
HAL Id: hal-03883471
https://hal.science/hal-03883471

Submitted on 3 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Rent Division
Dominik Peters, Ariel D. Procaccia, David Zhu

To cite this version:
Dominik Peters, Ariel D. Procaccia, David Zhu. Robust Rent Division. Advances in Neural Informa-
tion Processing Systems 35 (NeurIPS 2022), Nov 2022, New Orleans, United States. �hal-03883471�

https://hal.science/hal-03883471
https://hal.archives-ouvertes.fr

Robust Rent Division

Dominik Peters1,2, Ariel D. Procaccia1, and David Zhu1

1Harvard University
2CNRS, LAMSADE, Université Paris Dauphine–PSL

October 2022

In fair rent division, the problem is to assign rooms to roommates and fairly split the rent
based on roommates’ reported valuations for the rooms. Envy-free rent division is the most
popular application on the fair division website Spliddit. The standard model assumes that
agents can correctly report their valuations for each room. In practice, agents may be unsure
about their valuations, for example because they have had only limited time to inspect the
rooms. Our goal is to find a robust rent division that remains fair even if agent valuations are
slightly different from the reported ones. We introduce the lexislack solution, which selects
a rent division that remains envy-free for valuations within as large a radius as possible of
the reported valuations. We also consider robustness notions for valuations that come from
a probability distribution, and use results from learning theory to show how we can find
rent divisions that (almost) maximize the probability of being envy-free, or that minimize
the expected envy. We show that an almost optimal allocation can be identified based on
polynomially many samples from the valuation distribution. Finding the best allocation given
these samples is NP-hard, but in practice such an allocation can be found using integer linear
programming.

1. Introduction

The literature on fair division of resources has produced allocation mechanisms for many domains, such
as course allocation, indivisible goods, chores, house assignment, and the selection of citizens’ assemblies
[Budish, 2011, Caragiannis et al., 2019, Moulin, 2019, Flanigan et al., 2021]. But arguably the most widely
used example is rent division: this is the most popular application on the fair division website spliddit.org
[Goldman and Procaccia, 2014], where it has been used more than 30,000 times since its launch in 2014.
Rent division deals with the common situation where a group of n future roommates are planning to

move into a house or apartment which has n rooms, one for each roommate. They will split the rent
payments among themselves. The roommates may differ in how much they are willing to pay for different
rooms. Given the room valuations of each roommate, our task is to assign the rooms, and to decide how
to split the rent. We wish to do this fairly, and so we will choose an allocation that is envy-free: no
roommate would strictly prefer to get another room, given the prices we have assigned to those rooms.
Such an allocation is guaranteed to exist [Svensson, 1983].

Let us consider an example with n = 3 roommates, and let the total rent be $1000. Table 1 shows the
valuation that each agent assigns to each room. Given this information, the algorithm in use on Spliddit
will assign Room 1 to Alice, Room 2 to Bob, and Room 3 to Charlie, charging them $100, $500, and $400
respectively. This allocation is envy-free under the assumption (which we will make throughout) that
agents have quasilinear utilities : their utility under an allocation is the value of their room minus its price.
For example, Alice has utility 300− 100 = 200. She does not envy the others: Bob’s room would give her
only utility 400− 500 < 200, and Charlie’s room 300− 400 < 200.
On a typical instance, there are infinitely many allocations that are envy-free. Spliddit’s algorithm

chooses the one that maximizes the utility of the worst-off agent, subject to envy-freeness [Gal et al.,
2017]. This is known as the maximin rule. In optimizing this objective, Spliddit might choose an outcome
that is only barely envy-free. In the example, Bob has utility 700− 500 = 200, but he would gain the same
utility from having Alice’s room: 300− 100. If, upon moving in, Bob discovers a defect in his room and

1

Room 1 Room 2 Room 3

Alice 300 400 300
Bob 300 700 0
Charlie 300 100 600

Spliddit 100 500 400
Lexislack 200 450 350

Table 1: Example of valuations. In any envy-free allocation, Alice gets room 1, Bob gets room 2, and
Charlie gets room 3. The lower rows display the price vectors selected by Spliddit’s rule (maximin)
and by our lexislack rule.

now only values it at 600, say, then he would envy Alice. Thus, the envy-freeness of Spliddit’s allocation
is not robust.
We study the rent division problem with the goal of finding allocations that are robustly envy-free,

in the sense that they remain envy-free even if valuations change slightly. For this, we introduce the
lexislack rule, which selects an envy-free allocation where the minimum “slack” (the amount by which
agent i prefers her allocation to agent j’s) is maximized lexicographically. This produces an allocation
that remains envy-free for all valuation profiles that are within a maximally large ℓ1-radius of the reported
profile. In the example of Table 1, the lexislack rule assigns the rooms in the same way as does Spliddit,
but charges the roommates $200, $450, and $350. One can verify that with these prices, each agent prefers
their allocation to any other agent’s by at least 150. This means that even after Bob’s adjustment to 600,
he does not envy Alice. We show that the lexislack rule always selects an essentially unique outcome,
which can be found in polynomial time by linear programming.

This notion of robustness may not always be appropriate. Consider two perturbations with equal
ℓ1-distance to the reported valuations: one changes agent i’s valuations for all rooms by a small amount,
the other changes i’s valuation for one room by a large amount. Lexislack places equal importance on
them. But the former perturbation seems more likely: even if a player is uncertain about the value of
a room, that value is more likely to be close to their best estimate than further away. Thus, arguably,
different valuation profiles should be weighted differently: we do not want to sacrifice envy-freeness for a
likely perturbation in order to obtain it for an unlikely perturbation.

To capture this idea, we propose to add noise— such as Gaussian noise—around the reported valuations.
This way, we impute a probability distribution D over valuations. In this setting, our interpretation of
robustness is to look for allocations that are envy-free with maximum probability. However, it is not
clear how one could efficiently find the most robust allocation given the noisy valuations. As part of our
methodological contribution, we propose an approach based on synthetic sampling. Specifically, we sample
a number of valuation profiles from D, and then find an allocation that is optimal on this sample using
integer linear programming (ILP). By calculating the VC dimension of the space of rent divisions, we give
polynomial sample complexity bounds that show how many samples are sufficient so that this approach
identifies an almost optimal allocation with high probability. Note that the samples are synthetic, but low
sample complexity is crucial nevertheless: a small number of samples leads to a sufficiently small ILP that,
as we show, can be optimally solved in practice (even though we prove that the problem is NP-complete).

We also show that one can use the sampling approach to find an allocation that minimizes the expected
amount by which one agent envies another. In contrast to maximizing the probability of envy-freeness,
the minimum envy objective places more emphasis on avoiding bad violations of envy-freeness.

An advantage of our sampling-based approach is that it is very general and does not place any restrictions
on the distribution D. Our algorithms could also be used for rent division problems with uncertainty,
where agents might explicitly report distributions over their valuations. For example, a simple Spliddit-like
user interface could allow agents to report their room valuations as a range rather than a number.
We end with some experiments on data taken from Spliddit. They suggest that our three new rules

significantly outperform the Spliddit maximin rule on robustness metrics. Interestingly, the lexislack
solution does comparably well to the rules based on sampling. Given its conceptual simplicity and easy
computation, this suggests lexislack as a good rule when robustness is desired.

2

Related Work

The rent division model is well-studied in the economics literature [Svensson, 1983, Alkan et al., 1991,
Aragones, 1995, Su, 1999, Velez, 2018], often without assuming quasilinear utilities. That literature
includes results on the structure of the envy-free set and about strategic aspects. Computer scientists
have studied the computation of allocation rules [Gal et al., 2017, Procaccia et al., 2018]. Bei et al. [2021]
study a generalization of the rent division problem.

