H1(M) such that v|∂M = φ. It is easily checked that if ψ is sufficiently smooth, we have

Λqψ = g(ν,∇u)|∂M = du(ν)|∂M = ν(u)|∂M ,

so that the expression in local coordinates for the normal derivative is then given by

∂νu = νi∂iu . (2.25)

It is well known that the DN map is a pseudo-differential operator of order 1 which is self-adjoint on
L2(∂M, dSg) where dSg denotes the metric induced by the Euclidean metric on the boundary ∂M = Sd−1.
Therefore, the DN map Λq has a real and discrete spectrum accumulating at infinity, known as the Steklov
spectrum. We shall denote the Steklov eigenvalues (counted with multiplicity) by

0 = σ0 < σ1 ≤ σ2 ≤ · · · ≤ σk → ∞ . (2.26)

We refer the reader to [12] and references therein for an excellent survey of the known results on the
Steklov spectrum.

As of now and for the remainder of this paper, we shall assume that the potential is radial and write
q = q(r), where r denotes the Euclidean distance to the origin. It will be convenient for our subsequent
analysis to replace the radial coordinate r ∈ (0, 1] by a new radial coordinate x ∈ (0,∞) defined by
x = − log r, in which case the the boundary of M now corresponds to x = 0. The Euclidean metric

g = dr2 + r2dΩ2 ,

where dΩ2 denotes the round metric on the unit sphere Sd−1, then takes the form

g = f(x)4(dx2 + dΩ2) ,

where f(x) = exp(−x/2), and the Dirichlet problem (2.23) gets transformed into

{

[−∂2x −△S +Q(x)]v = − (d−2)2

4 v, on M ,
v = fd−2ψ, on ∂M ,

(2.27)

where △S denotes the Laplacian on the boundary sphere Sd−1 and Q(x) := e−2xq(e−x).

2.1 Separation of variables

Our first step in the analysis of (2.27) is to exploit the spherical symmetry of the potential Q in order to
separate variables and reduce (2.27) to an infinite sequence of radial ordinary differential equations. We
thus let {Yk, k ≥ 0} denote an orthonormal Hilbert basis of L2(Sd−1) consisting of eigenfunctions of △S,

−△SYk = αkYk , αk = k(k + d− 2) ,

7



where the eigenvalue αk is of multiplicity
(

k+d−1
d−1

)

−
(

k+d−3
d−1

)

, and let

κk := k +
d− 2

2
, k ≥ 0 .

We separate variables by letting

v =
∑

k≥0

vkYk , (2.28)

where vk = vk(x) depends only on the radial variable x ∈ (0,∞), which gives rise upon substitution of
(2.28) into (2.27) to the infinite sequence of ordinary differential equations on (0,∞) given by

−v′′k +Qvk = −(αk +
(d− 2)2

4
)vk = −κ2kvk . (2.29)

For our subsequent analysis of the stability problem, it will be very useful to complexify the spectral
parameter κk and consider instead the ordinary differential equation

−v′′ +Qv = zv z ∈ C , (2.30)

where z is now to be thought of as a complex spectral parameter.

2.2 The Weyl-Titchmarsh function

We now introduce the Weyl-Titchmarsh function M(z) associated to the Sturm-Liouville operator

L = − d2

dx2
+Q , (2.31)

defined by the left-hand side of (2.30). This function will play a central role in our subsequent analysis
of the stability problem of the Steklov spectrum for our Schrödinger operator.

We first recall that in order for the Weyl-Titchmarsh function to be well-defined, we need to assume
that L is of limit point-type at infinity, meaning that for all z ∈ C \ [−β,∞) with β >> 1, there exists,
up to a zon-zero multiplicative constant, a unique solution u(x, z) of (2.30) which is L2 at ∞. The
Weyl-Titchmarsh function M(z) is then defined by

M(z) :=
u′(0, z)

u(0, z)
for all z ∈ C \ [−β,∞) . (2.32)

It is easy to show that this property will be guaranteed if

Q ∈ L2(0,∞) , (2.33)

a property which we will require Q to satisfy from now onwards. Indeed, from (1.5) in [17], we know that
L will be of limit point-type at infinity if

β2 := sup
y>0

∫ y+1

y

max{Q(x), 0}dx <∞ . (2.34)

But by the Cauchy-Schwarz inequality, we have

sup
y>0

∫ y+1

y

max{Q(x), 0}dx ≤ sup
y>0

∫ y+1

y

|Q(x)|dx ≤ ||Q||2 , (2.35)

which shows that (2.33) ensures indeed the property that L is of limit point-type at infinity,
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2.3 The DN map and the Weyl-Titchmarsh function

We begin by remarking that the square-integrability hypothesis (2.33) made on the potential Q appearing
in the radial Sturm-Liouville operator L does not necessarily imply that the potential q of the initial
Schrödinger operator considered in the set-up of Section 2 will satisfy the condition q ∈ L∞(M), which
we assumed in order to define the DN map Λq. In other words, the definition we gave for the DN map
may not be applicable in the L2 setting defined by the condition (2.33).