Robustness has been studied in several areas of computational social choice, such as in voting [Shiryaev
et al., 2013], in committee elections [Bredereck et al., 2021, Gawron and Faliszewski, 2019, Misra and
Sonar, 2019], and in stable matching [Chen et al., 2019, Mai and Vazirani, 2018]. We are not aware of
such work for fair division, though Menon and Larson [2020] study a related problem of “stability” which
requires that the allocation should not change much if valuations change slightly. For rent division, a blog
post by Critch [2015] argues in favor of aiming for robustness in the rent division problem. Critch [2015]
implemented an algorithm for robust rent division that appears in experiments to maximize the slack, but
it differs from the lexislack rule, and no theoretical analysis of this algorithm is available.

Our sampling-based approach is conceptually related to work on data-driven algorithm design [Balcan,
2020], which typically seeks to optimize the hyperparameters of an algorithm with respect to an underlying
distribution over instances, based on samples. One thing that distinguishes our distributional setting
is that we are using the samples to optimize a single solution to our problem. Computational hardness
results for problems similar to our sample-based optimization problems have been obtained in the settings
of stable matching and of Pareto-optimal assignment [Aziz et al., 2019, 2020].

2. Preliminaries: Rent Division

Let n ∈ N and write [n] = {1, . . . , n}. Let N = [n] be a set of n agents, and let R = [n] be a set of n
rooms. Without loss of generality, we let the total rent be 1. A (valuation) profile v = (vir)i∈N,r∈R is a
collection of values vir ∈ Q+, one for each agent i ∈ N and each room r ∈ R.

A room assignment is a bijection σ : N → R, so that agent i is assigned room σ(i). Given a valuation
profile v, we say that σ is optimal if it maximizes utilitarian social welfare

∑
i∈N viσ(i). An allocation

(σ, p) is a room assignment σ together with a payment vector p = (p1, . . . , pn) ∈ Rn with
∑

r∈R pr = 1,
where pr is the rent of room r. (The value pr is usually non-negative.)

We assume that agents have quasilinear utilities. This means that if v is a valuation profile and (σ, p) is
an allocation, then agent i’s utility in this allocation is viσ(i) − pσ(i), i.e., the valuation of i for her room
σ(i) minus the room’s rent. An allocation (σ, p) is envy-free if viσ(i) − pσ(i) ⩾ vir − pr for all i ∈ N and
r ∈ R, so that each agent i weakly prefers her allocation to receiving any other room.
A solution is a function that given a valuation profile, selects a set of allocations (usually a singleton,

but ties may occur). A solution is essentially single-valued if when it selects more than one allocation,
then all agents are indifferent between them: every agent gets the same utility from all tied allocations.
The following facts are well-known [see, e.g., Velez, 2018]. We include proofs for convenience.

Theorem 2.1. (a) For every optimal room assignment σ, there are prices p so that (σ, p) is envy-free.
(b) If (σ, p) is envy-free then σ is optimal.
(c) Let σ1, σ2 be optimal room assignments, and let (σ1, p) be an envy-free allocation. Then (σ2, p) is also
an envy-free allocation, with all agents indifferent between the two: viσ1(i) − pσ1(i) = viσ2(i) − pσ2(i) for all
i ∈ N .

Proof. (a) An optimal room assignment σ forms a solution to the standard assignment problem [see, e.g.,
Wolsey, 1998, Section 4.3]. The dual of the assignment problem LP is

min
∑
i∈N

qi +
∑
r∈R

pr s.t. qi + pr ⩾ vir for i ∈ N , r ∈ R.

Since σ is an optimal room assignment, by complementary slackness there exists a solution (qi), (pr) to
the dual program where qi + pσ(i) = viσ(i) for each i ∈ N . Thus

viσ(i) − pσ(i) = qi ⩾ vir − pr for all i ∈ N , r ∈ R,

using dual feasibility. Thus (pr) is an envy-free price vector, but we must ensure that
∑

r∈R pr = 1, which
we can do by adding a constant to each pr. This preserves envy-freeness.

3

(b) Suppose (σ, p) is envy-free and σ′ is any room assignment. Then
∑

i∈N viσ(i) ⩾
∑

i∈N (viσ′(i) −
pσ′(i) + pσ(i)) = (

∑
i∈N viσ′(i)) − 1 + 1 =

∑
i∈N viσ′(i), where the inequality follows from envy-freeness.

Thus σ has at least the welfare of σ′. Since σ′ was arbitrary, σ is an optimal assignment.
(c) We show viσ1(i) − pσ1(i) = viσ2(i) − pσ2(i) for i ∈ N . From this, envy-freeness of (σ2, p) follows

immediately. We have viσ1(i) − pσ1(i) ⩾ viσ2(i) − pσ2(i) for all i ∈ N since (σ1, p) is envy-free. Sum these
inequalities to get

(
∑

i∈N viσ1(i))− 1 ⩾ (
∑

i∈N viσ2(i))− 1.

But the two sides of this inequality are equal, since both σ1 and σ2 are optimal. Hence each inequality is
satisfied with equality, as required.

Theorem 2.1(a) implies that an envy-free allocation exists for all valuation profiles. We can compute
one in polynomial time: find an optimal room assignment σ using bipartite matching, then use linear
programming to find prices p that make the allocation envy-free [Gal et al., 2017]. Theorem 2.1(c) implies
that when selecting among envy-free allocations, we can restrict attention to any fixed σ and only vary
the price vector p. By Theorem 2.1(c), all utility vectors achievable in an envy-free allocation are achieved
by allocations of this form.

3. The Lexislack Solution

We start by considering a common form of robustness: we look for allocations that remain fair for all
valuations that are within some radius of input valuations, for as large a radius as possible. Thus, unlike
in later sections, we do not assume that valuations come from a probability distribution.
Let v be a valuation profile, fixed throughout. Let (σ, p) be an allocation. For i ∈ N and r ∈ R, let

∆ir(σ, p) = (viσ(i) − pσ(i))− (vir − pr).

Then define the slack of this allocation as

slack(σ, p) = mini∈N minr ̸=σ(i) ∆ir(σ, p).

Thus, an allocation has positive slack if every agent strictly prefers their allocation to all other agents’
allocations. An allocation (σ, p) is envy-free if and only if slack(σ, p) ⩾ 0.

Slack is a measure of how robustly fair an allocation is, which we formalize in the following result.

Proposition 3.1. Let (σ, p) be an envy-free allocation with slack(σ, p) = s ⩾ 0. If v′ is a valuation profile
that is s-close to v in the sense that

∥vi − v′i∥1 =
∑

r∈R |vir − v′ir| ⩽ s

for all i ∈ N , then (σ, p) is also envy-free under v′.

Proof. Let i, j ∈ N . Then
∑

r∈R |vir − v′ir| ⩽ s implies

(viσ(i) − v′iσ(i)) + (v′iσ(j) − viσ(j)) ⩽ s (1)

Adding pσ(j) − pσ(i) to both sides and rearranging, we get

(v′iσ(i) − pσ(i))− (v′iσ(j) − pσ(j)) ⩾ (viσ(i) − pσ(i))− (viσ(j) − pσ(j))− s ⩾ 0

where the last inequality is by definition of slack. Thus, i does not envy j under v′. Since i and j were
arbitrary, it follows that (σ, p) is envy-free under v′.

One can also prove variants of Proposition 3.1. For example, ∥vi − v′i∥∞ ⩽ s/2 also implies (1).1

If we wish to ensure robustness in a sense like in Proposition 3.1, this suggests the following rule:

maxislack(v) = argmax(σ,p) slack(σ, p).

1In future work, it may be interesting to study rules that explicitly maximize robustness defined with respect to ℓ∞-distance
rather than ℓ1.

4

This rule always selects an envy-free allocation: since envy-free allocations exist for every v, there exists
an allocation with non-negative slack, and hence the maxislack solution also has non-negative slack. A
maxislack solution can be found in polynomial time by computing an optimal assignment σ and then
solving the following LP:

maximize L

subject to (viσ(i) − pσ(i))− (viσ(j) − pσ(j)) ⩾ L ∀i ̸= j∑
r∈R pr = 1

pr ∈ R ∀r ∈ R

However, there are a few drawbacks to the maxislack rule. First, the rule is not essentially single-valued:
there may be several maxislack allocations which induce different utilities. This is unlike Spliddit’s
maximin rule which is essentially single-valued [Alkan et al., 1991]. Second, there may be maxislack
allocations that do not maximize robustness for all agents. To see this, suppose that two agents i1 and
i2 agree on the valuation of every room. Then in any envy-free allocation, the utility they assign to the
two bundles allocated to them is equal. Hence the maximum slack attainable is 0, and so every envy-free
allocation is maxislack. However, there may be allocations for which the slack between other pairs of
agents is larger than 0, and such allocations are more robustly fair.
In this spirit, to obtain robustness for a larger collection of agents (or of agent pairs), we can refine

the maxislack solution using a leximin strategy. We call the resulting solution the lexislack rule. The
lexislack rule selects an allocation (σ, p) that maximizes the smallest of the n2 values (∆ir(σ, p))i∈N,r∈R,
and subject to that maximizes the second-smallest of these values, and so on.
In contrast to the maxislack rule, the lexislack rule is essentially single-valued.

Theorem 3.2. The lexislack rule is essentially single-valued.

Proof. For now, fix an optimal room assignment σ. We show that there is a unique price vector p such
that (σ, p) is a lexislack solution. Because the leximin relation over vectors is strictly convex, there is
a unique vector ∆ = ∆(σ, p) maximizing the leximin objective, since if there were two different ones, a
convex combination of the two would be strictly better. But ∆ uniquely specifies a price vector: ∆ gives
the differences pr − pr′ between any pair of prices, and with

∑
r pr = 1 this gives a unique price vector.

Next, we show that if σ1 and σ2 are optimal room assignments, and (σ1, p) is an envy-free allocation, then
∆(σ1, p) = ∆(σ2, p). By Theorem 2.1(c), (σ2, p) is an allocation where every agent obtains the same utility
as under (σ1, p). Let i ∈ N . If σ1(i) = σ2(i), then clearly the values ∆ir are the same in both allocations.
If r1 = σ1(i) ̸= σ2(i) = r2, then equal utility under both allocations implies vir1 − pr1 = vir2 − pr2 , and
hence ∆ir2(σ1, p) = 0 and ∆ir1(σ2, p) = 0. By definition, also ∆ir1(σ1, p) = ∆ir2(σ2, p) = 0, so the values
of ∆ir1 and ∆ir2 agree on both allocations. For r ∈ R \ {r1, r2}, we have that the value of ∆ir agrees on
both allocations by the equal utility property. Hence ∆(σ1, p) = ∆(σ2, p).
Thus, any vector ∆ ⩾ 0 achievable on one optimal room assignment can be achieved on any other

optimal room assignment, with the same utility vector. This holds in particular for the lexislack vector ∆.
We have seen that for any fixed room assignment, there is a unique lexislack utility vector. Hence the
lexislack utility vector is unique.

In addition, this rule remains efficiently computable.

Theorem 3.3. A lexislack allocation can be found in polynomial time by solving O(n4) linear programs.

Proof sketch. This can be done using standard techniques [see Kurokawa et al., 2018, Section 5]. We
give an overview of the algorithm. Start by computing an optimal σ. We will decide on the best value
of ∆ir one-by-one. Let F ← ∅ be the set of (i, r) pairs for which we have fixed their value. Use linear
programming to find a price vector such that (σ, p) maximizes the smallest of the non-fixed values ∆ir,
subject to keeping the other ∆ir at their fixed value. Say the optimum is L. Now we need to find a pair
(i, r) ̸∈ F such that necessarily ∆ir = L in any lexislack allocation. This can again be done by linear
programs that check whether it is possible that ∆ir > L. One can show that at least one such pair
(i, r) ̸∈ F must exist; we then add it to F and fix its value to L, and repeat.

5

4. Maximizing Probability of Envy-Freeness

In the previous section, we defined robustness using a measure of closeness based on the ℓ1-distance. We
now look at a more flexible model where true valuations are assumed to be noisy perturbations of the
reported ones. A distribution D over valuations v, therefore, is obtained by asking agents for valuations,
and then adding noise (e.g., Gaussian or uniform) around those valuations. Our goal will be to find
an allocation (σ, p) that maximizes the probability of being envy-free with respect to D, i.e., one that
maximizes

EFrateD(σ, p) = Prv∼D[(σ, p) is envy-free under v].

Our algorithmic approach for finding an allocation with high probability of envy-freeness is to obtain a
sample S of m valuation profiles sampled from D, and to compute an allocation that is envy-free on the
most profiles in S, i.e., one that maximizes

EFrateS(σ, p) =
1
m · |{v ∈ S : (σ, p) is envy-free under v}|.

If the number m of samples is sufficiently high, we may hope that the best allocation on the sample S is
also approximately the best on the distribution D. In this section, we will give a bound for the sample
size m to be sufficient to ensure this property, and then we will discuss the computational problem of
finding the best allocation for a given sample.

4.1. Sample Complexity

In this section, we will give an upper bound on the number of samples required to guarantee that the
allocation that maximizes EFrateS also (almost) maximizes EFrateD, with high probability.

Theorem 4.1. Let ε, δ > 0. There is a value m ∈ N with

m = O

(
n2 log n+ log(1/δ)

ε2

)
such that for every probability distribution D over valuation profiles, if S is a collection of at least m
samples drawn i.i.d. from D, and (σ∗, p∗) is the allocation that maximizes EFrateS, then with probability
at least 1− δ,

EFrateD(σ∗, p∗) ⩾ max(σ,p) EFrateD(σ, p)− ε.

We prove this theorem by adapting standard tools from learning theory. Let X be any set, with an
unknown ground truth labeling τ : X → {0, 1}. A hypothesis is a function h : X → {0, 1}. Given a sample
S = (x1, . . . , xm) of m elements of X (not necessarily distinct), write errS(h) =

1
m |{xi : h(xi) ̸= τ(xi)}|

for the fraction of samples that h labeled incorrectly. For a probability distribution D over X, write
errD(h) = Prx∼D[h(x) ̸= τ(x)] for the probability that h incorrectly labels a point sampled from D.
A hypothesis class H is a set of hypotheses. Given a random sample S drawn i.i.d. from D, and

knowledge of the true labeling τ of those samples, our goal is to find a hypothesis h ∈ H that approximately
minimizes errD(h), with high probability. Note that the ground truth τ , interpreted as a hypothesis, need
not be a member of H. In learning theory, this setup corresponds to “agnostic PAC learning”, where the
“realizability assumption” is not required to hold [Shalev-Shwartz and Ben-David, 2014, Section 3.2].

We say that a set C ⊆ X is shattered by H if for all S ⊆ C, there exists h ∈ H with h(x) = 1 if x ∈ S
and h(x) = 0 if x ∈ C \ S. In other words, if we restrict the hypotheses in H to the set C, then all
possible labelings of C are part of H. The VC dimension VCdim(H) of H is the cardinality of the largest
subset of X that is shattered by H. We are interested in VC dimension due to the following standard
result, adapted from Shalev-Shwartz and Ben-David [2014, Theorem 6.8], which says that PAC learning is
possible on hypothesis classes of finite VC dimension.

Theorem 4.2. Let ε, δ > 0. Let H be a hypothesis class with VCdim(H) = d. Then there exists a value
m ∈ N with

m = O

(
d+ log(1/δ)

ε2

)
such that for every probability distribution D over X, if S is a collection of at least m samples drawn i.i.d.
from D, and h∗ ∈ H is the hypothesis that minimizes errS, then with probability at least 1− δ,

errD(h∗) ⩽ minh∈H errD(h) + ε.

6

For our application, we let X be the set of all valuation profiles v. The “correct” labeling is τ(v) = 1
for all v. We identify allocations with hypotheses: For an allocation (σ, p), we define the hypothesis h(σ,p)

so that for each v,

h(σ,p)(v) =

{
1 if (σ, p) is envy-free under v,

0 otherwise.

By these definitions, we have that for all S and D,

EFrateS(σ, p) = 1− errS(h(σ,p)), and

EFrateD(σ, p) = 1− errD(h(σ,p)).