We may nevertheless circumvent this difficulty by exploiting the separation of variables worked out in
Section 2.1 and following the procedure used in Section 2 of [8] to define the DN map. Indeed, by
expanding the boundary data ψ in the Hilbert basis {Yk}k≥0 of L2(S) as

ψ =
∑

k≥0

ψkYk ,

the DN map Λq is represented as a sum of operators Λk
q by

Λqψ =

∞
∑

k=0

(Λk
qψk)Yk , (2.36)

where the "diagonalized" DN operators Λk
q are computed using the separation of variables to give (see

(2.16) in [8])

Λk
qψk = − (d− 2)

2
vk(0)− v′k(0) , (2.37)

where

−v′′k +Qvk = −(µk +
(d− 2)2

4
)vk = −κ2kvk vk(0) = ψk, vk ∈ L2 at +∞ .

As shown in the calculation leading from (2.14) to (2.15) in [8], the form given in (2.37) for the operators
Λk
q , k ≥ 0 can be further simplified to obtain an expression of these operators as multiplication operators:

Λk
qψk =

(

− (d− 2)

2
−M(−κ2k)

)

ψk . (2.38)

Finally, we recall from Lemma 2.3 in [8] the explicit formula giving the Steklov spectrum {σk, k ≥ 0} in
terms of the Weyl-Titchmarsh function M ,

σk = − (d− 2)

4
−M(−κ2k) . (2.39)

The latter formula will serve as the starting point of our formulation of the stability problem for the
Steklov spectrum.

2.4 The amplitude A of a radial potential and the Weyl-Titchmarsh function

As stated in the Introduction, central to our analysis of the stability problem lies a remarkable represen-
tation formula first obtained in [17] (under the hypothesis that Q ∈ L1(0,∞)) for the Weyl-Titchmarsh
function the Sturm-Liouville operator L in terms of a the Laplace transform of an amplitude function
A. We shall be using a slightly refined version of this formula which applies to the class of L2 potentials
considered in our paper.
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In order to state this formula, we first recall from Theorem 2.1 in [17] that if Q ∈ L1(0,∞), then the
Weyl-Titchmarsh function M may be expressed in the form of the Laplace transform of an amplitude
function A by

M(−κ2) = −κ−
∫ ∞

0

A(α)e−2καdα , ∀κ > 1

2
||Q||1 . (2.40)

It was proved in [9] (in the remark following (1.17)) that the above equality also holds for all κ ∈ C such
that Reκ > 1

2 ||Q||1. In [3] (see Section 5, Algorithm 1, point 2), it is proved that if β2 < ∞, where
β2 is defined in (2.34), then the integral in (2.40) is absolutely convergent for Reκ > 2max{√2β2, eβ2}.
But we saw in (2.35) that for square-integrable potentials Q, one has the estimate β2 ≤ ||Q||2 < ∞. It
therefore follows from (2.40) that the Weyl-Titchmarsh function M admits the representation

M(−κ2) = −κ−
∫ ∞

0

A(α)e−2καdα , ∀Reκ > 2max{
√

2β2, eβ2} . (2.41)

3 The problem of stability

3.1 Statement of the problem and strategy

The stability problem may be stated as follows in general terms: Given a pair of potentials Q, Q̃ such
that the difference between their corresponding Steklov spectra is uniformly bounded in absolute value
by a small error ǫ > 0,

|σk − σ̃k| < ǫ , ∀k ≥ 0 , (3.1)

what can we say about the difference Q− Q̃ of these potentials? As a first step, we can use the expression
(2.39) of the Steklov spectrum in terms of the Weyl-Titchmarsh function M and Simon’s representation
formula (2.41) for M in terms of the Laplace transform of the amplitude function A to reformulate the
condition (3.1) in terms of A. We have

|σk − σ̃k| = |M(−κ2k)− M̃(−κ2k)| = |
∫ ∞

0

(A(α) − Ã(α))e−2κkαdα| ,

and making the change of variables α = − log t, our hypothesis (3.1) on the difference of the Steklov
spectra takes the form

|
∫ 1

0

t−δ
(

A(− log t)− Ã(− log t)
)

t2k+d−3+δdt| < ǫ , (3.2)