We study the hypothesis class H of all such hypotheses:

H = {h(σ,p) : allocations (σ, p)}.

To bound its VC dimension, the following result is useful:

Lemma 4.3 (Shalev-Shwartz and Ben-David, 2014, Exercise 6.11). Let H1, . . . ,Ht be hypothesis classes
over X, with VCdim(Hi) ⩽ d for each i = 1, . . . , t. Then

VCdim(H1 ∪ · · · ∪ Ht) ⩽ 4d log(2d) + 2 log(t).

We can now bound the VC dimension of H.

Lemma 4.4. VCdim(H) = O(n2 log n).

Proof. For each room assignment σ, define the hypothesis class Hσ = {h(σ,p) : p ∈ Rn} corresponding
to allocations whose room assignment is σ. Then H =

⋃
σHσ where the union ranges over all room

assignments. We will show that VCdim(Hσ) ⩽ n2 for each σ. Since there are n! different room assignments
and log n! = O(n log n), it follows from Lemma 4.3 that VCdim(H) = O(n2 log n), as required.

Let σ be a room assignment. Without loss of generality assume that σ(i) = i. Let d ⩾ n2 + 1. Consider
a collection of d distinct valuation profiles v(1), . . . , v(d). We show that this collection cannot be shattered
by Hσ.
For i, j ∈ N , say v(k) is uniquely restricting for (i, j) if

v
(k)
ij − v

(k)
ii > v

(ℓ)
ij − v

(ℓ)
ii for all ℓ ̸= k.

Thus, such a profile uniquely maximizes the amount by which agent i prefers j’s room to her own room,
ignoring prices. Clearly, for any pair i, j ∈ N , at most one profile can be uniquely restricting for it. Since
there are n2 many pairs (i, j) and d > n2, there is at least one profile which is not uniquely restricting for
any pair, say v(1).
We now ask if there is an allocation (σ, p) that is envy-free under v(2), . . . , v(d), but not envy-free under

v(1). We show that the answer is no, so Hσ fails to shatter this collection.
Assume for a contradiction that (σ, p) is such an allocation. Since it is not envy-free under v(1), there is

a pair i, j ∈ N with v
(1)
ij − pj > v

(1)
ii − pi or equivalently

v
(1)
ij − v

(1)
ii > pj − pi. (2)

As v(1) is not uniquely restricting for (i, j), for some ℓ ̸= 1,

v
(ℓ)
ij − v

(ℓ)
ii ⩾ v

(1)
ij − v

(1)
ii . (3)

Combining (2) and (3), it follows that v
(ℓ)
ij − v

(ℓ)
ii > pj − pi. Thus, (σ, p) is not envy-free under v(ℓ), a

contradiction.

Our main result in this section, Theorem 4.1, now follows immediately from Theorem 4.2.

7

4.2. Computational Complexity

To make use of Theorem 4.1, we need an algorithm that, given a collection S = (v(1), . . . , v(m)) of valuation
profiles sampled from D, finds an allocation that maximizes EFrateS(σ, p). This problem can be encoded
as an integer linear program via standard encoding techniques, using binary variables xir encoding that
agent i receives room r, continuous variables pr encoding the prices, and a binary variable yℓ for each
sample ℓ ∈ [m], indicating whether the produced allocation will be envy-free under v(ℓ). The full encoding
appears in Appendix B.

Instead of an ILP approach, can we hope for a polynomial time algorithm finding the best allocation?
Let us formulate our optimization problem as a decision problem as follows.

EF-Rate Maximization
Input: Set N of agents, set R of rooms, a list of m valuation profiles v(1), . . . , v(m), number B.
Question: Does there exist an allocation that is envy-free for at least B of the m valuation profiles?

Unfortunately, this problem is computationally hard.

Theorem 4.5. EF-Rate Maximization is NP-complete, even for binary valuation profiles (vir ∈ {0, 1}).
Proof. Membership in NP is clear. We give a reduction from Clique. Let G = (V,E) be a graph with n
vertices and m edges and let k be the target clique size.
We make each vertex an agent, N = V . The set of rooms is R = {r1, . . . , rk, d1, . . . , dn−k} consisting of

k slot rooms and of n− k dummy rooms. Writing E = {e1, . . . , em}, we construct m valuation profiles,
one per edge. For ℓ ∈ [m], write eℓ = {u, v}; the valuation profile v(ℓ) is defined by

v
(ℓ)
i,r =

{
1 if i ∈ {u, v} and r ∈ {r1, . . . , rk},
0 otherwise.

Thus, in the ℓth valuation profile, the two agents corresponding to the endpoints of the ℓth edge want to
be in a slot room. All other agents do not care. Finally, set B =

(
k
2

)
.

We prove that G has a k-clique iff there is an allocation that is envy-free in at least B of the valuation
profiles.
(⇐): Suppose (σ, p) is envy-free for B profiles. Let C ⊆ V be the set of k agents/vertices that

are assigned to slot rooms under σ; write C = {i1, . . . , ik}. Let ℓ1, . . . , ℓB be the collection of indices
corresponding to valuation profiles under which the allocation is envy-free. We claim that C is a clique,
by showing that eℓt ⊆ C for each t ∈ [B]. This suffices since a set of k vertices with

(
k
2

)
edges is a clique.

Let t ∈ [B]. Since (σ, p) is envy-free under v(ℓt), by Theorem 2.1(b), σ is optimal under v(ℓt). This
implies that σ has welfare 2, which happens only if both endpoints of edge eℓt get a slot room. So by
definition of C, eℓt ⊆ C, as desired.

(⇒): Suppose there is a clique C ⊆ V of size k in G; write C = {i1, . . . , ik}. Make a room assignment
σ in which we assign agent is to slot room rs, for each s ∈ [k]. The remaining agents can be assigned
arbitrarily to dummy rooms. We set pr = 1

n for each r ∈ R.
Write eℓ1 , . . . , eℓB for the set of edges within C; there are exactly B of them since C is a clique. Let

t ∈ [B], and write eℓt = {ia, ib}. We show that (σ, p) is envy-free under v(ℓt). All agents except ia and ib
are indifferent between all rooms, and since all rents are the same, they are not envious. Agents ia and ib
both receive a room that they most prefer, and since all rents are the same, they are not envious.

There are two sources of computational difficulty for solving EF-Rate Maximization: we have to
decide on one of the n! possible room assignments, and we have to decide on which subset of valuation
profiles we are aiming to be envy-free on. But in practice, there is a way to avoid the first source of
hardness. Suppose the m valuation profiles are sampled from a continuous distribution D. Then with
probability 1, for each sampled profile v(ℓ) there is a unique optimal room assignment σ(ℓ). Any solution
to the EF-rate maximization problem must use a room assignment that is optimal for at least one of the
given valuation profiles. Thus, at most m different room assignments are candidates, and we can find an
optimal solution using m calls to the following problem (one call for each candidate assignment σ(ℓ)):

EF-Rate Maximization with Fixed Assignment
Input: A list of m valuation profiles v(1), . . . , v(m), number B, room assignment σ.
Question: Is there a price vector p such that (σ, p) is envy-free for at least B of the m valuation
profiles?

8

Unfortunately, this version of the problem is also hard, and so this trick for continuous distributions does
not help. We prove this by reduction from the feedback arc set problem. The proof is in Appendix C.1.

Theorem 4.6. EF-Rate Maximization with Fixed Assignment is NP-complete.

Nevertheless, as we show in Section 6, we can solve this problem in practice using integer linear
programming (ILP). The reason this is possible is that the sample complexity is relatively low, leading to
an ILP of practical size.

5. Minimizing Expected Envy

In Section 4, we defined robust envy-freeness as allocations that have a high probability of being envy-free
when valuations come from a given distribution D. In this section, we consider a different objective
function that is more fine-grained. In measuring the probability of envy-freeness, we implicitly treat all
failures of envy-freeness equally. We will now minimize expected envy, which treats cases where one agent
envies another by a lot as more severe.
Given a valuation profile v and an allocation (σ, p), we define the allocation’s (maximum) envy,

envyv(σ, p), to be

max

{
0, max

i,j∈N

[
(viσ(j) − pσ(j))− (viσ(i) − pσ(i))

]}
.