where δ will be a fixed real parameter that will be properly chosen later. We can see that (3.2) is ef-
fectively a Hausdorff moment problem, and thus one should not expect better stability results than the
logarithmic stability estimates of the type obtained in [8] for the Steklov spectra of deformed balls, or
in [1] and [14] for the Steklov spectra of certain Schrödinger operators. Nevertheless, as we shall explain
in Section 3.2 below, one can approach the stability problem from a different starting point by working
directly with perturbations of Simon’s amplitude function A by a certain families of exponential series
obtained from power series of Müntz type. We shall see that his leads in turn to Hölder type stability
results which are significantly stronger than the logarithmic stability results mentioned earlier, albeit at
the cost of restricting the class of potentials to a somewhat small subset of the set of square integrable
potentials. More precisely, given the amplitude function A associated to a square-integrable potential
function Q by (2.41), our strategy will consist in defining a perturbed amplitude function Ã as in (3.5)
and then use an important stability estimate due to Still (Theorem 2 in [18]) to obtain a Hölder estimate
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on Ã−A. This will be the substance of Section 3.2. The next step, worked out in Section 4, will consist
in using the powerful results of [13] to construct an L2 potential Q̃ associated to the perturbed amplitude
Ã. Finally, we shall use the methods of boundary control theory of [3] to estimate the difference Q̃−Q.

It is noteworthy that with respect to the original Schrödinger operator, the type of perturbation being
considered for the amplitude function A amounts to the introduction of a finite number of negative eigen-
values (corresponding to the choice of a negative real parameter δ) and of a countable set of resonances
on the negative real axis, which admit a precise quantitative expression through to the eigenvalues µk of
the Laplace Beltrami operator ∆S on the boundary sphere.

3.2 Improved stability by Still’s method - first main result

Let Q ∈ L2(0,∞) be a given fixed potential and let A be the corresponding amplitude function, given by
the representation formula (2.40).

Having in mind the inequality (3.2), we set for k ≥ 0,

λk := 2k + d− 3 + δ , (3.3)

where δ ≥ 3− d is an arbitrary fixed real parameter (so that λk ≥ 0) and

h(t) = t−δ
(

Ã(− log t)−A(− log t)
)

(3.4)

We define formally a new amplitude Ã by adding to A a power series

Ã(α) = A(α) +
∑

k≥0

cke
−(λk+δ)α , (3.5)

or equivalently

h(t) =
∑

k≥0

ckt
λk . (3.6)

We assume that the series defining h(t) has a radius of convergence R > 1, so that h ∈ C0([0, 1]).
Furthermore we assume that h is such that the estimate (3.2) holds, that is

|
∫ 1

0

h(t) tλkdt| ≤ ǫ , ∀k ≥ 0 . (3.7)

Our goal for this section is to obtain a good approximation of Hölder or Lipschitz type for ||h||22, under
the above assumptions. We shall do so by using Theorem 2 in the paper [18] by Still and the procedure
used in Section 4.3 of [8]. In order to do so we first recall some of the notation used in [8].

Theorem 3.1. Given ǫ > 0 and R > 1 as above and letting M0 = max{2, 4(d− 3+ δ) + 1}, we have, for
some universal constant B > 0, the estimate

||h||22 ≤ B2ǫ+R1−dǫ
log R

log(
9M0

2
) . (3.8)

We note that the estimate (3.8) is generally a Hölder type estimate for ||h||22, but that if R > 9M0

2 ,
this estimate is Lipschitz.
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Proof. Given a sequence Λ∞ := (λn)n≥0 of integers such that 0 ≤ λ0 < λ1 < · · · and λk → ∞ as k → ∞,
we define for fixed n ≥ 1 the finite sequence

Λn := 0 ≤ λ0 < λ1 < ... < λn , (3.9)

giving rise to the vector space M(Λ) of "Müntz polynomials of degree λn":

M(Λn) = {P : P (t) =

n
∑

k=0

ak t
λk} . (3.10)

Recall that according to the Müntz-Szász’s Theorem, if Λ∞ is a sequence of positive real numbers as
above, then span {tλ0 , tλ1 , ...} is dense in L2([0, 1]) if and only if

∞
∑

k=1

1

λk
= ∞. (3.11)

We remark that if λ0 = 0, the denseness of the Müntz polynomials in C0([0, 1]) in the sup norm is also
characterized by (3.11).

Given now a function f in C0([0, 1]) or in L2([0, 1]), the error of approximation of f with respect to
M(Λn) is defined by

Ep(f,Λn) := inf
P∈M(Λn)

||f − P ||p , (3.12)

where p = 2 or p = ∞ depending on whether f ∈ C0([0, 1]) or f ∈ L2([0, 1]). For our application, we
have λk := 2k + d− 3 + δ, giving λk+1 − λk = 2 > 0, so by Theorem 2 of [18], we know that

E∞(h,Λn) ≤ CR−λn+1 , (3.13)

for some positive constant C.