This quantity, which is related to slack as considered in Section 3, measures the biggest amount by
which one agent prefers another’s bundle. In principle one could allow negative values of envyv(σ, p) for
allocations that have positive slack, but we chose to force these values to be non-negative, since our focus
is on avoiding envy. Note that an allocation is envy-free if and only if envyv(σ, p) = 0.

Our goal in this section is to find an allocation minimizing the expected envy with respect to D, defined
as

envyD(σ, p) = Ev∼D[envyv(σ, p)].

Our approach will be similar to before: we obtain a sufficiently large sample S of m profiles from D and
select the allocation that does best on the sample, i.e. it minimizes

envyS(σ, p) =
1
m

∑
v∈S envyv(σ, p).

5.1. Sample Complexity

For stating our sample complexity bound, we assume that valuations v are normalized: let vir ⩾ 0 for all
i ∈ N and r ∈ R, and

∑
r∈R vir = 1 for all i ∈ N . We are going to prove the following result:

Theorem 5.1. Let ε, δ > 0, and let D be a distribution. If we draw m = O(n
ε2 log

n
εδ) samples i.i.d. from

D and if (σ∗, p∗) minimizes envyS , then with probability at least 1− δ, we have

envyD(σ
∗, p∗) < min(σ,p) envyD(σ, p) + ε.

Thus, if we draw sufficiently many samples, then with high probability the allocation minimizing
expected envy on the sample will, up to ε, be minimizing with respect to D.

We prove this result by discretizing the space of allocations. We then use a concentration inequality to
show that w.h.p. the expected envy with respect to D is close to the expected envy with respect to the
sample S.
We start by proving a few technical lemmas. First, define Λ to be the set all allocations (σ, p) with

−2 ⩽ pr ⩽ 2 for all r ∈ R. We call such allocations reasonable. Our first lemma shows that we may
restrict attention to reasonable allocations only: in particular, if an allocation minimizes envyD then it
must be reasonable.

Lemma 5.2. Let σ be a room assignment and v a profile.

(a) If p is a price vector with |pr − p′r| > 2 for some r, r′ ∈ R, then envyv(σ, p) > 1.

(b) If p = (1n , . . . ,
1
n), then envyv(σ, p) ⩽ 1.

(c) If (σ, p) is reasonable, then envyv(σ, p) ⩽ 5.

9

Proof. Note that since valuations are assumed to sum to 1, we have vir − vir′ ⩽ 1 for all r, r′ ∈ R.
(a) Say pr > pr′ + 2 and σ(i) = r. Since vir ⩽ vir′ + 1 as just noted, we have vir − pr < vir′ − pr′ − 1.
(b) If prices for all rooms are equal, then envyv(σ, p) = max{0,maxi,j(viσ(j) − viσ(i))} ⩽ max{0, 1} = 1.
(c) |viσ(j) − viσ(i)|+ |pσ(j) − pσ(i)| ⩽ 1 + 4 = 5.

From now on, we assume all allocations to be reasonable.
Our second lemma says that if two allocations have similar price vectors, then they have similar expected

envy.

Lemma 5.3. Let p, p′ ∈ Rn be such that |pr − p′r| ⩽ t for all r ∈ R. Then for any sample S and
distribution D,

|envyD(σ, p)− envyD(σ, p
′)| ⩽ 2t,

|envyS(σ, p)− envyS(σ, p
′)| ⩽ 2t.

Proof. First, we claim that for any valuation profile v,

|envyv(σ, p)− envyv(σ, p
′)| ⩽ 2t.

This holds since the value of (viσ(j) − pσ(j))− (viσ(i) − pσ(i)) changes by at most ±2t if we move from p to
p′, and thus the same holds after taking the maximum.
Now let D be a distribution. By linearity of expectation, and since |E[X]| ⩽ E[|X|] by Jensen’s

inequality,

|envyD(σ, p)− envyD(σ, p
′)|

= |Ev∼D[envyv(σ, p)− envyv(σ, p
′)]|

⩽ Ev∼D [|envyv(σ, p)− envyv(σ, p
′)|] ⩽ 2t,

where the last inequality follows by our claim. This proves the first statement. The second statement
follows from the first by taking D to be the uniform distribution over S.

We also need a standard concentration inequality.

Lemma 5.4 (Hoeffding’s inequality). Let X1, . . . , Xm be i.i.d. random variables with 0 ⩽ Xk ⩽ c and
E[Xk] = µ for all k ∈ [m]. Then for all ε > 0,

Pr
[
|µ− 1

m

∑m
k=1 Xi| ⩾ ε

]
⩽ 2 exp(−2mε2/c2).

We are now ready to prove our main result of this section.

Proof of Theorem 5.1. Let t = 1/⌈12/ε⌉. Let Λt ⊆ Λ be the set of all discretized allocations (σ, p) where
pr is an integer multiple of t. Note that for any (σ, p) ∈ Λ, there is a discretized allocation (σ, p′) ∈ Λt

with |pr − p′r| ⩽ t for all r (call such allocations t-close), obtained by rounding the values pr up or down
to ensure that

∑
r p

′
r = 1.

Let S be a random sample from D of size m, where

m = 200
ε2 ln

[(
60
ε

)n 2n!
δ

]
= O

(
n
ε2 ln

(
n
εδ

))
.

Now write:

• optD for an allocation (σ, p) minimizing envyD,

• optS for an allocation minimizing envyS (which depends on the random choice of S),

• optD ∈ Λt for a discretized allocation t-close to optD,

• optS ∈ Λt for a discretized allocation t-close to optS .

Let (σ, p) ∈ Λ. For k ∈ [m], let Xk be the random variable taking the value envyv(σ, p), where v is the
kth sample in S. By reasonableness and Lemma 5.2, 0 ⩽ Xk ⩽ 5. Then Hoeffding’s inequality implies
that

Pr
[
|envyS(σ, p)− envyD(σ, p)| ⩾ ε

4

]
⩽ 2 exp(− 2

25m(ε4)
2).

10

Let E be the event that |envyS(σ, p)− envyD(σ, p)| < ε/4 holds for all discretized allocations (σ, p) ∈ Λt

simultaneously. By Hoeffding’s inequality and a union bound over all |Λt| ⩽ (4t)
nn! discretized allocations,

we get
Pr[E] ⩾ 1− (4t)

nn! 2 exp(− 2
25m(ε4)

2) ⩾ 1− δ.

where the second inequality holds by choice of m.
Suppose that the event E attains. In this case we have:

envyD(optS)− envyD(optD)

= (envyD(optS)− envyD(optS)) (Lemma 5.3)

+ (envyD(optS)− envyS(optS)) (E attains)

+ (envyS(optS)− envyS(optS)) (Lemma 5.3)

+ (envyS(optS)− envyS(optD)) (optimality)

+ (envyS(optD)− envyD(optD)) (E attains)

+ (envyD(optD)− envyD(optD)) (Lemma 5.3)

< 2t+ ε/4 + 2t+ 0 + ε/4 + 2t

= 6/⌈12/ε⌉+ ε/2 ⩽ ε.

The references on the right indicate what we have used to bound the respective term to obtain the strict
inequality. “Optimality” refers to the fact that optS minimizes envyS . Because event E implies the above
inequality, we see that

Pr[envyD(optS)− envyD(optD) < ε] ⩾ Pr[E] ⩾ 1− δ.

This proves the result.

Note that for this result we employed a direct approach. This technique and its discretization step
would not have worked for the envy-free rate, because two very close rent divisions can in principle have
very different EF rates. On the other hand, we expect that similar bounds for the minimum envy objective
could be obtained by using extensions of VC dimension to real-valued functions (e.g., pseudo-dimension).

5.2. Computational Complexity

Again, our sample complexity result needs an algorithm that finds the best allocation for a given sample
S. Like for EFrate, we can solve this problem using integer linear programming (see Appendix B). For the
formal complexity analysis, consider the following decision problem:

Expected Envy Minimization
Input: List S = (v(1), . . . , v(m)), number B.
Question: Is there (σ, p) with envyS(σ, p) ⩽ B?

This problem is again NP-complete. The proof is in Appendix C.2 and uses a similar reduction from
Clique as before.

Theorem 5.5. Expected Envy Minimization is NP-complete, even for binary valuation profiles.

Interestingly, this problem becomes easy once we fix a room assignment σ, because the best price vector
can then be computed by linear programming (because the values of the integer variables in the ILP shown
in Appendix B are decided by the fixed room assignment σ). In particular, this means that the problem
can be solved in time n! · poly(n,m), and thus is fixed-parameter tractable with respect to the number
of agents n. This is good news: instances will often have a small number of agents, but we will want to
consider as large a sample as feasible to ensure low maximum envy. In fact, as we will see momentarily,
the NP-completeness of the problem is not an obstacle in real-world instances.

6. Experiments

We evaluated our rules on user data taken from Spliddit.2 We studied distributions obtained by adding
noise to valuations. We started by selecting 1,000 instances v at random, to speed up computations. The

2This dataset was kindly provided to us in anonymized form by the maintainer of Spliddit, Nisarg Shah.

11

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

Figure 1: Results of experiments for the Uniform noise model.

same selection is used for each experiment. For each instance, we normalize the rent to 1, and normalize
valuations to sum to 1. We considered three noise models, each parameterized by a choice of noise level
ε ∈ {0, 0.01, . . . , 0.09}.

v
(ℓ)
ir ∼ vir · (1 + Uniform[−ε,+ε]) (Uniform)

v
(ℓ)
ir ∼ vir · (1 + N[0, ε]) (Normal)

v
(ℓ)
ir ∼ vir · (1 + r ·N[0, ε]) (Biased Normal)

In each of these noise models, valuations are increased or decreased by a random fraction. Here, N [µ, σ]
is a normal distribution with mean µ and standard deviation σ. For the biased normal noise model, we
put rooms in an arbitrary fixed order and label them with integers 0, 1, . . . , n− 1. Rooms with a higher
index have more noise.
For each noise model and choice of ε, we produced a sample S of size m = 100. We then computed

allocations maximizing EFrateS and minimizing envyS . We also computed the maximin and lexislack rules
based on the input profile v. For each of the four allocations, we calculated their value of EFrateS , and of
envyS . We then average over all 1,000 instances. The results are shown in Figure 1 for the Uniform noise
model. Results for the other noise models and more details are given in Appendix A. As expected, on each
of the two metrics, the rule optimizing it does best, but all three rules aiming for robustness do similarly
well. Spliddit’s maximin rule does significantly worse on our metrics. Before the experiments, we expected
that lexislack would do worse for the biased noise model, but this does not appear to be the case.

In the appendix, we also evaluate the sampling-based rules on a freshly drawn sample different from the
sample used to optimize the rules (Appendix A.2) as well as on a sample drawn from a different probability
distribution (Appendix A.3), to evaluate how sensitive these methods are to being optimized on a small
sample and to knowing the ‘right’ noise distribution. In both cases, we find that the performance of the
sampling-based methods worsens, while lexislack continues to be robust.

0.0s
1.0s
2.0s
3.0s
4.0s
5.0s
6.0s
7.0s
8.0s

1 25 50 75 100 125

timing.multiplicative-normal.inst300.comps1

Sample size "min_envy" "max_prob"

1 0.002937862809437020 0.003075944309433300

25 0.17160645755318300 1.0435256255511200

50 0.3338383601823200 2.234362467836280

75 0.5478602743024630 3.786158517583580

100 0.7373258953432860 5.112192253226720

125 0.9362843555770820 7.976426841660090

0.0s
1.0s
2.0s
3.0s
4.0s
5.0s
6.0s
7.0s
8.0s

1 25 50 75 100 125

Max. Prob. EF

Min. Exp. Envy

Max. Prob. EF

Min. Exp. Envy

1

Figure 2: Computation time depending on sample size

Figure 2 shows average computation
time to compute allocations optimizing
EFrateS and envyS , using Gurobi 9.1.2 on
four threads of an AMD Ryzen 2990WX
(128 GB RAM) with the ILP formulations
from Appendix B. The results were ob-
tained for a random selection of 300 Splid-
dit instances with n = 4, with the Uniform
noise model for ε = 0.05, and sample sizes
m varying from 1 to 125. Minimizing envy
is much faster due to fewer integral variables. In Appendix A.4, we report some additional computation
times as a function of the noise parameter ε.

12

7. Future Directions

Our approach should be applicable to many settings beyond rent division, such as homogeneous divisible
goods, cake cutting, or even indivisible goods. For example, the lexislack rule can be adapted to these
settings, and similar results as in our distribution-based approach might be achievable.
We have shown that the lexislack rule shares some key properties with the maximin rule, such as

essential single-valuedness and polynomial-time computability. It would be interesting to axiomatically
contrast the two solutions, for example with respect to strategic properties like manipulability.

For our distribution-based approach, we assumed that we have access to D only via sampling. Often we
may know D more explicitly, for example if we are just adding noise to reported valuations. For such
well-behaved D, can we design direct algorithms for finding optimal allocations with respect to our two
objectives, without needing samples?

Acknowledgments

This work was partially supported by the National Science Foundation under grants IIS-2147187, CCF-
2007080, IIS-2024287, and CCF-1733556; and by the Office of Naval Research under grant N00014-20-1-
2488.

References

A. Alkan, G. Demange, and D. Gale. Fair allocation of indivisible goods and criteria of justice. Econometrica,
59(4):1023–1039, 1991. [→ p. 3, 5]

E. Aragones. A derivation of the money Rawlsian solution. Social Choice and Welfare, 12:267–276, 1995.
[→ p. 3]

H. Aziz, P. Biró, R. de Haan, and B. Rastegari. Pareto optimal allocation under uncertain preferences:
uncertainty models, algorithms, and complexity. Artificial Intelligence, 276:57–78, 2019. [→ p. 3]

H. Aziz, P. Biró, S. Gaspers, R. de Haan, N. Mattei, and B. Rastegari. Stable matching with uncertain
linear preferences. Algorithmica, 82(5):1410–1433, 2020. [→ p. 3]

M.-F. Balcan. Data-driven algorithm design. In T. Roughgarden, editor, Beyond the Worst-Case Analysis
of Algorithms, chapter 29. Cambridge University Press, 2020. [→ p. 3]

X. Bei, Z. Li, J. Liu, S. Liu, and X. Lu. Fair division of mixed divisible and indivisible goods. Artificial
Intelligence, 293:103436, 2021. [→ p. 3]

R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, P. Skowron, and N. Talmon. Robustness
among multiwinner voting rules. Artificial Intelligence, 290:Article 103403, 2021. [→ p. 3]

E. Budish. The combinatorial assignment problem: Approximate competitive equilibrium from equal
incomes. Journal of Political Economy, 119(6):1061–1103, 2011. [→ p. 1]

I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. The unreasonable
fairness of maximum Nash welfare. ACM Transactions on Economics and Computation (TEAC), 7(3):
1–32, 2019. [→ p. 1]

J. Chen, P. Skowron, and M. Sorge. Matchings under preferences: Strength of stability and trade-offs. In
Proceedings of the 2019 ACM Conference on Economics and Computation (EC), pages 41–59, 2019. [→
p. 3]

A. Critch. Robust rental harmony. https://acritch.com/rent/, 2015. Archived at https://perma.cc/Q9MD-
HMAY. [→ p. 3]

B. Flanigan, P. Gölz, A. Gupta, B. Hennig, and A. D. Procaccia. Fair algorithms for selecting citizens’
assemblies. Nature, 596:548–552, 2021. [→ p. 1]

13

Y. Gal, M. Mash, A. D. Procaccia, and Y. Zick. Which is the fairest (rent division) of them all? Journal
of the ACM, 64(6):Article 39, 2017. [→ p. 1, 3, 4]