We have, denoting by πn the orthogonal projection onto the subspace M(Λn),

||h||22 = ||πn(h)||22 + ||h− πn(h)||22 . (3.14)

Our next step is to combine the estimate (4.57) from [8] Section 4.3 of and the estimate (3.13) to obtain
an estimate for the norm of πn(h). In order to do so, we use the Gram-Schmidt process to obtain
polynomials (Lm(t)) with L0(t) = 1, and for m ≥ 1,

Lm(t) =

m
∑

j=0

Cmjt
λj , (3.15)

where we have set

Cmj =
√

2λm + 1

∏m−1
r=0 (λj + λr + 1)
∏m

r=0,r 6=j(λj − λr)
. (3.16)

The family (Lm(t)) defines an orthonormal Hilbert basis of L2([0, 1]). We may now recall the estimate
(4.57) from [8],

||πn(h)||22 ≤ ǫ2
n
∑

k=0

(

k
∑

p=0

|Ckp|
)2

, (3.17)
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which gives immediately

||h||22 ≤ ǫ2
n
∑

k=0

(

k
∑

p=0

|Ckp|
)2

+ CR−λn+1 , (3.18)

using (3.13) and the inequality

||h− πn(h)||22 = E2(h,Λn) ≤ E∞(h,Λn) .

Now, according to the estimate (4.72) of [8], we have

||πnh||22 ≤ B2ǫ2 g(n)2 , (3.19)

where B is a positive constant and g : [0,+∞[ is a monotone increasing function defined for t ∈ [0,+∞)
by

g(t) =
3

2

1
√

(

9M0

2

)2 − 1

√
2t+ 1

(

9M0

2

)t+1

, M0 = max{2, 4(d− 3 + δ) + 1} . (3.20)

Now, repeating the steps that lead from the inequalities (4.72) to (4.73) in [8], we choose n as a function

of ǫ so as to control the norm of the projection ||πnh||22 of h and thus set n(ǫ) := [ (g−1(
1√
ǫ
))] where

square brackets denote the integral part function. Since g is a monotone increasing function, we have

g(n(ǫ)) ≤ 1√
ǫ
, (3.21)

so using (3.19) we obtain immediately:
||πn(ǫ)h||22 ≤ B2ǫ. (3.22)

Our next task is now to estimate the size of n(ǫ) relative to ǫ so as to obtain the Hölder estimate we seek
for ||h||22. From (3.20), we obtain that

g(t) ∼ (t+ 1) log(
9M0

2
) ,

as t→ ∞, which combined with (3.21) leads to

n(ǫ) =
log( 1√

ǫ
)

log(9M0

2 )
. (3.23)

Plugging this into (3.18) gives
||h||22 ≤ B2ǫ+ CR−λn(ǫ)+1 . (3.24)

Now, using the expression λk = 2k + d− 3 + δ and (3.23), we have

R−λn(ǫ)+1 = R1−d−δR−2n(ǫ) ∼ R1−d−δR
−

2 log 1√
ǫ

log(
9M0

2
) ∼ R1−d−δe

log ǫ

log(
9M0

2
)
logR

∼ R1−d−δǫ
log R

log(
9M0

2
) . (3.25)

Substituting (3.25) into (3.24), we obtain

||h||22 ≤ B2ǫ+R1−d−δǫ
log R

log(
9M0

2
) . (3.26)
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In terms of the amplitude function A in the variable α ∈ (0,∞), using the relation

||h||22 =

∫ 1

0

t−2δ(A(− log t)− Ã(− log t))2 dt ,

we obtain
∫ ∞

0

e(2δ−1)α(A(α) − Ã(α))2 dα ≤ B2ǫ+R1−d−δǫ
log R

log(
9M0

2
) . (3.27)

4 From the perturbed amplitude Ã to a potential Q̃ ∈ L2(0,∞)

4.1 Statement of the main result

Our objective for Section 4 is to establish a result on the existence of square-integrable potentials Q̃
associated to perturbed amplitudes Ã as defined in (3.5). As we shall see, this will require a few additional
hypotheses on the perturbation of the amplitude function A given by (3.5) and thus on the perturbation
of the starting potential Q.

We set for k ≥ 0,
µk := λk + δ = 2k + d− 3 + 2δ (4.1)

so that
Ã(α) = A(α) +

∑

k≥0

cke
−µkα , α > 0 . (4.2)

Thus, in dimension d greater than 3, µk may be a negative real; so we split the series in (4.2) as

Ã(α) = A(α) +

N−1
∑

k=0

cke
−µkα +

∑

k≥N

cke
−µkα , α > 0 , (4.3)

such that for k = 0, ..., N − 1, µk < 0 and for k ≥ N + 1, µk ≥ 0, with the convention that the first sum
in (4.3) does not appear if all the µk’s are positive (i.e if N = 0).

Now, it is convenient to rewrite (4.3) as:

Ã(α) −A(α) =
N−1
∑

k=0

2ck sinh(|µk|α) +
∑

k≥0

cke
−|µk| α. (4.4)

In this form, we note that the perturbation Ã(α)−A(α) has exactly the same expression as the amplitude
given in [9], Eq. (11.9), modulo the fact we consider a convergent series instead a finite sum, and that
the coefficients |µk| for k = 0, ..., N − 1 appear simultaneously in the first finite sum and also in the
convergent series.

As we shall see in the next section, the first finite sum in the (RHS) of (4.4) corresponds to the introduction

of negative eigenvalues −µ2
k

4 for k = 0, ..., N − 1, whereas the second sum corresponds to the introduction

of real resonances − |µk|
2 for k ≥ 0.

We state this result in the form of a theorem, that will be proved in Section 4.3 below by applying
Theorem 1.2 from the paper [13] by Killip and Simon:
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Theorem 4.1. Let Q ∈ L2(0,∞) be a square-integrable potential with amplitude function A, let {ck, k ≥
0} be a sequence of real numbers such that

• i) For all k ≥ 0, ck ≤ 0.

• ii) the power series
∑

k≥0 ckt
λk has a radius of convergence R > 1.

Then the function Ã defined by

Ã(α) = A(α) +
∑

k≥0

cke
−µkα , α > 0 , (4.5)

is the amplitude function of a potential Q̃ ∈ L2(0,∞).

4.2 The spectral measure

In order to proceed with the proof of Theorem 4.1, we need to first compute the difference of the spectral
measures of Q and Q̃ in terms of the data contained in the perturbed amplitude Ã. In the first instance
we will work heuristically so as to set the stage for the mathematical objects at play.

Let us first recall from [10] that the Weyl-Titchmarsh function M is a function of Herglotz type, meaning
that for all z ∈ C such that Imz > 0 we have ImM(z) > 0. This implies that we have the representation
formula

M(z) = c+

∫

R

( 1

λ− z
− 1

1 + λ2
)

dρ(λ) ,

where dρ(λ) is the (positive) spectral measure associated to (2.30). It can be constructed by taking the
following weak limit (in the distributional sense)

dρ(E) = w-lim
ǫ↓0

1

π
Im (M(E + iǫ)) dE . (4.6)

We denote by M̃(−κ2) the putative Weyl-Titchmarsh function associated with the amplitude Ã(α), so
thanks to (2.41), we have (formally and for suitable κ),

M̃(−κ2)−M(−κ2) = −
∫ ∞

0

(

Ã(α) −A(α)
)

e−2κα dα. (4.7)

Now, using (4.4), we easily write the difference M̃(−κ2)−M(−κ2) as

M̃(−κ2)−M(−κ2) = −2

N−1
∑

k=0

ck
|µk|

4κ2 − µ2
k

−
∑

k≥0

ck
2κ+ |µk|

. (4.8)

We note that the above series is indeed convergent since by hypothesis the power series
∑

k≥0 ckt
λk has

radius of convergence R > 1 so that in particular
∑

k≥0 |ck| <∞.

Now, using (4.6), we are able to define the difference of the spectral measures dρ̃(E) − dρ(E) (for more
details, we refer the reader to ([9], Eqs. (11.7)-(11.9), p.637).

For E ≥ 0,

dρ̃(E) = dρ(E) − 2

π

∑

k≥0

ck

√
E

4E + µ2
k

dE, (4.9)
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and for E < 0,

dρ̃(E) = dρ(E) − 1

2

N−1
∑

k=0

ck |µk| δ(·+
µ2
k

4
) dE, (4.10)

where δ(· − a) stands for the usual delta distribution, centered at the point a.

As was explained in ([9], Section 11), this corresponds to the introduction of a finite number of negative

eigenvalues −µ2
k

4 for k = 0, ..., N − 1, and of real resonances − |µk|
2 for k ≥ 0.

Now, we can explain precisely our strategy : in the next section we show, using the Killip-Simon condi-
tions, that under the hypotheses of Theorem 4.1, there exists a potential Q̃ ∈ L2(0,∞) associated to the
above spectral measure dρ̃(E) allowing us to define rigourously the associated Weyl-Titchmarsh function
M̃(z) for z ∈ C\[−β̃,+∞[ for β̃ >> 1. The amplitude function associated to M̃(z) is automatically given
by Ã(α) thanks to the uniqueness of the inverse Laplace transform and analytic continuation.

4.3 The Killip-Simon conditions and the proof of Theorem 4.1

As earlier, we now apply Theorem 1.2 from the paper [13] by Killip and Simon in order to prove Theorem
4.1 establishing existence of a potential Q̃ ∈ L2(0,∞) associated to the perturbed amplitude Ã. Besides
the positivity of the perturbed measure dρ̃, there are four conditions stated in the theorem of Killip and
Simon that we need to verify on dρ̃ in order for their theorem to apply. In what follows, we state these
conditions and show they are satisfied under the hypotheses of Theorem 4.1.

• Positivity of the measure dρ̃(E):

This follows immediately on account of (4.9), (4.10), and the hypothesis ck ≤ 0 , ∀ k ≥ 0.

• Weyl condition: The Weyl condition on dρ̃ states that the support of dρ̃ should decompose as

supp dρ̃ = [0,∞) ∪ {Ẽj}Nj=1 , with Ẽ1 < Ẽ2 < · · · < 0 , with Ẽj → 0 ifN = ∞ .