G. Gawron and P. Faliszewski. Robustness of approval-based multiwinner voting rules. In Proceedings of
the 6th International Conference on Algorithmic Decision Theory (ADT), pages 17–31, 2019. [→ p. 3]

J. Goldman and A. D. Procaccia. Spliddit: Unleashing fair division algorithms. SIGecom Exchanges, 13
(2):41–46, 2014. [→ p. 1]

D. Kurokawa, A. D. Procaccia, and N. Shah. Leximin allocations in the real world. ACM Transactions on
Economics and Computation, 6(3–4):Article 11, 2018. [→ p. 5]

T. Mai and V. V. Vazirani. Finding stable matchings that are robust to errors in the input. In Proceedings
of the 26th Annual European Symposium on Algorithms (ESA), page Article No. 60, 2018. [→ p. 3]

V. Menon and K. Larson. Algorithmic stability in fair allocation of indivisible goods among two agents.
arXiv:2007.15203, 2020. [→ p. 3]

N. Misra and C. Sonar. Robustness radius for Chamberlin–Courant on restricted domains. In Proceedings of
the 45th International Conference on Current Trends in Theory and Practice of Informatics (SOFSEM),
pages 341–353, 2019. [→ p. 3]

H. Moulin. Fair division in the internet age. Annual Review of Economics, 11:407–441, 2019. [→ p. 1]

A. D. Procaccia, R. A. Velez, and D. Yu. Fair rent division on a budget. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI), pages 1177–1184, 2018. [→ p. 3]

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014. [→ p. 6, 7]

D. Shiryaev, L. Yu, and E. Elkind. On elections with robust winners. In Proceedings of the 12th
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 415–422,
2013. [→ p. 3]

F. E. Su. Rental harmony: Sperner’s lemma in fair division. American Mathematical Monthly, 106(10):
930–942, 1999. [→ p. 3]

L.-G. Svensson. Large indivisibles: An analysis with respect to price equilibrium and fairness. Econometrica,
51(4):939–954, 1983. [→ p. 1, 3]

R. A. Velez. Equitable rent division. ACM Transactions on Economics and Computation (TEAC), 6(2):
Article 9, 2018. [→ p. 3]

L. A. Wolsey. Integer Programming. John Wiley & Sons, 1998. [→ p. 3]

14

A. Experimental Results

In this section, we will present more detailed results of the experiments described in Section 6 of the main
body of the paper. We describe the results in four subsections:

• In Appendix A.1, we evaluate the rules by calculating their performance in terms of envy-rate and
expected envy on the same sample (m = 100) that we used to optimize the two probabilistic rules
(the optimization sample).

• In Appendix A.2, we evaluate the rules by calculating their performance on a fresh sample (m = 1000)
that is different from the one used to compute the rules.

• In Appendix A.3, we evaluate our probabilistic rules trained on one specific noise model (normal
noise with ε = 0.05) on the other noise models.

• In Appendix A.4 we briefly discuss computation times.

A.1. Evaluation on the Optimization Sample

When evaluating the rules based on the optimization sample (or in other terminology, if we take the test
set to be the same as the training set), then our optimizing rules are optimal by definition. Indeed, in
each of the charts, we can see that the maxprob rule (maximizing the probability of envy-freeness) has
the best performance out of all the rules with respect to the probability of envy-freeness; and analogously
for the minenvy rule and the envy objective. When evaluating on the optimization sample, we see that
the respective optimizing rule outperforms lexislack, but only by a modest amount.

In all the charts, error bars show standard errors, which are small due to the large number of instances.

A.1.1. Uniform Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

A.1.2. Normal Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

15

A.1.3. Biased Normal Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

A.2. Evaluation on a Fresh Sample

For these charts, we drew a fresh sample of size m = 1000, and calculated the values EFrateS and envyS
with respect to this fresh sample. (Since evaluation is much cheaper than optimization, it is no problem
to use a large sample size.) We see that the advantage of the optimizing rules over lexislack shrinks or
disappears. The minenvy rule performs the same as lexislack for the uniform and normal noise models
with respect to the envy objective, though it outperforms lexislack by an extremely small amount for
the biased normal noise model. On the other hand, surprisingly, the maxprob rule does strictly worse
than both the minenvy and lexislack rules, on the probability objective. This suggests that the sample
size of m = 100 was too small to allow the maxprop rule to properly generalize to the underlying noise
distribution.

A.2.1. Uniform Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

A.2.2. Normal Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

16

A.2.3. Biased Normal Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
minenvy

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
minenvy

A.3. Evaluation of Rules Trained on a Different Distribution

Like in the previous subsection, the following charts are with respect to a fresh sample of size m = 1000.
However, in each chart, we now add two ‘new’ rules, namely the allocations selected by the maxprob and
minenvy rules when optimized on samples drawn from the normal noise model with ε = 0.05. Thus, these
charts allow us to gauge the performance of the distribution-based methods when they are optimized
using the ‘wrong’ distribution.

For the probability objective and the uniform and normal noise models, not much performance is lost.
However, the rules optimized for the normal noise models perform poorly for the biased noise models
(compared to the rules optimized for that model, and also compared to lexislack). For the envy objective,
we see notably bad performance for uniform noise.

A.3.1. Uniform Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
maxprob-0.05
minenvy
minenvy-0.05

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
maxprob-0.05
minenvy
minenvy-0.05

A.3.2. Normal Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
maxprob-0.05
minenvy
minenvy-0.05

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
maxprob-0.05
minenvy
minenvy-0.05

17

A.3.3. Biased Normal Noise

Probability of Envy-Freeness (EFrateS) Expected Envy (envyS)

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
of

E
nv

y-
Fr

ee
ne

ss
(E

Fr
at

e D
)

maximin
lexislack
maxprob
maxprob-0.05
minenvy
minenvy-0.05

0 1 2 3 4 5 6 7 8 9

Noise parameter ε

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
xp

ec
te

d
en

vy
(e

nv
y D

)

maximin
lexislack
maxprob
maxprob-0.05
minenvy
minenvy-0.05

A.4. Computation Time

In Figure 3, we show that the computation time of the two probabilistic rules when we vary the noise
parameter ε of the underlying distribution. The chart is based on computations involving 1000 instances
from spliddit all with n = 4, and a sample size of m = 100. We can see that with zero noise (ε = 0),
computation is extremely fast. This is because all the 100 samples are identical, so the ILP solver can
eliminate most constraints as redundant. For positive noise (ε ⩾ 0.1), there is a very slight increase of
computation time with increased noise.

Av
er

ag
e

C
om

pu
ta

tio
n

Ti
m

e

0.0s

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

Noise parameter ε, normal noise
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Max. Prob. EF Min. Exp. Envy

Figure 3: Computation time as a function of the noise parameter

18

B. ILP Formulations

B.1. Envy-Free Rate

Write vmax = maxi,ℓ,r v
(ℓ)
ir (if we use normalized valuations, this value is at most 1). Note that an allocation

(σ, p) where pr < −vmax for some r ∈ R cannot be envy-free for any of the valuation profiles: If r′ is a
room with pr′ > 0, then the person receiving r′ values r′ at most vmax more than room r, and hence by
the price difference will envy the agent receiving room r. So in solving our maximization problem, we can
restrict attention to price vectors with pr ⩾ −vmax for all r ∈ R. Similarly we can assume pr ⩽ vmax.
Using such price vectors, note that the envy between any pair of players is at most 3vmax. Write

M = 3vmax.

max
∑

ℓ∈[m] yℓ

s.t.
∑

r∈R xir = 1 for all i ∈ N∑
i∈N xir = 1 for all r ∈ R

v
(ℓ)
ir − pr ⩾ v

(ℓ)
ir′ − pr′ −M(1− yℓ)−M(1− xir) for all i ∈ N , r, r′ ∈ R, ℓ ∈ [m]∑

r∈R pr = 1

− vmax ⩽ pr ⩽ vmax for all r ∈ R

xir ∈ {0, 1} for all i ∈ N , r ∈ R

yℓ ∈ {0, 1} for all ℓ ∈ [m]

B.2. Minimize Expected Envy

As in the text, assume that valuations are normalized, and hence restrict attention to reasonable allocations
with −2 ⩽ pr ⩽ 2 for all r. Then envy is at most 5. Let M = 5.

min
∑

ℓ∈[m] Bℓ

s.t.
∑

r∈R xir = 1 for all i ∈ N∑
i∈N xir = 1 for all r ∈ R

(v
(ℓ)
ir′ − pr′)− (v

(ℓ)
ir − pr) ⩽ Bℓ +M(1− xir) for all i ∈ N , r, r′ ∈ R, ℓ ∈ [m]∑

r∈R pr = 1

− 2 ⩽ pr ⩽ 2 for all r ∈ R

xir ∈ {0, 1} for all i ∈ N , r ∈ R

Bℓ ⩾ 0 for all ℓ ∈ [m]

C. Omitted Proofs

C.1. Proof of Theorem 4.6

Theorem. EF-Rate Maximization with Fixed Assignment is NP-complete.