Again this is immediate from the fact that the measure dρ associated to Q satisfies the Weyl
condition, from the identities (4.9), (4.10) and from the fact that our perturbation is only adding

real resonances and a finite number of negative eigenvalues eigenvalues −µk
2

4 for k = 0, ..., N − 1.

• Normalization: We need to verify that dρ̃ satisfies a certain estimate whose formulation requires
the introduction of the Hardy-Littlewood maximal function of a measure. The argument is more
elaborate and we present it therefore is greater detail. Following [13], we introduce a measure dν
on (1,∞) parametrized by k, with E = k2,

dν

dk
= Im

(

M(k2 + i0)
)

− k ,

which gives on account of (4.7) with κ = −ik,
dν̃

dk
=
dν

dk
− 2

∑

n≥0

cn
k

4k2 + µ2
n

.

We then define the Hardy-Littlewood maximal function Ms of the measure ν by

(Msν)(x) = sup
0<L≤1

1

2L
|ν|([x − L, x+ L]) .
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and compute |ν̃|([x− L, x+ L]):

|ν̃|([x− L, x+ L]) = |ν|([x − L.x+ L])− 2
∑

n≥0

cn

∫ x+L

x−L

k

4k2 + µ2
n

dk .

Since
∫ x+L

x−L

k

4k2 + µ2
n

dk =
1

8
log

(x+ L)2 + µ2
n

(x− L)2 + µ2
n

,

we obtain

|ν̃|([x− L, x+ L]) = |ν|([x − L.x+ L])− 2
∑

n≥0

cn
8

log
(x+ L)2 + µ2

n

(x− L)2 + µ2
n

.

Taking x = k >> 1, the normalization condition we need to verify is

∫ +∞

1

log

[

1 +

(

(Msν̃)(k)

k

)2]

k2 dk <∞ . (4.11)

We have

log
(k + L)2 + µ2

n

(k − L)2 + µ2
n

= log
(

1 +
4kL

(k − L)2 + µ2
n

)

= log(1 +O(
L

k
)) ,

uniformly in n and L ∈ (0, 1]. But by condition ii) in Theorem 4.1, we know that the series
∑

n≥0 |cn| is convergent, so it follows that

|ν̃|([x− L, x+ L]) = |ν|([x − L.x+ L]) +O(
L

k
) , k → ∞ ,

uniformly in L ∈ (0, 1]. Therefore we have

(Msν̃)(k) = (Msν)(k) +O(
1

k
) . (4.12)

Now, using the inequality

log
(

1 + (x+ y)2
)

≤ C
(

x2 + log(1 + y2)
)

,

for some constant C > 0, we obtain using (4.12) the estimate

log

[

1 +

(

(Msν̃)(k)

k

)2]

= log

[

1 +

(

(Msν)(k) +O( 1k )

k

)2]

≤ C

[

O(
1

k4
) + log

[

1 +

(

(Msν)(k)

k

)2]]

,

which implies the normalization condition (4.11) after integration over R, using the fact that ν is
associated to a potential Q ∈ L2(0,∞).

• Lieb-Thirring condition: The Lieb-Thirring condition
∑

j |Ẽj |3/2 < ∞ is trivially satisfied here as
was the case for the Weyl condition since all we are doing is to add a finite number of negative
eigenvalues.
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• Quasi-Szegö condition: This condition states that if dρ0 is the free spectral measure, that is the
spectral measure associated to the zero potential Q ≡ 0, then

∫ ∞

0

log
[1

4

dρ̃

dρ0
+

1

2
+

1

4

dρ0
dρ̃

]
√
E dE <∞ . (4.13)

Again, the verification of this condition for the perturbed measure dρ̃ is more elaborate and we
therefore present it in greater detail. The spectral spectral measure dρ0 has the expression

dρ0(E) =
1

π
χ(0,∞)(E)

√
E dE ,

so that using (4.9), we have

dρ̃(E)− dρ0(E) = dρ(E)− dρ0(E)− 2

π

∑

n≥0

cn

√
E

4E + µ2
n

dE . (4.14)

We now use (4.6) to express the spectral measure dρ in terms of the Jost function ψ(x, κ) associated
to the potential Q, where we let E = −κ2. Recall that the Weyl-Titchmarsh function M is given
by

M(−κ2) = ψ′(0, κ)

ψ(0, κ)
, (4.15)

so that using (4.15), we obtain

ImM(−κ2) = 1

2i

(

M(−κ2)−M(−κ2)
)

=
1

2i

(

ψ′(0, κ)

ψ(0, κ)
− ψ′(0, κ)

ψ(0, κ)

)

=
1

2i

W (ψ, ψ)

|ψ|2 (0, κ) , (4.16)

where W denotes the Wronskian. But ψ and ψ are solutions of the same linear second-order ODE
since the potential Q and the spectral parameter E = −κ2 are both real. It follows that the
Wronskian W (ψ, ψ) is independent of x. Now since ψ is the Jost function, we have, in terms of the
parameter k = iκ introduced in the normalization condition the asymptotics

ψ(x, κ) ≃ e−κx = eikx , for x→ ∞ ,

so that
W (ψ, ψ) = 2ik .

Substituting the latter into (4.16), we obtain

ImM(−κ2) = iκ

|ψ(0, κ)|2 ,

which plugged into in (4.6) gives for E > 0

dρ(E) =
1

π

√
E

|ψ(0,
√
E)|2

dE . (4.17)
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But (4.14) gives
dρ̃

dρ0
(E) =

dρ

dρ0
(E)− 2

∑

n≥0

cn
1

4E + µ2
n

,

which combined with (4.17) implies

dρ̃

dρ0
(E) =

1

|ψ(0,
√
E)|2

− 2
∑

n≥0

cn
4E + µ2

n

. (4.18)

We now analyze the asymptotics of dρ̃
dρ0

(E) in the limit E → ∞. On the one hand we have

1

4E + µ2
n

=
1

4E

(

1 +O(
µn

2

E
)
)

,

and on the other hand we know that since the radius of convergence R of the series
∑

n≥0 cnt
λ
n satisfies

R > 1 and since λn = O(n), the series
∑

n≥0 |cn|µ2
n is convergent. The identity (4.18) implies

dρ̃

dρ0
(E) =

1

|ψ(0,
√
E)|2

−
(1

2

∑

n≥0

cn
) 1

E
+O(

1

E2
) .

Using the asymptotics on the modulus of the Jost function given by

|ψ(0,
√
E)| = 1 +

a

E
+O 1

E2
,

where a is a real constant, we obtain that

dρ̃

dρ0
(E) = 1 +

b

E
+O(

1

E2
) , (4.19)

for some real constant b, which implies in turn that

dρ0
dρ̃

= 1− b

E
+O(

1

E2
) . (4.20)

Using (4.19) and (4.20), we obtain

1

4

dρ̃

dρ0
+

1

2
+

1

4

dρ0
dρ̃

= 1 +O(
1

E2
) , (4.21)

which implies that the Quasi-Szegö condition (4.13) is satisfied since (4.21) implies that

log
[1

4

dρ̃

dρ0
+

1

2
+

1

4

dρ0
dρ̃

]

= O(
1

E2
) .

5 A few examples : Bargmann potentials

In this section, we consider perturbations of the potential Q(x) = 0, (with the associated amplitude
function A(α) = 0), and we give examples of amplitudes Ã(α) for which we can calculate explicitly the
associated potentials. These examples are borrowed from ([9], section 11).
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5.1 First example

We define for α ≥ 0,
Ã(α) = 2(γ2 − β2) e−2γα, (5.1)

where β > 0 and γ ∈ [0, β[. Of course, it corresponds to a Müntz series of the type (4.2) (with a single
term) with c0 = 2(γ2 − β2) < 0 and µ0 = 2γ ≥ 0.

Thus, we take δ = γ + 3−d
2 ≥ 3− d since d ≥ 3 by hypothesis. It is known that

Q̃(x) = −8β2

(

β − γ

β + γ

)

e−2βx

(1 + β−γ
β+γ e−2βx)2

(5.2)

The associated Jost function is given in the variable κ = −ik by

ψ(0, κ) =
κ+ γ

κ+ β
, (5.3)

(see [9], case 2, p. 636) and is holomorphic in Re κ > −β. The unique root of the Jost function is given
by κ = −γ which is a real resonance.

5.2 Second example

For α > 0, we define the amplitude

Ã(α) = −2c1
κ1

sinh(2κ1α), (5.4)

where c1 > 0 is a normalization constant and κ1 > 0. It corresponds to a Müntz series with two terms
and with two µk of different sign. The associated potential is given by

Q̃(x) = −2
d2

dx2
log

(

1 +
c1
κ21

∫ x

0

sinh2(κ1y) dy

)

, (5.5)

ahe Jost function has the form in the κ variable

ψ(0, κ) =
κ− κ1
κ+ κ1

, (5.6)

(see [9], case 1, p. 635). We note that the Jost function is vanishing at κ = κ1 wich correspond to the
single negative eigenvalue −κ21.