Proof. Membership in NP is clear. We give a reduction from Feedback Arc Set, which can be stated
as follows.

Input: Digraph D = (V,E), number B.
Question: Is there an ordering (x1, . . . , xn) of V such that at least B arcs from E point from left to
right? (An arc (xk → xs) ∈ E points from left to right if k < s.)

19

Consider an instance of this problem: Let D = (V,E) be a digraph and let B be a number. We construct
a rent division instance where V is both the set of agents and of rooms. Let σ(x) = x be the identity
room assignment.
Let ε = 2/(n(n+ 1)), chosen so that ε+ 2ε+ · · ·+ nε = 1.
Label the arc set E = {a1, . . . , am}. We define one valuation profile for each arc aℓ = (x→ y), with

v(ℓ)xy = 1 + ε, v(ℓ)zz = 1 for all z ∈ V ,

and valuation 0 for all unspecified combinations.
We now prove that there is an ordering (x1, . . . , xn) of V with at least B arcs pointing from left to right

if and only if there exists a price vector p that makes the identity room assignment σ envy-free in at least
B of the valuation profiles.

(⇒): Let (x1, . . . , xn) of V be an ordering such that (wlog) the arcs a1, . . . , aB point from left to right.
Consider the price vector p = (ε, 2ε, . . . , nε), so room xi has rent i · ε. This is a valid price vector

because it sums up to 1 by choice of ε. We claim that this price vector is envy-free for valuation profiles
v(1), . . . , v(B). Let ℓ ∈ [B]. Since aℓ points from left to right, we have aℓ = (xk → xs) for some k < s.
First, note that any agent xi ̸= xk does not envy another agent because xi values her assigned room xi at
utility 1 higher than other rooms, which avoids envy because room prices differ by less than 1. By the
same argument, agent xk never envies any agent except perhaps xs. Finally, we check that agent xk does
not envy agent xs: Note that the rent of room xs is s · ε, which is at least ε higher than the rent k · ε of
room xk. Since xk values room xs only ε more than her assigned room xk, she does not envy agent xs.
Thus p is envy-free for valuation profile v(ℓ), as required.

(⇐): Suppose there is a price vector p that is envy-free for valuation profiles v(1), . . . , v(B) (relabeled for
convenience). Label the vertices x1, . . . , xn in order of increasing price, i.e., such that px1

⩽ px2
⩽ · · · ⩽ pxn

with ties broken arbitrarily. Let ℓ ∈ [B] and consider arc aℓ = (xk → xs). We show that aℓ points from
left to right, i.e., k < s. As p is envy-free for agent xk under v(ℓ), we have

v(ℓ)xk,xs
− pxs

⩽ v(ℓ)xk,xk
− pxk

⇐⇒ 1 + ε− ps ⩽ 1− pk

⇐⇒ pxs ⩾ pxk
+ ε.

In particular pxk
< pxs

. By our choice of ordering, it follows that k < s, as required.

C.2. Proof of Theorem 5.5

Theorem. Expected Envy Minimization is NP-complete, even for binary valuation profiles.

Proof. Membership in NP is clear. Reduction from Clique.
Let G = (V,E) be a graph with n vertices and m edges and target clique size k. Set the target envy

amount to be B = m−
(
k
2

)
. Let M be a large integer, M > (B + 1)2. Write ε = (B + 1)/M . Our choices

of these numbers imply the following estimates which we will need later:

• Mε > B, since Mε = B + 1 > B.

• ε(B + 1) < 1, since ε(B + 1) = (B + 1)2/M < 1.

The set of agents is V . The set of rooms is R = {o1, . . . , ok, d1, . . . , dn−k} consisting of k slot rooms
and n− k dummy rooms. Write E = {e1, . . . , em}. We construct a sample S of m+M valuation profiles.
For j ∈ [m], write ej = {u, v}; then valuation profile v(j) is defined by

v
(j)
i,r =

{
1 if i ∈ {u, v} and r ∈ {o1, . . . , ok},
0 otherwise.

For j = m+ 1, . . . ,m+M , let v(j) be a uniform profile:

v
(j)
i,r = 0 for all i ∈ V and r ∈ R.

(⇒): Suppose there is a clique C ⊆ V of size k in G; write C = {i1, . . . , ik}. We construct an allocation
(σ, p) that will be envy-free for B profiles. In the room assignment, we will assign agent ir to slot room or,
for r ∈ [k]. The remaining agents can be assigned arbitrarily to dummy rooms. We’ll say that each room
costs the same rent so pr = 1

n for all r ∈ R.

20

• For each of the M uniform profiles, envyv(σ, p) = 0.

• For a profile v corresponding to an edge ej = {ia, ib} with ia, ib ∈ C (i.e. contained in the clique),
envyv = 0.

• For one of the m−
(
k
2

)
profiles v corresponding to edges not contained in a clique, we have envyv = 1.

Summing these up, we have envyS(σ, p) = m−
(
k
2

)
= B.

(⇐): Suppose there is an allocation (σ, p) with envyS(σ, p) ⩽ B. Let C ⊆ V be the set of k agents/vertices
assigned to slot rooms under σ; write C = {i1, . . . , ik}.
First we show that the rents p = (p1, . . . , pn) of the rooms are close to uniform, in the sense that

|pr − pr′ | ⩽ ε for all r, r′ ∈ R. Assume for a contradiction that there are r, r′ ∈ R with pr > pr′ + ε. Then
in each uniform profile, the agent assigned to room r envies the agent assigned to room r′ by at least ε,
and hence the max envy in a uniform profile is at least ε. Since we have introduced M uniform profiles, it
follows that envyS(σ, p) ⩾ Mε > B, a contradiction.

Now we show that C is a clique. Suppose not. Then there are at least m−
(
k
2

)
+1 = B+1 edges that are

not completely contained in C. For each profile corresponding to such an edge, the agent corresponding
to the endpoint not in C envies other agents who are assigned a slot room by at least 1 − ε. Hence
envyS(σ, p) ⩾ (B + 1)(1− ε) = B + 1− ε(B + 1) > B, because ε(B + 1) < 1. This is a contradiction.

21

	Introduction
	Preliminaries: Rent Division
	The Lexislack Solution
	Maximizing Probability of Envy-Freeness
	Sample Complexity
	Computational Complexity

	Minimizing Expected Envy
	Sample Complexity
	Computational Complexity

	Experiments
	Future Directions
	Experimental Results
	Evaluation on the Optimization Sample
	Uniform Noise
	Normal Noise
	Biased Normal Noise

	Evaluation on a Fresh Sample
	Uniform Noise
	Normal Noise
	Biased Normal Noise

	Evaluation of Rules Trained on a Different Distribution
	Uniform Noise
	Normal Noise
	Biased Normal Noise

	Computation Time

	ILP Formulations
	Envy-Free Rate
	Minimize Expected Envy

	Omitted Proofs
	Proof of Theorem 4.6
	Proof of Theorem 5.5