6 Gel’fand-Levitan equations and local stability estimates

In this section, we deduce from the estimates for the difference of the amplitudes A− Ã obtained in
Section 4 a set of new Hölder local stability estimates for the difference of the associated potentials Q−Q̃.
By local stability, we mean that we are able to control the norm ||Q− Q̃||L2(0,T ) with respect to ǫ, if the
Steklov spectra of the underlying Schrödinger operators are close up to ǫ as in (1.17), (T being any fixed
positive parameter).
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More precisely, we assume here that the potential Q ∈ L2(0,∞), (and thus its associated amplitude
A), is fixed, and that Q̃ ∈ L2(0,∞) belongs to the infinite dimensional class, denoted CQ, defined above,

that is we assume that the associated amplitude to Q̃ has the form

Ã(α) = A(α) +
∑

k≥0

cke
−µkα , α > 0 , (6.1)

where µk = 2k + d − 3 + 2δ and δ ≥ 3 − d. Moreover, one assumes that ck ≤ 0 for all k ≥ 0 and the
power series

∑

k≥0 ckt
λk has a radius of convergence R > 1.

To obtain these local stability estimates, we shall make intensive use the local version of the classical
Gel’fand-Levitan equations, (see for instance ([2], Eq. (2.24)) which we recall here. For 0 ≤ x ≤ t ≤ T ,
we consider the integral equation

V (x, t) +

∫ T

x

K(t, s)V (x, s) ds = −K(x, t), (6.2)

where the integral kernel K(t, s) is given by

K(t, s) = p(2T − t− s)− p(|t− s|), (6.3)

and

p(t) = −1

2

∫ t
2

0

A(α) dα. (6.4)

These integral equations are uniquely solvable for all x ∈ (0, T ) and we can recover the underlying
potential using the relation:

Q(T − x) = −2
d

dx
(V (x, x)) . (6.5)

An easy calculation shows that

d

dx
(V (x, x)) = p(2T − x)V (x, x) + 2p′(2T − 2x)−

∫ T

x

(p(2T − x− s)− p(s− x))
∂V

∂x
(x, s) ds

−
∫ T

x

(p′(2T − x− s)− p′(s− x)) V (x, s) ds. (6.6)

Let us begin with an elementary result:

Lemma 6.1. Under the hypotheses of Theorem 1.1, there exists a constant CT depending only on T such
that

||p− p̃||(C0(0,2T ),||·||∞) ≤ CT f(ǫ), (6.7)

where

f(ǫ) =

(

B2ǫ+R1−d ǫ
log R

log(
9M0

2
)

)

1
2

(6.8)

Proof. This is an immediate application of (3.27) and the Cauchy-Schwartz inequality.
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Now, let us introduce some notation to simplify the presentation below. In what follows, the parameters
x and T are assumed to be fixed and t is a variable lying in the interval [x, T ]. We denote by K the
integral operator on L2(x, T ) with kernel K(t, s),

Kf(t) =

∫ T

x

K(t, s) f(s) ds, (6.9)

and set
d(t) := p(t− x)− p(2T − x− t). (6.10)

Thus, the solution V (x, .) of the integral equation (6.2) can be written as

V := V (x, .) = (I +K)−1d. (6.11)

Using (6.11) and the usual resolvent identity, one obtains

Ṽ − V = (I + K̃)−1
(

d̃− d+ (K − K̃)(I +K)−1d
)

(6.12)

By Lemma 6.1, one has the uniform estimate for t, s ∈ [0, T ],

|d̃(t)− d(t)| ≤ CT f(ǫ) , |K̃(t, s)−K(t, s)| ≤ CT f(ǫ), (6.13)

thus using Schur’s lemma, one gets
||K̃ −K|| ≤ CT f(ǫ), (6.14)

in the sense of the operator norm on L2(x, T ). As a consequence for ǫ > 0 sufficiently small, the operator
I + (I +K)−1(K̃ −K) is invertible, and using again the resolvent identity, one obtains easily

(I + K̃)−1 =
(

I + (I +K)−1(K̃ −K)
)−1

(I +K)−1. (6.15)

It follows that, for ǫ << 1, the operator norm of (I + K̃)−1 is uniformly bounded:

||(I + K̃)−1|| ≤ 2 ||(I +K)−1||. (6.16)

Thus, thanks to (6.12) , (6.14) and (6.16), one has:

||Ṽ − V ||L2(x,T ) ≤ CT f(ǫ) (6.17)

In the same way, differentiating the integral equation (6.2) with respect to x, one obtains:

∂V

∂x
(x, t) +

∫ T

x

K(t, s)
∂V

∂x
(x, s) = −p′(t− x) + p′(2T − x− t) +K(t, x)V (x, x), (6.18)

and by the same argument, we get immediately

||∂Ṽ
∂x

− ∂V

∂x
||L2(x,T ) ≤ CT f(ǫ). (6.19)

Finally, using (6.6), (6.17) and (6.19), mimicking the above arguments, one has for all 0 ≤ x ≤ T ,

|| d
dx

(

Ṽ (x, x)
)

− d

dx
(V (x, x)) ||L2(x,T ) ≤ CT f(ǫ). (6.20)

Then taking x = 0 and using (6.5), we see that

||Q̃−Q||L2(x,T ) ≤ CT f(ǫ), (6.21)

and the proof of Theorem 1.1 is complete.
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